ICOT Technical Report: TR-447

[K-447

Logic Program Diagnosis
from Specifications

by
T. Kanamori, T. Kawamura, M. Maeji
& K. Horuchi (Mitsubishi}

March, 195Y

© 1989, 1COT

Mita Kokuszai Bldg. 21F i03) 456-3191—-5

'GDT 4-28 Mita 1-Chome Telex 1COT J32964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Logic Program Diagnosis from Specifications

Tadashi- KANAMORI Tadashi KAWAMURA
Machi MAEJI Kenji HORIUCHI

Mitsubishi Electric Corporation
Central Research Laboratory
Tsukaguchi-Honmachi &-1-1

Amagasaki, Hyogo, JAPAN 661

Abstract

This paper presents a [ramework for locating bugs of Prolog programs from specifica-
tions. To be debugged, each predicate is specified by a set of universal formulas either of the
form A C Ayadsa--Ady or of the form AA A3 AdzA---AA D fil+1hﬂi+2h“-hﬁl+ﬁ.
The system generates each test case by executing the antecedant part of such a formula,
and checks the test case by executing the consequence part under the answer substituiion
just obtained. If the latter execution cannot succeed without instantiating the variables, it
turns out that either the execution of atom A (in the consequence part) under the answer
substitution has failed unexpectedly, or the execution of atom A (in the antecedant part)
under the answer substitution has succeeded unexpectedly. Then, the system locates the bug
using the specifications by checking whether each subcomputation has proceeded as intended
while tracing the execution of the atom in a top-down manner. Our approach is a generaliza-
tion of both the bug location alogorithm in Shapiro’s “Algorithmic Debugging” and that in
Dershowitz-Lee’s “Deductive Debugging.” The relation between the generation of test cases
and the verification of logic programs is discussed as well.

Keywords: Program Diagnosis, Program Modification, Program Debugging, Prolog.
Contents

1. Introduction
2, Preliminaries
2.1 Programming Language
2.2 Specification Language
3. Outline of A Logic Program Modification System
3.1 Top Level of the Logic Program Medification System
3.2 Strategies in Selecting Test Predicates and Specification Farmulas
3.3 Three Phases in the Logic Program Modification
4. Test Case Generation Phase
4.1 The Principle of the Test Case Generation
4.2 Generating Test Cases [or Unexpected Failure
4.3 Generating Test Cases for Unexpected Suecess
5. Bug Location Phase
5.1 Top Level of the Bug Location
5.2 Checking Tnexpected Failure
5.3 Checking Unexpected Success
Implementation
An Example of Program Modification
Discussion
9. Conclusions
Acknowledgements
References

® o

1. Introduction

Debugging programs is an integral part of our programming activity. It is often said
that programmers usually spend more than 50 percent of the time for debugging, of which
the work for locating bugs is most time-consuming, while that for correcting bugs is relatively
easy for human programmers once the bugs are found. For locating bugs, there have been
developed several tools for various programming languages, e.g., those for displaying a stack
backirace, stopping at specific location or at specific event (breaker), displaying the value
of variables by name, executing programs step by step (stepper), tracing the execution of
all procedures (tracer), and spying the excution of specified procedures (spy). Within the
framework of logic programming, similar tools have been developed as well, e.g., the “tracer”
command and the “spy™ command of DEC10 Prolog.

Compared with the conventional debugging tools, “Algorithmic Debugger” by Shapiro
(18], [16] is slightly different in its nature. While tracing (or backtracing) the execution of
logic programs, his debugger asks the programmer whether each procedure (predicate) call
Just traced has returned a correct result or what answer should have been returned if the
prograa is the intended onme. The programmer just need to answer the queries according
to his declarative knowledge about each procedure, i.e., he/she does not need to follow the
operational behavior of the execution in his/her mind.

In Shapiro’s algorithmic debugging, the programmer was considered just a device to
answer the queries from the system. Any device which can answer the queries is able to play
the role of the programmer, and called an oracle in general. The idea to use specifications as
an oracle instead of human programmers was hinted by Shapiro [15] pp.77-80, and developed
by Dershowitz and Lee [1]. Their “Deductive Debugger” used executable specifications (i.e.,
another possibly ineflicient definite clause programs for specification) not only for answering
the queries but also for generating test cases, which human programmers have to give in
Shapiro’s debugger. For example, if “4 - A; A, ..., A," is an executable specification,
and # is an answer substitution obtained by executing the body A;, 44, ...,4;, then the
execution of A using the program {being debugged) must succeed without instantiating the
variables in A#.

This paper presents a framework for locating bugs of Prolog programs from specifica-
tions. To be debugged, each predicate is specified by a set of universal formulas either of the
form AC A AAzA---AaAoroftheform AAA A A A4 D Alg Adge A - Adig.
The system gemerates each test case by executing the antecedant part of such a formula,
and checks the test case by executing the consequence parl under the answer substitution
just obtained. If the latter execntion cannot sncceed withont instantiating the variables, it
turns out that either the execution of atom A (in the consequence part) under the answer
substitution has failed unexpectedly, or the execntion of atom 4 (in the antecedant part)
under the answer substitution has succeeded unexpectedly. Then, the system locates the bug
using the specifications by checking whether each subcomputation has proceeded as intended
while tracing the execution of the atom in a top-down manner. Our approach is a generaliza-
tion of both the bug location alogorithm in Shapiro’s “Algorithmic Debugging™ and that in
Dershowitz-Lee’s “Deductive Debugging.” The relation between the generation of test cases
and the verification of logic programs is discussed as well,

The rest of this paper is organized as follows: Section 2 fixes our programming lan-
guage and specification language. Section 3 shows the vutline of our framework for logic

1

program modification consisting of three phases. The first phase, test case gen eration phase,
is explained in Section 4, and the second phase, bug location phase, in Section 5. (The
third phase, bug correction phase, is not explained in this paper.) Section 6 explains our
implementation, and Section 7 presenis an exam ple of logic program modification. Last,
Section 8 discusses the relation between the generation of test cases and the verification of
logic programs.

2. Preliminaries
2.1 Programming Language

A finite set P of definite clauses is called a program. As was mentioned in Section 1,
the execution of a goal w.r.t. a program can be traced using the “trace” command of DEC10
Prolog.

Example 2.1.1 The following is a wrong program of quicksort with 6 bugs [16].
% gsort([],[]} is missed
qsort([X|L],M) = partition(L,X,L1,L2),
gsort{L1,M1), gsort(L2,M2),

append{[X|M1],M2,M). % append(M1,[X[M2],M)
partition(] |,X,[L[])-
partition([Y|L],X,[Y|L1],L2) - Y2X, partition(L,X,L1,L2). T Y<X
partition({[Y]T},X,L1,[Y|L2]) : partition(L,X,L1,L2). % Y>X
append([],M,[]). % append([|,M, M)
append ([X|L],M,[X|N]) :- append(L,M,M). % append(L,M,N)

Example 2.1.2 The following is the execution trace of “gsor([2,1], X)” w.r.t. the program
above + unit clause “gsort([],[]).”

| 7- trace, qsort([2,1], X).
Debug mode switched on.
(1) 0 Call : gsort([2,1], _40)
(2

j 1 Call : partition({1], 2, _105, _108)
(3) 2 Call :1>2
(3) 2 Fail :1>2
(4) 2 Call : partition(]f], 2, _120, _106)
(4) 2 Exit : partition((], 2,1, []
(2) 1 Exit : partition([1], 2, 1], []}
(5) 1 Call : gsort([1], _107)
(6) 2 Call : partition([], 3, _149, _150)
(6) 2 Exit : partition{[], 1, [].[])
(7) 2 Call : gsort(]], _151)
(7) 2 Exit :qsort([],[])
(8) 2 Call : qgsort(]], _152)
(8) 2 Exit :qsort{[],[])
(9) 2 Call :append([],[1], _207)
(9) 2 Exit :append([],[1],[])
(5) 1 Exit : gsort([1], [])
(10) 1 Call : gsort([], _108)
(10) 1 Exit : gsort{[], [])
(11) 1 Call : append([], [2], _40)
(11) 1 Exit :append([], [2], []}

(1) 0 Exit :gsort{[2,1],]])
X=[];

(1) 0 Redo : gsort{[2,1],]])
(11) 1 Redo : append((}, (2], [])
(11) 1 Fail : append([], [2], _40)
(10) 1 Redo : gsort([],[])
(10) 1 Fail : gsort([], _108)
{5} 1 Redo qsurt{[LD
(3) 2 Redo : append([], [1],[])
(9) 2 Fail :append([],[1], 107}
(8) 2 Redo :gsort([],[])
(&) 2 Fail : gsort([], _152)
{7) 2 Redo : gsort(l)]
{(7) 2 Fail : gsort([|, _151)
(6) 2 Redo : paxtition([], 1, [],[])
(6) 2 Fail :parhtmn[[] 1,._1491 150)
{5) 1 Fail : gsert{[1], _10
{2) 1 Redo p:y.:tumn[[l], 2. L imn
(4) 2 Redo s partition({ |, 2, [], [])
(4) 2 Faill : partition(]], 2, _120, _106)
2) 1 Fail p:nrutmnl:[l], 2 _105, _106)

{
(1) 0 Fail : gsort{[2,1], _40

na

Remark. In this paper, only terminating Prolog programs are considered. For debngging of
nonterminating Prolog programs, see [15], [1].

2.2 Specification Language
(1) Specification Formulas for Unexpected Failure

A formula of the form
VAL Xo o Ko (pllitz, 0] © AL AAZA - A A)
is called a specification formula for unexpected failure of p when the predicates of Ay, Aa,...,
Ay are predefined primitive predicates. Hereafter, such a formula is represented simply by
Pl:h,fg. ..,.,141 = Ay, Aa, Lo Ay
piiy 2, ... 1y) is called the head, while “4;, Ao, ..., A" is called the body of the specifica-

tion formaula.

Example 2.2.1 The following are formulas for nnexpected failure:

qsort{ L, M) - permute{L M), ordered({M),

parlitinn{L,K,L,[n - ge‘:ﬂjt}(rL}l

partition{L,X,[],L) - lt-all{X,L),
where “permute,” “ordered,” “ge-all” and *l{-all" are predefined primitive predicates. {“ge-
all” denotes that the first argument is greater than or equal to all the elements of the second
list argument, while “/t-all” denotes that the first argument is less than all the elements of
the second list argument.)

(2) Specification Formulas for Unexpected Success

A formula of the form
VX, Xg o X (p(t, 12, ta) A A A A A A A D Appa Adpah-- A Aigy)

3

is called a specification formula for unexpected success of p when the predicates of A3, Aa,.. .,
Apyy ate predefined primitive predicates. Hereafter, such a formula is represented simply by
Pl ta, ... ,!n} - if 44, 42,...,4; then Arpry Aty oo Algke
plt1,ta,. .., 1y) 15 called the head, while “A;, Az,..., 4" is called the if part, and “Ajg1, Atga,
..., Arga” is called the then part of the specification formula. In particular, when [=0, it
is represented by
pliy, 12, .. coln) - Ay Az A

Example 2.2.2 The following are formulas for unexpected success:
gsort(L,M) -: permute(L,M), ordered(M),
partition(L,X,L1,1.2) -: sublist(L1,L), sublist(L2,L), ge-all(X,L1), lt-all(X,LZ),
partition{L,X,L1,L2) - if length({L1,N1), length(L2,N2), length(L,N)
then add(N1,N2 N},
where “sublist” and “length” are predefined primitive predicates.

(3) Specification of Predicate
Each predicate to be debugged is specified in one of the following three ways.

(i} Executable Specification

spec(p).
F{XhXﬂ, ..,,Xn} - ..d_-., Aa, .. .,A*.

endspec.

This is equivalent to writing

spec(p).
p[Xth,...,X,.} = A:L, Ag,..,,.qj;.
pl:Xl,le...,.-Yﬂ} =% ..4.1,;4.2,...,11.}.
endspec.

Executable specifications are used when it is not very hard to write concise specifications
which completely characterize the predicates.

(1i) Specification by Properties

spee(p).-
Fy.
Fa.

Fas.

P{xll Ao, "'!Xu} - f“cry';'{xlrxij'“rxn}'
G-

Gz,

Ga-s.

F{X:Lj Xﬁ'l vy Xﬂ) = Q‘“E”'F'P[Xh X:: e -Xn]'
endspec.

Each F; is a specification formula for unexpected failure of p, while each G is a specification
formula for unexpected success of p. The o-th formula, denoted by F,, is called an query
formula for unexpected failure, while (o + 8)-th formula, denoted by G, is called an query
formula for unexpected success, where “guery-p” is a special predicate such that “query-
plti.da, ... 1) succeeds by asking the programmer an appropriate answer substitution 8 if
and only if “p(t;,14,...,1,) succeeds with answer substitution # when the program of p is
correctly written.” Specifications by properties are used when it is hard to write a concise
executable specification but it is relatively easy to write various properties the intended
program should have.

(iii) Specification by Queries

-‘iPEI«:(P:‘-
Pt‘ri' Xﬂ'r Ty -""{N:I =i ﬂ'”*:TII"P{Xer:- T !X'I'I-J‘
endspec.

This is equivalent to writing

spec(p).
LA Nay o K)o query-p(X, Xay oo, A)
plXy Xay o, X)) - query-p(Xy, Xo, .00 X))

endspec.

Specifications by queries are used when the predicate is so trivial that it is tiresome to
write even its properties all the way, hence it is much easier to answer whether atoms with
individual arguments are tree or not.

Example 2.2.3 The {ollowing is an example of executable specifications [2].
spec{gsort).
gsort{L, M) :-: permute(L,M), ordered(M).
endspec.
The fullowing is an example of specifications by properties.
spec{partition).
partition(L,X L[]} - geall(X,L).
partition(L, X[],L) :- It-all(X,L).
partition(L,X,L1,L2) :» query-partition(L,X,L1,1.2).
partition(L X 1.1,1.2) -: sublist(L1,L), sublist(L2,L), ge-all(X L1}, It-ali(3{,L2).
partition([,X,L1,12) -; if length(L1,N1), length({L2,N2), length(L,N)
then add(N1,N2,N).
partition(L X ,L1,L2) -: query-partition(L,X,L1,L2).

endspec.
The following is an example of specifications by queries.
spec{append).
append(L,M N} :-: query-append({L,M,N).
endspec.

(4) Specification of Program

A sel S consisting of the specifications of predicates in program P is called a specifi-
cation of P. Non-primitive predicates withount specifications are assumed to be specified by
“specification by queries.”

Example 2.2.4 Let 5 be the set consisting of the specifications of “gmr!,’; “partition™ and
“append” of Example 2.2.3. Then 5 is a specification of the program of Example 2.1.1.

3. Outline of A Logic Program Modification System
3.1 Top Level of the Logic Program Modification System

In our program modification process, each predicate is either marked “debugged” or
unmarked, and each specification formula is either marked “checked” or unmarked. For a
given initial program Fp, the top-level of our logic program modification system is as below:

logic-program-modification(Py : program; § : specification);

P o= Fy;

repeat
select an nnmarked predicate in 5 to be debugged;
repeat

select an unmarked specification formula of the predicate:
modify F using the specification formula;
mark the specification formula “checked”;
until all the specification formulas of the predicate are marked “checked”;
mark the predicate “debugged™;
until all the predicates are marked “debugged”;
return the modified P;

Figure 3.1 Top Level of the Logic Program Modification System

The algorithm first selects one of the predicates to be debugged. Next the algorithm
selects ome of the specification formulas in the specification of the predicate. Then the
_algorithm modify the program using the specification formula, and continnes the modification
uging other specification formulas until all the specification formulas of the predicate are used.
This process continues until all the predicates are debugged.

3.2 Strategies in Selecting Test Predicates and Specification Formulas

In Fignre 3.1, how to select the predicates to be debugged and how to select the
specification formulas to be checked are left unspecified. In this paper, we have adopted the
following strategies:

Strategy of Test Predicate Selection

The predicates to be debugged is interactively specified by the programmer. (For other
strategies to automatically select the predicates, see Section 8.)

Strategy of Specification Formula Selection

The specification formulas appearing earlier between spec and endspec in the speci-
fication of a predicate are selected earlier than those appearing later. (Hence, specification
formulas for unexpected failure are selected earlier than ones for unexpected success.)

3.3 Three Phases in the Logic Program Modifleation

6

The innermost of our logic program modification at line 7 in Figure 3.1
“modify F using the specification formula”
consists of three phases, test case generation phase, bug location phase and bug correction
phase as below:

madify(F : program; F : specification formula);

repeat
generate a next test case using F; (Test Case Generation Phase)
locate a bug in F; {Bug Location Phase)
correct the bug in P, {Bug Correction Phase)

until either the test cases using F are exhausted up or the programmer says “o.k.” ;

Figure 3.3 Three Phases in Logic Program Modification

The detail of the “test case generation phase”™ is to be explained in Section 4, and
the “bug location phase” in Section 5. The “bug correction phase” searches the candidates
of corrected programs. It is, however, very hard for general bugs, in particular when even
the skeletal recursion structures of the programs are wrong. In this paper, we assume for
simplicity that this phase is done throngh interactive editting of the program text by the
programmer.

4. Test Case Generation Phase
4.1 The Principle of the Test Case Generation

Let P be a program (containing at least one constant symbol), Upg be the set of
all terms composed of constant and function symbols occurring in P and countably infinite
number of variables, and Bgy be the set of all atoms with predicate symbols occuring in
P and arguments contained in Ugy. A model of P aver domain ey is called an extended
Herbrand model when constant and function symbols are interpreted symbolically as they
are. An extended [lerbrand model can be considered a subset of Bgg if an atom is interpreted
true when the atom is an element of the subset and false otherwise. Hersafter, we will use a
prefix “Brp-" when we wonid like to emphasize that an expression is consisting of atoms in

Bry.

Let M be the set of all Bpy-atoms that succeeds using P without instantiating the
variables in it. Then, M is a model of P over domain gz, and called the least extended
Herbrand model of P. Let F he a universal formula of the form

BiaBzA - AB D BigiABigat---A By
Suppose that this formula is valid in M, and the execution of

’- 'le H’ﬂ.-"'1 BI
using F succeeds with answer substitution ¢. (Different answer substitntions give different
test cases.) Then, universal formula

(ByAHap---AB O E;+| A Biga - A BH.;,:IE.
must be valid in M. Because ¥{B, A Ba A -+« A B} is valid in M,

""‘"[H£+1 M H{+2 Ao A B]’.'_k}&
must be valid in M. Therefore, the execution of

T~ {Bigr, Biga, ..., By)0
must succeeds using P without instantiating the variables in (Biyq, Bigz,..., Brsx). This
is the principle of our test case generation.

Hence, in the following, we need to execule a goal

T (Brer, By, Biag)@
withont instantiating the variables in it. In general, we need to executea goal

o4y, Aa, . As
while prohibiting the instantiation of some variables X;, Xa,...,X; and permitting the in-
stantiation of another variables ¥1,Ys, ..., Yx, which corresponds to prove

WXy, Xa . X 3Y0 Yo, Y (s Ada A AAL).
(Such a goal appears during the execution even if the top-level goal is just universally quanti-
fied.) Hereafter, we will consider such goals, and assume that we somehow make a distinction
between the variables quantified universally at the outermost and another variables quantified
existentially at the innermost (e.g., by attaching the tilde mark over the universal variables).
When we would like to emphasize that some universally quantified variables might be con-
tained in an atom, we call the atom a quantified atom, and when we would like to emphasize
that no existentially quantified variables are contained in the atom, we call it a universally
gquantified atom.

4.2 Generating Test Cases for Unexpected Failure

When a specification formula for unexpected failure is selected, unexpected failure of
the predicate is checked as below:

generate-a-test-case-for-unexpected-failure(P : prograu; F : specification formula);

let A be the head of F;
let § be an znswer substitution obtained by exeenting the body of F;
if the execution of the head of F@ can succeed
without instantiating the variables in the head
then return “A40 has succeeded as expected”
else return “A# has failed unexpectedly®;

Figure 4.2 Generating A Test Case for Unexpected Failure

Example 4.2 Suppose that the selected specification formula is
gsort(L,M) - permute(L,M), ordered(M).
The execution of the body can succeed, for example, with answer substitntion
<L=[],M+[]>.
Then, the execution of “gsort([],{])” must succeed using the current program if it is the
intended program.
Similazly, if the selected specification formula is
partition(L,X,L,[]} :- ge-all{X,L),
the execution of the body can succeed, for example, with answer su bstitution
< L4=[]>.
Then, the execution of “partition([], X,[],[])" must succeed witheut instantiating X
If the sclected specification formula is
append(L,M,N) - query-append(L,M,X).
then the execution of the body asks the programmer
WHAT GROUND INSTANCE OF append(L, M, N) SHOULD SUCCEED?
If we answer it, say, append([0, 1],(2],[0,1,2]), then the execution of the atom must succeed.

Remark. The skeleton of the test case generation is easily implemented in Prolog by
generate-test-cases((Head :- Body), Test- Resnlt) :-

8

execute{ Body),
replace-vaniable-with-fresh-constant(Head, Head0), check{ Head0, Test-Result).
generate-test-cases((Head - Body), test-cases-exhausted).
check(Head0, has-sncceeded-as-expected) - execute(Head0), !, fail.
check(Head0, has-failed-unexpectedly).
although it might loop forever.

4.3 Generating Test Cases for Unexpected Success

When a sperification formnla for unexpected success is selected, unexpected snccess of
the predicate is checked as below:

generate-a-test-case-for-unexpected-suceess(P : program; F : specification formula);

let A be the head of F;
let # be an answer substitution obtained by executing the head of F;
let 7 be an answer substitution obtained by executing the “if” part of F'#;
if the execution of the “then”™ part of Fy can succeed
without instantiating the varaibles in the “then” part
then return “Afy might succeed”
else return “Afy has succeeded nnexpectedly™;

Figure 4,3 Generating A Test Case for Unexpected Success

Example 4.3 Suppose that the selected specification formula is
qsort{ L, M) = permute{L,M), ordered(M).
The execution of the head can succeed, for example, with answer substitution
<Le=[X]M<=[X]>
using the program of Example 2.1.2. If the program were the intended one, the execution of
“permaute([X], [X]), erdered([X]}” would have to succeed withont instantiating variable X.
Similarly, if the selected specification formula is
partition(L,X,L1,L2) - sublist{L1,L), sublist{L2,L), ge-all(X,L1), I-all{X,L2},
the execntion of the head can suncceed, for example, with answer substitution
<L&[V] =[], L24=[Y]>.
If the program were the intended one, the execution of “sublist([], [¥7), sublist([¥], [Y]), ge-
all(X,[]), f-all{ X, [¥])” would have to succeed withont instantiating variables X and Y.
If the selected specification formula is
append(L,M,N) -: query-append(L,M,N)
test cases are generated and checked in a special way as follows:
. either the head atom is excented, and the programmer is asked whether the execulion
result is the intended one,
- ur the programmer is asked a ground instance of append(L, M, N) which should fail,
and the ground atom is executed w.r.t. the current program.
In the former case, since the execulion of the head can sncceed, for example, with answer
substitution
<L<«{]N+=[]>
the programmer is asked
IS SOME INSTANCE OF append([| M,[]) FALSE?
In the latter case, he/she is asked
WHAT GROUND INSTANCE OV append(L,M,N} SHOULD FAIL?
If he/she answers it, say, append([0],[1],[1,0]), then the execution of the atom must fail.

8

Remark. The skeleton of the test case generation is also easily implemented in Prolog by
generate-test-cases((Head -: if-then(If, Then}), Test-Resunlt) :-
execute(Head), execute(Il),
replace-variable-with-fresh-constant(Then, Then0), check(Then0, Test-Result).
generate-test-cases((Head -: if-then(If, Then)), test-cases-exhansted).
check(Then0, might-succeed) :- execute(Then0}, !, fal.
check{Then0, has-succeeded-unexpectedly).

5. Bug Location Phase
5.1 Top Level of the Bug Location
(1) Success Trace

Suppose that the execution of a quantified atom A hes succeeded with answer substitu-
tion @, after returning answer substitutions ;,82,...,0a_1. The trace of the execution since
calling A nntil exiting with A#, is called a success trace with label (A, A8,). The quantified
atom A is called the initial label of the success trace, while the quantified atom Af, is called
the final label of the success trace,

Let ST be the suceess trace with label (A4, 48,). Suppose that the execution of A with
answer snbstitution #, has succeeded using a clause
B: B,Ba,..., By,
for the top-level atom A. Then there exist substitutions &, 791, ..., such that #, is the
resiriction of o9, - -~ m to the variables in A and
(D) A and B are unifiable by m.g.u. o,
(1} the execution of Byo has succeeded with answer substitution 7, (possibly after suc-
ceeding with several other answer substitutions),
(2) the execution of Bagn; has succeeded with answer substitution 7, (possibly after suc-
ceeding with several other answer substitutions},

(k) the execution of Byon---ny—1 has succeeded with answer substitution 7 (possibly
after succeeding with several other answer substitutions).
Then, the success trace with label (Biony -~ mi—q, Biogy -+ f;—17;) contained in ST is called
an immediate success subtrace of 5T

(2) Failure Trace

Suppose that the execution of a quantified atom A has failed after returning answer
substitutions fy, #a.....8,. The trace of the execution since calling 4 until failing is called a
failure trace with label (A,[A#;, A8y, ..., A6,]). The success trace with label (A4, A8;) in the
failure trace is called the composing success subtrace of the failure trace.

Let FT be the failure trace with label (4,[...]). Suppose that the execution of 4 in
the failure trace has used a clause
B :- _311.37,, ..?HJ!
for the top-level atom A. Then, if (an instance of) atom B; is executed in FT, there exist
substitutions o, 91, .- -, 7j—; such that
(0) A and B are unifiable by m.g.u. o,

10

{1) the execution of Byo has succeeded with answer substitution 7y (possibly after suc-
ceeding with several other answer substitutions),

{2) the execution of By has succeeded with answer substitution 5, (possibly after sme-
ceeding with several other answer substitutions),

(i) the execution of Biony - - - ni—1 has failed (possibly alter succeeding with several other
answer substitutions).
Then, the failure trace with label (B;eny - -+ m_1,[...]) contained in FT is called the imme-
diate failure subtrace of FT.

Note that, when FT is a failure trace with label (4,[...]) and B is an instance of A
without instantiating the universally quantified variables in A, the failure trace FT' with
label { B,[...]) is easily obtained from FT

{a) by eliminating some subtraces of FT' which never appear due to the instantiation of A
to B, and
(b) by instantiating the label of each subtrace according to the instantiation of 4 to B.

{3) Intended Model and Computed Model

Suppose that the programmer knows whether any given Bgg-atom should be true for
any assignment for the variables in it. The set of all Bpg-atoms that should be true is called
the intended (extended Herbrand) model.

Let P be the current program the programmer has written. The least extended Her-
brand model defined by P is called the computed (extended Herbrand) model of the program.

Let “By, Bz, ..., B® be an atom sequence and M be an extended Herhrand maodel.
Then, “Hy, Ha,..., B™ is said to be valid in M if all Bgy-instances of By, Bo, ..., By are
true in M. while *B,, B,,..., By" is said to be invalidin M if some Bgy-instance of B, By,
vo.y By is false in M.

{4) Uncovered Atom and Wrong Clause Instance

When the programmer’s intention does not conform to the current program, the in-
tended model does not conform to the computed model.

Let P be a program and M be an intended model. An atom A is called an uncovered
atom in P w.r.t. M, when there exists some Bgy-instance Ae such that
{a) Aris truein M, and
(b} for any Bpg-instance “Ag:-By, Bz,..., B" of definite clauses in P, the bady H, Ha,
—o., By is false in M.

Example 5.1.1 Let P be the program of Example 2.1.1, A be partition([0],1,[0],[]), and M
be the vsual intended model. Then A is an uncovered atom.

Let P be a program and M be an intended model. An instance “H:-By, By, ..., B”
of a definite clause in P is called a wrong clause instance in P w.ri. M when
(a) K isinvalid in M, and
(b) By, Ba,...,Biis valid in M.

11

Example 5.1.2 Let P be the program of Example 2.1.1, C be an instance of the third clanse
for partilion

partition([Y],X,[},IY]) = partition([[X,[1,[1),

and M be the usual intended model. Then C is a wrong clause instance.
(5) Locating Bugs Using Traces

“locate-a-bug” below is the bug location algorithm by tracing the execution of the head
of the specification formula in a top-down manner. (See [11] for soundness and completeness
of the algorithm.) For simplicity, assume that the execution trace T of an atom which
has succeeded or failed unexpectedly is completely recorded. {See Section 6 for the actual
implementation.) “locate-a-bug” works as follows:

(a) If the application of “locate-a-bug” to trace T returns an atom “B.” it means that B

is an uncovered atom found in T

(b) If the application of “locale-a-bug™ to trace T returns a clauge “C." it means that C

is 2 wrong clause instance found in T

(c) If the application of “locate-a-bug” to trace T returns a message “no bug is found,” it

means that no bug is found in T,

How to check (i) unexpected failure of the label of 2 failure trace FT and (i) unexpected
success of the label of a success trace ST using the specification formulas during the top-
down tracing is explaind in Section 5.2 and 5.3. Note in advance that, when the unexpected
failure check of the label of a failure trace FT returns a quantified atom A’, the atom A'is
an instance of the label without instantiating the universally quantified variables in it.

locate-a-bug(T : trace) : bug-message ;

when T is a failure trace with label (A,[41, Az,..., A)
let Ty, Ta,...,Tx be the composing success subtraces of T:
if the application of “locate-a-bug™ Lo some T; returns a bug
then return it
else check unexpected failure of the label of T
if the answer is “No”
then return “no bug is found”
else let “Yes{B)" be the returned answer;
let T' be the failure trace with label (B,[...]) (obtained from T);
let FTy, FTg, ..., FT, be the immediate {ailure snbtraces of T";
if the application of “locate-a-bug” to some FT; returns a bug
then return it
else return the atom “B7 as a bug

when T is a success trace with label (A, B)

check unexpected success of the label of T

if the answer is “No"

then return “no bug is found”

else let “Yes{C)" be the returned answer ;
let 5Ty,5T4,..., 5T, be the immediate success subtraces of T';
if the application of “locate-a-bug” to some 5T returns a bug
then return it
else return the definite clause “C” as a bug

Figure 5.1 Top Level of the Bug Loeation Phase

12

5.2 Checking Unexpected Failure

In Figure 5.1, nunexpected failures needed to be checked using the specifications, The
check is done as follows:

check-unexpected-failure(F7T : trace);
let (4,[A8, Afa, ..., A68]) be the label of FT';

for i from 1 to o do
if A is unifiable with the head of a specification formula F;, say by m.g.u. o,
without instantiating the universally guantified variables in A4,
the excution of the body of Fie can succeed, say with answer substitution 7,
withont instantiating the universally quantified variables in A,
and Aeow is not an instance of A8, A8, ... A8
then return “Yes{Aen)" ;
return “Ne™ ;

Figure 5.2 Checking Unexpected Failure

Example 5.2 Suppose that predicate “partifion” is defined by

partition(] X[L.[I).

partition([Y|L] X [Y|L1],L2) - Y>X, partition{L,X,L1,L2}.

partition{[Y|L],X,L1,[Y|L2]) - partition{[, X ,L1,L2}.
and the failnre trace of partition(j0],1,[0],[]} is given. Becanse the execution of atom
pariition{[0],1,[0],[]} fails without returning any answer, there is no composing success
subtraces so that “lecate-a-bug™ immediately checks the label of the failure trace.

Because the label partition([0],1,[0],[]) is unifiable with the head of the first specifi-
cation formula

partition(L 3 L,[]} - ge-all{X,L),
the corresponding body “ge-all(1,[0])" is executed. Since it succeeds, “check-unezpected-
fatlure” returns

Yes{partstion([0], 1, [0],[])).
Similarly, partition([0],1,[0],[]) is unifiable with the head of the third specification formula

partition{L X ,L1,L2) :- query-partition({L,X,L1,L2),
the sysiem asks the programmer

IS partition([0],1,[0].[]) TRUE? :
Since the programmer answers “Yes”, “check-unerpected- fatlure” also returns

Y es(partition(]0],1,[0],{])).
{In general, if the atom is not ground and the execution of atom fails after returning answer
substitutions €y, #2,..., 0k, “query-p” in the body asks the programmer whether some other
instance of A not subsumed by Afy, Afy, ..., Afg is true. When k = 0, it simply asks the
programmer whether some instance of 4 is true. In particular, when £ = 0 and 4 is a ground
atom, it simply asks the programmer whether A is true.}

5.3 Checking Unexpected Success

Similarly, unexpected successes needed to be checked using the specifications in Figure
5.1. The check is done as follows:

13

check-unexpected-success(ST : trace);

let B be the final label of 5T
let ¢ be ihe definite clanse used for ST at its root;
let ¢ be an m.g.u. of B and the head of O
for j from 1 to § do
if B is unifiable with the head of a specification formnla G;, say by m.g.u. o,
without instantiating the variables in B,
the execution of the “if" part of G;¢ can succeed, say with answer snhstitation n,
without instantiating the variables in H,
and the execution of the “then” part of G;on cannot succeed
withont instantiating the variables in the “then™ part
then return “Yes(C#8)" ;

retuen “MNo™
Figure 5.3 Checking Unexpected Success

Example 5.3 Suppose that predicate “partition” is defined by
partition{[1L,X,[],[]).
partition([Y|L],X,[Y|L1],L2) :- Y<X, partition(L,X,L1,L2).
partition([Y|L] X, L1,[Y|L2]) = partition(L,X,L1,12).
and the success trace of universally quantified atom partition({Y], X,[],[Y]) is given. Be-
canse partition([Y], X,[],[Y]) is an instance of the head of the fourth specification formula
partition(L,X,L1,L2) -: sublist(L1,L), sublist(L2,L), ge-all(X,L1), lt-all(X,L2)
without intantiating X and Y, the corresponding body “sublist([],[Y]), sublist([Y],[Y]), ge-
all(X,] 1), M-all{X,[Y])" is executed. Since it cannot succeed without instantiating variables
X and Y, “check-unezpected-success™ returns
Yes({ “partition{[Y],X,[],[Y]) = partition([|,X,[L[])7)
Similarly, partition([¥], X,[],[Y]) is an instance of the head of the sixth specification formnla
partition(L,X,L1,L2) -: query-partition(L,X,L1,L2),
the system asks the programmer
IS SOME INSTANCE OF partition([Y],X,[],[Y]}) FALSE? :
Since the programmer answers “Yes”, “locate-unezpected-success” also returns
Yes(“partition([¥Y],X,[|,[¥Y]) - partition(]],X,[][])7)
(When the atom B is ground, “query-p” in the body simply asks the programmer whether
B is {alse.)

6. Implementation

Three daiabases are utilized for improving the efficiency at each modification cycle,
and five windows are used as interface to display the modification process.

(1) Database of Intended Execution Results (INTENDED-MODEL-BASE)

The first database is “INTENDED-MODEL-BASE” to record the intended execution
results which have been confirmed by the specifications (or by the programmer) during the
modification cycles so far. (Hence, the size of this database increases as the modification
process proceeds.)

INTENDED-MODEL-BASE records the facts either of the form
should- fuil(A, [A8y, Afa,. .. Af])
or of the form

14

should-succeed(A).
The first fact says that the execution of quantified atom 4 should fail after returning solu-
tions that are subsumed by A8, A6, .., Af, and that subsume A8, A8, ..., Af. (Hence,
should- fail{A,[]) says that the execution of atom A should fail without returning any so-
lution.) The second fact says that the execution of nniversally gquantified atom A should
succeed (without instantiating the variables in it).

A new fact is added to INTENDED-MODEL-BASE in the [ollowing cases:

(a) a fact should-suceeed{Af) is added when the test case A is generated in the test case
generation phase for unexpected failure,

(b) a fact should-fail(Adn, []) is added when the execution of Afg has succeeded unex-
peetedly,

() afact should- fasl{Ad,[]) is added when a ground atom A# is given from the program-
mer as an atom which should fail in the test case generation phase for Gy,

(d) alact should-fail{A,[A8,, A8, ..., Af]) is added when check of failure trace with label
{A,[Af, Af, ..., Af:]) ends without detecting unexpected failure in the bug location
phase,

(&) a fact should-succeed{A) is added when check of success trace labelled with final label
A ends withont detecting unexpected success in the bug location phase.

This database is used for checking whether the execution results using the new program
are consistent with the programmer’s intention. Whenever the program is modified to a
new program at some modification eyele, the contents in INTENDED-MODEL-BASE is
rechecked w.r.t. the new program. (If a fact in INTENDED-MODEL-BASE is consistent
with the new program, it is recorded in COMPUTED-MODEL-BASE explained in the next
section.) If some fact in INTENDED-MODEL-BASE is not consistent with the new program,

it automatically causes a new modification cycle. (CL Section 8.)

This database is also used for improving the efficiency of checking unexpected failure
and unexpected success in the bug location phase as below: (The algorithm for unexpeceted
failure in Figure €.3 has not yet fully utilized the information, because more computation is
necesary to do that.)

check-unexpected-failure(F1' : failure trace);

let (A,[Af;, A8a, ..., Af:]) be the label of FT ;
if there is a fact showld- fail(A, [AC;, ACa, ..., AG]) in INTENDED-MODEL-BASE
such that { A8y, Al .., A6} is identical to AL, A, ..., AG)
then retonrn “No”
else for 1 from 1 to o do
if A is unifiable with the head of F;, say by m.g.u. o,
without instantiating the universally quantified variables in A4,
the excution of the body of Fye can succeed, say with answer substitution g,
without instantiating the universally quantified variables in A,
and Ao is not an instance of 468;, Afa, ..., Af
then return “Yes(Aan)” ;
record should- fail(A,[A8;, Aby, ..., A%]) to INTENDED-MODEL-BASE ;
record has-failed(A, [A8;, Afy, ..., A8]) to COMPUTED-MODEL-BASE;
return “No® ;

Figure 6.1 Checking Unexpected Failure Using INTENDED-MODEL-BASE

15

check-nnexpected-success{ST : success trace);

let B be the final label of ST ;
let © be the definite clanse used for ST at its root;
let @ be an m.g.u. of 4 and the head of C;
if there is a fact should-succeed(B) in INTENDED-MODEL-BASE
such that A is an instance of B
then return®No”
else for j from 1 to f do
if B is unifiable with the head of a specification formula G;
without instantiating the variables in B, say by m.gn. o,
the execution of the “if” part of G can succeed
without instantiating the variables in B, say with answer substitution »,
and the exceution of the “then” part of G o7 cannot succeed
without instantiating the variables in the “then™ part
then return “Yes(C#8)" ;
record should-succeed(A) to INTENDED-MODEL-BASE ;
record has-succeeded(A) to COMPUTED-MODEL-BASE;

retuen “No® ;

Figure 6.2 Checking Unexpected Success Using INTENDED-MODEL-BASE

(2) Database of Actual Execution Results (COMPUTED-MODEL-BASE)

The second database is “COMPUTED-MODEL-BASE™ to record the actuul execution
results which the current program gives. (Hence, each program at each modification cycle
has respective COMPUTED-MODEL-BASE.)

COMPUTED-MODEL-BASE records the facts either of the form

has- failed(A, [A8;, A, ..., A8])
or of the form

has-succeeded(A).
The first fact says that the execution of quantified atom A has failed as expected alter
returning solutions A6y, Af, ..., A6, (Hence, has-failed(A,[]) says that the execution of
atom A has failed as expected without returning any solution.) The second fact says that the
execution of universally quantified atom A has succeeded as expected {without instantiating
the variables in it).

A new fact is added to COMPUTED-MODEL-BASE in the following cases:

(a) a fact has-succeeded(Afn) is added when the execution of Afy has succeeded as ex-
pected in the test case generation phase,

(b) a fact has-failed(A#,[]) is added when the execution of A0 has failed as expected in
the test case generation phase for Bg,

(¢) afact has-failed(A, [A8, A8, ..., A8;]) is added when check of failure trace with label
(A,[A8), Afa,..., Af,]) ends without detecting unexpected failure in the bug location
phase, or

(d) a fact has-succeeded(A) is added when check of success irace with final label A ends
without detecting unexpected success in the bug location phase.

18

Note that, if has- failed(A,[...]) is in COMPUTED-MODEL-BASE, should-fail(4, ..]) is
also in INTENDED-MODEI-BASE, and if has-succeeded(A) is in COMPUTED-MODEL-
BASE, should-succeed{ A) is also in INTENDED-MODEL-BASE.

The facts of the form “has- failed(A, [Af;, A8, ..., Af])” in this database are used as

below for efficient execution of quantified atom B when its unexpected success is checked,i.e.,

{a) when B is an instance of the head of a specification formula in the test case generation
pha_c.e for unerpected Success, of

(b) when a fact “should-feil(B,[B{, B, ..., B(])" in INTEN DED-MODEL-BASE is

rechecked w.T.t. a new program.

executel{ B : atom};
if there exists has-failed(A, [Af;, A, ..., A6]) in COMPUTED-MODEL-BASE
such that B is an instance of 4 without instantiating the V-quantified variablesin A
then unify B with some A#; and retnrn true

else execute H one step using the current program;
apply ezecutel to the resulting sequence of atoms one by one

Figure 6.3 Executing A “should-fu:l” Atom Using COMPUTED-MODEIL-BASE

Similarly, the facts of the form “has-succeeded{A)” in this database are used as below
for efficient execution of gnantified atom B when its uncxpected failure is checked, Le.,
{a) when H is an instance of the head of a specification formula in the test case generation
phase for unexpected failure, or
(b) when a fact “should-succeed(B)" in INTENDED-MODEL-BASE is rechecked w.r.l. a

[new program.

execute2(B @ atom):

if there exisls has-succeeded{A) in COMPUTED-MODEL-BASE
such that B is an instance of A
then return B
else execute B one step using the current program;
apply erecute? to the resulting sequence of atoms one by one

Figure 6.4 Executing A “should-succeed” Atom Using COMPUTED-MODEL-BASE

(3) Database of Execution Traces {TRACE-BASE)

The third database is “TRACE-BASE" to record the information abont the execution
trace of a quantified atom heing debugged. In the explanation of the bug location phase in
Section 5, we have assumed for simplicity that all the execution trace is completely recorded
to he ntilized in the later top-down re-tracing. We, however, unly need the relations between
the label of the subtraces and the clauses used so that our implementation records much less
information than expected from the explanation in Section 3.

This database is created when (an intance of) the head of a specification formula is
executed in the test case generation phase or a quantified atom in INTENDED-MODEL-
BASE is executed for rechecking w.r.t. a new program. This database is discarded as soon
as the execution result is known to be as expected or the bug location phase ends.

17

Moreover, although we have shown in Section 5 an algorithm which traces the execution
of all predicates, it is easy to modify the algorithm to “spy” the execntion of a specific
predicate first so that the calls with the same predicate are checked continually. This modified
algorithm, called zooming algorithm in [11], makes the space temporarily necessary for storing
trace records much smaller.

(4) Interface Using Five Subwindows

The following five subwindows are used to make it easy to see the modification process:

(i} “SESSION Window™ (the middle in the figure below),

(ii) “SPECIFICATION Window™ (the top-left in the figure below),

(iii) “PROGRAM Window™ (the top-right in the figure below),

(iv) “INTENDED-MODEL-BASE Window” (the bottom-lelt in the figure below), and

(v) “COMPUTED-MODEL-BASE Window” (the bottom-right in the figure below).
The “SPECIFICATION Window” and the “PROGRAM Window™ are the subwindows that
provide the capability of displaying and editting text, while the other three are the subwin-

dows that only provide the capability of displaying, scrolling and reading-in text. See Section
T for how those five subwindows are used.

=

|

Figure 6.5 Interface Using Five Subwindows

7. An Example of Program Modifieation

Let us examine how the logic program modification proceeds. Suppose that we have
the program of Example 2.1.1 as an intial program, and the specification of Example 2.2.3.

(1) Selecting “partition™
First of all, the system asks the programmer which predicaie to debug as below:

18

MQDT-‘_FT(}_A’I‘IQN E_SE'::'.S[(}N [a]: -
WHICH PREDICATE TO DEBUG [1)? -

Figure 7.1 SESS5I0N Window at Step 0

“[i]” to the right of “MODIFICATION SESSION" denotes that we have finished the
i-th session. “[j]” to the right of “WHICH PREDICATE TO DEBUG” denotes that we are
starting the j-th session. Following the prompt 7, we may type in any predicaie name we
would like to debug. Suppose that the programmer has typed in “partition” and the carriage
return. The system will first show the information abont “partition” in other four windows

as below:

L

Tpartition SPECIFICATION [0]:

partition{L,X,L,[]} - ge-all{ X,L).

partition(L, X[],L) - t-all{X,L].

partition{ L, X 11,12} - i@,

partition{L,X,L1,L2) -: sublist{L1,L), sublist{(L2 L}, ge-all{ X, L1}, lt-all{X,L2).
- partition{L,X,L1,L2) - if length{L1,N1), length(L.2, N2}, length{L ,N) then add(N1,N2,N).
, partition{L,X,L.1,1.2) -: @,

partition PROGRAM [0):

partition{[] X.[l.[]).

partition([Y|L],X,[Y|L1],L2}) - Y>X, partition(L,X,L1,L2).
partition{[Y|L] X,L1,[Y|L2]} :- partition(L X,L1,L2).

Figure 7.2 SPECIFICATION and PROGRAM Windows of “partition™ at Step 0

“partition INTENDED-MODEL-BASE [0]:

partition COMPUTED-MODEL-BASE [0}

Figure 7.3 MODEL-BASE Windows of “partition™ at Step 0

The SPECIFICATION window shows the current specification, while the PROGRAM
window the current program. (@ is an abbreviation of “guery-partition(L, X, L1, [2).7)
Becanse no modification has been ever done, the INTENDED-MODEL-BASE window and

the COMPUTED-MODEL-BASE window show nothing.

The system starts the modification process by selecting a specification formula of
“partition.” Althogh it is not relevant how the predicates in the bodies of the specifica-
tion formulas are defined, they are probably predefined as below. (Note that several test

18

cases are given for primitive predicates “>" and)

ge-all(X.[).

ge-all(X [Y]L]) = X>Y, ge-all(X.L).
1t-all{ X,[]).

It-all{X,[Y[L]) - X<Y, It-all(X,L).
0>0.

120.

2>0.

1>1.

2>1.

2>2.

0<1.

0<2.

12,

sublist([],L).

sublist{[X|M],[X|L]) :- sublist{M,L).
sublist(M,[X|L}) - sublist(M,L).
length([],0).

length{[X|L],A+1) - length(L,A).
add(0,B,B).

add(A+1,B,C+1) =- add(A,B,C).

The system first selects the specification formala
partition(L,X,L,[]} - ge-all{X,L),
since it is at the top of the specification formulas of “partition.” The first tesi case is
generated by executing the body “ge-all(X,L).” The SES5I0 N window responds as below:

[MODIFICATION SESSION [1]:

TWHICH PREDICATE TO DEBUG [1]? : partition

GENERATING A TEST CASE ...
FROM partition(L,X,L,[]} - ge-all(X,L)
partition([],X,[],[]) SHOULD SUCCEED WITHOUT INSTANTIATING X.
partition([],X,[],[]) HAS SUCCEEDED AS EXPECTED.

CONTINUF THIS TEST BRANCH [2]7 (y/n/nn/nun) :

Figure 7.4 SESSION Window at Step 1

The generated test case is added to INTENDED-MODEL-BASE, while the checked test
case is added to COMPUTED-MODEL-BASE. A fact “should-succeed(A)” in INTENDED-
MODEL-BASE is represented by

“ A" SHOULD SUCCEED WITHOUT INSTANTIATING ...,
where “..." ate the variables in A, while a fact “has-succeeded(A4)” in COMPUTED-
MODEL-BASE is represented by

“A" HAS SUCCEEDED AS EXPECTED.

In particular, when A is a ground atom, “WITHOUT INSTANTIATING ..." is omitted.

20

pactition INTENDED-MODEL-BASE [1]:

partition(] 1.5, 1.1]) SHOULD SUCCEED WITHOUT INSTANTIATING X.

partition COMPUTED-MODEL-BASE [1]:

partition(] 1.5, L[]) HAS SUCCEEDED AS EXPECTED.

Figure 7.5 MODEL-BASE Windows of “partition™ at Step 1

After finishing the first cycle, the system asks the programmer whether the test case
generation along the same branch should be continued. If the programmer types in (“y”
and) the carriage return, the modification process continues by redoing the body of the
specification formula as below:

- MODIFICATION SESSION [2]:

CONTINUE THIS TEST BRANCH {2]? (y/n/an/nnn) : y

GENERATING A TEST CASE ...
FROM partition{L,X,L,[]} :- ge-all{X,L)
partition([0].0,[0].[|) SHOULD SUCCEED.
partition{[0],0,[0],[]) HAS SUCCEEDED A5 EXPECTED.

CONTINUE THIS TEST BRANCH [3])? (y/n/on/nnn) :

Figure 7.6 SESSION Window at Step 2

Again, the generated test case and the checked test case are added to INTENDED-
MODEL-BASE and COMPUTED-MODEL-BASE. This test branch generates a similar test
case as below:

MODIFICATION SESSION [3]:

CC'-NTINL'E THIS TEST BRANCH [3]7 (y/n/nn/nnn) : ¥
GENEBATING A TEST CASE ...
FROM partition(L,X,L,[]} - ge-all{ X,L)
partition([0,0],0,/0,0],[1) SHOULD SUCCEED.
partition([0,0,0,(0,0],[]} HAS SUCCEEDED AS EXPECTED.

CONTINUE THIS TEST BRANCH [4]7 (¥/n/on/nun) :

Figure 7.7 SESSION Window at Step 3

21

This test branch seems to be just extending the length of list [0,0,...,0], hence have
dived into a loop for generating trivial test cases. To prune off this test branch, we will type
in “n"™ and the carriage return.

MODIFICATION SESSION [4]:

CONTINUE THIS TEST BRANCH [4]? (y/n/nn/nnn) : n

GENERATING A TEST CASE ...
| FROM partition(L,X,L[]} = ge-all(X,L)
partition([0],1,[0],[]) SHOULD SUCCEED.
partition([0],1,j0],[]} HAS FAILED UNEXPECTEDLY 1!

LOCATING A BUG ...
partition([0],1,[0],[]) IS AN UNCOVERED ATOM.

CORRECTING THE BUG ...

Figure 7.8 SESSION Window at Step 4

In the test case generation phase, the next answer substitntion < X <=1, L <= [0] > is
generated hy letting the body “ge-all{(X,L)” fail. Since the execution of the instance of the
head “partition([0],1,]0],]])” fails, an unexpected failure has been detected.

In the bug location phase, the failure trace of “partition([0],1,[0],[]}” is checked first
o return an atom “partition(]0],1,[0],[]),” since the failure trace has no composing success
subtrace. Then, “locate-a-bug is applied to the only one immediate [ailure subirace to retnrn

“no bug is found,” because the predicate “>" of the label (0 > 1,[]) of the failure subtrace
is primitive so that we can assume that “2" is always correct. After all, the system will find
an uncovered atom “partition([0],1,[0],]]}."

In the bug correction phase, the second clause of “partition” is corrected. (“>" in the
body is in the reverse direction.) According to this correction, the PROGRAM window of
“partition” is updated to the new program. The contents of INTENDED-MODEL-BASE is
rechecked w.r.t. this new program, and the results are shown in the COMPUTED-MODEL-
BASE window. (Notice “RECHECKING ...” between the brackets.}

i partition PROGRAM [4]:

i partation([| X,[][])-
partition([Y|L],X,[Y]L1],L2) :- Y<X, partition(L,X,L1,L2).
partition([Y|L].X,L1,[Y|L2]) :- partition(L,X,L1,12).

Figure 7.9 PROGRAM Window of “partition™ at Step 4

22

partitition INTEN DED-MODEL-BASE [4]:

partition([,X,[.|) SHOULD SUCCEED WITHOUT INSTANTIATING X.
partition([0],0,[0],[|) SHOULD SUCCEED.

partition({0,0],0,[0,0],[) SHOULD SUCCEED.

partition([0],1,[0],] |) SHOULD SUCCEED.

partition COM PUTED-MODEL-BASE [RECHECKING ...]:

partition([],X,[J,(]) HAS SUCCEEDED AS EXPECTED.
partition([0],0,(0],]) HAS SUCCEEDED AS EXPECTED.
partition([0,0],0,(0,0},[|) HAS SUCCEEDED AS EXPECTED.
' partition([0],1.[0],] |) HAS SUCCEEDED AS EXPECTED.

Figure 7.10 MODEL-BASE Windows of “partition” at Step 4

The modification process proceeds in the same way as far as we type in (“y” and) the
carriage retnrn. To quit from the test case generation using the current specification formula,
we type in “nn” and the carriage return.

MODIFICATION SESSION [5]:

CONTINUE THIS TEST BRANCH [5]7 (y/n/nn/nnn) : y
‘GENERATING A TEST CASE ...
FROM partition(L,X,L.[]} :- ge-all{X,L)
partition([0,0],1,[0,0},[]) SHOULD SUCCEED.
partition([0,0],1,[0,0],[|) HAS SUCCEEDED AS EXPECTED.

CONTINUE THIS TEST BRANCH [6]7 (y/n/nn/nnn) :

Figure 7.11 SESSION Window at Step 5

MODIFICATION SESSION [6]:

CONTINUE THIS TEST BRANCH [6]7 (y/n/nn/ann) : nn
GENERATING A TEST CASE ..
FROM partition(L,X,L,[]} - 1t-all{X,L)
partition([1],0,],[1]) SHOULD SUCCEED.
partition([1],0,{],[1]) HAS SUCCEEDED AS EXPECTED.

CONTINUE THIS TEST BRANCH [7]7 (y/n/an/nnn) :

Figure 7.12 SESSION Window at Step 6

23

We can similarly traverse the computation tree of “T-all{ X, L)" as below:

MODIFICATION SESSION [7]:

CONTINUE THIS TEST BRANCH [7]? (y/n/nn/nnn) : v
GENERATING A TEST CASE ...
FROM partition(L,X,L,[1} = 1t-all(X,L)
partition([1,1],0,].{1.1]) SEOULD SUCCEED.
partition([1.1,0.f 1.(1,1]) TAS SUCCEEDED AS EXPECTED.

CONTINUE THIS TEST BRANCH [8]? (y/n/nn/nnn) :

Figure 7.13 SESSION Window at Step 7

MODIFICATION SESSION [8]:

CONTINUE THIS TEST BRANCH [8)? (v/n/nn/nnn) : n

| GENERATING A TEST CASE ...

FROM partition(L,X,L,[]} - 1t-all(X,L)

partition([2],0,{],[2]) SHOULD SUCCEED.
partition([2],0,] 1[2]) HAS SUCCEEDED AS EXPECTED.

CONTINUE THIS TEST BRANCH (9]7 (y/n/nn/nnn) :

Figure 7.14 SESSION Window at Step 8

If we type in “nn” here, the third specification formula is used as below:

MODIFICATION SESSION [9]:

CONTINUE THIS TEST BRANCH [9]7 (y/n/nn/nun) : nn
GENERATING A TEST CASE ...

FROM partition(L,X,L1,12) :- @
WHAT GROUND INSTANCE OF partition(L,X,L1,L2) SHOULD SUCCEED? :

Figure 7.15 SESSION Window at Step 9

Because the body of the specification formula is @, the system asks the programmer to
type in a test case. Say that “partition([2,0],1,[0], [2])" is typed in, the SESSION Window
responds as below:

24

MODIFICATION SESSION [9]:

CONTINTE THIS TEST BRANCH [9]? (¥/n/nn/nnn) : nn

CENERATING A TEST CASE ...
FROM partition{L,X L1,L2) :- @
WIHAT GROUND INSTANCE OF partition(L,X,L1,L2) SHOULD SUCCEED? :

partition([2,0],1,[0],[2])
partition([2,0],1,[01 [2]}) HAS SUCCEEDED AS EXPECTED.

{ CONTINTUE THIS TEST BRANCH [10]7 (y/n/nn/nnn) :

Figure 7.16 SESSION Window at Step 8 (Continued)

We can test as many ground atoms as we desire using this query formula. To proceed
to the next specification formulas for unexpected success, we will type in “nn” again. Notice
the new messages below:

MODIFICATION SESSION [10}:

CONTINUE THIS TEST BRANCH [10]? (y/n/en/nnn) : nn

GENERATING A TEST CASE ..
FROM partition(L,X,L1,L2) -2 sublist{L.1,L}, sublist(L2,L}, ge-all(X,L1), t-all(X L2)
partition([1,X.,[}.[|) HAS SUCCEEDED WITHOUT INSTANTIATING X.
partition([], X,[],[) MIGHT SUCCEED.

CONTINUE THIS TEST BRANCH [11)7 (y/n/nn/nnn) :

Figure 7.17 SESSION Window at Step 10

"MODIFICATION SESSION [11]:

|
|
CONTINUE THIS TEST BRANCH [11)? (y/n/on/nnn) @ ¥

GENERATING A TEST CASE ...
FROM partition(L,X,L1,L2) -: sublist{L1,L), sublist(12,L), ge-all(X,L1), li-all(X,L2)
partition([0],0,[0],[]} HAS SUCCEEDED.
partition([0],0,{0],[]) MIGHT SUCCEED.
|

| CONTINUE THIS TEST BRANCH [12)? (v/n/nn/nnn) : y

Figure 7.18 SESSION Window at Step 11

25

After several modification sessions, we shall encounter a wrong case. In the test case
generation phase, atom “partition([Y], X,[],[¥])" succeeds using the current program with-
ont instantiating X and Y, while the execution of the body of the specification formula says
that it may not succeed if X and Y are not instantiated. In the bug location phase, the
success trace of “partition([V], X,[],[¥])" is checked to immedeately find a wrong clause
instance, since “partition([],X,[],[])" is known to be true from the contents of INTENDED-
MODEL-BASE. In the bug correction phase, the third clanse is corrected. (The comparison
¥ = X" is missed in the body.)

MODIFICATION SESSION [14]:

CONTINUE THIS TEST BRANCH [14]? (y/a/nn/nnn) : n

GENERATING A TEST CASE ...
FROM partition(L,%,L1,L2) -: sublist(L1,L), sublist(L2,L), ge-all{X,L1}, lt-all{X,L2)
partition([Y],X,[,[Y]) HAS SUCCEEDED WITHOUT INSTANTIATING X, Y.
partition([¥].X.[].[Y]) SHOULD FAIL IF X,Y ARE NOT INSTANTIATED !

LOCATING A BUG ...
“partition([Y|L],X,L1,[Y|L2]) : partition(L,X,L1,L2)" HAS A WRONG INSTANCE
“partition([¥],X,[],[¥]) - partition([|, X ,[],[])"

i CORRECTING THE BUG ..

Figure 7.19 SESSION Window at Step 14

The PROGRAM window is updated accordingly. INTENDED-MODEL-BASE is re-
checked, and the tesults are added to COMPUTED-MODEL-BASE. A fact “should-fail(A,
[A8), A8y, ..., A6])" in INTENDED-MODEL-BASE is represented by

“4” SHOULD FAIL AFTER Aé,, A8y, ..., A8, IF ... ARE NOT INSTANTIATED.

where “ " are the universally quantified variables in A, while a fact “has- failed(A, (46,
Afly, ..., A8])" in COMPUTED-MODEL-BASE is represented by

“A” HAS FAILED AS EXPECTED.

In particular, when k = 0, “AFTER A8, Af,,..., A8,” is omitied, and when there is no
universally quantified variables in 4, “IF ... ARE NOT INSTANTIATED" 15 ommitted.

partition PROGERAM [14]:
partition{[|,X,[][])-

partition([Y|L],X,[Y|L1),L2) :- Y<X, partition(L,X,L1,L2).
partition([Y|L],X,L1,[Y|L2]) :- ¥>X, partition(L,X,L1,L2}.

Figure 7.20 PROGRAM Windows of “partition” at Step 14

26

partitition INTEN DED-MODEL-BASE [14]:

partition([].X,[[]) SHOULD SUCCEED WITHOUT INSTANTIATING X.
partition([0],0,[0L.[|) SHOULD SUCCEED.
partition([0,0].0,[0,0],{]} SHOULD SUCCEED.
partition([0],1,[0],[]) SHOULD SUCCEED.

partition([2,0],1,10],[2]) SHOULD SUCCEED.

- partition([¥],X,[|,[Y]) SHOULD FAIL IF X,Y ARE NOT INSTANTIATED.

partition COMPUTED-MODEL-BASE [RECHECKING .|

partition{[],X,[].[1) HAS SUCCEEDED AS EXPECTED.
partition{[0],0,[0],[]) HAS SUCCEEDED AS EXPECTED.
partition([0,0],0,[0.0],1]) HAS SUCCEEDED AS EXPECTED.
partition{[0],1,{0],[]} HAS SUCCEEDED AS EXPECTED.

partition([2,0],1,{0},[2]) HAS SUCCEEDED AS EXPECTED.

partition([Y],X,[1,[Y]) HAS FAILED AS EXPECTED.

Figure 7.21 MODEL-BASE Windows of “partition” at Step 14

The modification proceeds in the same way. When the sixth specification formula is
selected, the system first execute the head, and ask the programmer whether the execution

result is true or not only if the system cannot answer it for itself by consulting INTENDED-
MODEL-BASE.

 MODIFICATION SESSION [16]:

. CONTINUE THIS TEST BRANCH [16]7 {y/n/on/nnn) : nn

GENERATING A TEST CASE ...
FROM partition(L,X,L1,L2) -: @
partition([1,X,[].[]} HAS SUCCEEDED WITHOUT INSTANTIATING X.
partition([],X,[][) SEOULD SUCCEED WITHOUT INSTANTIATING X.

CONTINUE THIS TEST BRANCH [17)? (¥/n/nn/nun) :

Figure 7.22 SESS5ION Window at Step 16

If we type in “nn” here, the system asks the programmer using the same sixth specifi-
cation formuls as below:

27

MODIFICATION SESSION [17];

CONTINUE THIS TEST BRANCH [17]? (y/n/nn/nnn) : nn

GENERATING A TEST CASE ..
FROM partition(L,X,L1,L2) -+ @
WHAT GROUND INSTANCE OF partition(L,X,L1,L2) SHOULD FAIL? :
partition{[2,0],1,[2],[0]}
partition([2,0],1,0].2]) HAS FAILED AS EXPECTED.

| CONTINUE THIS TEST BRANCH [18]? (y/n/en/ann) :

Figure 7.23 SESSION Window at Step 17

(2) Selecting “gsori™

If we type in “nn” after using the last specification formula of “partition,” the system
again asks the programmer which predicate to debug. Suppose that the programmer has
typed in “gsort.” The system will now show the information about “gsert.”

gsort PROGRAM [17]:
qsort([X|L],M) :- partition(L,X,L1,1.2), gsort(L1,M1), gsort(L2,M2), append{[X|M1],M2,M).

gsort SPECIFICATION [17}:
qsort{ L, M) - permute(L,M}, ordered(M}.
gsort{L,M) -: permute{L,M), ordered(M).

Figure 7.24 SPECIFICATION and PROGRAM Windows of “gsort™ at Step 17

gsort INTENDED-MODEL-BASE [17]:

gsort COMPUTED-MODEL-BASE [17]:

Figure 7.256 MODEL-BASE Windows of “qsort™ at Step 17

The system starts the modification process by selecting the specification formula
gsort{L,M) - permute(L,M), ordered(M).
Again, it is not relevant how “permute” and “asrdered” are defined, but they are probably

predefined as below:

permute(]][]}

28

permute([X|L},M) - permute(L,N), insert-randomly(X,N,M).
insert-randomly(X, N, [X|N]).
insert-randomly(X,[YIN],[Y|M]) - insert-randomly(X,N,M).
ordered([]).

ordered([X]).

ordered([X.Y|L]) :- X<Y, ordered([Y[L]).

0<0.

0<l.

0<2.

1<1.

1<2.

2<2,

The SESSION window responds as below:

MODIFICATION SESSION [18]:

WHICH PREDICATE TO DEBUG [18]7 : gsort

GENERATING A TEST CASE ...
FROM qsort(L,M) :- permute(L,M), ordered{M)
gsort([], 1) SHOULD SUCCEED.
qsort([],]) HAS FAILED UNEXPECTEDLY !!

LOCATING A BUG ...
gsort([1,[]) IS AN UNCOVERED ATOM.

CORRECTING THE BUG ...

Figure 7.26 SESSION Window at Step 18

In the test case generation phase, the first answer subslitution < L&M= [1>
is generated by executing the body “permute(L, M),ordered(M).” Since the execution of
“gsort([],[])” does not succeed, an unexpected failure has been detected.

In the bug location phase, the unexpected failure of “gsort([],[])” is checked immedi-
ately to find an uncovered atom “gsort([],[]).” since the failure trace of “gsort([],[])" has
neither eomposing suceess subtraces nor immediate failure traces.

In the bug correction phase, a unit clanse “gsort([],[])" is added. According to this
correction, the windows change as below:

gsort PROGRAM [18]:

gsort([[). |
gsort([X|L],M) :- partition(L,X,L1,L2), gsert(L1,M1), gqsort(L.2,M2), append([X[M1],M2,M).

Figure 7.27 PROGRAM Windows of “gsort” at Step 18

19

qsort INTENDED-MODEL-BASE [18]: l
gsort({[],[]} SHOULD SUCCEED.

gsort COMPUTED-MODEL-BASE [RECHECKING ..:
qsort([].[1) HAS SUCCEEDED AS EXPECTED.

Figure 7.28 MODEL-BASE Windows of “gsort™ at Step 18

In the second cycle of the test of “gsort,” the next answer substitution < Le[X], M«
[X]> is generated by redoing the body “permute(L, M), ordered(M).” Because the execu-
tion of “gsort([X],[X])” succeeds, this case ends without the bug location phase and the bug
correction phase. (Note that two bugs of “append” have cancelled each other so that the
execution of “gsort{[X],[X])” has superficially succeeded.]

| MODIFICATION SESSION [19]:

CONTINTUE THIS TEST BRANCH [19])? (y/n/nn/nun) @ ¥y

GENERATING A TEST CASE ...
FROM qsort(L,M) :- permute(L,M), ordered(M).
gsort([X],[X]) SHOULD SUCCEED WITHOUT INSTANTIATING X.
qsort([X],[X]) HAS SUCCEEDED AS EXPECTED.

CONTINUE THIS TEST BRANCH [20]? (y/a/nn/mnn) :

Figure 7.20 SESSION Window at Step 19

The results of this cycle are added to the INTENDED-MODET-BASE window and the
COMPUTED-MODEL-BASE window.

Tqsort INTENDED-MODEL-BASE [19]:
qsort([].[]) SHOULD SUCCEED.
gsort([X],[X}) SHOULD SUCCEED WITHOUT INSTANTIATING X.

[gsort COMPUTED-MODEL-BASE [18]:
Tqsort([],]) HAS SUCCEEDED AS EXPECTED.
qsort([X],[X]) HAS SUCCEEDED AS EXPECTED.

Figure 7.30 MODEL-BASE Windows of “gsort™ at Step 19

The modification cycle continues in the same way. The next answer substitution
<L &[0,0], M «[0,0]> is generated by redoing “permute(L, M), ordered(M)" to detect an
unexpected failure.

30

“MODIFICATION SESSION [20]:

CONTINTE THIS TEST BRANCI [20]7 (y/n/nn/nan) : y

GCENERATING A TEST CASE ...
FROM qgsort(L,M) - permute(L, M), ordered(M.
gsort([0,01,[0,0]} SHOULD SUCCEED.
qsort{[0,0],]0,0]) HAS FAILED UNEXPECTEDLY !

LOCATING A BUG ..
IS append([0,0][].[0,0]) TRUE? : ¥
15 append([0].[},[) TRUE? : n
append([0,01,[},i0,0]) IS AN UNCOVERED ATOM,

CORRECTING THE BUG ...

CONTINUE THIS TEST BRANCH [21]7 (y/n/un/onn) :

Figure 7.31 SESSION Window at Step 20

Note that the specification formula “append(L, M, N') - @ has been used in the bug
location phase so that we have needed to answer YesfNo to two queries from the system. In
the bug correction phase, the second clause of “gppend” is corrected. (The third argument
in the recursive call is a2 wrong term.)

! append PROGRAM [20]: -
append{[].M.[])-
append([X|L],M,[X[N]) - append(L,M,N).

Figure 7.32 PROGRAM Window of “gppend” at Step 20

The contents of INTENDED-MODEL-BASE are rechecked whether they are consistent
with the new program. { Because “partition” has no “caller-calee” relation with the modified
predicate “append,” just those of “append” and “gsort” are rechecked.)

“append INTENDED-MODEL-BASE {20]:

append([0,0],[1.[0,0]) SHOULD SUCCEED.
append([0],(.[]) SHOULD FAIL.

“append COMPUTED-MODEL-BASE [RECHECKING .. J:

append([0,0].[1,[0,0]) HAS SUCCEEDED AS EXPECTED.
append([0],[].[|) HAS FAILED AS EXPECTED.

Figure 7.33 MODEL-BASE Windows of “append” at STEP 20

31

gsort INTENDED-MODEL-BASE {20]:

qeort(]],]) SHOULD SUCCEED.
qsort([X],[X]) SHOULD SUCCEED WITHOUT INSTANTIATING X.
qsort([0,0],[0,0]) SHOULD SUCCEED.

gsort COMPUTED-MODEL-BASE [RECHECKING .. J:

asort([;[1) HAS SUCCEEDED AS EXPECTED.
gsort([X],[X]) HAS SUCCEEDED AS EXPECTED.
gsort([0,0],[0,0]) HAS SUCCEEDED AS EXPECTED.

Figure 7.34 MODEL-BASE Windows of “gqsort” at STEP 20

The new program is consistent with INTENDED-MODEL-BASE so that the SESSION
window shows the prompt to continue the next modification cycle. A new test case for “gsori”
is generated in the next test case generation phase to find unexpected failure, and a bug of
“append” is discovered again in the bug location phase as below:

MODIFICATION SESSION [21]:

CONTINUE THIS TEST BRANCH [21]7 (y/n/nn/nnz) : y

GENERATING A TEST CASE ...
FROM qsort(L,M) :- permute(L,M), ordered(M).
gsort([0,1],[0,1]) SEOULD SUCCEED.
qsort([0,1],[0,1]) HAS FAILED UNEXPECTEDLY !

LOCATING A BUG ..
IS append([0],{1],[0,1]) TRUE? :'y
IS append([},[1},[1]) TRUE? : y
append([],[1],11]) IS AN UNCOVERED ATOM.

CORRECTING THE BUG ...

Figure 7.35 SESSION Window at Step 21

The first clause of “append” is corrected. {The third argument of the head is a wrong
term.) The contents of INTENDED-MODEL-BASE is rechecked again to show the results
in the COMPUTED-MODEL-BASE window.

| append PROGRAM [21]:

I append([], M,M).
append([X|L],M,[X|N]) :- append(L,M,N]).

{
i
Figure 7.36 PROGRAM Window of “append”at Step 21

32

"append COMPUTED-MODEL-BASE [RECHECKING ...J:

append([0,0],(,[0,0]) HAS SUCCEEDED AS EXPECTED.
append([0],[1, |} HAS FAILED AS EXPECTED.
append([0],1],[0,1]) HAS SUCCEEDED AS EXPECTED.
append([1.[1].[1]) HAS SUCCEEDED AS EXPECTED.

_qsort COMPUTED-MODEL-BASE [RECHECKING ..J:
gsort{[][]) HAS SUCCEEDED A5 EXPECTED.
gsort{[X],[X]) HAS SUCCEEDED AS EXPECTED.
gsort{[0,01.i0,0]) HAS SUCCEEDED AS EXPECTED.
gsort{[0,1],]0,1]) HAS SUCCEEDED AS EXPECTED.

Figure 7.37 COMPUTED-MODE-BASE Windows at Step 21

After several modification sessions for predicate “gsert,” we shall encounter a wrong
test case as below:

MODIFICATION SESSION [27]:

i]
CONTINUE THIS TEST BRANCH [27]? (y/u/nn/nnn) : n

GENERATING A TEST CASE ..
FROM gsort(L,M) :- permute{L M), ordered{M).
gsort([1,0},[0,1]) SHOULD SUCCEED.
qsort([1,0],(0,1]) HAS FAILED UNEXPECTEDLY !!!

LOCATING A BUG ...
18 append({1,0},],[0,1]) TRUE? : n
gsort([1,00,[0,1]) IS AN UNCOVERED ATOM.

CORRECTING THE BUG ...

Figure 7.38 SESSION Window at Step 27

This time, a bug of “gsort” has been discovered so that the second clause of “qsort” is
corrected. (The first arzument of “append” in the body is a wrong term. The element used
for partition must be at the head of the second argument.)

gsort PROGRAM [27]:]

qsort([][})-
gsort([X|L],M) :- partition(L,X L1,L2), gsort{L1,M1), qsort{12,M2), append(M1,[X|M2],M).

Figure 7.39 PROGRAM Window of “gsort” at Step 27

13

gsort COMPUTED-MODEL-BASE [RECHECKING ...:
gsort([],{]) HAS SUCCEEDED AS EXPECTED.
gsort([X],[X]) HAS SUCCEEDED AS EXPECTED.
gsort([0,0],[0,0]) HAS SUCCEEDED AS EXPECTED.
gsort([0,1],[0,1]) HAS SUCCEEDED AS EXPECTED.

asort([1,0],(0,1]) EAS SUCCEEDED AS EXPECTED.

Figure 7.40 COMPUTED-MODEL-BASE Window of “gsort™ at Step 27

The modification of “gsort™ proceeds in ihe same way without encountering a wrong
last case,

(3) Selecting “append”

After typing several “nn”s to the prompts (or “nnn” to immediately quit the debugging
of the predicate), we can skip to the next predicaie.

MODIFICATION SESSION [31):

! CONTINUE THIS TEST BRANCH [31]? (y/n/nn/nnn) : nnn
WHICH PREDICATE TO DEBUG [31]? : append
GENERATING A TEST CASE ...

FROM append(L,M,N) - @
WHAT GROUND INSTANCE OF append(L,M,N) SHOULD SUCCEED? :

Figure 7.41 SESSION Window at STEP 31

The other four windows show the information about “eppend.” Because we have
checked several atoms with predicate “append” in the modification sessions for “gsort,”
the INTENDED-MODNEL-BASE window and the COMPUTED-MODE-BASE window are

not empty.

append SPECIFICATION [31]:
append{L M N} :- @,
append{L M ,N} - @

append PROGRAM [31]:
append([|,M,M).
append([X|L].M,[X|N]) :- append(L,M,N}).

Figure 7.42 SPECIFICATION and PROGRAM Windows of “append” at STEP 31

34

append INTENDED-MODEL-BASE [31]:
append([0,0],] ,[0,0]} SHOULD SUCCEED.
append([0],{],[1) SHOULD FAIL.
append([0],[1].[0,1]) SHOULD SUCCEED.
append(]].[1].{1]) SHOULD SUCCEED.

append COMPUTED-MODEL-BASE [31):

append([0,0],[1,[0,0]) HAS SUCCEEDED AS EXPECTED.

append{[0),[],]) HAS FAILED AS EXPECTED.

append([0],[1],]0,1]) HAS SUCCEEDED AS EXPECTED.
| append([],[1],[1]) HAS SUCCEEDED AS EXPECTED.

Figure 7.43 MODEL-BASE Windows of “append” at STEFP 31

Because “append” is specified by gqueries, the programmer need to type in ground
instances of “append(L, M, N)” which should succeed or fail, or confirm the execution results
of “append{L, M, N).” The modification of “append” proceeds without encountering a wrong
Casea.

Remark. Although we have prepazed several test cases for primitive predicates “>" “<”
and “<,” our diagnosis algorithm works as well even if those predicates are defined by

X>0,

X+1xY+1 - XY,
O<Y+1.
Xt1la¥W k1 = X2,
DY,

KAI<Y 41 = X<Y.
provided that we do not mind typing in more “nn”s to the prompts. (The more we pre-
pare fur generating desirable test cases in advance, the more we can dispense with tiresome
interactions for skipping undesirable test cases.)

8. Discussion
(1) Strategies of Test Predicate Selection

In Section 3.2, we have adopted the interactive test predicate selection. To automate the
sclection, we need to introduce some strategies taking all the three phases into consideration,
in particular, the side effects by modilying the program at the “bug correction phase.” The
following is one of the strategies which takes advantages of executable specifications:

{a) All the predicates that are called from the selected predicate (either directly or in-
direcily) are either already debugged (i.e., marked “debugged”) or with executable
specifications except for the cases when it is impossible to select any predicate while
keeping the restriction above due to the mutual recursions.

(h) The predicate at the upper level in the “caller-callee” relation is prefered to that at the
lawer level except for the cases when it is impossible to compare the levels due to the
mutual recursions.

Then, our logic program modificalion proceeds in principle as follows:

35

{a) The predicates that do not have executable specifications are debugged earlier than
those that have executable specifications.

{b) When the predicates do not have executable specifications, they are debugged in the
bottom-up manner in the “caller-callee” relation, i.e., the predicates at the lower level
in the “caller-callee” relation are selected earlier than those at the npper level.

{c) When the predicates have executable specifications, they are debugged in the top-
down manner in the “caller-callee” relation, i.e., the predicates at the upper level in
the “caller-callee™ relation are selected earlier than those at the lower level.

This strategy is aiming at utilizing executable specifications instead of the correspond-
ing correct programs even if the correct programs are not yet completed, so that the execution
of atom A4 is done as follows:

{a) if the predicate of the atom is specified by an executable specification, it is not yet
marked “debugged,” and it is not the predicate just being debugged, then atom A is
executed using the executable specification,

(b) otherwise, atom A is executed using the program.

This strategy is also aiming at avoiding the superficial coincidences of the execution
renlts by abserving the hierarchical “caller-callee” relation. If more than one bugs in the
lower level predicates accidentally gives the intended execution results for the upper level
predicates, rechecking of INTENDED-MODEL-BASE at the later modification cycle causes
inconsistency with the new program, which antomatically starts 2 new modification cycle as
below. Frequent occurrence of such inconsistency is likely to confuse the debugging process.

[MODIFICATION SESSION [32]:

CONTINUED AUTOMATICALLY [32]

| GENERATING A TEST CASE... _

A CASE INCONSISTENT WITH INTENDED-MODEL-BASE
. ...SHOULD ...

| ...HASNOT ...

LOCATING A BUG ...

CORRECTING THE BUG ..

Figure & Session Caused by Rechecking of INTENDED-MODEL-PASE

(2) The Relation between the Test Case Generation and Our Verification

As was explained in Section 4.1, the antecedant part of a specification formula is exe-
cuted first in the test case generation phase, and then the consequence part under the answer
substitution just obtained is executed without instantiating the variables in it. These two

36

kinds of execution are special cases of the first order inference rules developed for proving
properties of Prolog programs [5],[7). Let G be a formula of the form (n > 0)

Ay A dan - AAy 231, Y5, L Y (A A drge A - A drgr)

where the variables other than ¥,,Y3,.. , Y, are universally qunatified implicitly at the
outermost. Then, “Negation as Failute Inference (NFI)” rule and “Definite Clanse Inference
{DCD)” rule are as follows for this class of formulas. (NFI and DCI are defined for a wider
class of formulas. See {3], [7] for the details.)

“Negation as Failure® Inference (NFI)

Let A be an atom in the antecedant part of G. Then, for every definite clause *B -
By, Bs ..., H," in P, whose head B is urnifiable with A, say by an m.g.u. 7, we generate
a new goal obtained from G by applying r after replacing A with By A Bz A -+ A Bn,.
(By A By A+ A By, is true when m = 0.) All new variables introduced are treated as new
universally gquantifiad variables.

Definite Clause Inference (DCI)

Let A be an atom in the consequence part of &, and B = By, Ba, ..., B..” be a definite
clause in P whose head B is unifiable with 4 without instantiating universally quantified
variables, say by an m.g.u. #. Then, we generate 2 new goal obtained from G by applying »
after replacing 4 with B; A Ba Ao A By (ByA By A--- A B is true when m = 0.) Al
new variables introduced are treated as new existentially quantified variables.

Obviosly, the former exeention in the test case generation corresponds to the consec-
utive application of the NFI rule, while the latter execution corresponds to that of the DCI
tule. NFL and DCI are, however, just two inference rules of our verification system, and not
enongh to prove logical properties of logic programs. To prove that a specification formula
is valid in the least Herbrand model of a given program, another two inference rules, called
simplification and compusational induction, need to be used extensively. (Roughly speaking,
the simplification rule is for cancelling the antecedant and the consequent when they are
identical [5], [7], while the computativnal induction rule is for utilizing the properties that
holds for subcomputation [6].) To generate a test case from a specification formula that
mukes the antecedant part truc and test whether the generated goal (the consequence part
under the answer substitution) is valid in the least Herbrand model, however, NFI and 1DCI
are enough. If the numhber of the test cases to be generated are finite, there is no difference
in the power betwesn the test case generation using just NFI and DCT and the verification
using additional inference rules. If the number of the test cases is infinite, however, we cannot
check all the test cases. This point is the crucial difference between the two approaches. See
[5].]6],[7],[8],[9] for the details.

(3) Relations to Other Works

It was Shapiro that first invented a new debugging style of logic programs [15], [16].
Taking advantages of the declarative character of Prolog (and the automatic database capa-
bility for recording the previous answers), he very impressively demonstrated the power of his
“Algorithmic Debugger”. (Although the style of his debugger seems drastically novel at first
glance, it is just automatically providing the points at which we need to check the results so
that it is not completely disconiinuous with the debugging which the programmers usually
do by following the execution traces, Our more naive formalization using execution traces in

a7

Section 5 is based on [11].) The Shapiro’s algotithmic debugging has been exiended and re-
fined in several directions, e.g., by Plaisted [14], Pereira [12], Lloyd [10], Maeji and Kanamori
[11], Ferrand [4], Pereira and Calejo [13], among others. Althongh Shapiro suggested the ba-
sic idea for mechanizing oracles [15] pp.77-80, he focused his attention on the case when the
programmers play the role of the oracle, which corresponds to our “specification by queries®
in Section 2.2 (1)

The early proposal to utilize specifications for mechanizing oracles (and even for gen-

erating test cases) was done by Edman and Tarnlund [3]. Although it is very sketchy, a
succinet explanation of the framework is found in [3] p.554, Section 5. Their approach is
different from ours in the following respects:

(a)

(b)

They utilized full specifications rather than partial specifications. (Section 1-4 of their
paper [3] are cencerned with how to strengthen partial specifications to full specifica-
tions.) We have, in general, utilized partial specifications.

Their full specifications are, however, not necesarily execuiable specifications in the
usual sense, bul more general first order formulas, althongh their extended system
{(called programming calculus) can (probably less efficiently) execute them in a more
general sense. Qur specifications are the class of formulas for which the usual Prolog
execution can be effectively utilized.

Dershowitz and Lee not only developed Shapire’s idea for mechanizing oracles but also

proposed to utilize specifications for generating test cases [1]. Their approach is different
from ours in the following respects:

(2)

(b)

(c)

Their approach used executable specifications of the form

p(X3, Xz oy X)) = Ay Az Age
which cotresponds to the first half of our “specification by executable specifications” in
Section 2.2 (3). Such executable specifications are full specifications in the sense that
they fully characterize the predicates. Our approach has permitted partial specifica-
tions as well as the reverse implication of such specifications. Their approach does not
utilize the reverse direction in their test case generation.
Following the original Shapire’s bug location algorithm, their approach traces the =x-
ecution in a bottom-wp manner for unexpected success. Their debugging progra
Prolog was very elegantly derived from a Prolog meta-interpreter. Our approac o-
cates bugs in a top-down manner for both unexpected failure and unexpecied success.
Although our algorithm does not directly correspond to the behavior of the Prolog
meta-interpreter, the top-down tracing very naturally simulates the debugging human
programmers usually do.
They made an attempt to utilize specifications in the bug correction phase. Com-
pared with the information the answers of the programmer (to individual queries) give,
specifications are more struetured and more informative. When some specifications
are given, the problem of bug correction is in close relation with the program synthe-
sis/transformation with an approximate siructure of the desired program given, or the
problem of incorporating the information contained in (possibly partial) specifications
into the (possibly incomplete) final program. We expect that their approach is more
promising than the inductive inference approach with naive enumeration only, althongh
the discussion employing enumeration is useful for investigating the theoretical limits
of inductive inference.

38

Recently, Drabent, Nadjm-Tehrani and Maluszynski [2] showed an approach to utilize
partial specifications, called assertions in their paper, for (partly) mechanizing oracles in-
dependently of us, They emphasized that full specification or executable specifications are
sometimes unrealistic so that partial specifications to approximate the intended models are
of great practical importance. (See [R],[9] for similar discussion in verification of logic pro-
grams.) Moreover, they adopted & top-down bug location algorithm similar to us [11] which
requires only Yes/No answers but no instantiation of goals. Their approach is differeni from
ours in the following respects:

{a) The class of formulas for specifications are different between theits and onrs. They nsed
four types of specifications, positive assertions, negative assertions, positive existential
assertions and negative existential assertions, which directly correspond to four types
of answers in their debugging system, while we have used two types of implicative
formulas. Some of their specifications are included in ours, while some are derived
from our specifications. (To immediately inclade their pesitive existential assertions,
we need to permit existential qunatifiers in the head in our specification formulas for
unexpected failure, and slightly modify the conditions in generating test cases and in
checking failure traces.)

(b) They had used their specifications only for answering queries, not for generating test
cases. We have used them for hoth generating test cases and answering qneries.

8. Conclusions

We have presented a framework for locating bugs of logic programs from specifications.
This method is an element of our logic program modification system Argus/M developed
from 1987 April to 1989 March.

Acknowledgements

This research was done as a part of the Fifth Generation Computer Systems project of
Japan. We would like to thank Dr. K. Fuchi (Director of ICOT) for the opportunity of doing
this research, and Dr. K. Furukawa (Deputy Director of ICOT), Dr. R. Hasegawa (Chiel of
[ICOT 1st Laboratory) and Dr. H. Ito (Chiel of ICOT 31d Laboratory) for their advice and

ennnnra.gnment.
References

[1] Dershowitz, N. and Y-J Lee, “Deductive Debugging,” Proc. of 1987 Symposium on
Logic Programming, pp.298-308, Salt Lake City, August 1987,

(2] Drabent, W., S.Nadjm-Tehrani and J.Maluszynski, “The Use of Assertions in Algorith-
mic Debugging,” Proc. of the International Conference on Fifth Generation Computer
Systems 1988, Tokyo, November 1988,

[4] Edman, A. and 5.A.Tarnlund, “Mechanization of An Oracle in A Debugging System,”
Proc. of #th International Joint Conference on Artificial Intelligence, pp.553-535, 1983,

[4] Ferrand, G., “Error Diagnesis in Logic Programming,” J. of Logic Programming, Vol 4,
pp-177-198, 1947,

(5] Kanamari, T. and H.Seki, “Verification of Prolog Programs Using An Extension of
Execution,” Proc. of 3rd International Conference on Logic Programming, pp. 475489,
London, July 1986. Also a preliminary version appeared as ICOT Technical Report
TR-086, ICOT, Tokyo, December 1984,

39

{6] Kanamori, T. and H.Fujita, “Formulation of Induction Formulas in Verification of
Prolog Programs,” Proc. of 8th International Conference on Automated Deduction, pp.
281-299, Oxford, July 1986. Also a preliminary version appeared as ICOT Technical
Report TR-094, ICOT, Tokyo, December 1984.

[7] Kanamori, T., “Soundness and Completeness of Extended Execution for Proving Prop-
erties of Prolog Programs,” Proc. of 1st France-Japan Artificial Intelligence and Com-
puter Science Symposium, pp. 219-238, Tokyo, October 1986. Also in Programming
in Future Generation Computers (K.Fuchi and M.Nivat Eds.), pp. 259-281, North-
Holland, 1988. Also a preliminary version appeared as [COT Technical Report TR-175,
ICOT, Tokyo, May 1386,

[8] Kapamori, T., H.Fujita, H.Seki, K.Horiuchi and M.Maeji, “Argus/V : A System for
Verification of Prolog Programs,” Proc. of Fall Joint Computer Conference 86, pp.
994-333, Dallas, October 1986. Also a preliminary version appeared as ICOT Technical
Report TR-176, [COT, Tokyo, May 1986.

[9] Kanamori, T., “Verification of Logic Programs,” to appear in Introduction to Fifth
Generation Computers (K.Fuchi Ed.), The SRI Tokyo Series on Advanced Technology,
Prentice-Hall, 12839,

[10] Lloyd, J.W., “Declarative Program Diagnosis,” Technical Report 86/3, Department of
Computer Science, University of Melbourne, 1986, Also New Generartion Computing,
Vol.5, No.2, pp.133-154, 1987.

[11] Maeji, M. and T.Kanamori, “Top-down Zooming Diagnosis of Logic Programs,” Pre-
sented at RIMS Symposium on Mathematical Methods in Software Science and Engi-
neeting ‘87, Kyotn, September 1987, Also RIMS Research Report 655, pp. 147-166,
Fesearch Institute for Mathematical Sciences, Kyoto University, April 1988. Also ICOT
Technical Report TR-290, ICOT, Tokyo, August 1987,

[12] Pereira, L.M., “Rational Debugging in Logic Programming,” Proc. of 3rd International
Conference on Logic Programming, pp. 203-210, 1986.

[13] Pereira, L.M. and M.Calejo, “A Framework for Prolog Debugging,” Proc. of 5th In-
ternational Conference and Symposium on Logic Programming,” pp.481-495, Seatle,
1988,

[14] Plaisted, D., “An Efficient Bug Location Algorithm,” Proc. of 2nd International Logie
Programming Conference, pp. 151-15T, 1984,

[15] Shapiro, E.Y., “Algorithmic Program Debugging,” An ACM Distinguished Dissertation
1982, The MIT Press, 1983, Also Research Report 237, Yale University, Department
of Computer Science, 1382,

[16] Shapito, E.Y., “Algorithmic Program Diagnosis,” Conf. Rec. of the 3th ACM Sympo-
sium on Principles of Programming Languages, pp. 233-308, 1984,

40

