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This paper discusses two aspects of parallelism in lngic programming: parallelism as a computational
formalism {often referred to as concurrency} and the snplications of parallelism with regard to perfor-
mance. Twn alternatives for 4 parallel logic programming system are compared in detail. One allows
programmers to deceribe processes and communication using concurrent logic languages, and the other

attempts to exploit the parallelism of ordinary logic programs.

1. INTHODUCTION

Sinee the early days of logic programming, its affinity to
parallelism has often been pointed out and studied [21]13][7).
There have been two major dircetions in researeh of paral-
lelism, in legic programming over the last ten vears. One
emergnd from the process Interpretation of logic programs
introvioced in the fate 1970s [12], and led to the design and
(puossibly parallel) implementation of a variety of coneurrent
legic programming languages amenable to process interpre-
tation [4][34](5][37]. These languages aim at the description
of systems of processes and not directly at the description
of search problems. Control is an integral part of the lan-
guages, and users program concurrent execution.

The other direction aims at the parallel execution of
pure logic or Prolog programs that invoive searching,
Programmers may speclly control only for guiding exacu-
tion. OR-parallelism was expleited first [2][26]8]/43], and
AND-parailelism has been incarporated also [9][16][45][15).

There has been a long history of controversy between the
proponents of these two directions. Proponents of concur-
rent logic programming languages claim that pure logic pro-
grams are not expressive enough to describe efficient paral-
lel algorithms or to make effective use of the computational
power of parallel computers. Proponents of the parallel exe.
cution of ordinary logic programs elaim that concurrent logic
languages are not logic languages becawse they fundamen-
tally lack completeness in the sense of theorem proving, and
that programming concurrency is too difficult for ordinary
programiners. Section 2 eompases these two directions from
a semantical point of view and elarifies how their frameworks
are different. Section 3 discusses how these directions can
be used for writing efficient programs. Section 4 concludes
the paper by propesing how to reconcile these directions,

2. PARALLELISM AS A COMPUTATIONAL
FORMALISM

2.1 Logic as o Programming Language
Logic programming was born from theorem proving with
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Horn-clause logie, Kowalski [21] shawed the procedural in-
terpretation of lora-clause lugic, in which predicates are
interpreted as procedures that can compute bindings (the
values of variables) as the result of computation. The capa-
bility of computing values seems to be the minfmam roguire-
ment for a framewaork to be called 2 programming lanpuage.

Since then, there have been two directions of ressarch in
fogic programming. One is its extension and enhancement
within the framework of iheorem proving. Various alterna-
tivee data domains to Herbrand uwniverses have heen consid-
ered for constraint satisfaction problems. Studies on contral
structures have yielded such techniques as corontining, OR-
and AND-parallelism, and forward checking. The inclusion
of negation and other extensions of Horm-clanse logic have
been investigated also,

The other direction is the attempt to demonstrate the via-
bility of logic programming for diverse aspects of program-
ming. The maost important is the design of a general pro-
gramming language. Prolog is the first such language, but
its generality rests mome or less on impure constructs such
as cuts, side-effects, and meta-logical predicates. The re
designing of these features is still in progress [42][24]. Other
aspects of programming we may wish to eonsider include
systems and meta programming, concurrent programming
and programming in the large, which motivated stadies on
meta-interpreters, perpetual processes and modularization,
respectively, These paradigms may be put into practice sim
ply by developing new interpretations of logic or new pro-
gramming techniques, or they may be put into practice only
by adding new langnage constructs, In the latter case, we
shoold give clean semantics to the constructs.

2.2 Process Interpretation of Logic Programs

In the late 19708, much research was conducted on the
coroutining (pseudo-parallel} execution of logic programs
[3][a0][14][19], while Kahn [20] had shewn a netwark of com-
mumicating processes to be a simple and elegant framework
of concurrent programming. These two lines of research were
put together by van Emden and de Lucena Filho [12], who



introduced process interpretation of logic programs and ini-
tiated the use of logic for concurrent programming with com-
municaling processes.

By 2 process we mean & unit of computation that may run in
parallel with other processes and communicate with them.
In their interpretation, each process sequentially executes
goals i its own stack. Goals belonging Lo different processes
may share variables, which may be used a3 communication
channels. In general, it is the attention to communication
that characterizes concurrent programs. The semantics of
processes shonld therefore describe the process or history,
rather than the result, of computation. The result of com-
putation i not necessarily important, and actondingly, pro-
cesses need not terminate.

In spite of the proposal of process interpretation, pure Horn:
clause logic could not be used immediately for concurrent
brogrammiog because it was not clear what to do with its
2bility to compute multiple salutions. We stil] had to design
a concrete programming language in which to describe com-
municating precesses. The first concrete concurrent logic
programming language was Relational Language [4. Tt in-
troduced Dijkstra's concept of the guard [10] into logic pro-
gramming for the first time. This made Relational Language
capable of describing don’t-care nondeterministic processes.
The subsequent concurrent logic languages attempted to
refine existing ones or to enhance their expressive power,
These languages include Concurrent Prolog [34], PARLOGC
[5), Guarded Horn Clanses (GHC) [37){38], Flat Cozcurrent
Prolog [35] and Oc [18]. A survey and a genealogy of these
languages can be found in [36] and [31), respectivaly.

Here, we introduce GHC without guard goals a5 a process
doseription language. This subset of GHO is essentially
equivident to Oc, which is the simplest of the concurrent
lngic languages.

A program: is a st of guarded clauses of the follawing form:
fi:=] B

where fi is an atom{ic formula) called 2 head and B iz a
multiset of atoms called goals. Fach clause represents a
rewrite tule of & goal. The commitment operater '] divides
a clause intw a guard (left-hand side) and a body (right-hand
side]. The guard specifies the condition for rewriting, and A
in particular sperifies the template of a goal to be rewritten.
The body specifies the multiset of goals that replaces the
old goal,

The execution of a program heging with the initial multiset
of goals specified by a goal clause of the following form:

- B

Goals in R rewrite themselves in parallel. Let g be a goal in
0. Thea

{1} if there are a clause & :~ | B and a substitulion 4 such
that g = A# (that is, ¢ and & are unifiable without in-
stantiating g), then g is replaced by B@, and

{2) If g is of the form ¢; =13 and {; and ¢; are unifiable with
a most general unifier {mgu) #, then g is deleted and #
is applied to the rest of the goals.

Unlike the original process interpretation in [12], wa no
longer have any notion of sequential execution. A process is
just an entity that observes and generates substitutions, 4
substitution, which is a finite set of bindings between var-
ables and their values, models a piece of information trans.
ferred between processes. A process is realized by a multiset
of goals which reduce themselves into other goals repeatedly
using guarded clauses. Interprocess communication is done
by unification. Unification executed in a body is for gener-
ating a substitation, and urification executed in a guard is
for observing a substlitution. A process is an abstract entity
for cur understanding of a rompuetation; what multiset of
goals should be regarded as a process depends entirely on
cur interpretation of the computation.

Tu transfer information, its sender and its receiver{s) must
share & variable. Synchronization accompanying commurni-
cation is realized by Rule (1), which allows a goal to rewrite
itsell only alter it is sufficiently instantiated. Rule (1) con-
trols the direction of information flow and is the only maans
of control in the language. The application of an mgv in
Rule (2} need not be done as an atemic action. The in-
formation represented by the mgu need only be published
eventually [33].

Contral in a concurrent logic fanguage is not like contral in
an ardinary logic language. While control in an ordinary
logic language is for efficiency and is independent of logic,
control in a concurrent lopic language determines the dire-
tion of communication and hence is a far more essential con-
struct of the language. Hemembering Kowalski's equation
Algarithm = Logic + Contral [22], we see that concurrent
logic languages are for describing concurrent algorithms,

Unification enables guite flexible interprocess communica-
tion; this is a unique feature of concurrent logic languages.
It can be used both for one-directional communication suck
as pipelining and for two-directional communication such as
mesgsapges that require replies. Another feature of concur-
rent logic languages is that, unlike concurreat procedural
languages, communication channels (streams) are not part
of the language constructs but are represented and operated
as ordinary lsts, This contributes much to the simplicity
of the languages, The following is o program implementing
stack objects:

stack( [push(X} 51,0 ¥ r= | stack(S,[XID]}.
stack([poplX) 151, [Y[D1]} &= |

X=Y, stack(3,D1}.
stack{[], o

To use a stack, we first generate a process stack(5, 1) and
instantiate 5 to a list of requests, For example, if the goals
S=[push(5) |51], S1=[push(8}152], 52=[pop(X}153] and
53=[pop{¥) 154] are executed (in any order), ¥ and ¥ will
be instantisted to 6 and 5, respectively.

Y oi= | trus.

Hote that Rule (1) expresses don't-care gondeterminizm in
the choice of a rewrite rule, due to which concurrent logic
programming languages are not complete whea viewed as a
theorem prover of Horn-clause logic.

2.3 The Frameworks of Ordinary and Concurrent
Logic Languages
This section compares the framewarke of ordinary logic lan-



gnages with the ability to generate multiple answer substi
tutions (don't-knew gendeterminism) and concerrent logic
lanpuages with don’t-care nondeterminism. Socme conrur-
rent logic langnages feature don't-know nondeterminism alsa
{40][32]. These languages are considered more similar to or-
dinary logie languages than to other concurrent logic lan.
guages from the viewpoint given below.,

The fundamental difference between the frameworks of or-
dinary and coneuwrsent logic languages lies in the way in
which the resylt of camputation is observed and the ma-
terial for computation is provided. Whether explicitly In
tnpulfontput primitives or implicitly by the system, transfor
of inferiniion to and from the outside world mast be done
in any computational sestem. Transfer of information will
altimately be done by some operational meaas; the question
is how it should be madeled in declarative langnages.,

In a word. the difference is that a concurrent logie program-
ming system i an open system while an ecdinary logic pre-
gramming system is a closed system. [n coneurrent logic pro-
Eramming, input foutput is formulated as inlerprocess com-
munication. The advantages of this formulation are thas ao
special operations need be introduced and thet a program
bas Tull control over input/output. The outside world {mere
specifically, each peripheral device) i= modeled as a system-
defined process that cbserves and generates sulistitations
This process is assemed to run in parallel with user-defined
Procesges. A concurrent logic programming system should
provide & means to establish communication channels be-
tween system anid user processes. In sum, the ontside world
participates in the execution (‘proof’ in logic programming
terms) of a program which proceeds with real time. This is
why a concurrent logle programming system can be called
an open system.

In contriast, the framework of ordinary logic progremming is
that of thearem provers. The outside world ohserves proofs
at the meta-level, the |avel of the system that searches for
proofs. This observalion is considered to be done usizg some
special mechanism inaccessible from within a program. We
often wish to ohserve different answer substitutions of o goal
clause obtained from different, independent proofs, but this
it enabled only by simulating don"t-knew nondeterminism.
Don’t-care nondeterminism can be directly implemented on
an astual computer, but don't-keow nondeterminism must
be simulated.

Why do concurrent logic languages lack the ability to gener
ate multiple answer substitutions? It is often claimed that
this 15 to avoid esmplex mechanisms such as distributed
backtracking hetwesn communicating processes, However,
the more fundamental reason is the incompatibility of the
ability fo generate multiple answer substitutions and the
ebility to communicate with the outside world, If we allowesd
multiple proofs beginoing with a multizet of goals, that
many pracesses corresponding to the outside world weuld
have to be created. If we were reasoning about the interac-
tion of processes with the outside world, we could consider
muitiple possible cutside worlds. However, the purpose of
concurrent logic languages is to describe the aetual inter-
action of processes with the real outside world. The real
vutside warld ean participate io only ene of the proofs, the
one that actually happens.

T sum up, concurrent logic languages and ordinary logic
langeages have quite different purposes. Concurrent logic
langrages aim at the deseription of eficient concurrent ays-
tems, and ordinary legie langnapes aim at the high-level
description of problem solving, Which of the frameworks
should be used depends on whether the interaction with the
cutside world is imporzaat er not in the problem to be pro-
Eramumesd.

Finally, we note that altheugh concurrent logic langnages
are generally suitable for describing systems of processes,
nit all of them are suitable as they are for systems pro
gramming such as the writing of opzrating svstems. An
operating system must be able to safely execute user pro-
grams that may not he cooperative with the eperating sys-
ter, whether inadvertently or deliberately. Concurrent legic
languages proposed so far ook different approaches to this
reguirement. Flat Concurrent Prolog enabled systems pro-
granming by adopting larger atomic operations. That is,
it made indivisible the two aspects of resolution, rewrit.
ing and unification, while PARLOG and GHC separated
them. :I.I:I\'?t'l.‘a.l:[1 PARLOG featured an additional canstruct
called *meatacall’. KL1 [1], the kernel language for the Multi-
P51 rmackine based on GHC, took an approach similar to
PARLOG's te write an operating system PIMOS [1].

2.4 The Semantics of Ordinary and Concurrent
Logic Programs

Let us compare ordizary and concurrent logic programs in
terms of their semantics. First we examine the typical view
of an ordinary logic progriun;

Goal Losic program |, Snswer substitutions/
clause DEVC program Failiere

The question is: what is the result of the computation, or
what is the cutput of the system? Each computed answer
substitution could be called a result of don’t-know nonde-
terministie eomputation, but this view is valid only within
the simulated world of don't-kpow nondeterminism,

Let us suppose that the tesult is the set of all computed an
swer substitutions. What we would like to consider next is
the way to pass that result to the subsequent computation,
because witheut this facility, we cannot write 2 pragram
that collects and processes {compares, for example} the so-
lutions of some goal despite the search capability of logic
programming. One possibility is to represent each substito-
tion implicitly as the value of a variable or = teem of interest
and to represent the set of substitutions as a lst of suck
values, Another possibility is to explicitly represent each
substitution a5 a first-class object, namely an association
list.

Whatever representation may be used, putting answer sub-
stitutions together into a single data structure requires
meta-level operations, operations at the level implementing
exhauetive search. For this reason, most Prolog systems
provide all-solutions predicates such as satof of DEC-10
Pm'lng, afl of which a.dnl:t in.pijl_']! n'pment:diun,

The semantics of existing all-solutions predicates is, how-

ever, by no means clear, as Naish [28) pointed out. For exam-
ple, they can be vsed for defizing the extralogical predicate



var. The major sowrree of this and other problems seems to
be the improper treatment of variabies in the goal (for which
exhaustive search is parformed) and the result, First, it is
censiderad problematic to allow an uninstantiated varjahle
oot appeanng free in the all-selutions goal {called a local
vaziable) te appear in the result [28][39), becawse what a
local variable represents is quite medel-dependent. The re-
sult with local vasiables cannot provide a model-independent
notion of the number of solutions. Farthermore, with lozal
variables, the universal closure of a sucorssfu] all-solutions
goel [with the computed result list} can be logically wrong
[28

Non-local variables, namely variables appearing free in the
all-solutions moal, are less problematic if we disallow them
to be instantiated during the exhaustive search, Far exam
ple, the DEC-10 Prolog goal sesof (X, pern([4,5,6],5),5)
fer gererating permntations will return the binding 5 =
C[4,B,C].04.C.B],...,[C,B,A]]. Although 2 goal perm{
[4,B,c],%) may subsume infinitely many elemeats of the
{onst Herbrand maodel generated from the definition of pers,
it has only six results (say zy,...,24) for which the wniver-
sal closures Wperm{[4,5,01,2,)) are logical consequences
aof the definition of parm. A problem still remains when we
wantl the result to be a set rather than a bag, becaunse in
thiz case, the values of non-local variables given from out-
side muay alfect the number of different solutions. However,
this prohlem can be wasily avoided by distinguishing between
non-lecal variables which will not be instantiated and those
which will be instantiated, and by indicating the occurrences
of the former by constant symbels. If the result can be a bag,
non-local vaziables can always be left as they are.

Now our goal in the implicil representation approach is to
restrict the use of all-sclutions predicates to safe cases where
local variables do net occur in the result and non-local ones
are mot instantiated. One possible approach is static check-
ing. Ueda [3%] propeoses a compilation technique frem an
exhaustive search program inte a deterministic program.
‘I'he technique is based on dataflow analysis, and a program
amenable to compilation is safe in the above sense. The
techinique was developed for a class of programs manipulat
ing ground data, bat it will allow generalization. A problem
is that the datallow of Prolog programs tha! make use of
logical variables as blackboards does not allow simple static
analysis. How to analyze and compile such programs has
yet to be stadied,

Another selution to the treatment of variables in exhanstive
search might be to represent both the goal and the result by
ground terms, using constant symbols to indieate the ceeur-
rences of variables. In this scheme, the result can be rep-
resented either implicitly (by valuwes) or explicitly (by sub-
stitutions). However, the ground represeniation may be taa
powerful in that it tells not only what variables are bound
but what variables are not bound; such information is ather-
wise accessible only using extralogical predicatas, Moceover,
the change of representation does not solve all the concep-
tual problems of the all-solutions predicates. The explicit
manipulation of substitutions may eause inefficiency also.

Next, let us consider the semantics of concurrent logic lan-
guages. Most of the proposed formal semantics of coneur-
rent logic languages [32][23][25) 13/[27][41] try to capture the

passible hehavier of & process. Let vs take the semantics of
GHC in [41] as an example.

The purpose of the semantics jn [41] is to capture the ab-
stract behavior of a process or a multizet of goals by paying
attention to external communication.

Communication with & process B is modeled as a firite sa-
quence (e, & ez, Ba) o (o, B ) of fransactions, A (nor
mal) transaction, dencted {a, 8}, iz the act of providing a
process with a possibly empty input substitution a and ob-
taining an obzervable curput substitation 3. The first input
substitntion & i3 given through the vasiables in var[ B (the
set of variables oconrring in ), which we call the énterface of
B, The correspanding output substitution 8 is considered a
Tesponse to ay, and hence must be such that Bey§) 2 Pog.
An cutput substitinlion is also called & partial enswer sub-
#tifution. The size of o transaction depends on when the
outside world observes an output substitution. The subati-
tution & need not represent atomic information, nor need it
represent maximal information returned in response to o,

After the first transaction, B will be instantiated to Bayd,,
and the second transaction {og, f1) will be made thrungh
the interface var(Bay8;). Our view of a process can be
illustrated as follows:

{hutside world '
£y T oy T
151 %8
Multiset of goals ’

The point is that the ootside world may determine ay de-
pending on J;. What characterizes an interactive program
is that the input fo the program may depend on the out-
put from the program, and we must be able to model the
causality among communicated data.

The semantics of a multiset B of goals running under a pro-
gram P, denoted [B];, is modeled as the set of all possible
finite sequences of transactions with B. Besides the model-
ing of behavier, our semantics is different from the semantics
of ordicary logic programs in two points. First, a meaningful
semantics can be given to a program that does pot terminate
but is still useful. Each element of [A}p represeats a possi-
ble finite sequence of bransactions with the process B which
itself may be non-terminating. Second, our semantics deals
with the anomalous behavicr of & process such as the fail-
ure of unification and no response to an input substitution.
This is necessary becaunse we want to distinguish between a
process that will always return an cutput substitution 3, in
response to oy, and a process that sometimes does so and
sometimes fails or returns nothing. Two kinds of anomalons
behavior are modeled. First, providing a process with a,
may cause the failore of some unification goal, and this is
denoted as {or., T). Second, given &, , & process may become
inactive withont generating any observable outpnt substitu-
tion. The inactivity may be caused in three ways: by reduc-
tion to an empty multisel of goals, by reduction o a mul-
tiset of goals that does not allow further reduction, and by
falling into an infinite computation that does not yield any
ebservable cutput substitution. These cases are dencted as



|IL"-":I11 I —) {ﬂn-ldmﬂnti:'- znil {Qﬂ.- J—Jit-rngnu:h [agpad-
tively, or simply as {a,, 1) when the distinction iz unneces-
sary. Mote that the above semantics is a starting point of
our semantics rezearch, Its properties and relationship with
other semantic models proposed in the context of dataflow
languages, CCS, and C5P should be studied in detall.

Although the above sernantics models the behavioral or op-
erational aspects of a GHC peogram, it iz still related o
the original framework of logic programming. That is, if
fen, e, Jad oy Lyaseas ) € [H] 5, then the universal
closure W Fay S a0 8 oo, ) B2 2 logical consequance of the
declarative reading of P. Thus the operational semantics
of GHC is sound as 2 theorem prover, and the declarative
reading of & peogram provides us with the static propecties

2.5 Other Aspects

This section discusses the implications of ordinary and con-
ciafrent logic languages with regard to modularity and pro-
pramrming. AnclLher imporlant aspect, performance, will he
discuzsed in detall in Section 3.

Modularity: It is crucial for a large program to be compos.
able from small building blocks or modules. Ino this respect,
concurrent logic languages support process-oriented modu.
larization with no extra cost. A process can be uwsed as a
building black of a larger process, and the output of a pro-
gram can be easily directed te another process running in
paraliel. A problem with ordinary logic languages is that
pure versions of these languages are inadequate for writing
large programs. A large program may have some fragments
in which a pure ordinary logic langoage enables elegant de.
scription, but its everall structure cannot dispanze with ap-
erational notions, Pure crdinary logie languages, with the
ald of negation-as-failure or modal logic, may be useful for
building large databases or knowledge-bases using hisrar-
chiczl and other modularization schemes. However, such
databases should =till be managed by a language with con-

trol.

Programming: Meta-level constructs such as all-solution
predicates, var, assert and retract in ordinary logic lan-
guages will certainly make programming In the mundane
sense easier. Without them, we would have to lower the
level of programming by programming exhaustive search,
by simulating unification using, say, association lists, and by
maintaining databases explicitly. Howewver, the use of meta-
level constrocts complicates the semanties. The situation is
even warse when parallel execution is taken into account,
becanse many of the meta-leve]l predicatos ore sonsitive to
how programs are executed, while parallel execution does
not guarantee the total order of primitive cperations. For
this reason, GHC did not inherit any extralogical features
in Prolog (except for commitment, a cleaner version of cut].
This decision proved to be very useful for discouraging the
uze of extralogical notions and encouraging better program-
ming from the logic programming point of view,

2.8 Alternative to Concurrent Logic Languages

A problem with concurrent logic languages perceived by
many researchers is that its control constructs, although se-
mantically mndamental, have nothing to do with logic,

Then can we represent contrel in legic? If we are reasoning
about the behavior of a concurrent system, we can describe
the whole system a5 an ordinary logic program, and its ex-
ecution will infer what behavior can happen. There might
be various ways to represent the result, including a serial-
ized trace and a progeam in an appropriate coneurrent lan-
guage. However, the contral constructs of concurrent logic
languages are for controlling the actual execution of pro-
grams. They could ztill be specified in logic if we could
define an appropriate meta-leval at which non-first-class ob-
jects {like substitutions and events) can be reified (that is,
made first-class).

2.7 Summary

¥We have seen that ordinary and concurrent {ogic languages
are designed for different purposes. We could argue that
coacurrent logic languages are at a lower level than ordinary
logic languages because contrel is essential. Howewver, the
control of concurrent logic langiages is for eorrectings and
not for efficioncy; it is for guiding computation o the correct
dircction, The Jresence ar absence of control in this sense
iz more a matter of formalism than & matter of the level
of abstraction, Control for efficiency must be considered
separately, as is the case with ordinary legic programming.

Which family of languages is more snitable depends on what
should be eiegantly described, Ordinary logic languages
will be appropriate for describing fragments of a pregram
in which communication i not rmade or need not be spec-
ified, Concarrent logic languages will be appropriate for
describing communication.

3. PARALLELISM FOR PERFORMANCE

This section discusses another aspect of parallelism, paral-
lelism for the faster execution of & program.

3.1 Parallelism in Programming and Parallelism in
Implementation

First, we note that parallelism in programming [(concur-
rency) and parallelism iz implementation and execution
are independsnt notlons. Parallelism may well be uncov-
ered from a program not written in a concurrent language,
Conversely, a concurrent language may well be used for writ-
ing a program to be run on 2 sequential computer if it allows
patural description.

The granularity {of parallelism) of 2 language and the gran-
ularity of an implementation are also independent. For in
stance, GHC is an ipherently parallel language; it is de
signed so that programmers cannot expross unnecessary se
quentiality, However, a GHC process need not always be
implemented as a precess in the ordinary sense. It is very
fmportant to exploit sequentiality from eoncurrent programs
and thus to eliminate the overhead of interprocess commu-
nication and process spawning., Ueda and Furukawa [41]
propose the use of program transformation for fusing com-
municating processes, Abstract interpretation will be wseful
for analyzing dataflow and compiling control.

Processes can be used for storage as well as computation,
becanse their behavior can be history sensitive. This means



they can be used as buildiag blocks of mutable data struc-
tutes and databases that allow concurrent access, We have
to develop quite different optimization techniques for pro-
cesses used for storage rather than computation,

3.2 Parallelism and Alzorithms

There are in general two ways to chtain good performance:
parallel execation and the adoption of good algorithms.
Both approaches have been studied in ordinary logic pro-
gramming., For parallelism, Disz et al. [11] reported that
OHit-parellel sxecution can astain substantial speedup. For
algorithms, the study started with the coroutining execytion
of grnerate-and-test programs, in which each coustraint is
checked passively when all its arguments have bevn deter
mined. Van Hentenrvek and Dinchas [17] proposed wetive
eonstraint checking (called forward checking), in which con-
straints are used for redecing the number of possible values
of uninstantiated variables, The effect of forward checking
they demonstrated reminded os that we should consider al-
gorithms before resorting to parailelism.

Then, is parallelism wnnecessary for solving search prob.
lems? The answar is no. Iu goneeal, 2 beteer algorithm de.
signed for sequential execation tends to have less parallelism,
because to reduce computation aften roguires access to non-
loczl information. However, in search problems, a good algo.
rithm may still use backtracking. In that event, we can eas-
ily attain parallel speedup by exploiting OR-parallelism, and
this is actually the case in van Heatenryck's and Dinchas™s
method,

One way to exploit the OR-parallelism of ordinary logic pro-
grams is to write an OR-parallel implementation in a low-
level concurrent language. Another way is to compile search
programs into a high-level concurrent language like concur-
rent logic langrages, as we discussed in Section 2.4. The
advantages of the former approach are that beiter efficiency
will be attained with sopkisticated implementation and that
any crdinary logic program can be processed. The advan-
tages of the latter approach is that implementation is much
easier and that the result of search can gracefully be passed
to the subsequent stage writien in the same langnage as the
target language of the search programs,

The viability of the latter approach depends on whether ex-
haustive search usiag good algorithms ean be compiled into
efficient concurrent logic programs. Owur fiest step was to
show that the J’.I';D*ﬂquentia.l execution of a class of oe-
dinzry logic programs can be compiled [39), and the second
step was to show that coroutining execation can be analysed
and compiled a5 well [40]. Both techniques compile the OR-
parallelism of pure Prolog into the AND-parallelism of con-
current logic languages, and the sequential or corautining
execution of copjunctive goals into continuation processing.
The essence of the techniques is to analyze and delay out-
put usification so that multiple binding environments need
aot be created. The AND-parallelism in object programs
is independent AND-paralielism, which can be most easily
exploited,

Eecently, we proposed a compilation technique of logic pro-
grams with finite domains that realizes forward checking
(47]. The technique uses a source language similar to the

one in {17]. The domain (set of possible values} of a vari.
able, represented s & bit vector, is reduced by the active
evaluation of constraints. The main task of the compilation
is the derivation of & domain reducer from the constraints
in & source program. Flrst, the ‘test” predicates describing
constraints are partially evaluated to obtain a confunction
of primitive constraint goals, Second, primitive constraints
such as equality and inequality are compiled into predicates
for reducing the domain of a variable. Then, a predicate is
constructed whose call reduces the domains of (some of the)
wariables upon determinalion of the value of some variable,
The domain reducer ohtained from the above proceduare is
called from the problem-independent main program in which
it is checked whether the domain of any variable is reduced
ta an empty set of to a singlelon, and whether there is a
variable whose value is vet to he determinaed.

We have ascertained that the abject program of the n-gqueens
prablem, if cptimized, outperforms the ohject programs us-
ing our previous technigques and even the r-quesns program
uging layered-streams [29]. The gpesdup fully reflected the
reduction of the search tree. Advantages of our technigne
are that object programs obtained use no special primitives
and that they have independent AND-parallelism.

Various types of constraints appear in search problenms. Far
example, the n-queens problem has a lot of weak constraints
{imequality) that make up a regular structure. The cryp-
toarithmetic problem has 2 rather small gumber of strong
constraints (equality). We observed that the effect of for-
ward checking can be drastic when constraints are strong but
may not be sy drastic when constraints are weak, For exam-
ple, generalized forward checking [17) reduced the size of the
search trees to 7097 (f-queens) and to 55% (12 queens) com-
pared with the trees formed with passive comstraint check
ing. This means that parallelism is still important for this
problam.

A disadvantage of our technigue i3 that, being based on
siatic analysis, it is not very flexible. Howewver, it will be
possible to move part of the analysis to run time withoat
significant loss of efficiency. The use of a high-level target
language makes this kind of experiment easy.

Ordinary logic programming enables concise description of
(OR-parallel search for feasible sclutions. However, search
problems of another kind look for the best {or approximately
heat] solutions instead of feasible solutions. In this case, the
patiis of a search tree should communicate so that computa-
tion is concentrated on promosing paths. Processes explor-
ing different paths must evaluate their current work occa-
sionally and communicate the results to know if they are
exploring promising paths. If they evaluate themselves and
commundeate too infrequently, thev may explate wnlmpor.
tant paths for a long time. [f they evaluate and communicate
too frequently, they can avold unnecessary computation but
will spend too much time for evaluation and communication,
This means that in parallel search with communication, the
optimal frequency of communication depends on the prop-
erties of the underlying hardware,

3.3 Programming versus Uncovering Parallelism

There are two altermalive ways to improve performance us-
ing parallelism: cne is to program parallelism and the other



is Lo uneover pieradlelisin.

It is erne that parallelism can be uncovered. For example, it
is guite easy to uncover the OH-parallelism of search prob-
lems written in ordinaty logic languages. If parallelism is
not & difficult izsue and can be fully exploited by language
implerrentors only, ardinary programmers oeed aot be both-
ered with parallelism.

Systerns wnder this hypotheszis may work well on small- ar
middle-scale parnilel compnters, However, we comjecture
that programmiag parallelism is more important in the leag
run. Parallclism, we feel, is too difficalt to be considered by
& swall number of people working on specific areas of com-
puter science. There are so many things w be considered
and many people should b invelved. The current practice
of sequential computation owes wach te many fraftful re-
sults on sequential alporithme. It seems coliiely tlhat we
¢an make effective use of parallel computers without accu
mulating goad parallel algorithms for a variety of problems,
A naive parallel algorithm may well be inferior to a good
seguential algorithm. Furthermore, good sequential alge-
rithms may well be hard to parallelize, because the cost of
communication will net have been considered in designing
them.

Concurrent logic programiming systems try Lo let people pro-
gram parallelism as easily a5 possible by providing them
with a simple and abstract framework of parallel compu
tation. We found that writing programs using processes is
rather easy, Writing efficient parallel programs is not easy,
but this is partly beeause we are inexparienced in taking
the cost and the |ocality of communication into account,
Communication is the most important aspect in designing
parallel algorithms and is worth much more study. Realistic
parillel computation models with which to evaluate parallel
algorithms are badly needrd.

4. CONCLUSIONS

Two alternatives for a parallel legic pregramming svstem,
one using an ordinary loge language and the other using
& concurrent logic language, have been compared from the
semantics and performance points of view. There are sev-
eral proposals for wnilying these twa families of languages;
Clark and Gregory [6] propose a hybrid ianguage appreach
and Haridi and Rrand [15] propose a unified language called
Andorra. However, we believe that the combination of these
languages should be made wvery careflully and only when a
well-defined and semantically clear interface can be defined
between them, The viewpoints discussed in Section 2.4 will
help graceful combination.

Current ressarch on the parallel implementation of these
families of languages seems to have different scopes. ICOT
intends a concarrent logic [anguage EL1 to be the kernel lan-
guage of large-scale, non-shared-memoary parallel computers
in the future, and takes the approach of expesing the locality
of computation and parallelism. The Gigalips project plans
to implement Andorre Prolog coo virtual shared-memory
multiprocessors [44]; Lhis seems to be based an the prineiple
that locality as well as parallelism should be considered only
at a very low level.

T'hese approaches are not necessarily incompatible; individ-
rad technicalitios developed could be combined in the futuee.
The semantic gap betwoen hardware and applications seems
to be wilening in pursult ef performance and functional-
ity, making the comnection of these two ends less stralght-
forward. This means that lavers of abstraction should be
pruvided between thess two ends, becanse a method or o
technigue should generally be considered and put into prac-
tice at the highest possible layer for the sake of simplicity
and geoerality, Ordinary logic languages will serve as one
of the high-level layers for applications in which parallelism
can be hidden, and concurrent lopic lanpuages will serve s
a lower-level layer.
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