ICOT Technical Report: TR-460

TR-460

The FGCS Computing Architecture

hy
K. Taki

March, 1989

1989, ICOT

Mita Kokusai Bldg. 21F {03) 456-3191—5

IDDT 4-28 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

THE FGCS COMPUTING ARCHITECTURE

Kazuo Tak:

Institute for New Generation Computer Technology
1-4-28 Mita. Minato-ku, Tokyo 108, Japan

ABSTRACT

In the fifth zeneration computer systems (FGCS)
project of Japan, legie programming and parallel pro-
cesspng are adopted as the principles of both software
and hardware system development. Their amalgama-
ticn. pnra”ﬂf r'nf:r':m:: systems, is hri.ng iﬂ'.'PEI'."IE_A‘I'.E‘t‘I at

COT.

Buth hardware and software development have been
carried out based on the kernel language (KL1) as the
software-harvdware inlerface. WL i 5 copourrent logic
programnung language extended fram flat GHO. The
havidware development target 15 a parallel mference ma-
chine [PIM) with about 107 element processors. A
smaller scale prototype machine, PIM/p. with about
10# processars is under development. The processors
are dediented for efficient execeution of kL1 programs an
a distributed iplementation of the KLT language pra-
cessor.

One major software project is the development of a
commen operating svstem for all the parallel inference
mackines. nained PIMOS (paralle] inference machine op-
erating syvstem), which prototype has been wurking. Sev-
eral program development epvironments have also been
prepared. The AMolt-PS1 apother inference machine
prototvpe, 18 one such powerful environment, which con-
nects up to 61 personal sequential inference machines
[PS1-01} relatively loosely. Further improvemnents of the
PIMOS, and research on various concurrent algorithms
and load distnibution schemes are in progress on the

Multi-PSL

1 INTRODUCTION

The Japanese fifth generation computer systems | FGCS)
project aims at building a prototvpe of a high per
formance knowledge information processing system
{KIP3), The project spans ten vears, from April 1952
1o 1992, One of the principal functions of KIPS is its
highly parallel inference feature. The target of the hard-
ware svstem is a highly parallel inference machine {PIM)
with ahout 10* processing elements and with an infer-
ence speed of more than 10* LIPS (logical inferences per
second).

All RED arcund the PIM [Uchida el al. 1988) has
been based on a concurrent logie programming language
called WL1 (Chikavama et al. 1988), which is an exten-
sion of Flat GHC {Ueda 1956). Machine hardware and
the language processor have been carefully designed for
efficient parallel execution of KL1. The parallel infer-
ence machine operating system [PIMOS) (Chikavama
et al. 1988) and application programs (mainly knowl
cdge processing syvstems) are and will be also written in
KL1 or in its extensions. Various software technologies
for highly parallel processing, such as highly concurrent
algorithms, programming paradigins for practical con-
current programs, and experiments on load balaneing
schemes, will be studied and developed based on the
kLl language, .

Everything, from language to the hardware system,
operating evstem, concurrent algorithms, and program-
ming stvle is completely new in our R&D approach.
They are designed for highly parallel processing on large
scale network-connected MIMD-type multiprocessor sys-
tems. The program developmenti environment is very
important to cultivate these new computing technole-
gies, Bootstrapping of the RED, [rom a sunple aud
small prototype to a large and complex target, is also
important, The Multi-PSI] was developed as an RE&ED
tool for concurrent software technologies, and also as an
early protolype of the parallel inference machines {Taki

1956, Taki 1957).

This paper reports the outline of aur FGCS comput-
ing architecture by looking at the hardware systenm, ban-
guage, operaling system and program developrent, and
also reports their progress.

2 LANGUAGES

KLl is the commeon kernel language for parallel inference
svstems in the FGOS project, based on Flat GHC (Ueda
1986). GIIC iz a concurrent logic programming language
similar to Coencurrent Prolog (Shapire 1983) and Par-
log (Clark and Gregory 1984).

The advantage of using a concurrent logie program-
ming language is in its implicit concurrency and syn-
chromization feature. Without being explicitly specified
in the program, coneurrency of the program is exploited

and data-flow 's;.':'.rh]'uuizm.inn 15 madle autommatically at
and under the language implementation level. The im-
plicit data-flow svnchronization mechanism has a greale
advantame in eliminating synchronization errors. The
language 15 powerinl enough to describe everglhing as
long s it van be modeled as conupumicating processes.
Any processes with small grain size or short Lifetirne can
|.'ll!' .l'l-'||'l.|l"||'-l:'||-.l'r.| \\.‘i':.l'h.l||'. !rl'lg‘!" ﬂ-'r"“[]lf.‘i“].

Flat CGIC 12 a subeet of GIIC, Only unification and
calls to certain butltan predicates are allowed in the
giard part of a clanse, This rskes efficient implemnents-
tion easier without losing the essential descriptive power
of the]ﬂuguagr.

The WL1 language has several extensions from the
vriginal Flat GHC {Chikavama et al. 1988), Onc of
the most essential extensions is the notion of she-en.
Sho-en. or manor n English, 35 similar to the meta-call
miechanism seen in other concurrent logic programnung
tanguages. Like the meta-call, the sho-en mechanism
can be used to protect the outside of the sho-en from
failure inside the she-en. In addition, fimits on com-
putaticnal resources {e.g.. execution time and memory|
causmned m a sho-en can be controlled and monitored
from cutsade, This feature 15 essential in writing an o
orating svstem in KL

The KLI language also supports the fanctions of pri-
ority control and lead allecation. Execution priority can
b specified for a sho-en or goal. A goal can be allocated
to & certain processing node specified by a node num-
Ler, The annotation, which specifies the priority or node
number for a goal [e.g. goal@pricrity{X) or goal@node™)
boas called the pragma. The pragma only affects execu-
tion efliciency of a program but is independent of the
program scmanties. This feature 15 usefu] for tuning the
ENECt on n"m'.‘ir'nf:;' and the load balance of a JrriRErALLL
Current experimental implementation on the Multi-PS]
supports 1096 priority levels whick will be used in user
[PrOgTas.

3 PIM PILOT MACHINE: PIM/p

4.1 Target Performance

F']'."-Ilr'il 1% the first pjlnilt macline for aur target PIAL sys-
tenn Several other models are alse being developed. The
performance of 2 FIM/p processing element 12 200K to
000 LIPS, A PIM/p system will contain 128 processing
clements and will achieve 10X to 20M LIPS of sffective
[Jfl'r‘}rllli‘llll'ﬂ.

4.2 OQOwverall Structure

PIM/p has the hierarchical structure shown in Figure 1.
Eight processing elements {PEs) form a cluster with
shared memory and bus. The PIM/p consists of 16 clus.
ters connected by the inter-cluster network, Irocess-
mg elements in & cluster share the same address space,

whersas address spaces for cach cluster are Es;para.ted.
A cluster forms a subsiructure with low communication
eoat and reaponse time which is utilized in the load alle.
cation. The hieratchical structure allows an easier and
better implementation of the dynamic memory manage-
ment than the siructure sharing all the memory. 1f is
aiso more cffective to reduce the physical memorv size
per a processing, element than the size of the completely
non-shared memory structure,

3.3 Processing Elements

The PIM/p processing clement is designed for the ef-
ficient execution of KLI-B (Kirmura and Chikayama
1987}, which is the commeon abstract instruction set
for the KL1 used in our inference machines. KL1 pro-
gramns are compiled to kL1-B instructions and then
transiated to target machine mstractions, PIM/p has
a RISC-hke mstruction set which is exccuted in a four-
stage pipeline (Goto et al. 1985), Ta reduce the static
cade size, PIM/p supports the conditional macro-call
feature (Shinogi et al. 1932], which is a sort of subrou-
tine cal! to the internal instruction memory (IIM) with
a specialized argnment passing mechanisime 11 is wsed
to imp]ement mmplica[rd RL1-B functions h}' COTIIMen
modules in the [IM with low invocaiion overhead. The
tag architecture has been av.‘inp'l‘.?d for the PTMI."p Proces-
sor with an 5-bit tag and 32-bit data. Each data werd is
aligned with the 64-bit memory boundary in the current
implementation.

The robe of KT.1-B is similar to that of WAM (Warren
1953). The major differences are the synchronization
feature and functions for incremental garbage collection,
called MRB (Chikeyama and Rimura 1987).

A PIM/p processing elerment is implemented on a sin-
gle board with several custom CMOS L5Is and about 20
static HAMs, asz shewn in Figure 2. The pipeline cvcle
i expected to e 30 panoseconds, There are 1wo cache
memories, instruction cache and data cache with 4K
b}l‘tes each. The:r are write-hack caches with the cache
coherency protecol (Matsumete et al. 19871, They
also support the word locking mechanism and software
cache functions optimized for KL1 execution {Goto et
al. 1958). The common hus cvcle is the same with the
processer pipeline evcle. The bus data width is 64 bits.
The network interface unit (N1U) and the floating point
unit {FPU} are the co-processors of the CPU, The peak
performance for the append program will he over 600K
LIPS including MRD parbage collection.

3.4 Inter-cluster Network

A message exchanging network with hyper-cube topol-
oy has been introduced to connect PIM/p clusters,
placing each cluster on a hyper-cube node. Inter-cluster
communication is invoked by a unification or a goal fork-
ing across the cluster boundary in KL1 program exe-

Multiple Hypercube Network

| Reruter |

-11- ----'.r-'l- -5 -'-1- w5

1 '] 1 1

— [NIU] 18| iNIv| INTU] | 1 ; ! !

FEP | PE, |..| PE; || PE, |..| PE: || L :

Tevpsut i 1 i i i

Chutput : |Cnl.'h=:l JCm-l:t-l !Cachtl r'|{'¢-::||e] - Lo !

] ma 1 1 1

1 | | i LI} i i i

i B'LIB- N 1 1 [

1 ma 1 1 "

; Shared Memeory o : i i

i na 1 ¥ 1

(Clustery ‘" _____ iClustery Clusteryy

Figure 1 The Pilat Machine: PIM/p

64-bit data path They are implemented as common modules in the TIM,

T and invoked when certain conditions occur.
{ network e—— Network router There were many difficuliies in the KL1-B implemen-
interface unith [Input/Output [FEF) tation, especially in the inter-cluster processing mecha-
nisms, such as the distributed resource management for
Fru the sho-en {Ichivoshi et al. 1987), the efficient goal ter-
{floating mination detecting mechanisim among clusters {Roku-
point nait} sawa oL al. F988), export and imgort mechanisms of
— . e reference pointers between clusters, and the distnibuted

- I
i unification mechanism (Ichiyoshi et al. 1988). These
Ccru int-cade | iustruction problems were basically solved in the KL1-B implemen-
memaory | taliom o Lhe Walti-PST svstem,
Lastruction Cache address

1
| Imstruerion § |

ciache cou

{cache {
controller
unirs)

Thata cache

ommon
bus

Figire 20 PIM/p Processing Element Configuration

cutien. Two sets of hvper-cube networks are used to
increase the network bandwidth ae shown in Figun.- 1.
Frery proressing element has a connection to one net
work., A message s routed to the destination cluster
automatically. as preset. Each communication path has
a throughput of 200 byvies fsecond in both directions.

3.5 HKLI1-B Implementation Issues

R L1-B s the abstract instruction set which defines the
basic behavior of the KLI language processor. Each
Lil-B instruction is normably expanded into a KISC in-
straction s UENCe. Hm\'E"\"Ef.l EE'L'CIE‘I. ll:ump].i.call:d f'l.l.ﬂ:'
tions such as resource management in the sho-en, inter-
cluster processing mechanisms, and garbage collection,
are not open-coded as are other more primitive features.

1.6 Garbage Collection

Efficient garbage collection is essential for the KL1 im-
plementation because it had to be implemented in heap
based style rather than stack-based and consumes much
memory &t run time. Intra-cluster and inter-cluster
garhage collection will be implemented separately for
eaze of implementation and efficieney,

Botb sueremental aml stopeand-collect GO will he im-
plemented {or the intra-cluster GC. An incremental GC,
MEB GO {Chikayama and Kimura 1937}, is being ex-
perimented on the Multi PSL It is a simple subset of
reference counting, only distinguishing Lhetween single
and multiple references by one bit. Structures with sin-
gle reference often appear in KL1 programs. MRB GC
is effective in such cases, making the workiag set size
smalier and the interval of stop-and-collect GC longer.

Inter cluster reference pointers are implemented with
export and import tables which are a sort of address
translation table, The role of nter-cluster GC s Lo
maintain these table entries and to remove garbage inter-
cluster pointers. The weighted export counting (WEC)
scheme (Ichivoshi et al. 1933) has been introduced to
realize the meremental GO for these pointers. WEC is
an application of weighted reference counting |Watson
and Watson 1987, Bevan 1987).

3.7 Goal Schedulin B

A goal 1s 8wt of paraliel excention and scheduling. A
goal is replaced or expanded inte the body goals of a
clavse i the mvoked predicate when the clanse is com-
mitied. The leftmost body goal is executed immediately
while others are pushed inlo the ready-goal slack. That
is. 1l ddegith-first scheduling is adopted for body goals
and also for the ready-goa! stack. Since each goal is
associated with its execution prioeity, ready.goal stacks
are meneged corresponding te each pricrity level, When
all the guard nnifications are suspendsd, the goal is sus-
pended. hookimg itsell to the variables that raused the
';11=pr.'r.5'1crﬁs (lchivoshi et al. 1987}, The goal 15 resumed
when one of those variables i= instantiated. That iz, the
nan-fusy wadfing method has been adopted.

H‘L"'“-' L]i"'f.'].l lJ".l‘.' [JTU{"'.‘"S"B;]IE El.'li‘llll. “-t'” .li-"‘lllilll.ff'd is H
kew issue in making the hest use of parallel processing
resources. An antonadic lead balancing is adopled in a
cluster, Each processing element has a goal stack for the
highest-priveity ready goals 10 avoil conflicts of aceess
1o the common ready-geal stack. The highest-priority
gnﬂ]s are distrihuted 1o kecp the processor loads in good
balance. We found on-demand distribution to be an ef-
fective wav of realizing & good balance within a cluster
while reducing the amount of wasteful communication
among processors (Sato and Goto 1933). In this scheme,
an idle processor sends a request for load allocation to a
lsusy processor.

Lol alistrilstion among clisters should be done care-
fully becavse the communication cost is more expensive
than within a cluster. Several distribution schemes have
heen tested on the Multi-P51in which the load distribu-
tion algorithms are buried in the KL1 programs specify-
ing poal allocation by the pragma {goal@node[X}). Sev-
eral standard schemes will he supported by the operating
svstem in the future,

4 OPERATING SYSTEM

FIMOS is 1the conunon oprrating svetem for our infer-
ence machines. [t has been developed on the Multi-PSL
The primary funcilsns of the PIMOS are [/ O resource
management. execution control of vser tazks. and man-
agement of pragrams |Chikavama et al. 1938]. The
programniing svetem has not been implentented in the
current version. PIMOS has the following characteris-
tics.

Logic-based: PIMOS iz described entirelv n KLI1.
without using extra-logical features at all. Even [/0O
devices connected to the inference machine have {og-
ical imterfaces. Each 1/ 0 device looks like a perpet-
LIH.T J.]I'le'Fﬁﬂ 'I.'ﬂ'l'l.'l th’t ser]:rngriur:. i'”rllrllllllil'ﬂ!ills
through a stream interface,

Intugrutud: .-\]L:huugh PIMOS 15 an upi:ral]'nE svslem
for para”?l marhines, it 15 an "|n1£-gralrr] npr.'ra‘l.'mErl
swstemn working as one unit. rather than consisting
of many operating svstems distributed on processing
clements,

Born parallel: Various functions of the PIMOS, which
exploit the power of parallel inference machines,
have been implemented to work in parallel 1o pre-
venl the PEMOS becommg a bottleneck m highly
parallel svetems.

Practical: Although PIMOS has many experimental
features, its purpose 15 to provide a practical pro-
grammming eavironment for parabiel algorithm devel-
opment, keeping robustness.

5 PROGRAM DEVELOPMENT

Three systems providing the program development ene
viranment have been developed. The primary system is
calied the PIMOES development support system [PD55),
written in ., and an cperating svstem called Micro-
PIMOS. Al the KL1 features except for real parallel
exccution are provided with several debugging facilitics.
The system was mainiy wsed for the development of the
PIMO3 and in the early stage of the application program
development,

The second systemn, Multi-I'SI, and the third svs-
temn, Pseudo Multi-PSI, have been developed in paral-
lel. The Multi-PST{Taki 1986, Taki 1987 iz a collection
af PSLIT processors [Wakashima and Nakajima 1987)
comnected by a twe-dimensional mesh network (Takeda
el al. 1933). The fall svstem contains 64 processing
elements, KL1-B has been implemented in micropro-
gram. The processing ciement speed 5 approximately
150% LIPS for the append program with MRB GC. The
KLI compiler and debugging support system were im
plemented on the front-end processor (FEP), PSI-TL The
FEP alsa supports /O functions controlled by the Pl
MOS, The Molt-PSAT s wsed with the PIMOS as 2 main
teol for the development and evaluation of various con.
current algorithms and load balancing schemes, Three
fuil systems have been working since 1988,

The Psewio Malii-PST s a simulator of the Multi-PSI
mplemented on a PSEID machine, The behavior of the
Mubti-PST with any number of processing elements can
be simulated. KL1 programs are executed by the same
mictoprogram as Lhal of the Multi-P51, overlaid on the
P31-1] micre code area. The RLI execution speed for
sirmulating one processing element is equivalent to that
of the Multi-I'S1, which 15 unusual for simulation =vs-
termns. The system performs the same as the real Multi-
PSI except for the round robin scheduling of the pseudo
processors and smaller memory size. The Pseudo Multi-
PST is mainly used for general KL program debugging,
baoth for intra-PE errors and ioler-PE erroms.

Four WLl sample programs were developed for the
demoustration at the FGUSSE conference. They are the
natural language parser. PAN: a board game, tsume-go;
the packing jpiece puzzle; and the shortest path find-
g probien. There is a wotal of 145K source program
lines i b L1, and the development period 15 around three
vt les. with eight programmers, Several concurrent al-
rorithme and load balancing schemes are being experi-
mented i the program development.

G CONCLUDING REMARKS

I the past. rescarch on parallel cotuputer hardware has
Trenn relatively independent from parallel software re-
search. Hasically, the hardware or syvstem anplementa-
tion research was for implementing more efficient envi
ronmonts fur execuling aleedy eristing sofltware,

The privaiple of the parallel inference systems develop-
swent in [OOT is rather different in this point; software
aral hardware vesearch should be combined more closely.
Sofiware or even algorithms oplimized for sequential ma-
chires may net be optimal for parallel machines, Thus,
software should change when the hardware changes.

However, there is a chicken-and egg problem: wilhout
parallel hardware, practical parallel software cannot be
developed: withoul parallel software, it is hard to know
what kind of parallel hardware s appropriate. [COT's
approach to solve this problem is stepwise bootsirap-
g, The first s2ep was to settle on a software-hardware
interface. namely, the KWL1 language, and implement it
fas the multi-P51 svstem). The next step iz to develop
varions seltware systems on it {including PIMOS). By
vanning the resuliant software, many unknown parane-
ters of the behavier of parallel sofiware will be revealed,
The uest generation {the PIM[p svstem) will be based
oy these experiences. and software will be developed on
this mackine,

Developiment of the PIM/p hardware system will be
completed in 1959, and then the improved KLL language
pracessar will be popdemented on i anheriting vanous
research results from the software development on the
Multi PSI svstem.

O L'Iua'.]s-ng;a to He\'elu]} the para“rl pro-cessing tech-
nologies for large-scale MIMD multiprocessors from bath
saltware and hardware sides must be the creation of a
new computing culture.

Acknowledgement

This paper is based on various R&D activities carried
ol 1#_1.' '|'II-I|'t:'|' rPFFﬂ'l.'C]'lF]".‘- al IFGT ETJFI E'Uupt"?ltjng, man-
ufacturers.

REFERENCES

{Bevan 1937} DL Hevan. Diastributed Garbage Collec-

tion using Heference Counting. In Proceedings of
Parallel Architectures and Languoges Europe, pages
17T6-187, June 1937,

(Chikayama and Kimura 1987)
T. Chikavama and Y. Kimura. Multiple Reference
Management in Flat GHC. [n Proceedings of the
Fourth fnternational Conference an Lagic Program-
mmng, pages 276-203, 1987,

(Chikavama et al. 1988) T. Chikavama, H. Sato, and
T. Mivazaki. Owverview of the Parallel Inference
Machine Operating System (PIMOS). In Proc. of
the International Cenference On Fifth (Fenerglion
Campuling Systems 1988, Tokyo, November 1938,

(Clark and Gregory 1984] K. Clark and 5. Gregory.
Notez on Systemns Programming in PARLOG, In
Proe. of the International Conference on Fifth Gen-
erufton Computer Systems, pages 289-306, Tokyo,
1454, :

1Goto et al, 1983) A. Goto, M. Sato, K. Nakajima,
K. Taki, and A. Matsumoto. Overview of the Paral-
lel inference Machine Architecture (PIM). In Proc.
of the International Conference On Fifth Genern
tion Computing Sysfems [958, Tokyo, November
1988,

(lchivoshi et al. 1987) N, Ichivoshi, T. Miyazaki, and
K. Taki. A distributed implementation of flat GHC
on the Multi-P51. In Proceedings of the Fourth
Miernational Conference on Logic Programming,
1987.

(Ichivoshi et al. 1988) N, Ichiyoshi, K. HRokusawa,
K. Nakajima, and Y. lnamura. A New External Ref-
erence Management and Distributed Unification for
KL1. In Proc. of the Internattonal Conference Cn
Fifth Generation Computing Systems 1958, Tokyo,
November 1958,

{Kimura and Chikayama 1957)
Y. Kimura and T. Chikayama. An Abstract KLI1
Machine and its Instruction Set. In Proceedings of
the 1987 Symposivm on Logic Programming, pages
168-477, 1987,

{Matsumoto et al. 1987} A. Matsumoto et al. Locally
Paraliel Cache Designed Based on KL1 Memaory Ac-
cess Characterstics. TR 327, ICOT, 1957,

{Nakashima and Nakajima 1987) H. Nakashima and K.
Wakajima. Hardware Architecture of the Sequential
Inference Machine: PSLIL In Proceedings of 1957
Symposium on Logie Programming, pages 104-113.
San Francisco, 1937

{Rokusawa et al. 198%) K. HRokusawa, N. Ichiyoshi,
T. Chikayama, and H. Nakashima. An Efficient

Termination Detection and Alrortion a*L'|gu:r'Ll]'.m:| for
Disteibuted Processing Systems. In Proceedings of
the 108 fafernational Conference on Parallel Pro-
e s volume T Architecture, pages 18-22, August
14988,

{sate and Goto 19335 M. Sato and A, Goto. Evalua-
tion of the KL1 Parallel Svstem on a Shared Mem-
oy Multiprocessor, In Proceedings of TFIP Working
Cenference on Paralled Processing, Pisa, italy, April
1988,

(Shapirn 1953) FLY. Shapive. A sulset of Concurrent
Frolog and Its Interpreter. TR 003, ICOT, 1533,

[Shinogt et al, 1958) T, Shinor K. Komon. A, Hattor,
A Coto. Y. Rimvra, and T. Chikavema, Macro-call
Ingtruction for the Efficient KL1 Implementation on
PIM. In Pree af the Internafional Conference On
Fifth Generution Compuling Systemns 1988, Tokyo,
Xovember 1985,

[Takeda ot al. 1928) Y. Takeda, H. Nakashima, K. Ma-
suda. T. Chikavama, and ¥ Taki. A Load Balancing
Mechanism for Large Scale Multiprocessor Systens
and its Implementation. In Proc. of the Inferna-
tronal Conference On Fifth Generation Computing
Sysfems 1858, Tokvo, November 1438,

{Taks 1956} k. Taki. The parallel software research and
development tool : Multi-PSI system. In Program-
ming -:rf Future Géneration (‘ampuz‘grs, edeted by
W Fucli and M. ¥Noeal, North. Holland. A msterdam,
T958, pages 111-426. Alze in TR 237, ICOT, 1936,

(Taki 19877 k. Taki. Measurements and evaluation for
the Multi-PSI/VT system. In Programming of Fu-
ture Oienerabion Computers , edited by K Fuchi
and L.Wett, Norfh-Holland, Amesterdam, 1988,
pages 365-300 Alse in TR 370, ICOT, 1937,

{Ueda 18261 K. Ueda. Guarded Horn Clauses: A Paral-
lel Logic Programming Language with the Concept
of a Cuard. TR 202, ICOT, 1986, (Alse in Pro-
gramming of Future Generation Computers, North-
Holland. Amsterdam. 1987.).

tlchida et al. 1953} 5. Uchida. k. Taki, K. Nakajima,
A, Goto. and T. Chikavama. Research and Devel
opment of the Paralle]l Inference System in the In-
termediate Stage of the FGCS Praject. In Proc. of
the foternational Conference On Fifth Genemtion
Computing Systems 1988, Tokvo, November 1955,

{Warren 1983} DUH.D. Warren. An Abstract Prolog In-
styuction Set. Technical Note 309, Artificial Intelli-
gence Center, SHLL 1953,

{Watzon and Watson 1937) P. Watson and 1. Watson.
An Efficient Garbage Collection Scheme for Parallel

Computer Architecture. In Proceedings of PMaral-
tel Architectures and Languages Europe, pages 32—
443, June 1987,

