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ABSTRACT

Recently, some researchers found that the previous formalisms of nonmenetonic
reasoning such as predicate circumscription or default logic are not enough to capture
some commonsense reasoning. We believe that the cause of the problems is because
thase formalism cannot represent the preference order in those problems which human
pOSSesEes,

In this paper, we give a formalism of nonmonotonic reasoning by defining a meta-
Janguage to represent preference order over interpretations of second-order language
and translating it to the second-order language to provide a proof theory. By this
formalism, we can express broader classes of preferences over interpretations and infer
results syntactically by the second-order sentences of its translation.

We first define the model-theoretic meta-langnage to express relations over inter-
pretations and show how to translate expression in meta-language into second-order
language. Then we show some examples of formalization of nonmonctonic reasoning.
Finally, we discuss the limitations of our framework in two aspects, that is, reasoning
of inequality and conditional probability.
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1 Introduction

I real life, we are sonmetimes forced to make a decision even if there is not enough
information. For one solution to those situations, we use our commonsense to Com-
plement unknown information. Commonsense is not logically true, but practically,
it works well because conunonsense is a collection of normal results. However, since
commonsense is not logically true, it may be false when more information is ob-
tained. In this case, the result derived from commeonsense must be invalidated. Such
reasoning is called nonmonetonic reasoning hecause the derived result does not in-
crease monotonically as more information is obtained, This phenomenon has been
formalized by varivus researchers [McCarthy 20, McDermott80, Reiter20].

Unfortunately, those formalism does not capture a nonmonotonic reasoning in
inheritance system and temporal projection. [McCarthy86] points out that a sim-
ple abnormality formalism does not work in simple circumscription and introduces
prioritized circumscription. [Etherington86} also points out that the normal default
theory dees not produce a unique extension in the inheritance system and introduces
the semi-normal defanlt theary. [Hanks®T] points out that simple cireumseription,
normal default theory and NML-I do not capture a nonmonoteonic reasoning in the
Yale shooting problem. We believe that the reason why those problems emerge in the
previous formalisms is that they can not express the preferences in those problems
whereas human can express them. Several researchers suggest solutions to the Yale
shooting problem along this line [Kautz36, Lifschitz®, Shoham86]. We also give a
proposal which not only solves the Yale shooting problem but also a problem in the
inheritance system by translating the problems into reasoning in tree-structured mul-
tiple worlds and identifying preference order of those problems as a order where a
preferred model changes minimally in one direction [Satoh87] .

In this paper, we peneralize our =clution so that we can express broader classes
of preferences over interpretations, We define a model-theoretic meta-language to
describe a relation over interpretations of second-order predicate logic. Then, we
show how to translate the relation described in the meta-language into the second-
order sentences. If we apply this framework to the preference order over models of a
closed second-order sentence, the order is shown te be translated into a generalized
form of circumscription|Lifschitzs4]. Therefore, this paper can he regarded as giving
a formal semanties for general circumseription.

Recently, Shoham|Shobam®7] also gave & semantical framework on various for-
malisms of nonmonotonic reasoning including his solution to the Yale shooting prob-
lem. His framework is to deline a new logic by augmenting a standard logic by
introducing a prefercnce over its interpretations.  Although his framework is very
general, hiz definition iz only semantical one and there is no proof theory. Therefore,
this paper also can be regarded as giving a proof theory for his framework in the
second-order logic.

"We shall explain this solution hriefly in Section 5.5.



The structure of the paper is as follows. The first three sections arc related to
the formal definition of the model-theoretic meta-language and the translation of the
meta-language into the second-order sentences. Then, we show how to apply this
framework to formalizing nonmonotonic reasoning by using some examples. Finally,
we discuss the limitation of this framework.

2 Definition of the language and interpretations

In the second-order Jogic, we shall use commas, parentheses, the symbols of the
logical connectives -, D, A, V and =, the quantifier symbols ¥ and 3, and the following
groups of symbols.

Individual constants: a, b, ¢, ...
Individual variables: =, y, 2, ...
Function constants: f.g.h, ...
Predicate constants: FLQ), 1L, ...
Predicate variables: p,g. 7, ...

When we say a variable v, v is an individual variable or a predicate variable.
Definition 1 Terms

1. Individual variables and individual constants are terms.

2. If f* is a n-ary function constant and ¢, ..., 1, aze terms, then iy, ntn) isa
term.

3. An expression is a term only if it satisfies one of the above conditions.
Definition 2 Well-formed formulas (wifs)

1. If P™ is a n-ary predicate constant and #,,...,1, are terms, then P"(t;,..., 1.} Is
a wif.

2. 1f p* is a n-ary predicate variable and t;,...,1, are terms, then [ PP I Y
wif.

3. If A and B are wffs and v is 2 variable, then =4, A 3 B and Vv A are wiis.

4. An expression is a wif only if it satisfies one of the above conditions.

If A and B are wils and v is a variable, then A A B, AV B, A = B and Jvd
are abbreviations for ~(A4 2 =B), =4 O B, (A 2 B) A (B 3 A) and =(Wu-A4),
respectivelv. We call a wff without any predicate variables a first-order wff. And we
call a wif without any free variables a closed wff.

We write a wif A with some of the free variables vy, ..., v, as Alvy, .., v,). Then
we write as A(ly, ..., L) the result of substituting in A the terms 11, ..., 1s for all free
occurrences of tq, ..., Uy, Tespectively.



An interprefation M consists of a nonempty set D, called the domain of the
interpretation, and an assigninent to each individual constant a of an element (a)™
of I, to each n-ary funclion coustant f* of a function (/™™ from D™ to D, and to
cach n-ary predicate constant P™ of a subset (#*)* of D™, Individual variables range
over the set [ and n-ary predicate variables vary over the powerset of D",

We consider an assignment function ¢ (with respect to the domain D) from an
individual variable and a n-ary predicate variable to an element of D) and a subset
of D*, respectively. We denole all assigninent [unctions (with respect Dy as ¢p. We
denote an assignment function ¢, which differs from ¢ at most the assignment of the
variable v. We write as ¢,, ., which differs from ¢&,, .., at most the assignment of
Up-

Let t be a term. We extend an assignment function ¢ to a function ¢M that
assigns to each term ? an element ¢ (1) in D as follows.

1. Tf £ is an individual constant, then ¢M{t) = (1)M

2. If 1 is an individual variable, then ¢™{t) = ¢(1).

3. If t is of the farm f™(t1, .. fn), then ¢M{2) = (/)M (@M (1), ..., Mt ).

Let M be an interpretation with domain D. An assignment function ¢ (with

respect to the domain D) satisfies a wif A in M (written as M =4 A) if and only if
the following conditions are satisfied.

1. If Ais of the form P™(t,,...,1,) where F" is a n-ary predicate constant,
then < ¢M (1), ., ¢M () > € (P,

2. 1§ A is of the form p™(#;,...,1,) where p" is a n-ary predicate variable,
then < ¢M{t1), .., (ta) > € #(p™).

3. I Ais of the form =B, not M =, B (written as M £, B).
4, If Ais of the form B O C, either M ¥, Bor M =, C.

5. If A is of the form VoB where v is a variable, for every ¢, in &5, M &, B.

Let M be an interpretation with the domain D). A wff A is true for the interpre-
tation M (written as M |= A) if and only if for every assignment function ¢ in $p,
M b=y A A wiff 4is false for the interpretation M if and only if for every assignment
function ¢ in &5, M ¥, A. An interpretation M is said to be a model for a set I' of
wils if and only if everv wil in [ i3 true for M.

Proposition 1 Let M be an interpretation with the domain D. If every variable in
atermt is one of Ty,..., 7, and if ¢ and ¢' are the assignment functions with respect
to D such that for every a,, diz;) = &'(z:), then gM(t) = #Mit)



Proof. We prove the above by induction on the number m of function letter n t.
Assume the result holds for all integers < m.

1.
2.
3.

If ¢ is an individual constant a, then ¢¥(a) = (a)™ = ¢ (a).
I{ ¢ is an individual variable z, then ¢™(z) = ¢(x) = ¢'(z) = ¢'M(x)

If tis of the form f™{fy,...1,). Bach #; has fewer than m function let-
ters. By inductive hypothesis, ¢M(t;) = qﬂ:’M{t} Then ¢™(f"(t1,...,tn})) =
(F MM (1) s M (ta)) = {f"}MW”Eh] Mta)) = ¢"™M(f (L, .., 1:)). O

Proposition 2 Let A be a wff all of whose free variables are vy, ...,v, and M be an
interpretation and ¢ and &' be assignment functions. If for every v, &lv) = ¢'(v),
then M =g A if and only of M g A

Proof. We prove the above by induction on the number r of connectives and quan-
tifiers in A. Assume the result holds for all integers < r.

. A iz of the form P™{¢y,... “} where P" is a n-ary predicate constants. By the

propoqimn 1, for each t;, g™ (t;) = ¢™(¢;). Therefore M k=5 P"(t1,...,1x ‘l:[dnd
only if < :f:”( Voo Mt} > € (P*)™ if and only if < d™M(ty). ... 6™ (L) >
(P™WM if and only if M =g P11, .. 10)

A is of the form p*(ly,...,t,) where p" is a n-ary predicate variables. B_v the
condition of ¢ and ¢', ¢(p" ] = :::"p }. By the proposition 1, for ea.chth M [I,] =
4™ (1), Therefore M =, p™(ty,....1,) if and only if < oM (1), M (1) >

ip*) if and only il < ¢™M{t),. r,h"”'f“j > € ¢'(p") if and u:mi'u if M }—,‘u
IRl TP, Ay

A is of the form —B. B has fewer than r connectives and quantifications and
B does not contain any predicate constant in P. By the inductive hypothesis,
M =y fifand only if M =4 B. By the definition of the satisfaction, M =4 =B
if and only if M (£, B and M |y B if and only it M (24 B. Therefore
M |I=d| —f1 1 and l'.‘l]'ll}' if M #‘-"‘,,'.-' =5,

A is of the form B o C. This case is proved in a similar way to the previous
CARE,

A is of the form Yo F where v is a variable, Assume M =, A. Then for every
¢y in @pn. M =4 H. Take any ¢,. Then we can take some ¢, such that
Pl = c,ﬂv{-._}. Then &, and &, agree on the assignments of v, vy, ..., vx some
of which are free variables in 3. By the inductive hypothesis that M =4 O if
and only if M =g 1. Since for every ¢, in &p, M =, B, for every ¢ in Op,
M =, Hence M |=4 A. The converse also holds iu a similar way. O

Note that if 4 is a closed wif, then M k&=, A if and only if M k4 A, and hence
ME A
We will later use the following proposition.



Proposition 3 There exists ¢, . in ®p such that M =y, A if and only if
M I|'=d, 31?|...E|t'n!1.

Proof. We prove the above by induction on the number n of variables in ¢y, ...
Assume the result holds for all integers < n.

1. In case of n = 1. By the definition of satisfaction, there exists ¢,, in ®p such
that M ., A il and ouly il M =g 3u A

2. In case of n > 1. Assume there exists ¢, .. in ®p such that M |=4, . A
Then, by the definition of satisfaction, M g, , _ JvnA. Therefore, there
exists ¢y, o, in @psuch that M =g Svs,A. By the inductive hypothesis,
M g Fuy.. o (Ju, 4).

Assume M sy JyJve...Jv, A, Then, by the definition of satisfaction, There
exists ¢, such that M |, 3Fv;.3v,A. By the inductive hypothesis, There
exists ¢y, ., such that M =, = A. O

3 The definition of the language for model theoretic statements

In the previous section, we used evervday English to talk about model theoretic
statement. Here, we use an abhreviation of English sentences on the model theoretic
statement. Then we first define meta-formula with respect to an interpretation M
with the domain ) as follows.

Definition 3 Meta-formula
1. If Ais a wil and ¢ is an assignment function, M =, 4 is a meta-formula.

2. If A and B are meta-formulas. ¢ is an assignment function and v is a variable,
then —=A, A D B, (¥é,£Pp).4 are meta-formulas.

3. An expression is a meta-formula only if it satisfies one of the above conditions.

A subformula of a meta-formula A is defined as follows,

1. A itself is a subformula of A.

9. If Ais of the form =B, then subformulas of B is subformulas of .A.

3. If A is of the form B 0 C, then subformulas of B and C are subformulas of A.
4. 1f Ais of the form {¥V¢,2®p)B. then subformulas of B is subformulas of A.

A meta-formula M }=o A is called an atomic meta-formula and a meta-formula
(Voo € PpiA is called a guantified mefa-formula. A of a quantified meta-formula
(Vo,€dp)A is called the scope of ihe quantifier “(V¢,€%9p)". If B is a subformula
of a meta-formula A, then the number of quantification of B is called the depth of B
and is defined as follows.



I

The depth of a formnla A itsell is 0.
If the depth of subformula =B is i, then the depth of subfarmula B is m.

If the depth of subformula B 3 € is m, then the depth of subformulas B and C
15 M.

If the depth of subformula (Y, e@p)B is m, then the depth of subformula B is
o+ 1.

If the depth of a quantified meta-formula (V¢, €@p)B is m, then the depth of the
scope B s defined as m 4+ 1.

If A and B are meta-formulas, ¢ is an assignment function and v is a variable,
then AA B, Av B, A= B and (3¢,e®p)A”. are abbreviations for (A 2 =B},
—ADB. (AZB)A{B D A)and ~((Vé,€@p)~A), respectively.

Do not confuse the object logical connectives and the meta logical connectives.
The meta logical connectives are the following abbreviations of everyday English

words,

5

4.

M ;A means “¢ satisfies 4 in M”.
=4 means “not A7,
A 2 B means “either not A or BY.

(Ve p).A means “for every ¢, in $p which differs from ¢ at most the asslpn-
ment of v, A7,

Actually we would like 1o define the particular meta-formulas which are used in the
discussion of satisfaction. We call them meta-well-formed formulas{m-wff).

Definition 4 Meta-well-formed formulas [m-wff)

A meta-formula A is 2 m-wif if and only if the following conditions are satisfied.

1.

=

Everv atomic meta-formula in A whose depth is 0 has the same assignment
function ¢. We call this ¢ the toplevel assignment function(taf). We write as
A a m-wif with a taf 4.

For every quantified meta-formula (V¢ €®p)B whose depth is 0, ¢] is different
{from the taf ¢ at most in the assignment of a variable v, that is ¢, = ¢,.

In every scope of the quantifier “(Vd, €®p)" in .4 whose depth is m, every
atomic meta-formula in the scope whose depth is m has the same assignment
function ¢, in the quantifier. We call this &, the assignment function of the
SCOPE.

In every scope of the quanlifier “(¥¢,£@p)" in A whose depth 1@ m and whose
assignment function is é,, for every quantified meta-formula in the scope (V¢ €
& )8 whose depth is m, ¢/ is different from ¢, at most in the assignment of a
variable u, that 15, o), = ¢,..

=1



Note that a subforimula B of a m-wiT 4 is also a m-wif. We sometimes write as
By a subformula of a m-wif with a taf ¢'. (For example, il Ay is of the form -8B, we
also write ~B,)

Example 1 Mcla-well-formed formulas {m-wff)

o (Vo €0p)(M Ey Plz) AM |5y, Qx)) is a meta-formula but not a m-wif
because this formula vielates condition 2.

o M =y Plz) A (Vg €0p)(M s, Q) is 2 meta-formula but not a m-wil
because this formula violates condition 3.

o M kg plz,u) A (V6-E0p)(M g, Q) A(Vo€®D)(M =g, (9(2) A R(z,2))))

15 2 m-wif,

By the definition of m-wff, we can construct an atomic m-wff from any m-wil.
Consider the following translation.

Translation 1: from a m-wif to an atomic m-wit
Let Ay be a m-wif with the taf ¢.

1. A is of the form M =4 A. It is translated into itseil.

2. Ay is of the form —B,. Tt is translated into M =4 =B, where By is translated
into M =4 B.

3. A, is of the form B, O C;. It is translated into M s B O C, where By is
translated into M =, B and C; is translated into M |=4 C.

4. A, is of the form (Vé,edp)B,,. It is translated into M |=4 Vo B, where By, is
translated into M =, B.

Example 2 Translation from a m-wff inte an alomic m-wff

(M =g plz,y)) A (Y£00) (M =g, Q)] A (Veer€@p)(M oy, (g(z) A R(z,2))))
—
(M =g plz,¥)) A (V2000 ((M .. Q(z)) MM |y, V{g(z) A R(z,z))))
—
(M o plz, ) A (V80 (M &4, (Qz) AVz(g(z) A Rz, 2))))
—
(M Eg plz,y)) A M B¢ V{Q(z) # Vz(g{z) A Rz, 2]))
P
M k&, (plz,y) AV2{Q(z) AV¥xiglz) A Rz, z))))

We can show that a m-wff is true if and only if an atomic m-wff of its translation
is true.

Proposition 4 Let M be en interprefation and Ay be a m-wfl with the taf ¢ and
M =4 A be an atomic m-wff from Az by the translation I. Then Ay is true if and
only M g A is frue.



Proof. We prove the ahove by induction on the number r of connectives and quan-
tifiers in A,. Assume the result holds for all integers <.

1.

'|-r

A, is of the form M =4 A where A is a wi. T'his case s trivial.

A, is of the form —Bg. It is translated into M k=g ~ B, where By is translated
into M }=, B. By the inductive hypothesis, By is true if and only if M =4 B
- true. Therefore, =B, is true if and only if =M =4 B is true if and only if
M =, B s true.

. A, is of the form By D Cg. It is translated into M s B D C, where By is

translated into M &, B and Oy is translated into M =y (. By the inductive
hvpothesis, By is true if and only if M =4 B is true, and Cy is true if and only if
M =, Cis true. Therefore, 8 2 C is true if and onlvif (M s B) D (M k=4 C)
is true if and only Hf M =, BD C.

. A is of the form (¥, € ®p)B,,. It is translated into M [, YuB, where

B.. is translated into M k. B. By the inductive hypothesis, By, is true if
and only if M =;, B is true . Therefore, (Vo €¥p)B is true if and only if
(Ve €@p M =4, B is true if and only if M =g VobB is true. O

Note that for every wif A, there exists a m-wif such that its translation is an
atomic mwff M k. A because that atomic m-wif itself is a m-wit.

4 Relations over interpretations

Let M and M' be interpretations. M and M’ are comparable with respect to a
tuple of predicate constants P if and only if the following conditions are satisfied.

1.

ok

at

3
4

M and M" have the same domain 1.
For every individual constant a, {u]‘“ = {H}Mr.
For everv function constant f, (/1™ = (M.

For every predicate constant ¢ not in P, (QM = (QY.

Proposition 5 Lel inferpretations M and M’ with the domain I} be comparable with
respect to a tuple of predicate P, and t be @ term all of whose free variubles are 1n
& 2y te >, and ¢ and ¢ be assignment functions which agree on he assignment
of every x;. Then, ¢Mit) = ™' (1).

Proof. Since M and M’ are comparable to P, for cvery individual constant «,
()™ = (a)™" and for every function constant f, {f W = (f)M". Every iree variable
rint. é(z) = ¢{z). We prove the above by induction on the number m of {unction
letber in ¢, Assume the result holds for all integers < m.

17 t is an individual constant a, then ¢™(a) = (@M = (&)™ = ¢'™(a).



9. If t is an individual variable z, then ¢M(z) = ¢(z) = ¢ (z).

3. 10 ¢ is of the form f™(fi,..,1,). FEach t; has fewer than m function let-
ters. By inductive h?pnthesﬁ M) = qﬂ?'M'{t] Then ¢M{f™(11,.y1a)) =

PM@M (1) @M ta)) = (M (™M (1), @™ (6)) = ™M ({1 e 1))
a

A predicate variable and a predicate constant are similar if and only if they have
the same arity. A tuple of predicate variables p(=< pi,...,p. >) and a tuple of
predicate constants P(=< FP...., P, >] are similar (or we say p is similar to P)
if and only if each variabie p, of p and each corresponding constant F; of P are
similar. We write a wif 4 with some of the predicate constants £y, ..., Pn in a tuple
of predicate constants P as A{P). Then we write as A(p) the result of substituting
in A the predicate variables p,. ..., p, for all oceurrences of Py, ..., P, respectively.

Propaosition 6 Letp and P be similar und A(P) be a formula which does not contain
any predicate variable in p and M and M’ be o comparable interpretations with the
domain D) and ¢ be an assignment function. If for every F; in P and p; in p,
(B)M' = 8(p,), then M" }=4 A(P) if and only if M 4 A(p).

Proof. We prove the above by induction on the number r of connectives and quan-
tifiers in A. Assume the result holds for all integers < r.

1. A(P}is of the form P™{t,, ..,1,) where P'" is a n-ary predicate constants not in
P. Then (P = (P*)™. By the proposition 5, for each t;, ™ (t;) = ¢M(t,).
Therefore, M' =4 P*(f:,...,1,) il and only if < ¢"‘f (t2), ., 0™ (ta) > € (PT)M
if and only if < &M {#;)..... qé:M(r,,} = ¢ (P™)M if and only if MEs Py, .n1y)

2. A(P) is of the form P"(ty,...1,) where P" is a n-ary predicate constants in
P. Let p* be a corresponding variable with P, Then (P™)M = 4(p").
By the proposition 5, for each t, ¢™'(4;) = ¢™(&). Therefore, M' =,
Pty ..., 1) if and only if < éM(ty),...¢M(t.) > € {P"'j M’ if and only if
< ¢M(ty), ... eM(t,) > € &(p") i and only il M =4 p™(t1, .. 1n)

3. A(P) is of the form p"(1,,...,t,) where p" is a n-ary predicate variables. p" is
not in p because of the condition of A{P). Thus ¢™'(p") = ¢™(p"). By the
proposition 5, for each #;, ¢ (t;) = ¢"(1;). Therefore M" =4 p"(ty, ..., 15) if
and only if < M'(#y), ...eM'(t,) > € ¢(p*) if and only if < ™ (1), ..., @M (ta) >
€ ¢(p") if and only if M =4 p*(t1, . 1a)

4. A(P) is of the form =B{P). B(P) has fewer than r connectives and quantifica-
tions and B(P} does not contain any predicate variable in p. By the inductive
hypothesis, M' =4 B(P) if and only f M =4 B(p). By the definition of the
satisfaction, M’ =s =B(P) if and only if ~-M’ =4 B(P), and M =4 ~B(p) if
and only if =M =, B(p). Therefore M' =4 ~B(P) if and only if M k=4 ~B(p).

5. A(P) is of the form B{P} > C{P). This case is proved in a similar way to the
previous case,

i0



(.

AiP) is of the form YuB(P) where v is a variable. Assume M' =4 A, Then
for every ¢, in ®p, M' =4, B(P). And B(P)} does not contain any variable
p. By the inductive hypothesis that M |=,, B(P)if and only il M =4, H(p).
Hence M k=4 Yo B(p). The converse also holds in a similar way. U

Let M and M’ be comparable interpretations with respect to P. We define meta-
relation over comparable interpretations by extending the notion of meta-formula.

Definition 5 Meta-relation

3.

If Ais a wh and ¢ is an assignment function, M =y A, M’ |54 A is a mela-

relation called an atomic meta-relation.

¥ A and B are meta relations, & is an assignment function and v is a variable,
then —.A, A 3 B, (Vé,e®p).A are meta-relations.

An expression is a meta-relation only if 1t satisfies one of the above conditions.

We ean define a subformula of a meta-relation, a quantified meta-relation, a scope of a
quantifier, a depth of subformula of 2 meta-relation and a depth of a scope in a similar
way to the meta relation. Then we define the particular meta-relations which can be
translated to the wif. We call them well-defined relations (wdrs).

Definition 6 Well-defined relulions {wdrs)

A neta-relation A is a wdr if and only if the following conditions are satisfied.

1.

3]

Frery atomic meta-relation in A whose depth is U has the same assignment
function ¢. We call this ¢ the toplevel assignment function{taf). We write as
A a wdr with a taf &.

. Tor every quantified meta-relation (Vg,€dp)B whose depth is 0, &, 18 different

from the taf ¢ at most in the assignment of a variable v, that 1s ¢, = ¢.

. In every scope of the quantifier “(Vé, € @p)" in A whose depth is m, every

atomic meta-relation in the scope whose depth is m has the same assignmnent
function ¢, in the quantifier. We call this &, the assignment function of the
scope.

Iu every scope of the quantifier “{¥¢,cdp)" in A whose depth is m and whose
assignment function is @,, for every quantified meta-relation in the scope {Vo,E
& )B whose depth is m, ¢, is different from o, at most in the assignment of a
variable u, that is, o = &y,

Note that a subformula B of a wdr A is also a wdr. We sometimes write as By a
subformula of 2 wdr with a taf ¢'. (For example, if A, is of the form -, we also write
By} From riow on, we write a wdr over M and M’ with the taf ¢ as R{M, M'),.
We will later use the following proposition.

Il



Proposition T Let M’ and M be a comparuble with respeet to P and R(M', M)y be
a wdr., Let p be simalar to P osuch that every variables in py, ..., Pr 18 not contained in
R{M',M)y. Then RIM' M), is irue if and only if R(M', M), is true.

Proof. We prove the above by induction on the number r of connectives and quan-
tifiers in R(M', M. Assume the result holds for all integers < r.

1.

RIM' M) s of the forin M =, A4 Since A does nol contain any variable in p, ¢
and ¢y, ,, agree on the assignments of free variables in A. By the proposition 2,
M B, Aids true if and onlv if M g, ..on 1S tTUE,

R(M', M}y is of the form A" j=4 A. This case is proved in a similar way to the
previous case.

R{M' M), is of the form -A{M' . M},. By the inductive hypothesis,
A(M’, M) is true if and only if A(M', M), is true. Therefore ~A(M’', M),
is true if and only if ~A(M', M}, is true

1

R{M'. M), is of the form A(M' M}, o B(M', M),. This case is proved in a

stmilar way to the previous case.

CR(M', M), is of the form (Vé, € Pp)A(M', M)s,. Assume (V¢ €

Gp)A(M' Mg, Then, for every &, in $p, A[M' M)y, is true. Take any
$py.pnv- Lhen we can tzke &, such that ¢.(v) = &, ;.(v). Since v is not in
Viyeory Uny @5, pne = Gupy o p, BY the inductive hypothesis, A(M', M);, is true if
and only if A(M', M, s trueif and only if AIM', M)y, . is true. Since
for every ¢, in ®p, A(M', M g, s true, for every gy, p, in @p, AIM" M)y,
is true. Hence, (Vo,, . CPp ) A(M M), .. is truc. O

B

Example 3 Well-defined relations (wdrs)

(Vée@p)(M s P(z)AM k=, Q(x))is a meta-relation hut not a wdr because
this formula violates condition 2.

o M' =y Plz) A (Vb € Op)(M g, Qlz)) is a meta-relation but not a wdr

because this formula violates condition 3.

o M' =4 plz, y)N (V€00 (M |=, Q2] A(VerzePp)(M' b=y, (¢(2)AR(z,2))))

15 a wdr,

By the definition of wdr, we can convert any wdr into a m-wil of M by the following
translation.

Translation 2: from a wdr to a m-wif
Let M’ and M be a comparable with respect to P and R(M’, M), be a wdr. Let p be
similar to P such that every predicate variable in p 1= not contained in R{M', M),.

L.

R{M', M), s the form of M =, A It is translated into itself.

12
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RIM'. M), is the form of M’ |=4 A(P). It is translated into M =, Alpl

3. R(M', M), is the form of ~A(M' M}, It is transiated into ~A,, where
A{M', M), is translated into A,

1. R(M', M), is the form of A(M',M)s D B(M', M)y ILis translated into Ay D
By, where A{M', M), is translated into Ay, and B(M', M), i translated into
Ba.

5 R(M' M), is of the form (Vé,€Bp)A(M', M)y, It is translated into (Vi€
dp)ds, , where A(M A, s translated nlo Ag, .

Example 4 Translation from a wdr inte a m-wff

Let M and M’ be comparable with respect to < P,@ > and < p,q > be simular to

< P.(} > and ¢ be an assignmenl function.

Let R{AM, M), be:

(M s Plz,y)) A (V6:€00)((M g, Q) A(Y6::€80) (M e, (Q(2) A R(z, 2))))
—

(M Foo plz, 1)) A (6,0 ) (M b, Q) A (Y6-:€30)(M E.. (alz) A R(z,2)

If & satisfies the following condition in the proposition 8, we can show that a wdr
is true if and only if a m-wff of its translation is true.

Proposition 8 Let M’ and M be a comparable with respect to P and R(M', M)y be
@ wdr. Let p be similar io P such that every predicate variable in p is not contained
in "M, M), Let 'R:, be a m-wff from R(M', M), by the translation 2. If}'ar every
Foin P and p, inp, ¢(p) = (P, then RIM', M}y is true if and only if Ry is true.

Proof. We prove the above by induction on the number r of connectives and quan-
tifiers in R[M", M),. Assumne the result holds for all integers < r.

. RIM', Mg is of the form M |54 A. This case is trivial.

2. RyM M), = of the form M =y A(P). It is translated inte M =4 Alp).
A(P) does not contain any predicate variable in p and for every p, in p and
corresponding F, m P, ¢(p;) = (F) JM'. By the proposition 6, M’ =, A(P) is

rue if and only if M =4 A(p) is true.

3, RIM. M), is of the form ~A(M' M);. Tt is translated into —.4,, where
A{M' M), is translated into As. By the inductive hypothesis, A(M'. M},
is irue if and only if A, is true. Therefore —A(M’, M}, is true if and only if
—.A. 15 true.

1. RIM', M)y is of the form A(M', M)y D B(M'. M), It is translated into Az D
B, where A(M', M), is translated into A, and B(M', M), is translated into
B.. By theinductive hypothesis, A(M’, M), is true if and only if Ag is true, and
BiM’ M), is true if and only if B, is true. Therefore, A{M'. M )4 D BIM', M),
15 true if and onlv if 4, 2 By is true.

13



5 R(M',M), is of the form (vé, € CplAIM M), 1t is translated into (V¢, €
) A,,, where A(M', M), is trauslated into A, . By the inductive hypothesis,
A(M', M), is true if and only if Ay, is true. Therefore, (Vo,e®p) A(M', M)y,
is true if and only if {Vo,£@p)A,, is true. O

Note that we can covert any wdr into an atormic m-wif by the translation 1 and 2.

Example 5 Transiation from o wdr into an alomic w-wff

Let M and M’ are comparable with respect to < F,{ = and < p,q > be similar to

< P,Q > and ¢ be an assignment function.

Let R(M, M"); be:

(M by B(z2,y) A (Y6,€00)((M =y, Q(2)) A (Vue€0D)M’ o, (Q2)AR(z,2))))
==+ (see example 4)

(M Fos plz,0)) A (V62600)(M e, Q) A (VoerClp)(M 4, (a(z) A R(z,2))))
= (see example 2}

(M =g ple,y)) AV2(Qz) A¥zig(z) A Rz, 2)))

Actually, for any wif A(p}l, there exists a wdr such that its translation is an atomic
m-wil M =4 A(p) because a wdr M’ =4 A(P) is translated into that atomic m-wif.

We can show that if an assignment function ¢ satishies the condition in the propo-
sition 8, a wdr is true if and only if an atomic m-wit of its translation is true.

Lemma 1 Let M’ and M be a comparable with respect to P and R(M',M); be o
wdr. Let p be similar to P such that every predicate varigble in p is not contained
in R(M',M)g. Let Ry be a m-wff from R{M' M), by the translation 2. And let
M =4 R{p) be an atomic m-wff from K, by the iranslation I. If for every B, in P
and p; in p, d(p) = (PO, then (M, M}, is true if and only if M =4 R(p) is
irue.

Proof. Since for every P, in P and p; in p, é(p;) = (P)™". By the proposition 8,
R(M', M)y is true if and only if R, ie true. And by the proposition 4, Rg is true if and
only if M =4 R(p) is true. Therefore. R{M'. M), is true if and only il M 4 R(p)
is true. O

Example 6 Eguivalence belween o wdr and an aetomic m-wff
Let M and M’ are comparable with respect to < F,@ > and < p,¢ > be similar to
< P,Q > and ¢ be an assignment function such that ¢(p) = (P)M and 4(q) = (@)™
Let R(M, M"); be:
(M" g Pz, )i A (Vo0 (M =q, Qe A (VéE0p) (M =y, (Qlz)AR(x,2)))).
It is true if and only of
(M Fs plz.p)) A (¥eoed (M o, Qla)) A (V2 €00)(M k.., (alz) A R(z,2)))
is true

if and only if
M =4 plz, ) ANZ(Q(x) AV¥r{g(z) A R{z,2))) is true.

Now we prove the following theorem closely related to a link hetween minimal
models in preference order and 2nd-order wil.
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Theorem 1 Let M' and M be models with the domain D which are comparable with
respect fo P and R(M', M), be a wdr. Let p be similar to P such that every predicate
variable in p is not confained in R{M'. M)z, Let its transiation using p be M =4
Rip). There exists M such that H{M', M) is true if end only if M =y 3pr.. Ipn B(p)
s true.

Proof. Assume there exists M’ such that R(M*, M)y is true. Since R(M', M ), does
net contain any variable in p, for every ¢, ., in @n, BIM', M), s true by the
proposition 7. Let for every p; in p and £ in P, Doy palPi) = (P,Y™'. Then, by the
lemmma 1, R{M', Mg, is true il and only i M =, . Rip)istrue. Then, by the
proposition 3, M =4 3py..3p Rp) s true.

Assume M =4 Ipy...3p, R(p) is true. By the proposition 3, M |y R(p) is true.
There existe M" such that M’ and M are comparable with respect to P, and for every
P in P and p; in p, (PO™ = &y, . (p:). Then, by the lemma 1, M =, . R(p)is
true if and only if R(M". AL}y is true. Then, by the proposition 7, R{M', M}, is
true. O

Fn

Corollary 1 Let M' and M be models with the domain D which are comparable
with respect to P oand R{M', M), be a wdr. Let p be similar to P such that every
predicate variable in p is not contained in R(M', M)y. Lel ils translation using p be
M =. R(p). Then the foliowings are equivalent.

T

1. For every assignment function ¢ in @p and for every model M', ~RIM", M),
is true.

2. M &= =3p;..3p, Rip) 1 true.
FProof. Tor every M', =R{M’, M, is truc if and only if not (M =g Zp...3p, Ripl)
is true. hv the theorem 1. It is truc if and oniv if M |=4 —3py..3p.fi(p) is Lrue.
Therefore, for every ¢, the followings are equivalent.

1. For every M, =R{M'. M}, is true.

2. M s —dpy . dpuH(p) s true.
Therefore, the followings are equivalent.

1. For every ¢ and for every M', =R{M", M), is true.

2, For everv ¢, M =4 —3py..3p, Hip) s true.

The condition 2 is true if and only if M = ~3p,...2p, H{p) is true. O
Corollary 2 Let M’ and M be models with the domain D which are comparable with
respect to P oand R(M', M)s be a wdr and A{P)} be o wff. Let p be similar to P such

that every predicate variable in p is not contained in R{M', M)y and A(P). Let the
translation of R{IM' . M), using p be M =4 Rip). The followings are equivalent.
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i. M is a model of A{P} and for cvery assignment function ¢ in $p and for every
M, (M o A(P)) D —~R(M", M)4) is true.

2. M = A(P) A =3p1.3pa{Alp) A R(p)) is true.

Proof. Assume condition 1. M is 2 model of A(P) il and only if M = A(P). Since
(M =y AP))AR{M, M), is a wdr, we can iranslate it into an atomic m-wil. By
the translation 2, the above wdr becomes:

(M s Alp}) AR,
where R, is a translated m-wif from I{ A7 Af),,
Then by the translation 1, the above m wif becomes:

M £ Alp) A R(p).
Therefore, by the corollary 1. for every assignment function ¢ in $p and for
every model M', =((M' ks, A(P)) A R(M', M)y} is true if and only if M |
-3py...3p(A(p) A Rip)) is true.  Therefore, condition 1 is true if and only if
M E A(P) and M = -3p,...3p.(A(p) A R{p)) are true. They are true if and
only if condition 2 is true. O

If A(P) is a closed wif and some assignment function ¢ in ®p, M’ |y A(P) is
true, then M’ is a model of A(P) by the proposition 2. Therefore if A(P) is closed
then condition 1 of the corollary 2 becomes the following,

1' M is a model of A(P)Y and for every M', (f M" is a model of A(P} then for every
assignment function ¢. ~R{M' M), is frue.

Note that A{P) must he clased if the condition 1 of the corollary 2 and the
condition 1" is equivalent. If AIPY is not closed, then the condition | implies the
condition 1’ but the converse is not true. We can show a counter-example. Let
M" and M be models with the domain D which are comparable with respect to P
and A(P) be P{z) and R{M". M), be M’ =, =P{a) and (P)™ = D. Then the
condition 1" becomes the [ollowing condition that for every ¢ in &p, M =4 P(z) and
for every M', il for every ¢ in ®p, M' s F(z) then for every ¢ in &p, =M’ =4
~P{a) (= (M' ks Pla)}) is true. We can casily sce that this condition is true. Let
é(p) = {(B)M) and é(z) = (1) and (o)™ # (B)M. Then, M =4 plx) A —pla),
Therefore, there exists ¢ cuch that M &=, pl{z) A —pl(a). Therefore, condition 1, that
is, M |= P(z} A =3p(p(z) A =pla)} is false.

We say that R{M', M) 1s a purtial order relation if and only if for every assignment
function ¢ in @, the following conditions are true:

1. for every M, R(M, M), is false,
9. for every M, M’ and MY, R (M* M’} and Re(M', M) implies Ry( MY, M).

Let A(P) be a closed wif and W(M'. M) be a partial order relation. We say that M is
a minimal model with respect to a closed wil A({P) and a wdr R(M", M) if and only
if condition 1’ s satisfied. Then we obtain the following formal semantics of general
circumscription.
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Corollary 3 M s a minimal moedel with respect to a closed wff A(P) and a wdr
RAM', MY} if and only if M 15 a model of A(P) A =3p,.3p.(A{p) A R(p)).

Proof. By the above discussion and the corollary 2. O

In the next section, we show some applications of this framework to nonmonotonic
TeaAsoning.

5 Application to formalizing nonmonotonic reasoning

5.1 Formula Circumscription
Consider the following wdr.

Let A and M’ be interpretations with the domain I' which are comparable with
respect to P =< Py, .., P, > Andlet E{(P,z,,..,r,) be a wif in which F; in P and
individual constants x,,..., x, occur free.
RiM' AN if and only of
V6u, 9D Voin, 2 €PD((M gy, . E(P, 21,00 20)) D
Uur :=¢rzl..q,. E{P,II,,..,E“”}J"\.
€80 Verey s €00((M g, o B(Py21,0s0))
(M’ Egy,.0n E(P 2150, 24)))

Note that this wdr 15 a partial order. Let p =< py, . pn = be similar to P. The
carresponding atomic m-wff M =, R(p) is as follows (by using translation I and 2),

M o=, Vay Nay [ E(py 2. z) D B{P. 21, o zn))A
Wy Vo (E{P, 2y, ... 20) 2 El:.]::'!Il'-"'rwn}}'

A model of a closed wif A{P), M, is a minimal mode! with respect to R{M', M) if
and only if M satisfies the follawing wif.

M = A{P) A =3p;...3p.(A(p) A R(p)).

The wif of the above atomic m-wil is the form of formula circumscription.

5.2  Parallel Circumseription
Consider the following wdr.

Let M and M’ be interpretations with the domain D which are comparable with
respect toe P =< Py, . P, > And let F;in P be g;-ary predicate constant.
RAM' AN i and only i
Ve, €05 V01 pmrry CODM g, L PrlEr, o))
(M Fe., .., Blzag )N

Ve €. Wb, 2 €05 g, Falm, 7))
: tﬂ‘f #0‘:] Ty }:‘(:r]""'-mu'“]}}h
d—,[l‘:’lc.l_..t E‘:’g---yﬁf’:. Ty E¢D{|:‘:Lf |='P'1_ ra Fll:.-cr] - "'L_-Iﬂu. ‘-I} -
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UH’ i=¢=1. g P}{I'!!”ﬂzﬂl}}}h

Ve, €20 Yba,..20, ELD((M oy, ao, FalZ1505700)) D
(M Eg o Pulmny s zaa))))-

Note that this wdr is a partial order. Let p =< py,..,p, > be similar to P. The
corresponding atomic m-wif M =, R(p) is as follows (by using translation 1 and 2).

M =g Vo Nog, (mlzy, cnde ) 2 iz, s Ty JIA

V1 Y2 (a1, ooy Ton ) D Fulr, oy 2o, JIA
—(¥zy. Vg (FPilrn, o 70, ) D pal@n, s o, A

HI],..J‘?’I:;“{PH{Il, cany -Tﬂ.n:l o F'r.'[:r] 1 -..,i"u"}}]~

A model of a closed wif A(P), M, is a minimal model with respect to R(M', M) il
and only if M satisfies the following wil.

M = A(P) A =3p1...3p.(A(p) A R(p)).

The wff of the above atomic m-wil is the form of parallel circumscription with-
out variable predicates, If M and M’ are comparable with respect to P’ =<
Pos P Pagyy s Pag >, then considering the same form of R{M', M) gives cir-
curnseription with variable predicates FPopy, .oy Fasm.

5.3 Simple Default Reasoning

If we would like to express “most birds can fiy”, we do not need to introduce abnormal
predicates minimized in circumscription but simply express that an interpretation M’
is preferred to an interpretation M il and enly if M’ makes more birds fly than M.

Consider the following wdr. let Fly and Bird be unary predicate constants and
M and M’ be interpretations with the domain D which are comparable with respect
to < Fly >.
R{M' M)y if and only if

Vo.cbp((M Iy, (Bird(z) A Fly(z)) > (M’ e, (Bird(z) A Fly(z))))A

V. edp((M' g, (Bird(z) A Fly(z))) D (M =, (Bird(z) A Fly(z)))).

Note that this wdr is a partial order. Let fly be similar to Fly. The corresponding
atomic m-wif M =, R fly) is as follows

M =, Vz((Bird(z} A Fly(z)) D (Bird(x)} A fly(z))In
=¥z((Bird(z) A fly(z)) O (Bwrd{z) A Fly(z)}).

If we derive any result from A(Fly} A =3fly(A(fly) A R(fly)), it is true in every
minimal models with respect to the above wdr. We show an example of derivation.
Suppose A(Fly) = Bird(t) A =Fly(t} where ¢ is an individual constants. Then the
above wif becomes:



Bardid) A =Flyit) & =3 fly(Bard(t) A - fly(t)a
Wel(| Hird(e) A Fiylz)) 2 (Bird(z] A Fly(z)in
Wl Herd(x) A flylz)) O (Bird{z) A Fly(x})))

Suppose fly = Ae(Fly(z) v (z # t)). Then we can derive the following from the
ahove wif.

Bird(t) A =Fly(t)A

~(Bird(t) A ~(Fly(t) V ( # )A
Vao(( Bird(z) A Fly(z)) D (Bivd{z) A (Fly(z) V (z # 1)))A
—¥r((Hird(x) A (Fly(z) v (x # 1)) O (Bird(x) A Fly(z}))).

It is reduced to:
Bird(i) A ~Fly(t) & ={=WVz{(z # t) D (Bird{z) D Fly(z))),
whiclt i equivalent to:

VYrir# t = (Bird(z) 2 Fly{z))).

5.4 Prioritized Default Reasoning

If there are competing default rules such as “most birds can fly”™ and “most penguins
can not {ly", and we would like to give higher prierity to the penguin rule, then we
cxpress these rules by an order that an interpretation M" is preferred to an interpre-
tation A if and only if ' have more non-flying penguins than M and M’ have more
flving birds than M in the case that M’ have same non-flving penguins as M.

Consider the following wdr. Let Fly, Hird and FPenguin be unary predicate
constants and A and A be interpretations with the domain D which are compatible
with respect to < [y =,

RIM', M)s if and only if
Vo0 p((M g, (Penguin(x) A =Fly(z})) 2
(M' &=, (Penguin(z) A —Fly(z))))A
(Yo.ebp((M ., (Penguin{z) n=Fly(z))) =
(M By, (Penguin(z) A - Fly(z}))) O
Ya,e®n((M o, (Bird{z) A Fly(z))) D (M’ =4, (Bird(z) A Fly(z)))))A
~(Ye€Pp{(M' b=, (Penguin(z) A —~Fly(z))} 5
(M =4, (Penguin(z) A ~Fly(z)]))A
(Vorebn((M' ., (Penguin(z) A - Fly(x)}) =
(M =, (Penguin(z) A =Fiy(x))}) D
Vooebn((M' =, (Bird(x) A Fly(=))) O (M ke, (Bird(r) A Fly(z)))).

Note that this wdr is a partial order. Let fly be similar to Fly. The corresponding
atomic mewil M E, Rifly) is as follows
M =, Ve{( Penguin(z) A =~Fly(z)) D (Penguin{z) A ~fly(z)}in
(Yr{{ Penguin(z) & = Fly(z)) = (Penguin{z) A Sfly(z))) o
Yr({ Bird{r) A Fly{z)) D (Bird(x)} A fly(z))))IA

14



(¥ ((Penguiniz) A - fly(z)} D (Penguin(z) A = Fly(z)))A
(Wa(( Penguin{r) A= flylx)} = (Penguinz) A ~Fly(z))) >
dr((Bird{x) A fly(z)) D (Bird(z) A Fly(z))))).

If we derive any result from A(Fly) n =3fly(A(fly) A R(fly)}, it is true in every
minimal models with respect to the above wdr. We show an example of derivation.
Suppose A(Fly) = Va{Penguin(r) 2 Bird(z)). Then the above wil becomes:

Yx(Penguin(z) 3 Bird(z)) n =3 fly(¥z(Penguin(z) D Bird(z)) A R(fly)).

Suppose fly = Az{=FPenguiniz)}. Then we can derive the following form the above
wif.

Vr{Penguin{z) D Bird(z})A
—(VYaz(Penguin(z) O Bird{x})A
Wa((Penguin(r) A = Fly(z}) D (Penguin{z) A == Penguin{z))})A
(Vz((Penguin{z) A =Fly(z)) = (Penguin(z) A ~(—~Penguin(z))}) D
Va((Bird(z) A Fly(z)) o (Bird(z) A (~Penguin(z)))))A
—(Vz({( Penguin(x) A —~(~Penguin(z))) O (Penguin(z) A ~Fly{z})))A
(Ve (( Penguin(x) A ~(=Penguin(z))) = ( Penguin(z) A ~Fly(z))) >
Wz ((Bird(z) A (= Fenguin(z))) D (Bird(z) A Fly(z)))})).
It 1s reduced to:
Ya(Penguin(z) 3 Bird(z))A
=(=(Vz(Penguin{z) D ~Fiy{z}}A
(Vz{ Penguin(z) D ~Fly{z)) D Vz((Bird(z) A =Penguin(z)) 3> Fly(=))))),
which is equivalent to:
Vr(Penguin({z) O Bird(z)) A Vz(Penguin(z) 5 ~Fly(z] A
Yz((Bird{z) A = Fenguin(z)) O Fly(z)).

5.5 Minimal Change Models

We have presented a solution to the Yale shooting problem and multiple extension
problem in the tree structured inheritance system in [Satoh87]. In that formal-
ism, both tvpes of reasoning are translated into reasoning in tree-structured multiple
worlds and are regarded as selecting a preferred model which changes minimally in
one direction. In the Yale shooting problem, the direction is from earlier state to later
state. And in the inheritance systems, the direction is from superclass to subclass.

We briefly explain the formalism and show the ordering in 2 wdr. In the tree-
structured world, we have two sorted-variables, variables of properties p,pq,ps, ... and
variable of worlds w,w;, ws,.... And we introduce an individual constant 0 and a
function las?t and two binary predicates T and <. 0 expresses the root of the iree
and last(w) gives a parent node of a world w and T'{p,w) express that a property p
is true in a world w, and 1, < ws express that there is a path from wy to we.

Then the order which prefers a model which changes minimally in one direction
is defined as follows. Let M and M’ be interpreiations with the domain I which are
comparable with respect 1o < T >,
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R{A A and only if
E’s”;‘-"‘?—{i'f!':_[ W I'.:.:‘.:.. TI:_IJ-.[]:I:I = (M |=$,- T{P:U}}jh
Hﬁ'.’,.,j E'L:I"‘;J IL
(M=, O <)
Vi e P p (M I—L,ﬁw]w:‘ (0 < wy Awg < w)) D
Y, up€PD(M Ebyyuye Tl w2)) = (M ey, T(sw2))))) O
(Vou ERp({M Eq,, Tip last(wy)) # T'(p,w)) 2
(M g, 1(p,last(uy)) 2 T{p,wi)))A
£ Pp((M |=,M”I Tip last{uwy]) Z Tip,w))A
(M ., Tip, last(wi)} = T(p, 1))

This definition means informally that for every node w, if M and M’ agree on the
interpretation of T from root to last(w), then M' chauges strictly less than M at the

point from last{w) to w.

We call a minimal models of the above wdr minimal change models because in the
minimal models, the change of the property is minimized in the direction from root
ta leaf. Let v be similar to T. Then the syntactic definition of the minimal change
models, A(T) A ~3r (A7) A R(7)), is as follows.

A(T) n-37{Al7 1A
Vp(r(p,0) = T(p, 011N
T
(0w A
T ({0 < wp A wg < wy) D
¥p(T(pywe) = 7{p,wa)))} O
(vpl{rip. dast(uy)) 2 7(pows)) 2 (T(p. last(wi)) # T{p,wi)})A
3p((Tip.last{wy)) 2 T{p,wi)) A (7(p, last{un)) = 7(p, wy)}))))-

We show an example of derivation in the following linear-structured inheritance sys-
tem,

Animals do not normally flv.

Mammals are animals.

Bats are mammale and normally fly.
We can express the above information as the following axioms. Let ALY be:

=T fly, animal) A T fly, bat)A
Wp(p = fly) AVuw(w = animal V w = mammal V w = bat}A
0 = animal A lost{imaemmal) = animal A last(bat) = mammalh
animal # mammal A mammal # bat A animal # batA
VbV (w <w' = (

[ = animal A w' = rmammal )y

(w = mammal A v’ = q’mfjl"-.f

(w = antmal A w' = bat))).

Let = = Aplw(p = fly A w = bat). We consider =37(A(r} A R(7)). A(7) and
¥p(r(p, 01 = T{p,0)) are true if we assume A(T). Therefore R{7) becomes:
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=((T{ fly, mammal) = v fly,mammal}} O

(((7( [ly, animal) # 7 fly, mammal)) O
(T( fly, animal) # T( fly, mammal)})}A

(T fly, enimal) 2 1 fly, mammal})A
(7{fly, anirnal) = 7( fly. mammal}})})

It becomes:
=T fly, mammal).

Therefore in the minimal change models, mammals do not normally fly.

5.6 Relative Plausibility

We have presented a formalism of relative plausibility in [Satoh88]. The relative
plausibility expresses that a certain wif £(P, x;, ..., z,) is more plausible than another
wif E'(P,21,...,2,) where P is a tuple of all predicate constants oeccurring in wils E
and E', and z1,..., T, are all free individual variables occurring in wils.

The order of models defined as follows. (Here, We present an order in the case
that only ene information of relative plausibility is known. A general case is found in
[Satoh88].)

Let M and M’ be interpretations with the domain [ which are comparable with
respect to P,
R(M', M) if and only if
H‘#’n €Pp "'vg}tl Tz %n E‘l‘pf
(M e o ~E(P, 2y z)) A M, L E(P2y, 0, 2.))) D
(M Egyy an "E(Pzy g )V M =, L, E'(P, 2y, .., za ) A
"Hff*':tE‘I'D"Hénhn.m,,{:@ﬂ{
({.M’ |=¢=]-..rq _'EI.P?'Tl: et :rﬁ}:l M "41.'!; I=¢-¢J 3 EI(P' Fly ey zﬂ}}] -
(M g, ., “EP, 21, o)V (M =y, L, BP0 a])))

The syntactic definition of the relative plausibility is as follows. Let p =< p1, ..y pn >
be similar to P.

A(P) A =3p. 3p(AlpIA
Vo, Ne, ((~E(P,xq, ..o ) A E' (P 2y, .00, 20)) D
[_'E{P,-'Eh "‘:-I!'IJ W Err:p1 Tl ey Iﬂ]j]"ﬂ"
Vi Yo, ((=E(p, 1, ... 22 ) A E'(p, 21, ...y Z0)} D
(E(P,z1,...,7p ) V E'{P.ay, .z )))-

We ghow an example of derivation in the propositional case. Let 5 be a symptom,
and I); and D; be diseases. And we have the following information.

1. A patient suffers from D), or L.
2. 5§, is found.

3. If Sy is found then a patient suffers from Iy more likely than Ds.
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Then we express the above information as follows,
A[_.':Th D11 Dzj = E.Dll l"h"l Dj:l Jﬁ- ..‘J.].
51 2 I) is more plausible than S D Dy
Then we can make the following derivation.

{Ij" W ﬂ:] I 51 A "13513d13d2{(d] W l'i_g:] M 51-""‘:
(=[S 2 Da) A (S1 D D)) 2 (=(s D da) V(51 Ddi)])A
—((=(sy Dd2) A5 D)) D (& DDV (5 2 D))
Suppuse s; = 5, and dy = §; and dy = =5, Then we can derive the following from
the above wif.

(D V Dy} A Sy AS({S1V ~51) A SiA
((~(S1 D D) A (51 D D)) 2 {=(5:1 D -51) V(S D&)A
=((~(51 D =85 A (S 2 81 D ({5 2 D) v (5 D D))

1t is reduoced to:
(D v Dyl A Sy A= (=(=Ds v Dy,
which 1s equivalent to:

Dy A 5.
Therefore. we can conclude that a patient suffers from a disease Iy from the above
information of relative plausibility.

6 Discussion

In this section, we discuss two limitations of our framewark in reasoning of in-
equality and conditional probability.

6.1 Reasoning of Inequality

Ftherington|Etherington8 7] shows that Lifschitz’s general circumscription without
any variable Lerms cannot derive a # & from T (no proper axioms).

Arimal Arima®8] formalizes the limitation of circumscription in reasoning inequal-
ity and shows that it is impossible to infer a # b from T even with variable terms.

Similar problemn can also arise in our framework *. It is because in our framework,
preference ouly can be defined over the comparable interpretations which are different
each other only in the interpretation of some predicates.

*sctually, in our framework, if we gives the following preference order, we can infer ¢ #b
froty T. This can he regarded as a difference between Lifschitz’s general circumscription
and our framework. However, it is not applicable to all the cases because this solution is in
dunger of contradiction.

Rim', M) if and only if M = a=0b.



6.2 Conditional Probability

In the conditional probability, if more inforination is obtained, probabilities for
some formulas may be changed. This correspouds to the change of preference order
in our framework il models are changed. However, since preference order in our
framework is fixed over iiterpretations, we cannot change it even if a set of models
are changed.

In default logic, this problem is hall solved thanks to prerequisites of defaults.
Since defaults cannot applv if prerequisites are not derived, defaults with prerequisites
can add the extra preference order when the formula in prerequisite is known to be
true. And this is the reason why default with prerequisite can not translate into
circumnscription as stated in [Tmielinski87]. However, even in default logic, we cannot
express the deletion of the preference. Therefore, we need other framework to express
conditional probability precisely.
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