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Albstract

We consider the learning problem for languages, ealled
strongly bounded equel matriz longueges, consisting of
strings of the farm a)' ---af~ where each a; is & symbol
and n; is a nennegative integer. The Janguapges are defined
in texms of certain paralle] cewriting grammars called equal
mafrer grammars. Alzo, the languages closely related io
serm imear swhsels of the Carlesian product of nontegative
integers. We show that (1) the family of strongly bounded
equal matrix languages is not learnable from positive ex-
amples, while there exists & meaningful sebfamily which
is learneble from positive examples, (2) given any teacher,
called an edeal teachar, the sublamily is learnable in paly-
porial time of Lhe size of inpuls,

1 Introduction

In this paper, we consider the learning probiem for » re-
sericted family of matric languages ealled strangly bounded
epual el lungueyes, The languages consisl of sirings of
tive form af’ - apm, where each a; is a symbel and ny 1=
a 11unr||.-.E:r|.1.:\'¢-. ;::L-e-.Et-.rl and are defined in terms of certain
paraliel rewnting grammars called epual malrr grammars,
Also, the lanpuages closely related to semilinear subsets of
the Cartesian product of nonnegative integers. The family
contains a language which s not context-fres and does not
contein any context-fres languages.

We show Lhat

# the family of strongly bounded egual matrix languages
15 ot learnable from positive examples, while there ex-
1515 a mesninglul sublamily which is learnable from pos-
itive examples,

o given any teachet calied an fdeal teacher, who presents
glernents of any language [ for the question whether
LT L) for any graeenar & wnd eventualiy gives safle
ficient examples for learning, the subfamily is learnable
in polynomial time of the size of inputs.

In Section 2, the family of strongly bounded equal matrix
languages ie formally defined. In Section 3, we quote the
Siromaney’s result which connects strongly bounded egual

*This is & part of the work in the major ALD of the Filth Geners-
tion Compuater Project, conducted under program set up by MITL
Viggs LA Winter Sympaiium

mairix languages with semilinear sets. Meamnglul sublamu-
liee of the languages, called n-linears sirongly bounded equal
mairiz languages, are introduced. Also, we note some prop-
erties of semilinear sets. From these, we show learnabilities
from positive examples for the families based on semilinear
sets i Section 4. 1L as proved that the family of strongly
bounded equal matrx langeages s nol bearnabie from pos-
itive examples, while there exiets a meaningful subfamily,
called 1l-linear strongly bounded equal matrix languages,
which iz lezrnable from positive examples. In Section 3,
we present a simple learning method for 1-linear strongly
bonnded squal matrix languages Mrom posibive examples.
Wilth our melhed, it seems Ehal the leaening peohlem for
I -lisar strongly bounded equal matrix lenguagss & sompu
tationally intractable. From this ohservation, in Section 6,
wi gssume that there exists an 1deal teacher who presents ex-
amples ol an unknown language L {or the qeustion wiether
L€ Li) for any conjecture 5 and eventually gives suffi-
cient examples for jearning. We present a polynomial-time
lcarning method for 1-lincar strongly bounded equal matrix
lampuages with an ideal teacher

Finally, 1n Seclton 7, we apply our resulis to the learn-
g problem for concepts of simple pictures deseribed n
string languages, Our results suggest that each single con-
cept of polvpons, such as “square”, “rectangular”™, described
in siring languages is learnable from posilive examples and
learning for them is accomplished in polynomial time with
an ideal teacher, while muxed concepts of them are nol 8o,
This matchs with cur intuition.

2  Preliminaries

Let ¥ be an alphabet, 1.6, a finile set of symbols and Z*
be the set of all strings ever © containing the null string
A wyus dencte the cencatenation of strings w; and ws. For
sets of stringe Iy and Uy, [7, Uy denotes the set {ung |0y €
[y and us € U3}, For each string w, w® = 1 and w' =
w'=tw for each integer ¢ > 1, and w* = {uw' |3 > 0},

A longuage over T is & subset of £°,

Definition A language over an alphabet £ i5 said to be
strongly bounded if and only if L C a,"---9." where T =
{-ﬂ.]....r-ﬂ-]-}; '

In general, a langoage over T is said to be bounded if and



only if there exist words wy, .., wn £ 57 such that £ C
Wy oeeeug.

Definition  An  egual matriz grammar  (abbreviated
EMG) of order k is a 4-tuple G = (N E 11, 5], where

1. 5 is the matial symbel.

9. N is a finite nonemply sel consisting of E-tuples
{ Ay, Au. .. Ag), called a nentermenal, such that for
any pair (A, As, .o, 4g) and (By, Ba, o ) of N
{:‘1|.:’1:1.-..ﬁt}l‘ﬁ{ﬁ|.ﬂj. -...ﬂl} =@,

3. 1T iz & finite nonempiy set conssling of the following
types of mainz rules;

(a} fnitial matric rudes of the form

[§ = oy Ayug g oo A

(b} nonfermival egual matriz reles of the form

A — w8,
Ay = wolly

Ay — wnlh

(e) termunel squal mateir rules of the farm

.4.. — N
Az — wun

Ar — uy

where wy wa, ..., we € 5°, 5 is the initial symbel, and
(A0 Az, ..., Ag), (Hy, Hy, oo, Hy) are nonterminals.

An equal matriz grammer is an EMG of any fingte arder
k.

We denote TU N U{S] by V,

Let & = [N, X, 11, 5) be an EMG of order k. We define

the relation = between sirings in V*. For any 2,y € V',
z == y il and cnly 1l

1. = s the initial symbnl 5 and the initial matrix rule
{5 — y]is in 0,

2, there exist strings uwy,... g, ¥,..., vy over T such
that s = wy vy o oupdgty, ¥ =u 20, - upspuy, and
the matrix rule

Ay = -|
A — 5 J

ig in IT.
For any =,y € V", we write £ == g if either = = y ar
there exist zp,...,%, € V" such that z = z¢, y = z,, and

#; == 241 for each {. The sequence zq,..., 2, is called a
dervation (from zp to =) and is denoted by

Tg =% - =3 E,.

The lunguage gen:mleﬂ' !ly &7, denoted LI:G:]. 15 Llie sel
LGy = {we |5 == w).

Definition A language L is said to be an eguaf mafrr
lenguege (abbreviated EML) if and only of there exists an
EMG 7 sueh that L = L) holds.

The family of EMLs containg context-zensitive languages.
For example, the context-sensitive language {a™™c™|n =
1} s an EML, Also, there exists a context-lree language
whizh is not an EATL {lbarra [5]). For example, the context-
free language {a"t™ {n = 117 i nol an EML.

In this paper, we consider the learning problam for
g strongly bounded egual matrir language {abbreviated
SREML). Again, the family of SHEMLs contains context-
sensitive languages and there exists a context-free languags
not tn the family.

We shall also consider computational complexities of
learnings. We use the definitions of deterministic and non-
deterministic polynomial time computability and reducibil-
ity, of classes P and NP, and of ¥ P-hardness and & P-
completeness as described in [3).

3 Algebraic Characterization
In this section, we show an algebraie characterization of
SBEMLs.

Let A" denote the nonpegative integers, For each infeger
E> L let N = A w oo w A (& times) and for each n € A7,
nt = (n,....n) (k times). We regard A™ as a subset of
the veetor space of all b-tuples of rational numbers cver the
rational numbers. ‘Uhus for eiements w = (u;, ..., 1) and
v=lv,....m)imANandnm A utv = (w40, me+
wplyu=v =y —r, .. w—ve) and na = (nuy L g
We may alse speak of the linear dependence and the linear
independence of elements of A

Given an element e and a sihset P oaof A% Jet Qe, P)
denate the set

e, Pl={qlg=ctmp & -dnp., m; €N, p € P).

c 15 called the constent and each p, is called & pervod of
Qe P).

Definition A subset ¢ of A™ is said to be Mnear if and
only if there exizi an elernent & and a finite subset & of A
such that @ = Qic, P). @ is said to be semilinear if and
only if @ is the union of a finite number of linear sets.

Furthermore, & subset @ = Ge, F) of A" is said to be
simple if and only if the elements of P are linearly indepen-
dent. Furthermore, a subset ¢! is said to be semi-simple il
and only if Q is a finite disjoint union of simple ssts.

We note that any lincar set has more than one deseription
in terms of constants and periods, and so does any semilinear
set. Therefore, we distinguish between & semilinear set Q
and a deseription Qe FL)U - U Qfea, Fa) of Q.

Definition A description (e, P) of a linsar set is said
to be canonical if and only if sach period is not linsar sum



of the other periods. Alsa, deseriplion Qe P L --- U
e, Pol ol & semilinear set iz said to be canonmical of and
only if each description €{e;. I%) of a linear set 15 canonical,

Fate that for any lincar sobeet @ of A™, a cancnical de
scription €c. ) is unique because ¢ £ A'® and P is a finite
subset of AE. We also note that for any linear set &, »
cenonical deseriplion is eflectively [aund frem a description
of @@, However, there exists & sermihinear subset sueh that a
Lanwncal 1]l.:hl:.|:'.illln_'ll 1= odpot -.H.iqur.'. [n :r-:u"l. fur ithe sermilin-
car subset G = QO {[1.000 w1, (1,00, (0, 1)) of A2,
the deseription (07, {(1,00, (1, 1))} 0 @12, {{0,1},{1,1)1)
Gl @ i alse canonical.

The Parikl I'.I'I:'I.lljlil'l,g af EALs defined as Tollows connecls
Chifs with sermilinear subsets of A7,

Definition Lee T = {u;,....u;—} e an ﬂ.]ph.‘l.]wl The
Farikli mapping Yy, e,y oF ¥ when {ar,.. ., 0: ) 5 under-
stowd, b Le funclion fram % imto A defined by o) =
(&g, (o). #a, ()], where #, (1) is the number of oc-
currences of @ in w.

"
Thus i) = 0% and giwy - owgd = T 4w, for each w, &

1
D We call (L) = {vw)Jw & L} the Parikh set of an
EML L.
The following theorem s due to Siremoney [9):

Theorem 3.1 (Swrvmenuy) Let T = L TR T T T
eiphaket. Far any girengly bounded lenguage 1. sver ¥, [
15 gouerafed by an EMG O of arder & :f and only of the
Paraick sed af L 43 & semiliecar subset © of A% Moreover,
an EMG G a5 effecively found fram o descraption of @ end
BECE VETSd.

For any semilinear set &, an EMG & which generales
an SOEML is eflectively evnstructed from a description of
& in the following manner: It is enough to show the case
that & i o lincar set. Let Q{e.{py,. .., pr}) be a de-
scription of the Lnear set Q. Also, let ¢ = {eg,...,c8)

a.Llnrl mo= (phoooupt) Then © = (N,ETL,5) where
Ee=apemh N o= {{A1..., 4]}, and 1l consists of
the following matrin rules:
Ay — A
I.S—"LJ?.H]"'EIE.A*] :
[ Ay = t:II;I"I Ay }
: for each i

P'
Ay — a.) A

From Thearem 3.1, we may regard the learning problem
for SHEMLs as Lhe learning prahlem for semilinear sets.

Corallary 3.2 Lef Ly, Ly be SDEMLs and ¢ be the Parikh
mapping. Then, Ly € Ly if and only if {Ly) € (Lo},

From these, we can consider meaningful subfamilies of
SDEMLs:

Definition  For eash positive inléger n. an SOEML L iz
sl to e mefinears SHEME o and only il ¢iL) 15 a union
af exactly n Linear sets and there s nor < n such thae o L)
15 2 union of § linear sels

Thus, a L-linear SHEML & an SEEML whose Parikh set is
a linear set,

In the rest of this sectlion, we note some basic properiies
en semilinear subsets of A™.

At first, we show the time complexicy of the membership
prolilem fer linear sels. As we will shaw later, 1his plavs an
impertant role in the learning probles for Lhem Uhe prob-
e s effecuvely solvable. llowever, the following Lheorar
shows Lhat the problem is computationally intractable

Theorem 3.3 For ony fized posilive integer £, given a
canoncal descrapfion Qlc, F) of ¢ liear subse! of A and
an clement q of A, the problem of deciding whether 4
e, 1) s W Pocomplete,

The prood of this Lhenrem iz in Appendix

Corollary 3.4 For any fired positive mieger kb, given a
canemical deseraplion Qe o0 Qe P of o sema-
iinear subsel of N and an element a of AV the problem
of deciding whedher q € Qfe,, AIU - Uthe,, B is NP
L':‘.Irrapl'ﬂ{:.

ftemark  Given a description Q{e, F) of a simple sebsst
of A" and an element q of MY the problem of deciding
whether q € Qle, P} s solvable in polvoomial time by the
fameous elimination method. Therefare, for semi simple sees,
the problem is also solvable in polynomial time.

Finally, we sununarize the clasure propertics on Boolean
operations and the one on conlainments of semilinear sets
The reader may find formal proafs of them in [4], for exam-
ple.

Proposition 3.5 The fomily of semilineer subsets of NV 1
closed under Boolcan operations.

Corollary 3.6 [i is effectively solvable to defernune for ar-
brirary semilinear sets O and Qa, whether (1) Q) C Q4
(2] gy = Qs

The next corollary fellows from Theorem 3.1, Fropose
bien 3.5, and Corallary 3.6,

Corollary 3.7 The femily of SBEMLs is closed under
Bocizan pperations, [N is effectively selvable lo determine
Jor arbifrary SEEMLs Ly and Ly, whether [y = L.

4 Learnabilities from Positive Examples
In this section, we consider the lsarnahbilities of the families
of SBEMLs from positive examples. On learning of forral
langusges, Angluin [1] presented a necessary and sufficient
cahdition for langusges to be learnable from positive exam-
ples.

Let L be a nonempty language over an alphabet ¥ and
¥+, =" be symbols not in Z. A positive ezample of L isa



paic {4+, v} such that w € Lund a wegative example of [ 1sa
pait (—, v} such that v & 7 = L. A presendation ef I is an
infinile sequence ¢ = #1, 82, 83, ., of positive and negative
examples such that the set of all strings appearing in g as
T A positive prescufation of Lz an iufite sequence ¢ =
51,87, 83,00 -, of positive examples such that the set of all
sirings appearng n & a5 L.

An indered Jumily of wonemply languages is an infinite
sequence Loy, Ly, Da, .- where each Ly 35 a nonemply len-
guage. An mmdezed Jamily of nonempfy recursive languages
is an indexed family of nonempty languages Ly Lo Ly,
enels that there exists an eflective procedure to compute the
membership function

i, w) 1 il wel,
o otherwise,

A learner is defined te be s procedure wiose input is 2
{positive] presentution of a language L and sutput is an
isfinite sequence of pramiaes.,

Let & be & {pasitive] presentation of L and A be a Jearner
Wedenole Ly Mie] an output sequence G, Gy, Gy, .. ol M
for . Facl ) is called a conpeciure of A7 af the fime 1. M
is said to idendafy L in the fimit fram (postive) exwmples
if and only if fer every (positive] presentation ¢ of L there
exists a positive inteper nosuch thet L = L{Ga) and Gy =
Gagpr = Gnyz---m M)

Lel Ly, Ly Ls, ..., be an indexed family of nonempty
languages.  An indexed family of nonempty languages
Ly, Lo, La, ... iz learmable from {postiive ) examples if and
onlv if there exists a learner which identifies L; in the limit
from (positive) examples for every £ 2 1.

Cendition 1 An indexed family of nonempty languages
satisfies Condition 1 if and only if there exists an effective
procedure which on any input 1 2 [ enumerales s set of
strings I such that

1. Ty s finite,
2T C L, and

3 forall j= 1, 1€ L; then Ly is nol a proper subset
of L;.

The next theorem shows that Condition 1 is & necessary
and sufficient condition Tor & family of languages to be learn-
able from positive examples

Theorem 4.1 (Angluin) A mdezed femily of nenemply
recursive langunages 15 learneble from positive ezemples if
and anly of of sehsfies Condition 1.

The lollowing condition ie gimply Condition 1 with the
requirement of effective enumerability of 1; dropped.

Condition 2 We sav an indered famity of nonempty recur-
sive languages Ly, Ly, Ly, ..., safufies Condition £ provided
that, for every 1 » 1, there exisis a finite set T; © L, such
that for every 3 = 1, T LJ: then Lj is not a proper
subset of L;.

Theorem 4.2 (Angloind If Ly Lg, L., 85 en indered
famaly of recursive languages that i iearnable from posihive
eramples, dhen if setisfies Condifron 2,

This theorerm may be used to show that a family of languages
ie not learnable Tram positive examples.

We note that the Angloin's results deseribed above are
concerned with enly the recursiveness of languages. Ilence,
all of them are applicable Lo tlie learning problem for recur-
sive sets, straightforwardly, Tn the sequel, we apply them to
the problem for semilinear subsets of ME

Let = be the relation o N defined by u = v for elements
w= (g, .. uedand vo= o me ) and oaly if w <
for each i. The relation < w a partial order on A% Thus
we may speak of minimal elemente in a subset of A% The
condition Tor two elements (g, ... ue) and (v, wlin
NE to he incomparable is the existence of ¢ and j such that
L TFRE A 1F and by Uy

Lemma 4.3 Fuvery hinear subset @ of A kas the umigue
mmrmum clemend with respect o =,

Proaf. Let 2 be & lipear subset of A™ and
Qe pre--. pe]) be a canonical description of @ (recall
that a canonbcal description 15 unigue). Sinee n; € A and
p € AF elearly ¢ is the unigue minimum element af ¢ wikh
respect e =,

Defipition Let @ be a linear suhset of A" and
2, ipr,-. . prl) be a canonical description of §. Then, a
charocicrastic set of & is the finile st

(@) ={ejufe+pi|l <1 2]

\We note Lhat, given the charaeteristic sl (7(Q) ol a linear
set (, a canonical description af @ i= eectively found. That
is. the constant e is the unigue minitmum element of C{Q)
with respect to < and then the set of periods is {pilq, =
e, g € 0(Q) — {e]}

Let Q@{(c1,... €& ), P) be & description of a linear subset
of N8, Then, for each element q = {q1,....qu) of Q, we
denote (g1 =1 )7+ -+ {ge ~ e }? by |gfe. The next lemma
immediately follows from definitions @ and C{Q):

Lemms 4.4 Let @ be o lincar subsed of A, Q{c, P} be o
conenicel deseripiion of @, and C(Q) be the characteristic
sef of . For any element g of Gt such that q € C[(Q), there
eris! periods py,..., P € P such that for each d, |gle =
Il ard g =€+ npy + -+ AmDPm, where eoch 0y > 1

Lemma 4.5 Lei § be a lincar subset of Y and C(Q) be
the charocleristic sef of Q. Then, for any hnear subsei Q'
of N, if CQ) S Q then QT Q"

Freof. Let @ = Qe P) be a linear subset of NE
and ((Q) the characteristic set of .  Suppose that
Q' = Qie’, [pl... P} is a linear subset of A such that
C(Q) € Q. Since C(Q) € Q') for each q; of C{Y),
q =+ n’:p‘, + e nl]_:-:_. Therelore, {or each period
pof @ pi = @i — ¢ = (n} = ni)pj + -+ (nl —nl)pr.
Hence, for each q € €, there exist my,....m, € N such
that q = &'+ mypi + - +m.p. O



Lemma 4.6 The famly of inear sets 05 dearnalble from pos-
iive cxamples.

Let ¢2{ey. 1), Moy, Pe), ey, P:J}. veey ke oan ef-
fective enumerstion of all descriptions of linear sats. We
have only to consider the mclusions of linear subsets of A%
tis chvious that there exists an efective procedure wheeh
of any input § > 1 enumerates a characteristic set ) of a
linear set e, B} By definition of characteristic sets of
liear seis, 7 is finite and ©; C Qe B). Moreover, by
Lemma 4.0, furall j = 1, MG © Qfey, &) then Qle;, By is
not a proper subset of @(oi, Fi). Thereflore, the Tamily satis-
fies Conditicn I and by Theorem 4.1 the proof is completel.
Il

Prpof,

Corollary 4.7 The family of simple sets o5 learnalie from
P\JSJI-IUE tIIIrJEPl'ﬁﬁ.

Sines for each Qe;, A} Lhere exists an effective enumera-
Lion ¢, Y, dis, oo, of all Parikh mopping, by an obvious
devetailing,

LovilogiLaeen Ligyooo,

where (4,7) € A7 and Qe ) = Wizl Ly ), 15 an indexed
famuly of 1-linear SBEMLs, Therefare, from Theorem 3.1
and Lemma 4.6, we have the following thaarem.

Theorem 4.8 The fumily of 1-finear SBEMLs it learmabie
from posetive d:umpl':s.

Nete that Theorem 4.8 does not depend on aiphabets.

Thus, the family of 1-linear SBEMIs is learnable from
positive examples. On the other haad, for n > 2, the family
of n-linears SBEMLs 13 not learnable from positive exam-
pleg, as shown in the followings:

Lenuna 4.9 The family of semilinear sets consisting of for
imear sels ds not learnable from positive ezamples,

Proof  Comsider the semilinear set Q = Qp U @4, where
Q1 = Q((0,0),0) and Qs = Q((1, 1}, {(1,0),(0,1)}). In fact,
& i a semilinear subset of A™ consisting of two linear sets
(gee [2], for example).

Let T = {ai....,qa} be any nonempty finite subsst of €.
Consider the semilinear set Q7 = Q7 UQT, where

Q= QUL {aeTiqi=(1,m)})
g7 = QU0 {q; € Tia; = (n1.na), ny & 1))

Then, a cancnical description of @7 is effectively found from
the above description (¢f, Figure 1). Cleatly, 7' € 97 and
it is casy to verily that QT € Q. For each q; € T let
g, = {n},n{). Let n]" be the maximum integer ofn}, ..., n}.
Then, g, = (nT + 1,1} is in @ but not in QT, 80 Q7 s a
proper subset af @ Thus Cendition 2 fails. [

The following lemma is proved by the Lrivial extension of
the proof of Lemma 4.0,

Lemma 4.10 Feor each n > 2, the family of semilinear sets
consisitng of m lineer sels is not learnable from positive cx-
omples.

FProof. Let n be an imteger greater than 2 Consider
the semilinear subset @ = Q) U0 Qy of A7 whese
fer {1 201 < n—1) & = @ - 1.01,8) and 0, =
Qe = 113 {0100, (0, 11)). Clearly, € is a scmilinear sub-
set of A7 consisting of n linear seis.

Let T={qy,...,qa} be any¥ nonempty finite subset of .
Consider the semilinsar set Q7 = Q'._r L ---uQI, where

Q;r QU= 1,00.0) farl<i<n—1%2
Q. = Qn-11){q. €T|q = (n-1,m)})
QT = QUn-20),{m €T = (ny,ns) my £ n—1})

‘Then, 8 canonical description of Q¥ is effectively found from
the above dessriplion. From the prool of Lemme 4.9, it i
casy Lo verily that T C Q7 and QT is & proper subsat of
Thus Condition 2 fals. 0

The mext thesrem follows from Theorem 3.0 and
Lomma 4,10,

Theorem 4.11 For each n > 2, the famely of n-dinears
SEEMLs &5 nat learnable from positive ezamples

femark  The proofs show that for any elphabet whicl con.
tains st least two symbols, even if it is fixed, the family 15
not keatnable from positive exampleg

Corollary 4.12 The family of SDEMLs s not learnable
Jrom positive examples.

5 A Simple Learning Method for 1-linear

SBEMLs

Tn this section, we present s learning method for 1-linear
SBEMLs based on linear sets. By this method, any 1-linear
SHEML is identified in the limit from pesitive examples.

Let £ = {a;|1 £ 7 = k} be a fixed alphabet and  be
the Parikh mapping -;!-{,1‘___1_*]. Alse, let L be an unknown
l-linear SEEML such that [ C g} --.a], As described in
the previous sections, if the characteristic set of a linsar set
(L] is found, than an EMG which generates L is effes tively
found. Therefore, the learner 103, illustrated in Figure 2,
tries to find the characteristic set from the given examples.
IDI cutpuls the same FAC as & conjesture while it is con-
sistent with the given examples. When a conjecture is not
consistent with the examples, ID! constructs a new conjec-
ture.

Definition  Let L be a l.linear SBEML. A represeniative
sample R(L) of L is & finite subset of L such that ¢{R{L})
eantaing the characteristic sel of the linear set ¢ L).

Lemma 5.1 Lel L be a l-finear SEEML. Given o repre-
sentafive sample of L, the learner [D1 construets an EAMG
G which generafes L.

FProaf  We shall show that, given a representative sampie
af L, ID1 constructs & description of a linear set & = (L),
Since ${ (L)} contains the characteristic st of @, ID1 finds
& unique mintmum element of it with respect te =, which is



{1.2)
| S . .
(L1 (2
(G:UJ
W{L)

T=Q((1,1),{pl))

Q7 = Q((0,0), {p{,pi. pil)

P

(0.0

Q‘!‘

Figure 1 Construclion of & description Q7

Procedura 131

Input: A positive prewntalion s;, 8., 55, ..,
el & 1-linear SBEML L.

Dutpaat: A ssquence Oy, G, Gy, ..., of EATGS.

En:=1;
Clg := QU0F, B);

For ¢achi > 1 do
Read (+,uy);
E = B {gw))s
1f @iy 15 consistent wilh £,
then & =&y, Q1= Qs
outpul &, and go tod + | step;

If [bund & umque minimum element q
of By with respect to =

then let g be a constant of @

else et OF be a constant of O

While @ 5 not consistent with £; do
fimd & &; such that g &

and ||, 18 minimam;
add mew perivd 4 — & o @

Canstruct an EMG & from @, and output 5
Lo tot 4 1 step;

Figure 2 The learner [0}

precisely a constant ¢ of a description of §. Alsa, Lemma 4.4
and the construction of [0 ensure that IN7 finds each pe-
ricd p, of & eanopical description of @ in ceder of smaller
sze of [Pyl

Since for any positive presentalion o = &5y, £3, 82, ...,
Lhere exists & positive integer ¢ such that the set of sirings
APPCRFIGE N &), 85, ..., % 15 & Tepresentative samples of L,
by Lemuia 5.1, we have Lhie fullowing thearem:

Thenrem 5.2 The learmer IDD identifies any l-linear
SBEML m lhe mal from positie ezamples.

Mote that since the alphabet and the Parikh mapping are
effectively found from examples, the learner [T dose not
depend an them. Therefore, IDI is precisely a learner for
the family of 1-linear SHEMTs,

femark A learner is said to make an overgemeral com-
Jecture provided that i the process it outpots & grammar
which generales a proper superset of the correct language,
iz, the language which should be identified. 1L is easy to
wvarify that IDI never makes overgeneral conjectures, How-
ever, INT does nol always output conjectures which generate
subsets of the cormect language. 17 TN eannot find a con-
stant, then (f is assumed to be & constant. Therelore, if 0
shauld not be in the Parikh set of the correct language, then
the conjecture constructed by ID] generates a string not in
the correet langusge.

Unfartunately, ITN uses membershipness of examples,
which is an N P-complete problem as we have described, so
0T s Lime-consumimg. I there 19 a palynomial-time aigs-
ritline to solve the problecn of finding & cannnical description
of a linear set consistent with the given exampies, then we
eould have a learner which makes a conjecture in polymo-
mial time for each time and identifies any 1-linear SEEML
ton the limit. However, we give some partial evidence for the
difficulty of the case.



Theorem 5.2 JJ P £ NP, fhen there 15 ne polpnomeal
trime alporathm to selve the following prodlem: gruen o jfinite
swbset B oaf A find 0 canonical deseription Qe P) of o
imear subsel of A which contnins ofl elemenis of &

Pronf. Suppuss that there exists an algorithm A that
rune in polynomial e and is such that {or any subsset B
of A, A on input £ outputs a canenical description Qfc, P)
of a lincar subset of A™ which eontains all elements of £
We shall use A to construct o polyuomal-Uime algosithn wo
decide wheller o & Q@le, P for an arbitrary slement q &
A and a canonical deseription @{e, ). Since this latier
prablem is N Pocomplete shown in Theorem 3.5, this will
imply P = NP, provieg Lthe theoram

Let q be an element in & and @{c, P} be a canonieal
description of a linsar subset of A™, We may construct the
characteristic se1 & of Q{c. P} in polvnomial time, Run 4
om anput &0 g} end denote the autput by Q{c’, P"}, Since
a cancnical description s unique for any linear set, e’ = ¢
and A = P then g € Qfc, P), otherwise, q € Qle, P} We
may test whether ¢ = ¢’ and P = P' in polynomial time,
we complete the praof, O

Thus, as far as hased on linear sets, it seems that the
learning problem for 1-linear SEEMLs i computationally
intractable,

Femard Al processes of IDT other than the consistency
chieck are done in polynomial time of the size of inputs.

For each time © > 1, let {4+,wy).... {+,u4) be a fi-
nite subsequense of & positive preseniation and £ =
fwn,oooughs Alse, let m be the maxieum length of the
elements in £ and k be the eardinality of the alphabet I,
Then, for cach 7 {1 < 7 < 4), w{w;) is computable in at most
mk? steps. Also, since £ has at most ¢ elements, o enique
minirum element of £ with respect o =, if there exisis, iz
found in at most § steps, On the other hand, While loop
iz execuled at maost £ — 1 times. In each loop, since for each
g & L [q/; is computable in polynomial time of &, & period
is computable in polynemial time of ¢ and & Therefore, a
description of 2 iinear set @ iz constructed in polynomial
time of 4, &, and m. Since G is constructed from the de-
ecription ef § in an ohvious way in palvnomial time of ¢
and &, all process other than the consistency eheek is dons
in pelynemial time of ¢, k and m,

Consider the family of SEEM s such that the Parikh sets
of any language in the family is a simple set. This family
is also learnable from positive exanples by Corollary 4.7,
Since the membership problem of simple sets is solvable in
palynomial time gs we have noted, for each time 4, D] con-
structs an EMEG in polvnorial time of 4, &, and m, There-
fare, from the above remark, we have the following:

Theorem 5.4 For the fomily of SREMLs such fhat fhe
Faribh set of any language in the faomily 15 o simple sed,
there exists o fearmer which, for each time i (i > 1), con-
sftructs an EMG & 1 poiynomial time of 1, £ end m, where
ks the cardinalily of © and m i fhe morimum length of
the piven ezomples.

Procodure 1S

A posilive presenlation ¢y, 53, 83, ...,
of & 1-linear SDEML L.

Catput: A sequence Gy, Gy, Ga, ..., of EAGs,

Taupsul:

For each i > 0 do
Constroct an EMG & from Q)
Ask the ideal teacher whether L C L{G});
1t Ll teacher replies yes
them oulput &5 and halt

Read {+,w,};

Eio= By U (e )]

44 found & unique minimum element g
af B with respect to =

let g be a constant of ),

let 0F be a constant of ;;

tlen

alza

For each element q in E; do
let q = ¢ be & new period of Qy;

go tot + 1 step;

Figure 32 The learner IIN5S

6 Learning 1-linear SBEMLs with an Ideal
Teacher

In thie section, we show that any 1-linear SBEML is i

ciently learnable with an ideal teachier.

In the previous section, we had no assumplion on pre-
santations of examples, In this time, we assume that there
exists a teacher who can answer guestions of a learner and
the learner get informations from the leacher.

Let L be an unknown SEEML. An ideal feacher pgives
informations ta & learner on the following conditions:

1. for any question whether L C L{F), the ideal teacher
answers yes if L C L{(7) and no otherwise. In addition,
if the answer is ne, the teacher gives an element & &
L — L{G) to the learner.

2. Eventually, the set of examples given by the ideal
teacher constituies & representative sample of L.

Kole that an ideal teacher gives only positive examples,

For cach time § (i > ), the learper IDIS, thustrated in
Figure 3, asks whether L © L{C}) to the teacher. If the
answer is yes, then IDIS outpuets &y and halts. Otherwise,
IDIE reads & new example and reconstructs a description
from the given examples.

We show the correctnese of the learner 11215, The lenrner
ID1 constructs a new conjecture only if & current conjecture
is not consistent with the examples, while the learner ID1S



does so each Litme when a wdeal teacher gives a new example.
IM15 eonstructs a conjecture in the sane way as ID1 does,
Therefare, n=s we have sliown in Section 5, given a repre-
sentative sample of [, 1015 constructs an EMG & which
generates Lo Also, the learner IDD pever makes an over-
general conjecture and so does [D1S. Therelore, the ideal
teacher has only to give pesitive examples, and when all
gin-en gxamp}es consists ol represent alive 5amp|e af L, the
tepeher should answer yes, go the learner balts. From these
ohsermdions, we have the following theorem.

Thearem G.1 Green any tdesl lcacker, then Jor ony 1-
Inear SREML L, D15 eventeally owtputs an CAMG G such
that L = L{G) and halis.

We note that an sdentified description of a linear set 15 nol
ﬂI'“'.i,l..l['K. r.u'!.EIrJIIIII'iLI.

The cond:iion 2 on an ideal teacher is crocial. 17 examples
are provided hy a Leacher satislyving only the condition 1,
ID15 might not identily & hnsar get, For example, consider
a limear subset G[0, 00, {(1,0), (0. 1)} of A% 1T the teacher
always gives examples from the set {{r,1j|n > 0}, then
IDIS never dentifies the linear set.

MNext, we show the time complexity of learning.  As we
have remarked in Section 5, all processes of IDI other than
tlhe consistency check are done in palynomial time of , &,
and m, where 1 i5 a time, & 15 the cardinality of Z, and
m 15 the maximum length of the given examples. Sinee the
learner [D18 never checks whether a conjecture 15 consistent
with the examples, we have the following theorem,

Theorem 6.2 Given any tdeal feacher, then for any 1-
limear SGEML, the tofal running time of IDIS i bounded
by a polynomiel in &, n, and m, where & 05 the cardinality
of an alphabel &, n 15 the number of all ezamples grven by
the teacher, and m s dhe mazrimum leagih of the examples.

T An Application to Simple Picture Lan-
EUAgES

Consider the problem of describing polygons, illustrated in
Figure 4, in string languages. One of the most simple an-
swers for the problem is to describe them in sequences of
symbaols which represent unit lines, as illusteated in Figure 5,
Then, these strings have the same form sy --- i, whers
each symbaol w; denotes a unit fine. For example, a set of
squares is deseribed as the language Le = {ulFululu] n 2
1}.

On pictures described in words over the symbels, which
denote unit lines fram the Cartesian plane considered as a
square grid, Maurer et al. studied various properties in 7).
In this section, we shall touch the learning problem of such
descriptions.

We have shown that the family of SBEMLs is not learn-
able from positive examples, while the family of 1-linear
SBEMLs is learnable from positive examples. Also, the fam-
ily of 1-linear SOEMLs is efficiently learnable with an ideal
teacher. These resulis suggest that

» each concept of polygons described in string languages

15 learnable from positive examples, while mixed con.
cepts of them are not se,

# each concept of polvgons is efficizntly learnable with an
iden! teacher.

For example, consider the concept “square” is the language
Lo = {utulufu] |n = 1] The Parikh set of Lg is 2 lineas
T ) I (L L) %+ m(t,1,1,1)n & A,
Therefore, Ly iz a I-linear SEEAML and efficiently learn-
able with an ideal teacher, On the other hand, "rectangular
i which vertical huees are two or thres times longer than
honizontal hines” is the language Las {'uj‘u?"uﬁuﬁ"ln >
ppufuluiufud® {n > 1} The Farikh set of Lo g is & semi.
bnear sl iy o w el bzal = ({05 1,2+ (1,81 Y C
NPOfL LB +alL, L1 5 0 e N}, soit e not learnabie
from positive examples. Tlos matchs with our intuition.

& Concluding Demarks

We Lave shown thal the lanoly of SEEMLs s nol learnabic
{rom positive examples, while the Tamily of 1-linear SEEMLs
is learnable from positive examples. Also, we have presented
an efficient learning method for 1-linear SBENML: with an
ideal teacher.

Intrinsizaliy, onr methods are hased on zemilinear subsets
af Mk. TJ:Hethe. we could H.Iil.l]_‘r the inethads ta Tami-
lies of languages other than SREMLs, which have the same
properties as SBEAMLz on the Parnkl: mappings, and also 1o
families of sbjects closelv related ta semilinear sets such as
Preshurger formulas, Petr nets. and so on.
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Anppendix: Froof of Theoremn 3.3

WWe depote the membership problem for linear seis in the
following way;

LINEAT SET MEMDBERSHIP (LM}
INSTANCE: A cancnical description (e, P] of &
linear subset of A™ and an element g of A™.
QUESTION: Is q an element of Q{c, )7

Mote that & is a fired posilive integer.
Consider Lthe fallowing procedure: Given Qe, P) and q,

step § et qp =g -,

step 1 choose & pertod ool P, nondeterministically,
and bet qi = Qioy =,
if the value of any coordinate of q; is 0, then
output TRIUE and halt,
else go Lo slep 1+1,

Clearly, there exists a nondeterministic Turing machine
which executes the procedure in polynomial time of the size
of inputs, and it outputs TRUE if and only if q € Q{c, ).

To see that the problem LM is & P-hard, consider the
following problem:

EXACT COVEL {XC)

INSTANCE: Set X and a collection O of subssts
of X,

QUESTION: Does © contain an exact cover for
X, ie, a subcallection ©° © O such that every
element of X ocours in exactly one member of 7

Thia problem is known as an & P-complete problem (see [6]).
We exhibit a polynomial time reduciion to LM of XC.
Let X = {z;,....2,} be n sel and & = {e,....em} be
a collection of subsets of &', Without loss of generality, we
assume that X and O are ordered sets. Given X and O, we
constructs a canonical description Q(0, F) of a linear subset
of A" and show that € contains an exact cover for X if and



only if g £ Q[0, M), where
Ll R
q = E-Eﬂ.l-rﬂ:*l 1141 +Z?i+ﬂlil—!}_
i=1 i=1

For each x; € X and cach o € C, define

gzl = 1 if i €5
il oz g

Far each ¢y & O, define
T AL I P TE NN At

=]
Also, we define

A d e i 1)
Then, define
P o= fpslt=jsm}u{pl)

Clearly, the indicated construction of P from X and © is
carried out in polynomial time of the numbers of clements
of X and O

We first show that a description (U, P} is canonical. As
sume that for seme § (1 < 7 < m), p; = mypy + -+ +
TPt = Tipa Py =+ o0 & Ny Let 2; be an element
of ¢; such that ¢ is & minimum index in ¢, IT there ex-

ist #],..., % such that 2Fmi=l) = gioismii=t) 4 4
nf2t ™o every m), .., nl are greater than 0, and ev-
ery fy,... 4 are less than 4, then n} + . 4 nf 2 2m4L

go prtmin=liy [n‘. o o !1:]2"""'":“":',, contradic-
tion. If there exisis another ey such that € is a mini
mum index in ey, then 2PFmIn-10bS g gndmin-i)ef’ gpg
if grdminstiei _ gigndmin=ti43" ghen n' <, so there is
non' & A such that py = n"pp.

Suppose that ©7 15 an exact cover for &, Then we define
"the coefficients of periods as follows: For each j=1....,m,
if gy € ' then the cocfficient n; of py is 1, while f ; & &
thea n; = b Alsg, we define the coefficient ng of Lthe period

pa by

— —1}45"
ng = Z .2n+m[n
-l:,.-E{'.'—ﬂ‘

The construction of Q[0, P} and q ensures that g £ Q{0 F).
Conversely, suppose that g € Q(0, ). As we have shown,
far any i |:‘1 f; ] E "'F,Il. ai+mii=1) # Enfgf-l-m{!—l:l for any
=l
fir,.. .. legs than 2™V, Therefore, for any i, there exists
exactly one period p; such that p; is constructed from ¢;
which contams =; and the coefficient ef p; is L. Let &' be a
set which contains ¢; such that the coefficient of py is 1. It
is easy to verily that C7 s an exact cover for X
Thus, even if £ = 1, the problem LM is N P-hard. This
completes the proof. O



