ICOT Technical Report. TR-444

TR-444

Hierarchical Representation lor
Dependency-Directed Search

by
K. Inoue

Drecember, [958

ok, 1COT

Alite Weoskhwean Bldw 2EF X s L

IGD I 2R AT I=Chome Toles WOV 32w

Mirato-ku Tokvo Tod Tapan

Institute for New Generation Computer Technology

Hierarchical Representation for
Dependency-Directed Search

Katsumi Inoue

1COT Research Center,

Iustitute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, Japan

phone: 4 §1.3-456-2511, telex: 1COT 1 32904

esnet: inouetbicot, jp@relay.csnet
vucp: {eneainriakd rllab,mil*eddie.u]ic} lieotlinoue

1COT Technical Report TH-444
December &, 1088

ABSTRACT

This paper deseribes a general search algorithm for multiple contexts. Dependency-
divected search is desirable for searching multiple contexts when good ordering heuris-
tics are not available, However, previous work on dependency-directed search fails to
model or capture the ineremental construction of hierarchical siructure in various levels
of complex and/or larae scale problem solving. Our idea is based on AND/OR tree
search with underlving assumption-based reasoning. In assumption-hased reasoning,
4 conbext enn be charaeterized by a combination of assumptions. while in AND/OR
tree senrch procedures. it ean be characterized by a partial solution tree. A context
deriving & contracdiction is checked in a mechanisi of truth maintenance, making the
wearch efficient. A searcl algorithm called GDDS fmproves the scarch efficiency and the
vxpressive power more than those of varions truth maintenance sVstems.

1. Introduction

Searcl is an furegral element of all Al systems. In pust Al systems, problem solv
e frameworks were considered from the viewpoint of clfliciency 11 search processcs,
ln general. the problem solving process may be represented by a model in which an
AND/OR graph is coustructed inerementally at the same time that the search 1s con-
dueted. T searching sucli w graph, i there are alternatives among 1Tems of knowledge,
wor that detorministic chioices on O branches are not possible. a single branch must
e chosen and rensoniug processed further from there regarded as nasumpiions. When
sucl o inference does not resilt in a satisfactory solution, it may be uecessary to hack-
trauck and try a different choice or choices, For this purpose, dependency-directed search
(DDS) is # good wiy to avoid redundant computing and rediscovering failures involved
by ehronologieal backiracking, and it is very commeon for recent Al svstems to control
wssumption-hesed reasoning, Many problems require this kind of reasoning i mulii-
ale contests. Althengh DDS itself is o powerful way to handle OR parts intelligently,
previously proposed methods huve sowe problems of efficiency and expressive power.

When large scale and/or complex problems are handled, assumptions must be con-
cidered st varions levels of problem solving. For example, design problems can be
regarded as complicated tasks that contain a synthesis task in addition to analysis and
simulation tasks. In design process, first, the structures of the design object are de-
tornnned, then the attribute parameters of structures of the design object are refined.
Each design decision is regarded as assumptions. Howcver, we are not interested In all
combinations because one decision depends on decisions made earlier. Therefore, deci-
sions should be represented in @ hierarchy. It is not natural to treat assumptions on such
Qifferent levels as a single combination of assumptions, as in the ATMS [de Kleer 86a).

Recently, to tackle this problem. control mechamsms for asswnption-based rea-
soning have been proposed from the viewpoint of applications, such as the implied-by
strategy in ATMoSphere [Forbus & de Klecr 88] and (GSEARCH algorithm {Inoue 87] in
the APRICOT system [Inoue $8]. This paper focuses on the search for multiple contexts
with hierarehy, The exact search procedure realizing DDS called GDDS, which is an
improved version of GSEARCH, will be shown in section & In GDDS, not every hy-
pothesis is handled concurrently; and the incremental addition of hypotheses according
ro their contexts is possible. GDDS improves the scarch efficiency and the expressive
power more than previously proposed algorithms of DDS with the ATMS,

2. Dependency-Directed Search

DDS plays an imporiant role in truth meintenance systems (TMSs). whose main
tusk is to maintain consistency of dynamic knowledge bases. We assume that our
framework has a TMS which maintains multiple contexts simultaneously like de Kleer’s
assumption-based iruth maintenance system (ATMS) [de Kleer 8Ga]. The TMS 1= generic
while the problem solver reasons dependently on the problem domain. In APRICOT,
the DDS procedure is considered to be a generic interface which can give a guide for
sroblem solving between the TMS and the problem solver, but is considered to be
domain-dependent in the sense of utilizing domain heuristics [Inoue 88].

9.1 Searching Multiple Contexts with the ATMS

In the following, a set of assumptions is called an environment, and a set of data
followed by an environment and a set of axioms (or justifications) is called a contest
“de Kleer 86a). The ATMS maintains a global, concurrent representation of all contexts
by lubeling each item of data with cnvironments. It allows multiple contexts to be
compared, swirched, or synthesized as needed. In the ATMS, only an environment
identifies a context. avoiding redundant computations and duplication of conelusions in
different contexis. Therefore, the method proposed in this paper follows this approach.

With the ATMS. Lowever. there is still a major problem of controlling the infer-
ence during search for multiple contexts. Search in the ATMS 18 based on imterprefation
construction. During interpretation construction. the earlier the most general nagoods,
that is. inconsistent environments, are found. the more steps concerning ultimately
inconsistent environments are reduced. For these purposes, a problem solver focuses
Lreadth-first on environments with fewer assumptions first through a specialized inter-
face, or consumer architecture [de Kleer 86b]. The scheduler needs hacktracking when
only part of the search space should be explored for the purpose of the characteristies

of tasks. such that not all solutions are required at once, or requirement of efliciency.
Therefore, 1 simple method, called assumption. based dependency-directed backtrucking
(ADDB). that combines depth-first search of DDB [Doyle 79] and breadth-first search
of consumer architecture is proposed in [de Kleer & Williams 86].

2.2 ADDB Heuristics and Intelligent Backtracker

One of theoretical goals of DDS is to minimize the area to explore the search
space before obtaining solutions. Unfortunately, this goal hus not been fully achieved.
Intnitively, to obtain all consistent solutions, any searcl procedure must search at least
the union of the wnien of power sets of all solution environments and the union of power
<ets of oll nogoods. The first half is required to check the consisteney of each solution
and the last half to prune all inconsistent environments. Nevertheless, we can reduce
ihe search by exploiting the following ADDB heuristics and an intelligent backtracker.

Tlie contributions of the idea of ADDB to reduce the search are as follows. (1)
By introducing control disjunctions, the ATMS need not identify explicitly the trivial
nogoods of exclusive disjunctive relations. Without them, the ATMS must make all
cowbinations of assumptions and then prune vast areas of the search space, (2) ADDB
focuses breadih-first on the power set of the current environment with fewer assurnp-
lions first. This enlarges the effect of pruning scarch areas by smaller uogoods. (3)
ADDB keeps exploring depth-first on a consistent environment as long as the context is
consistent. until a solution envirenment is obtained. This enables the problem solver to
find a solution as fast as pussible, and to perform DDB with the problew solving tasks
reduced more than in the simple consumer architecture.

The effect of introducing both the first and the third heuristics of ADDD enables
us to utilize an intelligent backiracker, which directly backtracks the clhwosing peint
ro canse a failure. Intelligent backtracking by ADDB is done by hyperresolution of
the extended ATMS. by hyperresolution, if all choices in a disjunction failed and no
failure depended on a choice, say P, then we can ignore other clioices for P. Sunilar
echanisins were introduced in the dependency analysis in SCHEMER {Zabih et ol 871

3. Hierarchical Representation
3.1 Problems of Handling Hicrarchy

In section 1, we stated that design tasks should be represented in o hierarchy. In
1l field of monmenotonic lagics, several methods to handle hierarchies have recently
Leew proposed, However, they mamly focus on only fuzonomic hierarchy (e.g., [I{rmo
lize 88]). and problem-subproblem decomposition hierarchy has not been considered so
for. To handle this kind of hierarchy, it is more natural to regard the process as con-
trolling assumption-based reasoning with DDS. The idea of ADDB heuristics is very
ey aud efvctive for conwolling the ATMS. However, the ADDB algorithm still has
the following major problems: (1) In ADDB, the current environment must be flatly
constructed from all control assumptions. Therefore, the task that some choces are
dependent on other contexts and some are not cannot be dealt with by ADDB directly.
(2] Hyperresolution by the ATMS reguires enormons tasks and reduces efficiency of the
ATMS. In [de Kleer 88], a new label updating algorithm which does not reguire hyper-

resolution was proposed, but it does not appear to be easily controllable, Morcover, for
hicrarchical tasks, hyperresolution or the new labeling algorithin arc not available to
produce nogoods properly in intermediate levels. To solve these problems, GSEARCH
[Inoue 87] controls reasoning based on the AND/OR tree search procedure, and the
implied-by strategy has been proposed independently by [Forbus & de Kleer 88]. The
control by implied-by strategy is domain-dependent, so that the user must specify how
to ewitch contexts explicitly, while our method selects the next context automatically by
a generic controlling mechanism. A more detailed discussion will be given in section 6.1.

3.2 Partial Solution Trees

Our main goal is to formalize a general search algorithm for multiple contexts so
as to overcome the problems analyzed in the previous section. Our method for contrel-
ling search is via an AND/OR tree, where the root represents an overall problem to be
solved, and ares in it indicate logical dependencies between nodes representing decom-
position processes or relations of assumptions. Nodes with sons are called nontcrminal,
and those with ne son are called ferminal Nonterminal nodes with sons of type AND
are called AND nodes, and their sons correspond to conjunctive partial problems. Non-
terminal nodes with sons of type OR are called OR nodes, and their sons correspond
to disjunctions as possibilities of implementation. As already discussed in section 1,
mnultiple contexts can be basicelly characterized by an AND/OR tree or an AND/OR
eraph. Although the search space for nondeterministic problems has been dealt with
bv OR trees in such as SCHEMER, the representation with AND/OR trees has several
advantages over the one with OR trees, because with AND/OR trees, it is more natural
to deseribe a problem and more compact to represent a problem avoiding duplication.

Given an AND/OR tree representation of assnmptions, we can identify its different
solutions, cach one representing a possible environment, by a sofution tree. A solution
tree, T, of an AND/OR tree, (3, is a subtree of & with the following two properties: {1}
the root of G is the root of T, and (i1) if an AND node of G 15 in T, then all of its sous
arein T, and if an OR node of (7 i3 in T, then exactly one of its sons 1s in T°. A solution
tree may be expressed by its fip nodes. An example of an AND/OR tree is shown n
Figure 1. In the figure, the solution tree {4, C, F'} is shown by the bold line. We assume
that the search tree G should be mmerementally constructed, expanded. and traversed
during problemw solving, so that it 1s not necessary to explore all assumptions as a whole
search tree, This pomnt s very important for practical problem selving because not all
assuinptions or their relations are represented explicitly before any inference starts. We
shiall use a representation for a set of solution trees, that is, a partial solution tree. A
partial solution tree, 7, of an AND/OR tree, G, 15 a subtree of ¢ with the following
three propertics: (i} the root of G is the root of T, (i1} if any node other than the
root of G is in T, then its ancestors are also in T', and (iii) if an OR nodec of &' is in
T, then at most one of 1ts sons 1= in T'. 1t 1s possible to say that T' is a set of T and
that it is an incomplete solution tree which may be extended. A partial solution tree is
called waetive when it characterizes a consistent environment. An example of a pariial
solution trec is illustrated in Figurc 1 by the dotted line, representing {4, P2 }.

ADDB can be characterized as & scarch algorithm for an AND/OR tree with depth
2 whose root is an AND node such as that shown in Figure 1, because ADDB focuses

AND

wgulle 3 4 8

OR

J}

Figure 1. An AND/OR search tree with depth 2.

I)

1

P2 P3

D E F

only on environments consisting of vne assumption from cach control disjunction.’ In
the next section. we propose a new scarch algorithm based on a generalization of ADDB
lLicuristics given in section 2.2, For this purpose, instead of handling a simple list of al-
{urnatives. hierarchical structures for disjunctions are introduced, and ADDB heuristics
arc generalized to handle AND/OR trees with more than depth 3 as follows. (1) Each
OR relation corresponds to disjunctions, so that we need nol create an environment
which combines two different partial solution trees. In other words, any ronsumers of
such environments are not exccuted. (2) When a new partial solution tree 1s examned,
crvironments with fewer nssunpiions are focused on breadth-first. (3) An active partial
coliiion tree is explored depthi-first Lo obtain a selution trec us long as 1t 18 consistent.

An important improvement s made because of the hierarchy; enormous tasks of
Lyperresolution can bhe reduced if we can give some consumers detecting inconsistency
in an intermediate level, For example, in Figure 1, ADDB can derive nogood{ A} by
byperresolution if negood{4, B} and nogooed {4, F'} are found, so that environment -
14, D) is not examined to check consistency. llowever, this pruning is not possi-
Lle for trees with more than depth 3. The exact pruning rule may be given as

From nngood{4,E} and noguod{4, I}, derive nogood{4, 3 }.
because P omay not be the root of the whole problem. This is why hyperresolution is

P Moreover, AUDE requires that all assumgitions appearing in a control disjunction must be defined

before the disjunction is asseried. In our method, each node appenring in a disjunction is incrementally

generated instead of all of them being defined and it may not be a control assumption.

not aveilable for hierarchical structures. However, if we can give a consumer detect-
ing inconsistency when exploring an intermediate environment {A, P»}. we do not need
to examine even environments {A, E} and {4, F}. This kind of consumer is used in
practice; for example, 4 means P1=0, P; means a variable P3, and divide by.zera con-
sumers cau prohibit the computation of P3/P1 marking the environment as a nogood.
Note that this kind of constraint in intermediate levels cannot be expressed by ADDE.

4. General Dependency-Directed Search

We now present search procedures for all or some numbers of Jogically consistent
solutions, and for an optimal solution by an estimate.

4.1 Searching Consistent Contexts

The GDDDS context search algorithm maintains three sets: OPEN, NOGOOD
and SOLUTION. OPEN is a set of active partial solution trees, each of which repre-
sents a state of traversal corresponding to a cousistent environment. NOGOOD is a set
of maximally general nogoods that huve been found. SOLUTTON is a set of complete
comsistent solution trecs. In the GDDS algorithm, the basic loop consists of picking
one active partial solution trec from OPEN, checking its consistency, executing the
problem solving procedures attached to its environment if the test is all right, and then
decomposing it or traversing a search by the EXPAND procedure. If a contradiction
oceurs in a context, the corresponding environment is added to NOGQOOD through the
NOGOOD procedure. An active partial solution iree in OPEN can be represented
by a pair, (P. E), of o node, P, to be expanded and a consistent environment, E, to be
combined with P. The corresponding environment of {P, E'} can be represented by a
set of tip nodes, < E. P >, where the <> operator concatenates, flattens, and merges
all elements, for example, < {5, T} A {T.X) >={5.T.A. X} and < ¢ >=¢. In the
slgorithm, Pick(a, 4) means to pick the first element, a, from 4 and remove it from
A, and Pushia, A) means to add a to the head of 4. Schedule(X) mecans to pro-
dnee the scheduled power set of X, for example, when X = {4, B,C}, Schedule(X)
= {¢, {4} {B}L {4, B}, {C}{4.C}.{B.C},{4.B,C}}. In GDDS5, at the beginning,
a problems. Py, to be solved is assigned to OPEN, and all conswmers attached to the
overall environment {} which consiste of ne assumptions arc cxecuted,

procedure GDIS:
Remark. Quee a consumer is executed, it is discarded and never executed again.

1. Let OPEN := {(Fy, < ¢ >)}, NOGOOD := ¢, and SOLUTION := ¢.

2, Halt if & fermination condifion is satisfied; consistent solutions are given by
SOLUTION. A termination condition is either of the following: (a) when all
consistent solutions are desired, OPEN = ¢, or (b} when the number of elements
of SOLUTION 1s equal to the given number of solutions.

Pick (5. QOPEN), where S = (P.T).

Generate the next son, Py, of P, (T := Schedule(I).

I UT) = ¢ holds, then EXPAND(S, P, o) and return to 2.

Pick(#;.UT)). T :=<1; P >.

. Execute consumers attached to Ti. If an inconsistency is found in executing con-
siuners, then EXPAND(S, P;.t;) and return to 2. Otherwise, return to &. [

-

-1 oo o

— 6 —

procedure EXPAND(I P, 1), Fiot):
Permarts. Txhaust (P means that all sons of P have been examined. Notexhaust (P}
menus that there is at least one unexamined son of P. And(P) (0x(P)) means that
I’ is an AND (OR) node, Terminal(P) (Nonterminal(P)) means that P is terminal
‘nenterminal). Unexpanded (T, P') means that there is at least one unexpanded non-
torninal node in T and returns the left-most such node, P'. Expanded(T) means that
.11 nodes iz T Lave been expanded. Firstson(P) returns the left-most son of P.
Case 1: 7, = ¢, Hotexhaust(P), And(F} = Push((F, < T, P, =1, OFPEN).
Case 2: 1, = o, Botexhaust (), Or(F)

= Push((P.T) OPEN), Push((F,T),0PEN).
Case 3: t, = ¢, Exhaust (P}, Nenterminal (F;), And{)

= Push({Firstson(P), << T,F > —Firstson(P)>),0OFPEN).
Case 4: 1, == &, Exhaust (P), Nonterminal{F;), 0r (1) = Push((F;, T),0FEN].
Case 5: ¢, = ¢. Exhaust (F), Terninal(F;), Unexpanded(T, P'}

= Push((P'.< T =P ,P >),0PEN).
Case 6: ¢, = o, Exhaust{P), Terminal{F;), Allexpanded(T)

< Push(< T. P, = . SOLUTION).
Case T: 1, # &, &and{(P) = NOGOOD{< ;. F; =).
Case 8: {, = ¢, Or(FP). Notexhaust(F)

— Push((P,T).OFPEN), NOGOOD(< t;, F; >}.
Case 9: t; £ ¢, Or(/’). Exhaust(P) = NOCGQOD(< ti. P >} []

procedure NOGOOTHT):
Definition. A partial solution tree, T, is a specialization of another partial solution tree,
70 s ondy i for each cloment, 17 € T7, there is an clement, t € T, such that = ¢’
or | is a descendant of 7.
1. If 1 iz a specialization of auy other clement in NOGOOD, then return, Otherwise,
add 4 o NOGOOT
2, Delete each clement in NOGOQD which is a specialization of T from NOGOOD.
3. Delete each active partial solution tree in OPEN. whose corresponding environ-
ment ig a snecialization of T from OPEN. Return. O

Lemma 1. When an aetive partial solution tree, § = {P. T, is picked from OPEN 1u
step 3 of GDDS, T s consistent.

Pemark, From this properiv. GDDS checks only the consistency of combinations of T
anel new state Pyl so that the consisteney of the power set of T need not be reexamined.

Proof. Yo partial solution tree in OPEN includes any element of NOGOOD by step
5 oaf NOGOOT. S must be constructed with the environment, T. in EXPAND, where
the conssreney of T Liss already been chiecked in steps 3 to 7 of GDDS. [

Theorem 2. At the end of GDDS. auy solution tree in SOLUTION 15 consistent, that
s, GDDS 75 sound. and when all consistent solutions are desired. SOLUTION holds
all of them. thut is, GDDS is complcic.

Sketch of proof. By using Lemma 1 inductively, the soundness follows from the fact
that any solution is added to SOLUTION in EXPAND (case 6) after its consistency
has been checked, To prove the completeness. we assume the contrary and oblamn a

contradiction. Suppose GDDS imisses the solution, $. Since every consistent partial
solution tree is added to OPEN and picked from it unless it becomes contradictory,
there exists an environment, §', which is a partial solution trec of § such that §' is
selected from OPEN and is not to be inserted in OPEN again. Then, §' is either found
to be inconsistent, or added to SOLUTION. Both cases contradict the supposition. [

GDDS has several advantages as it searches an AND/OR tree constructed with
hierarchy incrementally,. With GDDS, problem solving can proceed efficiently with
compiled knowledge because a contradiction in an intermediate level can be found s=o
that o kind of compilation of a condition on a set of low-level knowledge can be repre-
sented. This is our main solution for the problems of ADDB given in section 3.1. As
deseribed in section 3.2, in many cases no intelligent backtracker is needed because com-
piled constraints can find upper-level contradictions before lower-level contradictions are
found. Nevertheless, if we want to derive nogoods from NOGOOD in the similar way
to hyperresolution, a partial solution tree, T, can be pruned when its specializations
are inconsistent and they cover exhaustively the expanded sons of an OR node of T In
GDDS, this can be implemented more simply and can be embedded not in the ATMS
itself, but in the search algorithm, so that the performance of the basic ATMS is not
reduced at all. For this purpose, case 8 of EXPAND can be changed as follows:

Casc 94: 1; & ¢,0r (), Exhaust (P).OnesonlN(P)= NOGOOD(< t;, P, >).

Case 9g: 1; # ¢,0r(P), Exhaust (P).A11lsonsOUT(F, V)= NOGOOD(< N,t;,P >).
Remarks. A1lsonsOUT(P. N) means that all partial solution trees containing cach son.
P;(1<j<i=1), of Pare inconsistent, and that all nogoods are gathered as N ;=<
t1.....tio1 >. where for each P;, < t;, P; >» is nogood. OnesonIN(F) mecans that at
least one expanded partial sclution tree containing a son of P remains consistent.

4.2 Informed Search

When an eslimate for assumptions or environments is available, we can expect to
improve the seareh performance. We can order environments by comparing them with
sonule preference relation, and an optimal solution can be gained. For this purpose, we
may change GDDS in section 4.1 slightly. The concept of checking congistency may
be ultered to feasibility or possibility for optimality. The selection rule in step 3 of
GDDS ar the expansion rule in EXPAND may be altered so that the most preferred
environment 1s selected and expanded. The termination condition, however, is left as in
the all solntion search of GDDS to exclude local optimization. The resulting procedure
performs best-first search like AQ* or GOF [Pearl 84], or it supports a branch and bound
procedure [Ibaraki 77]. It scems to be rationally efficient for assumption-based reasoning
that best-first search is emploved to elicit the advantages of concurrent representation.
In besi-first search, context switching or backtracking heppens uot only when a context
hecomes contradictory, but also when there is & more preferred active context.

5. Application to Design Tasks

The context search algorithm described in the previons section must be used with a
problem solver dependent on a problem domain. Here, the working of the GDDS algo-
rithm on constraint satisfaciion problems (CSTs) in parametric design is illustrated. In
('SPs, consistent assipnments of values for a set of variables which satisfy all constramnts

are to be found, but practically, the problem in parametric design can be considered
to be partially structured and constraint networks are not explicitly given. Because
of this property, various kinds of ordering heuristics or network-based heuristics {¢.g.,
|2lackworth 77]} are not readily available. Moreover, it takes a lot of time and space to
evecute each consumer involving an analvsis or simnlation task. This is why dependency
analysis is useful for this kind of CSP. Generate and test (G&T}) is the most simple tech-
uique, where the constraints are used to test the consistency of the assignments made
hy & generator. When the constraints can be appled to partial assignments, partial
solution trees can be pruned by hicrarchical GET.

The GDDS procedure can be applied to this type of CSP as follows. The simple
('SP can be characterized as an AND/OR tree with depth 2 (like Figure 1) whose root
is sn AND node and whose nodes in level 1 are OR nodes representing variables, and
serminal nodes represent domains of their parent nodes. An assumption is an assign-
sent of & value to & variable at a terminal, GDDS ean assign values for variables like
constraint propegation, through the consumer architecture. Note thiat these techmiques
can also be utilized by ADDB. The important advantage of GDDS is, however, that
hicrarchical G&T can be supplied to make the search more efficient. An assumption in
an intermediate level can represent compiled knowledge or an abstraction of low-level
parameters, so that a partial solution tree can he pruned by the constraints. This way
of representation is reported to be very useful for CSPs in the independent research of
Mitral & Frayman 87). It should be also noted that GDDS cau be applied to design
rasks other thau simple CSPs, where the problems need to be selected for their design
wodels as well as for the values of the variables for models. A design medel can be
expressedd by o set of constroints relating the desire, intention. specification given by
the nser forming a context, and can be represented by & hicrarclical structure of an
AND/OR tree. where its lower-level parameters can be attached below the model.

6. Related Work
6.1 Comparison with Other DDS Strategies

Much research on DDS has coneentrated on controlling forward reasoning efficiently,
=0 tlat redundant compuring and rediscovering failures are avoided by bottom-up strate-
wies. However, forward reasoning tends to generate consistent but irrelevant computa-
tiens to solve the probletn, GDDS eliminates this weak point by introdocing tep-down
suonitoring into bottewm-up consumer architecture. The advantage of top-down strate-
sies is that ouly the part relevant to the given goal is solved.

Althonsh the idea of GDDS is based on & generalization of ADDB heuristics, GDDS
improves the expressive power by extension to handle hierarchy? and reduces search by
pruning upper-level nodes without utthzng hyperresolution. as stated earlier. There are
some similarities between GDDS and the implied-by strategy [Forbus & de Kleer 88):
(1) assumptions are only created when needed and need not be control assumptions,
(2] both use AND/OR tree search schewes allowing for some infinite domain, and

* While eonditional contrel disiunctions are used to model the interactions between choices in
ide Kieer & Williams 86], they are still handled within the framework of AND/OR trees with depth 2

(3) consumers are cxecuted only in the current focus environment. The differences
are: (1) control by implied-by strategy is strongly domain-dependent, so that the user
must specify how to switch contexts using contradiction consumers or some scoring
mechanism, while GDDS selects the next context automatically by a generic controlling
mechaniem? and (2) ATMoSphere’s AO-nodes themselves represent environments, while
CDDS schedules partial solution trees as environments, 80 that GDDS creates fewer
nodes than ATMoSphere. As a result, if the user cannot specify how to switch contexts,
search by ATMoSphere will be inefficient. As stated earlier, many problems that require
dependency analysis cannot be given good ordering heuristics.

6.2 Upper and Lower Bounds

Informed search embedded in GDDS was introduced in section 4.2. However, even
the concept of generalized ADDB heuristics without preference relations described in
section 3 and 4.1 is very close to the notion of pruning trees in conventional search
techniques in Al [Stockman 79] regarded minimax game tree search as ANT/OR tree
search and proposed a procedure called 555% and {Ibaraki 86] generalized the idea by
analyzing the usage of heuristic information pertaining to nonterminal nodes, such as
wpper and Jower bounds of the exact values. SS5* can be regarded as a best-first search
procedure preferring the partial solution tree whose upper bound of the exact value,
which ean be computed as the minimum value in upper bounds of all its tip nodes, 15
the highest in all active partial solution trees. Our GDDS is similar in this point. Each
partial solution tree, T, in OPEN may have its upper bound, [7{T}, as:

T = f\ Ur(P), where Tip(T) is the sct of all tip nodes of T, and
MET (T

F. if P is contradictory (terminal or nonterminal);

Tp. if Pisa terminal node and cau be consistently assumed,;
Up(P) =
T, clsewhere.

§55*'s stralegy corresponds to the ADDB breadth-first heuristics. However, hecause
two different Boolean values, say, I'p, and I'p,. cannot be compared, GDDS prefers the
left-most active (i.e., U{T) # 0) partial solution tree. Moreover, SS5* generates all sons
of » node st ene time, while GDDS generates them one by one, so that it can handle
the case where sons arve infinitely many but are expected to be contradictory as a whole.

7. Conclusion

This paper introduced a general technique to control reasoning with DDS. The
resulting search procedure, GDDS, models the incremental construction of hierarchical
strneture in assumption-based reasoning. The main characteristies of the proposed
method are that reasoning is controlled by au AND/OR tree search mechanism, and
that assumptions can be added to the TMS along their contexts inerementally rather
than added to everv possible world concurrently in a flat structure like the ATMIS.
Informed search can be incorporated into this method 1o make searching more efficient.
Thie mechanisn ean solve complex and hierarchical problems such as design tasks.

4 The scoring algorithm of ATMeSphera, however, corresponds Lo our informed search in section 4.2.

10

ACKNOWLEDGMENTS
1 would like to thank Keichi Furukawa, Yasuo Nagai. Ryuzo Hasegawa, Yuichi Fujii and LANRS Group
SJF 1COT for their nseful comments and helpful discussions. 1 would also like to thank Professor Toshi-
hide Tharaki of Kyvoto University for diseussions on comparison with conventional search metheds. Finally,
1 wisgh to express my thanks to Dr, Kazuhiro Fuehi, Direetor of ICOT Research Center, who provided
me with insight into merging top-down and bottom-up search procedures and with the opporiunity to
canduct this research in the Fifth Generation Computer Systoms Project.

REFERENCES

[de Ileer 86a] de Kleer, J.. "An Assumption-based TMS”, Artificial Intelligence 28
(1986}, pp.127-162.

ide Kleer 86b] de Kleer, J., “Problem Solving with the ATMS”, Artificial Intelligence
28 {1936), pp.197-224.

[de Kleer 88] de Kleer. J., “A General Labeling Algorithm for Assumption-based Truth
maintenance”, Proc. AAAI-88 (1988), pp.188-192.

[de Kleer & Williame 86] de Kleer, J. and Williams, B. C., “Back to Backiracking:
Controlling the ATMS”, Proc. AAAI-86 (1986), pp.910-917.

Doyle 78] Doyle, J., “A Truth Mamtenance System”, Artificial Intelligence 12 {1986),
pp.231-272.

[Forbus & de Kleer 58] Forbus, Ii. D. and de Kleer, J., “Foeusing the ATMS™, Proc.
AAAJ-§8 (1988). pp.103-198.

Toaraki 771 Ibaraki, T.. “The Power of Dominance Relations in Branch and Bound
Algorithms”, J. ACM 24 (1977), pp.264-270.

[Tharaki 86] Iharaki, T.. “Generalization of Alpha-Beta and SSS* Search Procedures”,
Artificial Intelhigence 29 (198G), pp.73-117.

iInoue 87} Inoue, I, “Pruning Search Trees in Assumption-based Reasoning”, Tech-
nical Report TR-333, ICOT, 1987; also in Proc. Avignen '§8: The §th Intcrne-
tional Workshop on Erpert Systems & their Applications (1988, pp.133-151.

iTuoue 88] Inoue, K.. “Problem Solving with Hypothetical Reasoning”, Proc. FGCS
58 The rd International Conference on Fifth Generation Computer Systems
(1988), pp.1275-1281.

[Konolige 88] Konolige, IL., “Hierarchic Autoepistemic Theories for Nonmonotonic
Reasoning”. Proc. AAAI-88 (1988), pp.430-443.

Packwerth 77] Mackworth, A. IC, i ensistency in Networks of Relations”, Ariifictal
Intelligence 8 (19%7), pp.09-118.

[Mittal & Frayman 87] Mittal, S. and Frayman F., “Making Partial Choices in Con-
straint Reasoning Problems”, Proc. AAAT-87 (1987), pp.631-630.

[Pear] 84] Pearl, J.. Heuristics: Inielligent Search Strategies for Computer Problem
Solving. Addizon-Wesley, Reading, MA, 19584,

[Stockman 790 Stockman, G. €., “A Minimax Algorithm Better Than Alpha-Beta?”,
Artificial Intelligence 12 (1979), pp.179-196.

(Zabih et al. 87] Zabili, R., McAllester, D. and Chapman, D., “Nonp-Deterministic Lisp
with Dependency-Directed Backtracking”, Proc. AAAL-87 (19587), pp.50-04.

— 11 —

