ICOT Technical Report: TR-468

TR-468

Parallel Unification and Meta-Interpreters
in GHC

by
H. Fujita

March, 19589

L1989, ICOT

Mita Kokuosai Bidg 21F (03) 456-3191-5

| D DT 4-28 Mita 1-Chome Telex 1COT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel Unification and Meta-Interpreters in GHC

Hiroshi Fujita
institute for New Generation Computer Technology,
1-4-28 Mhita, Minato-ku, Tokyo, 108, Japan

fujita%icol. jplrelay.cenet

ABSTRACT

This paper presents a new unification program in GHC. The program s designed for
obtaimng the maximal efficicncy by making the best of parallelism inherent in the um-
fication problem. It employs stream parallelism together with a useful programming
technique called short cireurt for detecting stable properties of networks. Efficient meta-
mterpreters in which an object variable 15 represented by a ground tenn are developed by
meorporating this unification program. Superiority of the parallel unification program

over more sequentizl ones becomes more evident as 1t 15 used in larger applications.

1. Imtroduction

It is widely accepted that logic programming is congenial to meta-programming, The
expericnce in Prolog scem to support this thesis. The only shortcomming of meta-
programming is inefficiency of execution due to layers of interpretation, which:, however,

can be remedied by applying partial evaluation.

Is meta-programming successful in concurrent logic languages such as GHC too? This

question is the primary motivation of the research reported in this paper.

it may be difficult, within GHC, to obtain the efficiency competitive to that obtainable
in Prolog. One big problem is concerning representation of a variable from different
levels of a meta-program. The overall performance of a meta-program strongly depends
on how suitably variables are represcuted and how casily they can be manipulated by
the meta-program, for a great deal of execution time and space is spent on handling
varizbles. [n particular, unification plays a central role in every logic program, whether
the language used is Prolog or GHC, and its efficiency dominates the total performance

of the program.

In a meta program written in Prolog, an object variable can be represented by a logical
variable of the meta-program without any serious problem of confusion in many cases.

This makes unification of object terms containing object variables very efficient, since

the unification can be performed by the underlying system. In addition to this, the var
and the nonvar predicates in Prolog may be used effectively to determinc whether an
ohiect variable is bound or not. However, from the semantical viewpoint, this way of
Landling object variables is inadequate, for 1t 15 not guaranteed that the above method

always works correctly.

Mareaver. the above method can no longer be applied to a meta-program within GHC.
Fur instance. alihough the wait predicate in GHC. which corresponds to the nonvar
predicate, can be nsed as a guard goal 1n order Lo make sure that a variable is instanti-
ated. there is no counterpart of the wait predicate, which would correspond to the var

predicate.

Therefore. we should adopt the orthodox method, such as those in [Llo38], to handle
object variables in meta-programs properly. In this paper, the ground representation 1s
employed. Then, the problem is how to obtain an eflicient implementation of a meta-
program in the ground representalion. Here. T claim that the implementation of an

efficient unification program is the key to solving this problem.

Section 2 presents the parallel unification program, Correcncss is proved of an abstracied
alzarithm for the program and its complexiiy 1s analysed in Section 3. Section 4 presents
w GHC meta-interpreter which employs the unification program. Section 5 gives the

performance results. Section § concludes the paper.

2. The Parallel Unification Program

A number of unification algorithms have been developed with working implementutions
in the literature. In particular, very efficient algorithms of unification are known, sucl as
ihe one in [MM82], which are especially suitable for sequential implementation. However,
it may still be possibile to develop morc efficient implementation than conventional ones

by extracting maximum parallelism inherent in the unification problem.
In this section, a paralle]l unification program is developed in GLC,
{a) functional specification

The unification goal, unify(X,Y,Res), given two terms, X and Y, returns Res, which is

a set of hindings as o mgu of X and ¥ when they are unifiable, £ail otherwise.
(b) programming paradigm: generate-and-test plus stream parallelisin

If the input terms are composit terms, more than one binding may be generated in

parallel. A collection of bindings renerated may be inconsistent since they will be given

independently of one another. Therefore the unify goal should be divided into two
processes as follows:
unify(X,¥,Res) :- true | generate(X,Y,S}, test(S,Res).

where 8 is a stream of bindings.
(e feedback loap

Tt may be possible that two bindings, say v =1, and v = #5, for an identical variable, v,
are passed onto the test process. In this case a new unification problem, £;, = f;, arises
and a new =et of bindings may be generated as the solution for this subproblem. Hence
the unify clause should be modified to:

unify(X,Y,Res) :- true |
generate(X,Y,S1), merge(S1,52,53), test(83,52,Res).

wliere 32 is the stream of the bindings generated within the test process. The bindings
given in 52, as those in 51, mav be inconsistent. Therefore 52 must be fed back to
the test process. Thus the merge(31,52,33) process is inserted to obtain 53 which

Leconies the total input of the test process.
(d) hiow to terminate in failure

Every unification subprocess under the generate or the test process is a candidate
where fallure may be detected. Failure detected in any process implies total failure of
the initial unification goal. Hence, once failure is detected in some process, it is desired

that every process spawned under the mitial goal is killed immediately,
(e) how to terminate in success

When all the processes terminate with no failure detected at any process, it is known
that the initial unification goal has succeeded. At this point, important questions arise.
Heow can one be assured that every process always terminates when the given terms are
unifiable? Is not there any possibililty of an infinie process? Does not the feedback loop

lead the processes to deadlock which cannot be escaped from?
(f) signaling system nused for smart termination

In order to solve the above problems of termination, let us introduce a unique mechanism
called signaling systemn. The usc of signaling system is considered as a basic programming
technique in concurrent programming, which is indeed as useful and indispensable as

atreams.

Fig. 2.1 shows the unify/3 code in the actual implementation, where two kinds of

signaling systems are employed: an abort signal and a short cireust.

unify(X,Y,Res) :- true |
unify(X,¥,51,ew(5,success),Abort],
merge{ﬂi,EE,InS,Aburt},
sift{InS,luts,s52, Abort),
unify_result(S,Abort,0uts,Res).

unify_result(_,abort(all),_,Res) :- true | Res=fail.
unify_result{5ucceas,nburt,uutS,Res} := true | Res=0uts,
Abort=abort(filters).

Fig. 2.1 The unify/3 code in il actoal implementation

An abort signal is commonly used for detecting some special event whtrh may occur
amoug cooperating processes, and for forcing processes to quit when the event does
ocenr. In Fig. 2.1, the varable, Abort, will be instantiated to the abort (all) signal by
some subprocess when failure of nnification is detected. Usually 1t 1s assumed that an
abart signal is dssued at most once by a single process, and all the other processes are
forced 10 ohserve this signal as early as possible. However, it is not necessarily harmful
to allow for more than one procuss to activate an identical signal line (multiple write on
a shared variable), if no signal of different types are issued on it {no different values are

assigned to the shared variable).

A short circuit is commonly used for detecting a stable property of a network of couper-
ating processes [Tak83, SWKS28]. A pair of variables called a swifeh is delivered to each
process in the network. The terminels (variables) of a switch may be shared by neighbor-
ing processes. The cooperating processes are then virtually lined in & chinn according to
the connection by the shared variables. A switch will be closed or shorted (two variables
are unified) when some condition is met in the process holding the switch. When all the
switches held by 1he processes on the chain are closed, terminals that occur at either side
of the chain are shorteircuit. This makes it possible to let a process, which is holding
terminals at both sides of the chain, know the fact that every condition Lias been met in
the responsiblc process on the chain. In Fig. 2.1, the switeh, sw(S,success}, is given
ta the unify/5 process. When this switch is shorteircuit, S iz instantiated to success

and the unify_result process becomes able to bind Res to OutS.

1t is obvious that the nondeterministic choice made by the unify_result according to
the two signals, Abort and §, if issued correctly, will never lead the program to any
incorrect result, since the two results, success or failure, of unification are exclusive to

one another,

The Abort signal is in fact used for multipurpose: to detect the failure, to force the

unnecessary processes to quit after the failure is detected in some process, and to force the

unify(_,_,_,_,abort{_)) :- true | true.
unify(X,X,0utS,sw(A,Z),_) :- true | OutS=[], A=Z.
unify(V,T,0utS,8W,_) - Vsvar(_), V\=T |
CutS=[bind(V,T,T,TF,5W)].
unify (T,V,0ut3,5W,_) = V=var(_}, V=T |
OutS={bind(V,T,T,Tf,5W)].
unify(X,¥,0utS,SW,Abort) - Xh=var(), Y\=var(_) |
functer(¥,F), functer(Y,G,M),
unify_functor(F/N,G/M,X=Y,0uts8,5W, Abert) .

unify_functoer(_,_,_,_,_,abort{_J}) :- true | true.
unify_functor(F_N,G_M,_,_,_,Abort) :- F_E\=G_M |
Abort=abort(all).
unify_functer(F/N,F/K,X_Y,0utS,sW,Abort) :- true |
unify_arg(N,X_¥Y,0utS,SW,Abort).

unify_arg(_,_,.,..,abort{_)) := true | true.
unify_arg{N,X=Y,0utS,sw(A,Z) ,Abort) :-
>0 | Ni:=N-1, arg(N,X,X1), arg(N,¥,vi),
unify (X1, Y1,51,sw{A M), Abort),
merge(51,32,0uts, Abort),
unify_arg(N1,X=Y,352 sw(M,2),Abort).
unify_arg(0,_,0utS,sw(A,Z),_) := true | OutS=[], A=Z.

Fig. 2.2 The unify/5 code and its subprocedures

processes in the feedback loop, whicli may be in deadlock, to quit. The abort(filters)
signal issucd by the unify_result process is for the last purpose above. More details

on this mechanism will be explained later.
(&) the unify/s process as the generator
Fig. 2.2 shows the unify/5 code and its subprocedures.

In what follows, an object variable is represented by a ground term of the form, var(V),

where Vs an identifier assigned to each distinct variable.

The unify(X,¥,0uts,swlA,2),Abert) process closes the switch, sw(A,Z), if the in-
put terms, X and Y, are equal. If either X or ¥ is a variable, and let V be the variable
and T be the other terin, then the unify/5 process enters a quintuple of the form,
bind(V,T,T,T£,SW), into its output stream, OutS, as the binding information for the
variable, V. The third element of the quintuple, which is initially set to T, is a place
where the intermediate value of T is put as the dereference operation proceeds incremen-

tally. The fourth element of the quintuple, which remains unbound until the unification

terminaics in suceess, 1s to be the final value of the variahle, V.

Tt shauld be noted that the creation of the binding infermation for a variable may not
immediately mean the successful termination of the unification subproblem for this par-
tieular varinble. since it may give rise to creation of further subproblems at some time
in the sift process. Thercfore the switch, SW (= sw (4,23). for which the unify/5 pro-
cess should have been responsible, is thrown out enclosed with the binding information,
thereby shifting the responsibility ento seme other process. A switch, which is released
from its holder process and is transfered from process to process as a data, 15 called an
ernbedded switeh, This trick is in fact the key to the successful texmination of the parallel

unification program.

If X and ¥ are not equal and none of them is a variable, the two tcrms are decomposed
into subterms. {An atomic term is assumed to be a composed term of a null-ary function
symbol.] The unify_functor process determines whether the given terms are unifiabile
or not by comparing their primary function symbol and arity. I the comparison results
in failure, the abort (all) signal is broadcasted through the signaling system. Abort.
If the comparison results in success, the unily_arg process i spawned, which in turn
spawns # unify/5 process for cach pair of the subtersns. The switch, sw(4,Z), held
by the initial unify/5 is sphit to the subswitches, each of which is delivered to the new
unify/5 subprocesses in the manner that these subprocesses comprise u chain. The

output streams of quintuples from these subprocesses are merged into a single strean.
{h) the sift and the £ilter processes as the tester
Fig. 2.3 shows the sift codes and the filter codes.

The sift {Ins,0uts,0uts52,Abort) process, observing a gumtuple in the input stream,
Tng, passes it outo the main ontput stream, Juts. At the same time, the sift process
spawns the filter process and assigns the input quintuple to it. DutS2 is the suboutput
stream for collecting quintuples which may be created by the unify/5 subprocesses
spawned from within the filter processes. Also at the same time, the embedded
switcl, sw{A,2), in the quintuple is closed. This is because the quintuple that reaches
the sift process must already have undergone all the necessary trials performed by the

filter processes.

The filter{InS,V,VT,VIm,VTf,0utS,0utS2, Abort) process, holding the variable, V,
its initial value, VT, intermediate value, VTm, and the final value, VT£, looks at the input
stream of quintuples, InS, and passes only appropriate quintuples onto the main output

stream., Outs.

sift{_,_,_,abort{all)}) :- true | true.
sift{_,0ut3,_,abort{filters)) :- true | Duts=[].
sift{[bind(V,T,Tm,Tf ,sw(A,Z)) |InS8],0utS,0utS2,Abort) :-
true | AsZ,
sift_final(V,Tf,0uts,0uts1),
filter(InS,V,T,Tm,Tf,InS81,0ut521,Abort),
merge(JutS21,00t522,0ut52, Abort),
sift(In51,0utsS1,0ut522,Abort).

sift_final(V,V,0uts,0uts8l) :- true | OutS=0utsi.

sift_final(W,T,0uts,0utsS1) :- ¥VA\=T | OutS=[V=T|OutSi].
filteri(_,_,_.,_._._._,abort{alll)) :- true | true.
filter(_,_..,Tn,Tf,_,_,abort(filters}) :- true | Tf=Tm.

filter([bind(V,VT1,_,VT#1,5W) 1 Tn3],
VOVT, VT VTL,0utS,0utS2, Abort) :- true |
YTE1=VTL,
unify(VT1,VT,0utS21,5W,Abort),
merge (OutS21,0ut822,0utS2,Abort),
filter{In3,Vv VT ,VTm, VTf,Outs,0utsS22 Abort) .
filter{[bind{V,V,_,UTE,5W)|Ins],
YV, VT, VTm VT#,0uts,0utS2, Abort) - true |
UTf=VTt,
Out3=[bind{U,VT,VIm,VIf,SW) |Cuts1],
filter{InS,V,VT VTm, VTE,0utS1,0uts522, Abort).
filter([bind(U,UT,UTm,UTE,SW) | Ins],
V,VT,VTm, VT, 0uts, OutS2, Abert) :- U\=V, UTm\=V |
deref(UTm,V=VTf ,UTml,Abort),
deref (VIm,U=UTf ,VTm1,4Abort),
OutS=[bind(U,UT,UTm1,UTE,SW) | DutsS1],
filter(InS,V,VT,VTmi,VTf,0utS1,0utS2, Abort)

Fig. 2.3 Codes for sift and filter

If the input quintuple is bind(V,VT1,VImt ,VI£1,5W), VT£1 and VTf are unified by the
builtin unification, and the new unify/5 process is spawned Lo unify VT1 and VT. Also

the embedded switch, SW, in the quintuple must be inherited to the new unify/5 process.

If the mput quintuple 1s piad (U,V,VIn,UTE,S5W), UTE and VTE are unified by the builtin
unification, and the modified quintuple, bind(V,VT,VTn,VI{,SW), is given as the output.

If the input quintuple is bind(U,UT,UTm, UTE,SW) such that neither U nor UT is identical
to V, then the modified guintuple, bind (U,UT,UTnl,UTE,SW), is given as the output.
At the same time, the two bindings, V—VTf and U«UTE, are applied to each other's

internediate value, UTm and VIm. obtaining the new ones, UTml and VIml, by deref

procedure.

The sift_final process is just for eliminating redundant bindings such as v «— v that

may pass through the sift process.
(i) deadlock detection and eliminatiou
Now. let us turn to the problem of deadlock detection and elimination.

How and when processes come to deadlock? 14 occurs after all the quintuples passed
through the sift process. After that. no unify/s process will remain, whereas the
sift process and several £ilter and merge protesses wmay remain in the feedback loop

waiting, in vain, an input that will no longer be supplied by any process.

This deadlock dovs not mean failure of the initial unification goal in any sence. On the
contrary, this deadlock 15 in fact possible only when the unification must succeed. Tl
unification problen is {initely soivable under the assumption taken iu this paper that no
terms are given which need oceurs check. Hence, there should he some way to detect

eompletion of unification and to eliminate the deadlock. But how?

The exhaution of quintuples in the feedback loop can he detected by observing that
all the switches embedded in the quintuples are closed. The switches other thau the
embedded ones, which are also the subswitches split from the parent switch in the initial
unify/5, should have already been closed within the unify/5 processes that terminated
in success. Hence, the unify_result process can be assured of successful termination of
the unification when it observes the success signal, thereby issuing the abort (filters)

signal to force cvery process that remains in deadlock to quit.

On observing the abort(filters) signal, every remaining filter process unifies Vim
and VTf by the builtin unification. then Lerminates; the sift process closes the main
output stream, SutS, then terminates; and every remaining merge process simply ter-

minates,

Note that some deref processes may still be performing their task after the success
signal is broadeasted. These deref processes must not of cource be killed at this point.
The detection of the termination of the deref processes, if required, is possible by using
another short circuit. However, it is not absolutely necessary since they will eventually

termninate in any event.

Due to limited space, the deref and the merge codes are ommitted.

3. Correctness and Complexity
The correctness of the unification program might be stated as follows:

ProprosiTioN 3.1. [Correciness of the parallel unificetion program)

(i) The unificalron progrem alweys lerminates.

(1) If X and Y are unifiable, unify(X,Y,6) gives 8 = Jv; «— t),...,vq « o] a5 @
maost general untfier of X and V. If X and ¥V are not unifiable, unify(X VY ,8)

qives # = fail

The paper is not presenting the direct proof of Proposition 3.1 in a way of verifying
GHC codes line by line, for there 15 not, at present. any formal method suitable to do
that. Instead, let us investigate on several properties essential to the parallel unification

program on the basis of more abstract setting,
{a) abstract algorithin

First of all, it will be convenient to address a paraliel unification algorithm, of which

tmplementation has already been presented, in a more abstract form.

Fig, 5.1 shows Algorithm 1. In the algorithm., Rule 1 and 2 are called decomposttion,

and Hule 6,7 and 8 are called dereference.

Algorithm 1 might be found basically the same as the one in [MM82]. However, they
are quite different in that in our algonthin, Rule 1-8 may be performed not enly nonde
terministically but also in parallel. More precisely, even decomposition (term reduction
in their terminology } and dereference {variable elimination) may be done in parallel. In

particular, dereference is no longer an atomic or indivisible operation here.

Nevertheless, the following theorem for the correctness of Algonithm 1 35 proved similarly
along the line of [MMB82].

TueorEM 3.2, (Given a pair of terms) and g,
(1) Algorithm 1 always terminates, no matller which chowces are made.
(i1) If Algorithm 1 terminates with fatlure, 1, and {2 have no wnifier. If Algorithm 1

terminates with success, ¢, and i3 are unifiable and € 15 a mgu of them.
Before presenting the proof of Theorem 3.2, several lemmas need to he given.

LemMma 3.3. (Decomposition preserves mgu)

Let E be a set of equations. If Rule 1 is applicable, then E heve no unifier. If Rule 2 is
applicable, and let B be obtained by applying Kule 2, then E' gives the same mgu as E,
1if il ertsis.

Algaritho 1 [Parallel nondeterministic unification))
Given o pair of terms, £ and £,
PROCEDURE
E: a zet of equations 1= {f; =t)2
& a set of quadruples := {};
Hepeat applving the following mules in parallel and nondeterministically;
Nifds=teE (s=f"...0 At=gm.0 A f"#Fe™),
then exit with fail:
NHIs—tEE (s= Mt yen) A L= Pl ta) A 0 0),
then remove s = € from F, and ender s; = 601 <1 = n) into 1)
3tifav=teE {v=t A v:variable).
then remove v =t fron E;
4y ifdev=teE {vFt A v:variable),
then remove v =1 from £, and enter {v, 6.4, () into 5
difdte=veE (v£1 A v:variable),
then remove ¢ = v from £, and enter {v,4,¢.).} into 5,
6) if Hu, 6,80, On)ylo, 15, 00) €5 u=r,
then equate (), to (), remove (u, 5,85, () from 5, and

"
enter s =t into F:
7) i A5 Ou)o 0,1, 82.00) €5 s =1,
then equate (O, to Oy, remove {u, $, 55, (0,) from 5, and
enter {u,1,t5, ().} into S;
8) if Fu, 5,88, Ou) (e, 12,00 €85 (uFvAasEont#u),
then remove (u,s,s], Oy and (v, 1,15, Oy} from 5, and
enter (u,s,50{v « 17}, O} and (v, #,#5{u — 55}, 0.} into 5;
until a eondition is met such that none of Rule 1-7 is applicable and no appli-
cation of Rule 8 results in any change to 5;
For ¥ {v, 1,0, (0} € S, do equate (), to t3;
Exit with 6 ={ v = O, | (v,t,t5,Ou) €8 §
where t2 is the intermediate value for v and (), is the meta-variable associated to

each distinet variable, v.

Fig. 3.1 An abstract algorithm of parallel unification

10

Proof is ommitted {readers are refered to Theorem 2.1 in [MME&2].)

A pair of quadruples, {u, 5,55, Oa) and (v, 4,47, 0}, in S such that v = v, recognozed in
Rule 6. 15 ealled a erthical parr. A pair of quadruples, (u, ¢, 55, Oy) and (v £ {5, O, in
5 such that 5 = v, recognized in Rule 7, is called & connected pair. A pair of quadruples,
(u.s.sy. Oy and (w215, Oy}, In § such that u # v A s # v At # u, recognized in Rule
5, 15 called a requinr pair. Note that no pair can be both critical and connected in § due
1o Rule 3.

Lemma 3.4, [Dereference preserves mou)

Let E be a set of equations, and let § be o set of guadruples, {{v,t,,t2 (O} If Rule 6
w3 applicable, and let E' and S' be oblamned by epplying Rule 6, then E' and §' gives the
swine mgu as B oand S, of ¢f exists, If Rule 7 (8) s applicable, and led §" be obtained by
applying Rule 7 (8), then 5' gives the same mgu as S, if it enists.

Proor.

Case Rule 6: If a pair, (u, s, s;, Ou) and (v, 15, (.}, is recognized in 5 by Rule 6, the
pair 1s a critical pair and w = v. Then. if there exists for E and 5 a mpu 8 such that
wfl = vf = 58 and vf = tf 5o does for F' and 5" after Tlule 6 is applied, and vice versa.
Case Rule 7: If a pair, (u, 8,55, Ou) and {v,{,t3, (), 15 recognized in S by Rule 7, the
prair 1s a connected pair and w.Log. we can assume 5 — v. Then, if there exists for S a
mgu Fosuch that uf = 56 = vb and v — t6 so does for 5 after Rule 7 is applied, and
Ve Versi.

Case Rule 8: If a pair, {u,s,55,(0y) and (v, 1,45, (), is recognized in § by Rule §, the
pair is a regular pair and v # v A s & v At # u. Then, if there exisis for § a mgu # such
that ubl = s# and vé = t8 so does for ' after Rule 8 is applied, and vice versa. [J

A set of quadruples, S, is said to be in solved form iff it satisfies the following conditions:
{1} neither eritical pair nor connected pair is in .5;
(1] no variable, v, that occurs as the leftmost element of some quadruple, (v,¢,t5, Oy},

occurs in any intermediate value, 17, in 5.

Lemma 3.5. Let § be a set of quadruples, {{v,t,15,(0u}}, and S be in solved form.
There exists a mgu 6 such that vf = #6 for every quadruple sn 5 iff does 30 a mgu @
such thal O”cr ={,0 in 5.

Fl‘(](]f 15 [][Ijl’l’lif. tHd.

A term, t, is said to be meta-ground, if no meta-variable occurs in . A term, ¢*, is called
a meta-instance of another term, t°, if there exists a substitution, ¢ = {(0; « &;}, for a
set of meta-variables, {(0;}, such that t* = t°a.

11

LEMMA 3.6. Let 1 be a set of pairs, ({4, t°)}. of meta-variables, O, and terms, 1.
If all of the followsng condition are met:
(i) any meie-variable that occurs as the left member of some pair in T does occur as

the left member of no other puir tn 1)

(ii) every might mebmer, 17, n T 15 not a meta-veriable;

(111) any meta-variable that occurs i some right member £ in T does cccur as the left
member of some pairin T;

then, for every 15, there cxeists the term, {17}, such thot every £t is mete-ground and is

a meta-instance of (7.

ProoF. The thesie iz casily proved by structural induction on lerms. O
Now we can prove Theorem 3.2.

Proor. (of Theorem 3.2)

(i} Let ns define a funciion F mapping any pair of a set of cquations, E. and a set of
quadruples, § = {{v,£.¢*,(0,)}. into a quadruple of natural nimhers, (ny, ny, tiy, g)
The Arst number, n. is the swn of the number of eritical pairs and counected pairs in
§. The second number s, is the total number of occurrences of function symbols in E.

The third number. ng, is equal to 2|E| 4 15|. The fourth number, 74, is the total number

of variables (but meta-variables) that occur in ¢ in §. Let us deline a total ordering on

such quadruples as follows:

[} [f I - (- [
(ny.nb.nf, ny) < (ng, g ng, ng) if 0y <ny
or ny =n; and ny < ng
P I !
or n} =n; and nj = ng and ny < n3

[] [-
or i} = ny and n} = ny and ny =n; and nj < ng

With the above ordering, N* becomes a well-founded set. Thus, if we prove that any
Rule of Algorithm 1 transforms a pair, (£, S), in a pair, {E', 5"} such thal F({E",5")) <
F({E,§}}, we have proved the tennination. In fact, Rule 1, if applied, always decreases
ny and ny. Rule 2 can possibly increase ng, bul it surely decreases ng. Bule 3 always
decreases na. Rule 4 and 5 always decrease ny and possibly decrease nz. Rule § can
possibly increase np and increase ng, but 1t surely decrease ny. Rule 7 always decreases

n,. Rulc & always decreases ny as long as it causes a change in 5.

(ii) If Algorithm 1 terminates with failure, the thesis immediately follows from Lemma
3.3, If Algorithm 1 terminates with success, Rule 3,4 and § clearly do not change the set
of unifiers, while for Rule 2,6,7 and 8 this fact is stated in Lemma 3.3 and 3.4. Finally,
E is empty and § is in solved form. In fact, if Rule 6 and 7 cannot be applied, it

12

means that neither critical pair nor connected pair is in §. If Rule 8 cannot be applied,
it means that no variable, v, which occurs as the leftmost member of some quadruple,
(v, 1.2, (), ocours in any 12 in S, After equating every (O, to corresponding 7, in 5,
Lemima 3.5 and 3.6 follws that 8 = a{(Q,, + t;.} = e{(y, + ¢}, } aud & 15 a mgu of §
hence of initial E — {#; = t3}. O

(b} deadlock freedom

The paraliel unification program introduces the enevitable deadlock due to the feedback
loop of a stream. However. this deadlock can be eliminated by ulilizing some stable
properties in the process network and by employing appropriate signaling systems as
in the way described n the previous section. Nevertheless, deadlock freedom must be
proved of the overall behavior of the program in order to prove the total correctness of

the program.
{c) fdempotent mgu

The mgu, & given by Algorithm 1 and the program is in fact idempotent, that is, 66 = 6

in the sense of substitution composition.
()} non-redundant mgu

The mgu, 8, given by Algorithm 1 and the program is in fact non-redundant, that is, no

binding such as v « v for any variable, v, occurs in 8.
(&) complexity

Finally, it should be worth noting that in the parallel unification program, at most one
filter process is created for a distinct variable appearing in the input terms. Moreover,

ull the pairs of quintuples for distinet variables are checked once and only once.

This makes the parallel unification program, in which pipelined processing is performed
by the chain of £ilters, to take only O(n) steps in checking all the pairs of quintuples,
whereas the more sequential one, in which the checks are performed in the naive manner,
takes O{n?) steps, hence, the estimated factor of efficiency increase is O(n), where n is

the number of occurrences of variables in the input terms.

4, A Flat-GHC Meta-interpreter

This section presents a Flat-GHC meta-interpreter incorporating the parallel unification
program. The unification in the guard part becomes rather complicated and the pro-
gram needs to be modified according to the synchronization rules of GHC {Ued86]. For

13

exec((,Bes) = trua |
solve_body((Q,top,53,51,sw(T,terninate) ,Abort),
merge(S1,52,InS,Abort],
sift(InS, 0uts,52,583, Abert),
ever_result(T,Abort,0uts,d,Res).

exec_result(_,abort(all),_,_,Res) :- true | Hes=fail.
erec_razultiterminate,Abort,0uts®,0,Res) = true |
Aport=abort(filters), apply_subst(Q,0utS, Res).

solve_bodyl_,_,_,_,-,abort{_)) :~ true | true.

solve_body(true,_,_,0utS,sw(A,Z),_) :- true | DutS=[], A=ZL.
solve_bady(X=Y,_,_,0utS5,5W,Abort) :- true |

unify(X,¥,0uts,5W,Abort).
salve,bady{(ﬂi,&?],Fath,InS,DutS,swEA,E},Ahu?t) c= true |

solve_body(Q1,1(Path),InS,0utsl,sw CA LMY, Abort),

merge (Uuts51,0utS2,0uts, Abert),

solve_body(Q2,r (Path),In5,0uts2,swiM,Z) ,Abort).
solve_body(Q,Path,InS,0utS,SW,Abert) :-

Qh\=true, Q\=(_=_), O\=(_,_} |

clauses(,Clanses),

resclve(Clauses,D,[,Path,InS,Winner ,AbortC),

commit (Winner,AbortC,Ins,0uts,8W, Abort).

Fig. 4.1 The Flat-GHC meta-interpreter (body part)

brevity's sake, we assume that unification, _=_, is the only builtin predicate both within

the guard part and the body part of a program clause.
Fig. 4.1 shows codes for solving the top level goal and the body part of a program clause.

The top level goal and its descendants created in the cource of reductions can be con
sidered as a single unification task as a whole, since in a GHC execution only a single
solution is necessary and sufficient in the sense of logic. A GHC goal (process) may
eventually be reduced to a set of unification goals, hence a goal can be considered as a
generator of hindings. Collecting all the bindings generated by these processes, a single
chain of filters for the bindings is constructed to obtain the consistent set of bindings as

the final solurion.

Fig. 4.2 shows codes for resolving a goal by the program clauses and for the commit

operation.

In principle, every clause whose head is of the same function symbol and arity as the

given goal is tried in parallel to resolve the goal. Every clause becomes a candidate for

14

resnlve{[CIIClauses],H,Q,Path,InS.Hinner,hburtC) P
true | Ni:=N+1,

copy(Cl,Path-N1,(H:-GI|B)),
anify_guard(E,Q,InS,SH,sw(5,M),AbortG),
mergelIng,53,50, AbortG),
solve_guard(G,50,56,sw(M,satisfied),Abort),
mergelSH,SG,51, AbortG),
merge(31,0ut32,52, AbortG),
sift(32,0ut5,0ut52,53,Abort},
resclve_resu;tis,ﬁburtG.Gandl,me{ﬂutS,B,Path-Hl},Aburtc},
respolvel(Clauses,N1,0,Path,InS,Cand2, AbortC),
tournament (Candl,Cand2,Winner,AbortC) .

resolvel([l, . v s_w_»s_) = true | true.
resolve_rasult(_,AbortG,_,_,abort) :- true |
AbortG=abort({all).
resolve_result{_,abort(_},_,_._) := true | true.
resclve _result{satisfied,AbortG,Cand,Me,_) :- true |

tbortG=abort(filters), Cand=Me.

tournament(_,_,_,abort) :- true | true.

tournament (X, _,Winner,_) :- wait(X) | Winner=X.

tournament (_,Y,Winner,_) :- wait(¥) | Winner=Y,
commit{_,AbortC,_,_,_,abort{_)) :- true | AbortC=abort.

commit(me(S,B NewPath),AbortC,InS,0uts,SW,AbortB) - true |
AbortC=abort,
apply_subst(B,5,B8),
bodyvar{BS,NeuB),
solve_body{NewB,NewPath,InS,0utS,SW,AbortB).

Fig. 4.2 The Flat-GHC meta-intepreter (resolve and commit)

the reduction when its head is unified with the goal and all the guard goals are satisfied.
However, only one candidate clause can be used for the actual resolution. To determine
the clause for the goal to commit, a tournament is performed among the candidate
clauses. When the final winner of the tournament is determined, the abort signal is
issued to discard all the processes created for other candidate clauses. At the same time,
the goal is reduced to the body of the committed clause, after applying the substitution
resulting from the head unification and marking every variable in the body as a body

variable,

Fig. 4.3 shows codes for the unification in the guard part.

15

unify_guard(_,_,_,.,..abort(_)J] :- true | true.

unify_guard(X,X,.,0utS,sw(A,Z),) - true | OutS=[], A=Z.
unify_guard(var(’_’},_,_,0utS,sw(A,2),) := true | OutS=[J, A=Z.
unify guard(_,var(’'_7),_,0utS,sw(A,Z),) :- true | ODutS=[], A=Z.

unify_gnard(V,U,InS,0utS,SW, Abart) -

V=var{X}, ¥\='_7, X\=new(_), U\=var(¥), ¥Y\='_", Y\=new(_) |
apply_suhsT(U,InS,Vl},
apply_subst(U, InS U1},
unlfy_guardﬂwl,ﬂl.InE,EutS,SH.Abcrt}.

unify_guard(V¥,T,Tn%,0uts,SW,Abort) -

V=yar(X), Xv='_7, K\=new(_}, Th=vari{_} |
apply_subst{V¥,In5,V1},
unifydguardﬂvi,T,lnﬂ,GutS:SH,AbDrt}.

anify_guard(T,V,InS,0utsS,SW, Abort) :-

Vevar(X), ¥\="_", ¥\=rew(_), Th=vari_) |
apply_subst(V,InsS,v1),
unify_guard{vl,T,InS,DutS,SH,Abzrt}.

unify_guerd(V,T,Ins,0uts,5W,) :-

V=var(new(_)), Th=var(®_’), V\=T |
QutS=[bind(V,T,T,T#,5W)].

unify_guard(T.V,lnS,DutS,SH,_} =

Vavar(new(_)), Th=var('_*), VA\=T |
Outs=[bind{V,T,.T,TE,5W)].

unify_guard(X,Y,In5,0utsS,SW,Abort) - h=var(_), Yi=var{_) |
functor{X,F,N), functor(Y,G, M),
unify_guard_functor(F/N,G/M,X=Y,In5,0utS, 5K, Abort) .

Fig. 4.3 The Flat-GHC meta-interpreter (uuifly in guard)

For the unification in the guard part, special attention must be paid when either of the
inpul terms is a vatiable, vy (body variable), coming from the top level goal or the body
part of a program clause. If the olher term is a variable, vg (guard variable), coming from
the guard part of & program clause, a binding, vg «+— vy, must siinply be generated. If the
other term, ¢, i not a variable, then vy is rewritten to v, by applying the substitution
given from the body part, and the unification is retried with the rewritten v) and t. If
{he other term is also a body variable, v1, both vy and vy 1 are rewritten to vy and ppl’

respectively, then the unification is retried with the rewritten terms.

The intended meaning of all these modifications is to guaraniee success of the guard
part without instantiating any body variable. The resnit of the unification in the guard

part is a set of bindings only for variables local to the program clause,

Due to limited space, codes for the rest of the predicates are omitted.

16

A GHC program 1s given as follows:

clauses{append(_,u,_},Clause5} r= true | Clauses=[
(append([],var(y),var{z)} :- true | var(z)=var(y}),
(append([var(h) Ivar(x}],var(y),var(z)) :- true |
var{z)=[var(h)lvar{z1}],
append{var{x) ,var(y),var(z1})2].

Finallv, & sample cxecution looks like:

7- ghe exec(append([1,2],[3],var(z)}.A).

L = zppend([1,2],13],[1,2,3])

5. Performance Results

The performnunce results of the parallel unification program is given in comparison with

a4 more conventional sequential implementation.

The effficiency may not increase very much (or even decreases) when the input terms
are very sinple and the number of variable occurrences is small. However, the more

corplex terms are given the more efficiency increase will be observed.

Table 5.1 shows the performance results of the several small test cases, of the unification
progranm in comparison with the sequential one, and Table 5.2 shows the performance

results of more complex test cases.

Table 5.3 shows the performance results of a simple Prolog meta-interpreter which is
written in GHC in a straightforward manner using the unification program. Also, the

performance results of the Flat-GHC meta-interpreter is shown in Table 5.4.

As observed, both the number of reductions and the number of suspensions taken by the
parallel unification program are almost always larger than those taken by the sequential

one. (The factor is three times at the worst case.)

However, the number of cycles taken by the parallel unification program is almost always
smaller than those taken by the sequential one. (The factor is one hundredths at the

hest case!)

These ohservations support the expectation of the characteristic of the performance

made above.

Assuming some ideal parallel architecture, the number of cycles can be considered as

the number of execution steps per processor. This also means the net execution time.

17

Table 5.1 Performnuce resulis of the small test cases

! Test No. T 1 [2 1T 3 4+ |5] 6]
| The No.of red. | 2 5 | 6 | 28 [22 16
| scquential | No.ofsusp. | 0 :- o 1 9 L7 14
unifier | No. of eycles 2 | 4| 6 | 22 | 17 ¢ ¥]
The No. of red. 5 R |10 | 35 33 58
parallel No. of susp. 3 4 T 16 16 27
untfier | No. of f}'f?ii—’ﬁ !§ 4 | 5 T 15 15 21
) teet 1) unt Fyla, a.0) = 6 = (red. as reductions. SUSp. & Lu‘pc‘ 151015)
test D) s fpie L 8) = 1'5' = fa
test 3y wni fylvg.ove, 6] = 15' e vy
test 4wt ;rI,I'H._I.] ,_-'] L i f" = f= ;ril =y, Uy '
test 5} rr?frf?,'thl LN [{h,.',l) = 8= g e 1y
test §) wni fyl (v v, vg). (a2, ?AIHF—“‘H—h.‘—-!; by =t
Table 5.7 Performance results of the cowples test cases
I test No. || l-_) l 2 | 3 4 i 5 |
| The | No.of red 34 126 | 454 1636 | 0454
| sequential | No. ol susp. 13 23 gl i 3133
:___ _unifier | No. ol eyeles || 26 78 230 26 12486
The No.ofred.] 41 131 423 1447 | 5239
parallel No. of susp. 20 +141 2300+ E46 3230
| unifier No. of cycles 15 29 | 5l i 29 159

test n) uni fy(VI7, CT™ Bl = 8= vy« 1,... 9= — Can)
where VI™ (CT") is o balanced binary tree of 2" distinet variables
(constants) as leaves.

Hence, it can be said that order of magnitude speedup is attained by using the parallel

unification prograin.

Incidentally, substancial amount of reductions and suspensions are duc to the merge
processes. If the merge process is available as an efficient builtin predicate, the total

cxceution cost of the parallel unification program could be further reduced.

7. Conclusion

The paper has presented a new parallel unification program in GILC. which is designed for
obtaining the maximal cfficiency by making the best of parallelism inherent in the unifi-
cation problem. Concerning thig, [DKMBE4] states that “parallelism cannot significantly
improve on the best sequential solutions for wmnification”. However, the performance
results show that the efficiency has increased significantly for the parallel unification

program compared to more sequential ones.

18

Tuble 5.3 DPerformanee results of a simple Prolog meta-interpreter in GHC

: test No. [] 1 | 2 | 3 | 4 |

l Equipped with | No. of red ‘ K718 10858 18518 | 29215

| sequential | No of susp. }I 2351 4505 TT29 12245

| unifier l No. of cycles 693 1008 | 1383 1817

[Equpped with | No.ofred. | 9396 22199 45513 24108

‘ parallel | No. of susp. 4287 10089 20612 37801
unificr | Na. of cycles 210 284 370 468

test n) hagoflappend(vi,vg, (1,2, ..,n + 21, A)

Table 5.4 Performance Results of the Flat-GHC meta-nterpreter

! test No. 1 [=2 | 3 [4 |
Equipped with | No. of red. 5045 0764 17453 29212
sequential No. of susp. 2028 3904 7224 12186
unifier No. of cycles 478 £33 796 967
| Foguipped with | No. of red 2058 2023 3975 32472
parallel No. of susp. gnl 1213 1655 2189
| unifier | No, of eycles 203 254 | 312 374
test n) ezec{append([1,2,....n 4 2],v;,v2), 4}

The parallel unification program is also unique in that it employs stream parallelism
together witl a useful programming technique called short eircuit, for detecting stable
properties of networks, very cffectively. Coucerning correctness of the program, more

direet and rigorous proof should be given, for instance along the line of [AptBE]

The paper also has presented the Flat-GHC meta-interpreter which incorporates the
parallel unification program. I admit that the meta-interpreter may be of no practical
significance, if used in the form as it is. However, the meta-interpreter will be casily
extended Lo include so-called flavors such as proof tree construction and reduction steps
counting. In particular, the meta interpreter is intended to be a nmodel for developing
more sophisticated ones with reflective functions such as variables management and load
balancing [Tan88|.

I aleo admit that the Flal-GHC interpreter is not deadlock-free. That is, the interpreter
itself will come to deadlock if the object program running on it does, The problem
of detection and elimination of deadlock for a meta program would be an interesting

rescarch theme.

Another promising research theme is concerning further optimization by using partial

evaluation or other compilation techniques. Some results have been obtained [Fuj&g|,

19

however. 1 think that substantial effort iz still be required, within the state of the art

techiniques, to achieve more sigmficant improvement.,

References

[Apt36] K. R Apt. “Corvectness Proofs of Distributed Termuimation Algorithms", ACM
Trans. an Programming Lenguages and Systems, Vol 8, No. 3, pp. 358-405, 1886,

[DKMS84] C. Dwork, P. C. Kanellakis and J. C. Mitchell, “On the sequential nature of
unification”, J. Legie Programming, Vol. 1, pp. 35-50, 1984,

Fosf8] 1. Foster. “Parallel implementation of PARLOG”, Proc. of the 1988 Interna-
tronel Conference on Parallel Processing, pp.9-16, 1988,

[Fuj88] H. Fujita, “FGHC Partial Evaluator as a General Purpose Parallel Compiler™,
ICOT TR-336, 1983,

[KYKS88] S Kliger, E. Yardeni, K. Kahn and E. Shapiro, “The Language FCP(7),
Proc. of the Imternaiional Conference on Fifth Generatron Computer Sysiems,
pp. TO3-TT3, 108K,

[Llo88] J. W. Lloyd, “Directions for Meta-Trogramming”, Proc. of the Internationul
Conference on Fifth Generation Computer Systems, pp. 609-617, 1088,

[MC83] J. Misra and K. M. Chandy, *Termination Detection of Diffusing Computations
in Cormmmunicating Sequential Processes™, ACM Trans. on Programmaing Languages
and Systems, Vol. 4, No. 1, pp. 37-43, 1982,

(MM32] AL Martelli and U, Montanari, “An Efficient Unification Algorithm”, ACM
Trans. on Programming Languages and Sysfems, Vol 4, No. 2, pp. 208-282, 1984,

MWS2] Z. Manna and R. Waldinger, “Deductive synthesis of the unification algo-
rithm™, In A. W. Biermann and G. Guiho (eds.), Computer Program Synthesis
Methodeologies, Reidel Publishing Company, pp. 251-307, 1983.

|3886] L. S. Sterling and E. Y. Shapiro, The Art of Prolog, MIT Press, 1956,

[SWKS88] V. A. Saraswat, D. Weinbaum, K. Kahn and E. Shapiro, “Detecting stable
properties of networks in concurrent logic programming languages”, Proc. of the
Seventh Annual ACM Sympoesium on Principle of Distribufed Computing, pp. 210-
222, 1988.

[Ta.l{EE] A. Takeuchi, “How to solve 1t in Concurrent Prolog”, Unpublished note, ICOT,
1083, |

[Tan88] J. Tanaka, “Meta-interpreters and reflective Operations in GHC", Proe. of
the Infernational Conference on Fifth Generation Computer Systems, pp. T74-T83,
1088.

[Ueds6] K. Ueda, “Guarded Horn Clauses”, In E. Wada (ed.), Proc. Logic Programming
‘85, LNCS-221, Springer-Verlag, pp. 168-179, 1930.

20

