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Abstract

This paper presents a preluminary formalization of the semantics of Guarded Horn
Clauses (GHC) particularly emphasizing on a compositional character. First, the execution of
GHC programs is described using some tree structures, in which not only actually successful
computation but also potentially successful computation are considered. Next, by simply
abstracting this description, the semantics of a class of GHC programs, called monotonic
GHC programs, is studied. The semantics considers the set of pairs consisting of initial goals
end their answers, and it is shown that the semantics enjoys a compositional character. Then,
after examining the problems of non-monotonic GHC programs, the semautics of general
GHC programs is investigated. The semantics considers the partially ordered multiset of
such pairs, and it is shown that the semantics still enjoys the compositional character. Last,
the semantics of GHC programs is compared with that of Prolog programs. A reformulation
of Kahn’s results about functional data flow networks within the framework of parallel logie
programming for finite computation is presented as well in Appendix.
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1. Introduction

When one tries to formalize the semantics of Guarded Horn Claunses (GHC) programs
{38], he/she immediately gets at a loss how to treat varions new computational phenomena
which do not appear for Prolog programs. (The readers unfamiliar with GHC are recom-
mended to read Section 2 first.)

- Because applying substitutions to the variables occurring in callers is inhibited (except

trivial renaming of the variables) in the guards of GHC programs, some goal never

succeeds as a GHC goal, even if it can succeed as a Prolog goal. How should the

phenomena be treated?

- Some goal can succeed when other goals coexist, even if it never succeeds as a single goal.
In general, some goal behaves in a guite different manner according to its environment,
i.e., the behaviors of coexisting goals. How should the phenomena be considered?

- How should the effects of the commitment operator “/® be accommodated into the
semantics?

» How should the “parallel” exeention of GHC programs be reflected in the semanties?
Should it be different from the “nondeterministic” execution (possibly under some
assumption) of GHC programs? What should be the essential difference from the
parallel or nondeterministic execution of Prolog programs?

Let us first review the sbove problems in detail.

(1) A more general goal may be suspended even if a more specific goal may succeed.

Example 1.1 Let “merge”™ be the predicate for nondeterministically merging two input
streams into one ontput stream defined by the following GHC program:
merge{[A|Xs],Ys,Zs) - | Zs=[A|Zs1], merge(Xs,Ys,Zsl).
merge{Xs,[A|Ys],Zs) - | Zs=[A|Zs1], merge(Xs,Ys,Zs1).
merge([ ],Ys,Zs) - | Ze=Ys.
merge{ Xs,[ ],25) :- | Zs=Xs

(2) Then, the execution of goal “7- merge([1,3],(2,4],11,2,3,4])" can succeed. (It succeeds
if the execntion is first committed to the 1si, 2nd and 1st clauses in this order. The
execuiion after these commitments never fails whichever clauses it may be committed
to.)

(b) The execution of goal “?- merge([1,3),(2,4], Z)" can return answer substitution < Z <
[1,2,3,4] >. (It can return 5 other answer substitutions. The execution never fails
whichever clanses it may be committed to.)

(c) The execution of goal “?- merge([1/X],Y,[1,2,3,4])” is snspended, becanse no gnard
is solved for the goal after the commitment to the first clause.

In general, if the execution of “7- A succeeds with answer substitution &, then the execution
of “7- Ac” may possibly succeed, while the execution of “7- B” does not necessarily succeed
even if the execution of “7 Br” succeeds. That is, 2 more specific goal may possibly succeed
if 2 more general goal may succeed, but not vice versa. If we would consider each goal “?- A"
gimply as an instruction to search a goal instance A# that is & first-order logical consequence
of 2 given program, we could not discriminate cases (a), (b) from case ().

{2) A more general answer does not necessarily subsume a more specific answer.
Example 1.2 Let “produce-none,” “produce-one” and “consume-one® be the predicates

defined by the following GHC program:
produce-none(L).



produce-one(L) == | L=[X|M].

consume-one(|X|M]).
Then, the execution of goal

?- produce-none(L)
succeeds with answer substitution <>, while the execution of goal

?- produce-one(L)
succeeds with answer substitution < L < [X|M]>. Although “preduce-none(L)” returns a
more general answer substitution than “produce-one(L)” does, it does not necessarily mean
that it makes more goals succeed when combined with other goals. For example, the execution
of goal

7- prodnce-none(L), consume-ane(L)
is suspended, while the execution of goal

?- produce-one{L}, consume-one(L)
succeeds. If we would consider more specific answer snbstitutions to be snbsumed by more
general answer substitutions, we could not capture the phenomena above.

(3) A goal may succeed through the interaction with coexisting goals.

A goal, which is suspended due to the insufficient instantiation of its arguments, can
be released from the suspension by the supply of the (arguments form) information from
coexisting goals. This phenomena shows that it is not appropriate to consider only the
execution result of an individual goal for characterizing the semantics of the goal.

Example 1.3 Let “seesau™ be the predicate defined by the following GHC program:
seesaw([N[In1],0ut) - N>1 | subtract(N,1,N1), Out=[N1]|Outl], seesaw(In1,0utl).
seesaw([1|In1],0ut) :- | Out=[C|Cutl].
seesaw([0|[n1],0ut) - | In1=[ ], Out=[ ].

seesaw(fn, Out) receives natural number “N7™ from the inpot stream, send “N = 17 to the

output siream and continues the same cycle as long as the received natural number is greater

than 1. It cutputs 0 and stops when 1 is received, and it closes the streams and stops when
0 is received. Then, goal

7- seesaw([100[X],Y), seesaw(Y X}.
succeeds, while individual goals
7. seesaw([100|X],Y).
7- seesaw(Y,X).
will never succeed. Hence, it is not sufficient to consider each individual goal by itseli.

{(4) Just answer substitutions when execnted as single goals do not characterize the predicates.

Is it appropriate to consider the inputfoniput behaviors of all instances of a goal for
characterizing the semantics of the goal? Even more complicated, two goals show different
input/output behaviors when other goals coexist, even if any instances of these two goals
show an identical input/ouiputl behaviors s single goals.

Example 1.4 Let ¥p]” and “p2” be the predicates defined by the following GHC program:
pUX,Y,Z) - | double(X,XX), double(Y,YY), merge(XX,YY,W), one-by-one(W,Z).
p2(X,Y,Z) :- | double(X,XX), double(Y,YY), merge(XX,YY,W), two-at-once(W Z).
double(0,AA) - | AA=[0,0].
double(1,AA} - | AA=(1,1].
merge([A|Xs],Ys,Z25) - | Ze=[A|Z¢1], merge(Xs, Ys,Zs1).
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merge( Xs,[A[Ys], Zs) - | Zs=[A|Zs1], merge(Xs,¥s, Zs1).

merge([ 1,Ys,Zs) - | Zs=Ys.

merge(Xs,[ |,2s) - | Zs=Xs.

one-by-one{[A|W],Z) :- | Z=[A|Z1], next-one(W,Z1).

next-one([B|W},Z) = | Z=[B].

two-at-once([A,B|W),Z) - | Z=[A]Z1), Z1=[B].
where “double” is a predicate to duplicate its input element (either 0 or 1) and make a list
consisting of the two elemerts, and “merge” is the predicate as before. The only difference
between “p1™ and “p2” is that “one-by-one” invoked from “p1” pulls out first two elements
from the merged stream one by one as soon as each element appears in the merged stream,
while “twe-at-once” invoked from “p2™ pulls out first two elements from the merged stream
only when two elements appear in the merged stream. Then, it is easy to see that the exe
cution of goals “7- p1{1;,12,12)" and “7- p2(t;,15,1,)" returns the same answer substitutions
for any terms iy,1s,1s. For example, the execution of *?- p1(0,1, 2)" and “?- »2(0,1,2)"
both return

<Z<=[0,0]>, <Z«0,1]>, < Z«(1,0]>, < Z<+=[1,1]>.
That is, their input/output behaviors are identical for any instances of p1(X,Y,W) and
p2(X,Y,W). Now, let “complemnent™ be the predicate defined by the following GHC pro-
gram:

complement{[0]W],Y) :- | Y=1.

complement([1|W],Y) :- | Y=0.
and consider two goals

T- p1(0,Y,Z), complemeni(Z,Y),

7. p2(0,Y,Z), complement(Z,Y).
Then, the first goal can return answer sobstitution

<Y «=1,Z«[0,0]>, <Y <1, Z«[0,1]>,
while the second goal can return only one answer substitution

<Y «=1, Z2+[0,0]>,
since the second element of the ocutput “Z™ of p2 is already decided to be 0 when its
first element 0 s passed to “complement™ (hence when the ontpnt of “complement” is
passed to the input “¥™ of “p2”). That is, *7- p1(0,Y, Z), complement(Z, Y )" and *7-
72(0,Y,Z), complement(Z,Y)" show different inpuifoutput behaviors, although “p1™ and
“p2” show an identical input/output behavior. (This is the famous anomaly by Brock and
Ackerman [4].)

{5) The commitment operator of GHC plays two distinct roles.

One role is that it introduces some asymmetricity between the atoms in 2 guard and
those in a body. It separates the guard from the body with the restriction that the guard be
executed in a special manner. Intuitively, the execution of guards must suceed (i) regardless
of the (arguments form) information possibly supplied in future throngh callers (ii) without
utilizing the (arguments form) information possibly supplied {rom the execution of bodies.

Another role is that it prunes off the search space. Once the execution is committed
to some clause, other clanses are discarded and not reconsidered even if using some other
clanse may lead to successful computation. This commitment operation makes the burden
of managing (otherwise multiple) variables binding environments much lighter.

It has been sometimes pointed cut that search incompleteness due to the commit-
ment operation of GHC is the most important difference that separates GHC from FProlog,
hence makes GHC extra-logical, because the lack of backtracking in GHC possibly misses
some successful computation so that some goal expected to succeed may possibly fail, be
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suspended or loop indefinitely. But as far as the semantics of Prolog (at some zbstraction
level) is concerned, the backiracking mechanism can be ignored by assuming appropriate
nondeterminism, and in fact it was ignored in van Emden and Kowalski’s paper [6]. (The
backtracking mechanism was considered a problem of implementation from the viewpoint
of semantics at some abstraction level.) Moreover, even with the backiracking mechanism,
search completeness is not guaranteed in general. Hence, it would be permissible at first to
assume appropriate nondeterminism and ignore the second role of the commitmeni opera-
tion when some abstract semantics of GHC programs is aimed at following the spirit of van
Emden and Kowalski's approach.

(&) Nondeterministic execution characterizes some semantic aspects of GHC programs.

When one tries to formalize the semantics of any parallel programs, he/she naturally
wonders whether the semantics should have any characieristics that is inherent in the truly
parallel execution, and not captured by the nondeterministic sequential execution. Here,
by truly paralle] exeeution of GHC programs, we mean that the execution proceeds in such
a way that the execution segment of one goal may be conducted independently before the
goal receives the information of the shared variables instantiation caused by the execution of
other goals. By nondeterministic sequential execution of GHC programs, we mean that the
execution proceeds sequentially by interleaving the execution segments of each goal in such
a way that, before the execution segment of one goal is conducted, the goal always receives
the information of the shared variables instantiation cansed by the execution of other goals.
The necessity of considering the truly parallel execution of GHC programs depends on the
following two points:

(a) whether the different assumptions on the propagation of the shared variables instanti-
ation in the truly parallel execution and in the nondeterministic sequential execution
have any particnlar meaning to the intended semantics of GHC programs, and

(b) whether the independent execution of each goal in the truly parallel execution and the
interleaved execution of each goal in the nondeterministic sequential execution have
any particular meaning to the intended semantics of GHC programs.

As for the first point, if the intended semantics is concerned with only whether some execution
of a goal can succeed, fail or be suspended, then there is no particular effect which depends on
whether the execution is done in truly parallel. It seems obvious that some nondeterministie
sequential execution can succeed whenever some truly parallel execution succeeds, becanse,
if the truly parallel execution is committed to a clause, hence its guard is solved, then the
guard is solved regardless of the further instantiation of the variables occurring in the caller,
hence the nondeterministic sequential execution can be committed to the same clanse. It
also seems obvions that some nondeterministic sequential execution can fail whenever some
truly parallel execution fails. One might be afraid that a wrong commitment is prevented
in the nondeterministic sequential execution, since the information of the shared variables
instantiation is propagated immediately before the next sequential execution step so that
the guard for the wrong commitment is not solved. This is not true due to the same reason.
If the traly parallel execution is committed to a clause, hence its guard is solved, then the
guard cannot rule out farther instantiation of the variables occurring in the caller, hence the
nondeterministic sequential execntion can be committed to the same clause to end in failure.

As for the second point, again if the intended semantics is concerned with only whether
some execution of a goal can succeed, fail or be suspended, any assumption about nondeier-
ministic execution, e.g., fairness, does not need to be considered.

Example 1.5 Let a-or-b and b-or-a be the predicates defined by the following GHC program:
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a-0r-b(X) = | X=a.

a-0r-b(X) = | X=b.

b-or-a(X) :- | X=b.

b-or-a( X} - | X=a.
Consider the goal

?- a-o1-b(X), b-or-a(X).
One might expect that this goal can fail when the truly parallel execution is employed,
e.g., the execution of the first goal a-or-b(X') is committed to the first clanse and that of the
second goal b-or-a{X) is commiited to the third clause in parallel, and it never fails whatever
nondeterministic sequential execntion may he employed. The latter expectation is, however,
wrong. The following sequential execution leads to failure as well.

1. The execution of a-or-b{X) is committed to the fizst clause.

2. X and g is unified.

3. The execution of b-or-a(X) is committed to the third clanse.

4. The unification of ¢ and b fails,

These problems call for reflection even about our understanding of the semantics of
Prolog programs. The semantics of Proleg programs by van Emden and Kowalski [6] is abso-
lutely useful absiraction to consider various semantic properties of Prolog programs without
worrying too detailed operational behaviors of actnal Prolog interpreters. However, which
aspecis of Prolog computation are indeed reflected in van Emden-Kowalski style semantics,
and which aspects are ignored (or abstracted)? And, which aspects of GHC computation
should be reflected in the semantics of GHC programs, and which aspects should be ignored
{or abstracted), if the spirit of van Emden and Kowalski’s approach is followed? So far, we
have considered differences of answer substitutions, since they are superficially observable
behavior of GHC programs. However, if the least Herbrand model semantics of Prolog pro-
grams is re-examined, it is noticed that it does not necessarily characterize differences of
answer substitutions. Moreover, even if the least Herbrand models of programs P, and P;
are identical and @ defines predicates not in P, or F;, the Jeast Herbrand models of programs
FLuQ and P U Q might be different when Q contains constant or function symbol not in
Py oor P,

Example 1.6 Let Py and P, be the following two Prolog programs:

Py : pla).
pO{a).

Po @ plX].
pO(a).

The predicate “p0” is just used for introducing comstant “a.”™ Then, becanse the Herbrand
universes of Py and P, are {a}, these two Prolog programs are equivalent in the sense of the
least Herbrand model semantics. However, these two programs respond in different manners
to a query

7- p(X).
P returns the empty susbiitution <> as its answer substitution, while P, returns < X <a>.
Morecver, these programs may not be replaced with each other when the program to be
combined has a different Herbrand universe. For example, let @ be the following Prolog
program:

@ : q(b).
Then, the least Herbrand model of PuQ is

{p(a), p0{a), ¢(b)},

while that of P @ is



{p(a), p(b),p0(a), g(b}}.

This paper presents a preliminary formalization of the semantics of Guarded Horn
Clanses (GHC) particularly emphasizing on a compositional character. First, Section 3
describes the execution of GHC programs using some tree structures, in which not only
actually successful computation but also petentially successful computation are considered.
Nexi, Section 4 stndies the semantics of a class of GHC programs, called monotonic GHC
programs, by simply abstraciing the description. The semantics considers the set of pairs
consisting of initial goals and their answers, and it is shown that the semantics enjoys a com-
positional character. Then, after examining the problems of non-monotonic GHC programs,
Section 5 invesiigates the semantics of general GHC programs. The semantics considers the
partially ordered multiset of such pairs, and it is shown that the semantics still enjoys the
compostional character. Last, Section 6 compares the semantics of GHC programs with that
of Prolog programs. Appendix shows a reformulation of Kahn’s results about functional data
fiow networks within the framework of parallel logic programming for finite computation. (In
the following, patagraphs begining with “Remark” are supplementary explanations so that
the readers may skip them at first reading.)

2. Guarded Horn Clauses (GHC)

This section introduces the parallel programming language GHC following the expla-
nation in Ueda [41]. (See [40] for thorough discussion.} In the following, symbols beginning
with uppercase letters are used for variables, and ones beginning with lower case letters for
constant, function and predicate symbols, following the syntactic convention of DECsystem10
Prolog [3].

(1) GHC Program

A GHC program is a finite set of expressions, called simply clauses, of the following
form:

H:- Gy, Ga, ... G | By, Ba, ..., Ba. {m,ngﬂ}

where H, Gi’s and B;’s are atoms. K is called a clause head, the G;’s are called guard goals,
and the B;’s are called body goals. The symbel “|” is called a commitment operator. {(When
m=n =0, “" and “|” are ommitted.) The part of a clause before “|” is called a guard,
and the part after “|” is called a body. Note that the clavse head is included in the goard.

One binary predicate =" is predefined by the language. The predicate “="is used for
unifying two terms.

Example 2.1 A predicate “join” for merging two ordered streams into an ordered stream is
defined in GHC as follows:

Cy: join{[A]Xs),[B[Ys],Zs) - A<B | Zs=[A|Zs1], join(Xs,[B|Ys],Zs1).
Ca: join([A|Xs],[B[Ys],Zs) :- A>B | Zs=[B|Zs1), join([A]Xs],Ys,Zs1).
Ca: join([ ],Y's,Zs) - | Zs=Ys.
Cq: join(Xs,[ 1,2s) - | Zs=Xs.
where < and > are defined as follows:
Cb‘. EEY
Ce: suc(X)<suc(Y) - | XY,
Cy: sue(X)>0,



Cpa: suc(X)>suc(Y) - | X>Y.
(2) GHC Goal
A GHC goal i an expression of the following form:
7- Ay, Aa, ...y Ak (k > 0).
A goal is called an empty goal when k is equal to 0.

Example 2.2 The following are GHC goals.
7. join([1],] ].X), join(X,[2},2).
1. jein(X,[2],2).
where “17 and 2 are abbreviations of suc(0) and suc(suc(0)), respectively.

(3) Execntion

The execution of a GHC goal with respect to a given GHC program tries to solve the
goal, i.e., reduce the goal to the empty goal, using the clauses in the GHC program in the
same way as Prolog but possibly a fully parallel manner provided that the following “rules
of suspension” and “rule of commitment”™ are observed.

Rules of Suspension

(2) Unification invoked directly or indirectly in the guard of a clause C called by 2 goal &
(i.e., unification of G with the head of € and any unification invoked by solving the
guard goals of C) cannot instantiate the goal G.

(b) Unification invoked directly or indirectly in the body of a clause C called by 2 gaal G
cannot instantiate the guard of € or G uwntil C is selected for commitment (see below).

A piece of unification that can succeed only by causing such instantiation is suspended until
it can succeed without causing such instantiation.

Rule of Commitment

When some clause C called by a goal G succeeds in solving its guard, that clause C
iries 1o be selected for subsequent computation of G. To be selected, C must first confirm
that no other clause in the program have been selected for G. If confirmed, C is selected
indivisibly, and the execution of G is said to be committed to the clause C.

Example 2.3 The execution of GHC goal
7- join([1],[ 1.X), jein(X,[2].2).
never fails whichever clanses it may be committed to, and will return <X &, Z2<,2]>
as its answer substitution. The execution of goal
?- join(X,[2).Z).
is suspended, because no gnard is solved for the goal.

3. A Preliminary Operational Semantics of GHC Programs

This section first introduces the notion of computation forest, then introduces a partial
ordering relation between computation forests.
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The following sections assume familiarity with the basic terminology of first order logic,
such as term, atom (atomic formula), formula, substitution, most general unifier (m.g.u.) and
so on. Syntactic variables are X, Y, Z for variables: s, 1, for terms; A, B for atoms; C for
clauses, possibly with pzimes and subseripis.

A goal is a multiset of atoms. A goel consisting of only one atom is called a singleton
goal. Goals are denoted by T, A,1I, and the empty goal is denoted by O. Two goals are
considered identical when they are identical modulo renaming of variables.

A substitution is defined as usnal, and denoted by

<X =t Xt LA EL >
A substitution is called a renaming substitution when it assigns 2 distinet vanable to each
variable, and called a non-renaming substitution when it i not a renaming substitution.
Substitutions are denoted by 7,7, 8,7, and the empty substitution is denoied by <>.

3.1 Computation Forest

The notion of computation forest is obtained by modelling the nondeterministic se-
quential execution of GHC just as the notion of proof tree in Prolog.

Definition Computation Forest
A computation forest is a multiset of trees satisfying the following conditions:
(a) Each node is labelled with a trio of the form (A, R,C), where A is either an atom or
an equation, R is either the emply set { } or a singleton sel of atoms, and € is either
& clause of P or a special unit claunse
C.n.: X=X.
not in program P. (4 is called the atom part, R is called the instantiation restriction,
and C is called the clanse part of the label.)
(b) Each node is classified into either guard node or body node.
(c) Each node is either marked “solved” or unmarked.
Compnutation forests are denoted by F,0,M, possibly with primes and subscripts. Two
computation forests are considered identical when they are identical modulo renaming of
variables occurring in the labels. Each treein a computiation forest is called the component
computation tree of the computation forest. The computation forest obtained by juxtaposing
two computation forests F and ¢ is denoted by Fug.

Example 3.1.1 Fg below is a computation forest. (Due o space limit, label (A,R,C) are
shown in three consecutive rows.)

join([3],[ 1.121)° join([1],[2],2)
{1 {}
Cs G,
I ! I \

(=01 1<2” Z=[1]21] join([ ],[2],21)
1} {join((1],12], 2)} {} {}
Cg Cﬁ CU CH

| !
0<1” Z1=[2
{jein([1],[2], Z)} {}
Eb cb
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The dotted line denotes zn edge to 2 guard node, and the solid lines denote edges to body
nodes. The superscript “*" denotes the “solved™ mark.

Definition Initial Computation Forest

A computation forest F is an initial computation forest of goal T = {A;, Aa,...,4:},
when F consists of just k root unmarked body nodes labelled with (A4;,{ },Cy,), (42,{ },Ci,)
s ees (Ar,{ }Ci), where each C;, is any clanse in P defining the predicate of 4; for
I'=1,2,...,k These body nodes have no sibling gunard nodes. {See the next explanation of
immediate extension.)

Example 3.1.2 F below is an initial computation forest of {join([1],[], X), join(X, [2], 2)}.

join{[1],] 1,X} join(X,[2],Z)
{} {}
Cq Gl

Definition Immediate Extension of Computation Forest
A computation forest € is an immediate extension of 7 when G is obtained from F by

the following operation: Let v be an unmarked terminal node of F which is

{a) either a guard node
(b) o1 a body node whose all sibling guard nodes are marked “solved.”

Let (A, R,C) be the label of v.

Case 1 : When A4 is not an equation, the terminal node v is said to be GHC resolvable if

the GHC clanse < is of the form

H:-G;,Ga,..., G [By,Ba,...,B, (m,n >0)

such that A is an instance of H, say by substitution 5. Then

{(12) add m unmarked child guard nodes of v labelled with (G,n, Hy,C;,),(Gan, H9, Cish
vooy (Gmn, Hy,Ci ) to v, where each C;, is any clanse in P defining the predicate of
G for 1=1,2,...,m. (These nodes are called sibling guard nodes of other child body
nodes defined in (1b}.)

(1b} add m unmarked child body nodes labelled with (Byn, R, C;,),(Ban, R,Ci,)s. .., (Bav,
R,C;,) to v, where each Cj, is any clanse in P defining the predicate of B) for | =
1,2,...,n.

(l1c) when m = n =0, mark the just GHC resolved node “solved,” and repeat marking any
unmarked node “solved” when all its child nodes are marked “solved.”

In this case, G is called an immediate extension of 7 with substitution <.

Case 2: When A is an eguation 5 =t (and C is “X = X™), the terminal node v is said to

be GHC resolvable if s and t are nnifiable, say by m.g.u. #, and # does not instantiate the

variables oceurring in R, ie., B8 = R. Then

(2a) modify the label (A', R, C") of each node 1o (4’8, R'9,C"), and

(2b) mark the just GHC resolved node “solved,” and repest marking any unmarked node
“golved” when all its child nodes are marked “solved.”

In this case, § is called an immediate extension of F with substitution 8.

One will immediately understand why Hy is the instantiation restriction of each child
guard node. One might, however, wonder why R is the instantiation restriction of each child
body node. The reason is as follows: Suppose that a node is GHC resolved to generate
a child goard node labelled with (G;q, H5,C), and the child gnard node is to be GHC
resolved. Then, some of the variables occurring in G;y, which accur only in the guards
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Gin,Gam,...,Gm7, may be instantiated when Gin is solved, while those in H 5 may not be
instantiated, since the goals invoked from Gin are invoked from Hy indirectly.

Definition Extension of Computation Forest

A computation forest G is an extension of a computation forest F with substitntion
o', when € is obtained from F through {possibly no) successive application of immediate
extensions with substitutions #y,8s,...,6 and ¢' is the composition #;8--- ;.

Example 3.1.3 Computation forest F; below is an immediate extension of Fp in Example
3.1.2.

join(f1],[ 1,X) join(X,[2],Z)
{} {1}
Cy C,
!
X=[1)
{1}
Co
Compnutation forest F2 below is an immediate extension of F; above.
jein([1).{ 3,011 jein([1},[2],2)
{} {}
Cq Cy
I
[1]=01]"
{}
Co

Both F; and F; are extensions of Fq

Definition Committed Forest and Commiited Extension

A computation forest F is called a committed forest when any node whose instantiation
restriction R is not the empty set are marked “solved.”

A committed forest F is called a committed extension of goal I' with answer substitution
¢, when F is an extension of an initial computation forest of T' with substitution ¢', and
is the restriciion of ¢' to the variables occurring in T.

Definition Maximal Committed Forest and Maximal Committed Extension

A committed forest JF is called a maximal committed forest, when there exists no
commitied forest {(except itself) which iz an extension of F.

A maximal commitied forest F is called a maximal committed extension of goal I' with
answer substitution ¢, when F is a committed extension of I' with answer substitution o.

Example 3.1.4 Computation forest F; is a committed extension of goal T' = {jein([1],[], X),
join(X,12],2)}. Computation forest F; is also a committed extension of I'. Although
computation forest Fy below is an immediate extension of Fa, it is not a committed extension
of T, since the node labelled with (1 < 2, {join([1],[2], Z)},Ce) is not marked “solved.”
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jain{[l{],[}],mj- join([1],[2].Z)

{}
Ce C
| , | \
[]=0J 1<2 Z=[1121] join([ },[2],21)
{} {rein((1), 2], 2)} {} {}
Co Ce Co Cs

However, computation forest F; below is a committed extension of I

join([2].[ J.[3))" join{[1],[2],Z)
{} {1}
. C,
| S | \
= 1<2° Z=[21)  join([ 1{2),21)
{} {jein([1],[2], 2)} {} {}
Cn cﬁ CD C;
|
0<1®
{7ein([1],12], 2)}
Cs

Remark. Our operational semantics is different from the original execution mechanism by
Ueda [41] in several respects.

(a)

(b)

(d)

Qur operational semantics just specifies possible construction of computation forests.
The original execution mechanism by Ueda discards alternative choice of clanses once
all sibling guard nodes are marked “solved.”

Our operational semantics inhibits GHC resolution at body nodes untill all sibling
guard nodes are marked “solved.™ The original execution mechanism by Ueda permits
it as far as it does not instantiate the variables occurring in the guard atoms, slthough
no actual implementation employs this mechanism,

Our operational semantics assumes that the application of m.g.u. & to the label of
each node in & compuiation forest (the operation at step (2a)) can be done as an
indivisible operation. The original execution mechanism by Ueda does not assume
such indivisibility (¢f. Ueda [35]). Such indivisibility is problematic, in particular
when a distribated implementation, which may assign these nodes to different processor
elements, is employed. It is & well-known pragmatics in the circle of GHC programming
that the programming styles assuming such indivisibility should be avoided as much as
possible, e.g., the use of meta-predicate ver(X) for shared variable X. However, this
assumplion does not affect the semantics to be explained in the following.

The clanse used at GHC resclution is fixed as the third element of each label before
the node is actually GHC resolved. This is just for simplicity of explanation, and does
not affect the semantics to be explained in the following.

3.2 Success Forest and Suspension Forest

The definition of computation forest naturally introduces a partial ordering relation

between committed forests. (Intuitively, this ordering means that computation forest F can
be extended to & when additional instantiation is applied 1o all the node labels of F.)
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Definition Extension Ordering between Committed Forests

Let F be a committed extension of geal I' with answer substitution & and G be a
commitied extension of goal I'# with answer substitution 7. Then, F is said to be extensible
to ¢ and denoted by F < § when there exists a substitution 4 for T's such that G is an
extension of Fn, where Fn is a computation forest obtained by applying 7 to all the node
labels (except the clause paris) of F.

Example 3.2.1 Consider the GHC program of Example 2.1 defining “join,” *<™ and “>.7
Let F and © be two computation {orests {trees) below:

join(X,[2],2) join([1],[2],[1,2))"
{} {}
Cy Cy
; | 5
127 [1,2]:[1,2]‘ Jﬂ'm{[ ]r[E}I[EH-
{ein(1),[2],[1,2])} - {} {}
h “ N
0£1" [2]=02]
{jein([1],[2],[1,2])} {}
G} Cl]

Then JF is extensible to G.

Definition Maximal Committed Subextension
Let I' and A be goals, 7 U § be 2 maximal committed extension of goal TP UL A#,
_where the root nodes of F and G are originated from the root nodes with atom parts in I'¢

and Af, respectively. A commitied extension M of goal T' is called the maximal commitied
subextension of T in F UG when

(&) H is extensible to F, and
(b) there is no committed extension H' of goal T' (except M) such that H < X' < F.

Example 3.2.2 Consider the GHC program of Example 2.1 defining “join,” “<™ and “>.”
Let UG be 2 maximal committed forest of {join([1],[ ]. X), jein(X,[2], Z)} below:

jﬂi.ll[[ 1]|[ J:[]]}. jm[ﬂl:ﬂ]l[!iﬂ }.
{1] {1}
Cs Cy
| n | N
[1=0) 1<2 [1,2)=(1,2]"  join([],[2],[2])*
{} {7ein([1], [2], [1, 2])} {1} {1}
e
o<1 [2]=[‘2]'
{}

{join([1),[2),(1,2])}
Cs Cy

Let H; and H, be two committed forests (irees) of {jein([1],[ ], X)} and {jein(X,[2], 2}}
below:
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join([3],{ 1,1])" Join(X,[2],2)
{} {}

Ca Cy
|

=01
{}
Co

Then, H; and Ha above are maximal committed subextensions of {join([1],[ ], X)} and
{join(X,[2],2)} in FUG.

In the discussion in Section 4 and 5, we will focus our attention on the following class
of computation foresis.

Definition Success Forest, Suspension Forest and Success-Suspension Forest

A committed extension F of goal T with answer substitution ¢ is called a success forest
of I with answer substitution o, when all nodes of F are marked “solved.”

A committed extension F of goal T’ with answer substitution « is called a sospension
forest of [ with answer substitution «, when

(a) F is not yet a success forest,
(b) F is a maximal commitied subextension of G for some success forest G of ['f.

A committed extension F of goal T' with answer substitution & is called a soccess-
suspension forest of I' with answer substitution ¢, when it is either a success forest or 2
suspension forest of I' with answer substitution #. The multiset of all the atom parts of F's
nnmarked terminal nodes is called the nnsolved goal of F.

Example 3.2.3 Fg below is a success forest of {join([1],[ ], X), jein(X,[2], 2)}.

join([1],[ J,(1])* join([1],[2),[1,2])"
{} {}
Cy Gy
| / I \

[)={1) 1< =02 oin(( L2 i2)"
{1} {7oin([1], (2], [1,21}} {} {}
I

0<1" [2}=[2]"
{jein([1],[2],(1,2]}}
' Cs Co

The computation forest below is a suspension forest of {join(X,[2], Z)}.
join(X,[2),Z)
{1}
Cay

Note that, for any success-suspension forest F U G of goal T# U Af, there exists a
unigue maximal committed subextension of I' in F U G, and it is either a snccess forest or a

suspension forest. The following lemma is to be used extensively in the following inductive
proofs.
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Lemma 8.2 Let F be a maximal committed extension of goal {43, Az,..., As} with answer
subetitution #. If # is not a renaming substitution, then there exists an atom 4; (1 <1 < k)
such that the answer substitution of the maximal committed subextension of {4;} in F is
not a renaming substitution.

Proof. If there is no such A;, then let § be the computation forest consisting of maximal
committed subextensions of {4:},{4a},...,{Ax} in F. Then, ¢ is a maximal committed
extension of {4, Az,...,4:} whose answer substitution is a renaming substitution and which
is extensible 10 F. This contradicts the assumption that § is & maximal committed extension
of {ﬂl,ﬁg, . .,Al}.

Remark. One might have thought that it is a little unnatural that the substitution @ is applied
to the label of each node at step (2a) in the definition of “immediate extension.® Indeed, it
seems mote natoral to modify the operation at step (2a) as follows:

(2a) modify the label (A', R',C') of each unmarked terminal node (except the just GHC

resolve node ) to (A'8, R'6,C"),

becanse not only it is useless to apply # to all the nodes but also the modification above
leaves the tracks of how GHC resolution is applied. However, according to this modification,
the labels of corresponding nodes might be different for two computation forests that are
substantially identical but different only in the order of GHC resolutions applied, which
brings a litile complication so that we have employed the definition before.

4. Semantics of Monotonic GHC Programs

- This section first introduces a class of GHC programs, called monotonic GHC programs,
for which the operational semantics described in the previous section can be very simply
abstracted. Then, it is shown that the denotations of composed goals are computed from
those of composing atoms, and two equivalent subgoals can be replaced with each other w.r.t.
this semantics.

4.1 Monotonic GHC Programs
(1) Monctonicity of GHC Programs

Definition Monotonicity of Goals, Atoms and Predicates

Let P be a GHC program. A goal I' is said to be monotonic in P when, for any instance
Il of T" such that

(a) there exists a success-suspension forest F of II, say with answer substitution &, and

(b) there exists a success-suspension forest G of llo, say with answer substitution r,
there exists a success-suspension forest ¢’ such that

(a) G'is a success-suspension forest of Il with answer substitution or, and

(b) the unsclved goal of §' is identical to that of G.
An atom “A” is said to be monoteonic in P when singleton goal {A} is monotonic in P. An
n-ary predicate “p” is said to be monotonic in P when atom p(X;, X2,..., ) is monotonic
in P, where X, X3,..., X, are distinct variables.

Definition Monotlonicity of GHC Programs
A GHC program P is said to be monotonic when any predicate is monotonic in F.

Example 4.1.1 Let Pjgin be the GHC program of Example 2.1 defining “join,” “<” and
“>." Then, Pjsin is monotonic. For example, “join” is monotonic. The reason is as follows:
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Suppose thal there exists 2 success-suspension forest F of {join(ty, t9,13)} with answer sub-
stitution o and a success-suspension forest of {join(1y,12,12)0} with answer substitution

r. Then,
{a) if the clause part of & non-terminal node of F is C, or Ca, the same clause is the clause
part of the corresponding non-terminal node of G, and
(b) if the clause part of & pon-terminal node of F is C3 or Ca,
(b1) either the same clause is the clause part of the corresponding non-terminal node
of G,
(b2} or the opposite clause is the clanse part of the corresponding non-terminal node
of ¢ when both the first and the second arguments of the atom parts aze [] in G.
Let ' be the success-suspension forest obtained from G by changing the clause part of the
non-terminal nodes to conform the clause part of the corresponding non-terminal nodes of
F. Then, G' is a success-suspension forest of {join(ty,12,13)} with answer substitution or,
and the unsolved goal of @' is identical to that of G.

Example 4.1.2 Let Pecho be the following GHC program:

C,: shout-wait(X,Y) = | X=0, wait0(Y).

Cy: shout-wait(X,Y) - | X=1, waitl(Y).

Ca: echo-back(0,Y) - | Y=0.

C4: echo-back(1,Y) - | ¥Y=1.

Cg: wait0(0).

Ce: waitl(1).
Then, P.cho is monotonic. For example, 4 hout-wail® is monotonic. The reason is as follows:
Suppose that there exist 2 snccess-suspension forest F of {shout-wait(s,1)} with answer sub-

stitution ¢, and a success-suspension forest & of { shout-wait(s, t)e} with answer substitution
7. Then,

(a) s is a variableor 0, 50 is 0, 7 is <>, and
(al) whentissa variable, te is a variable, or
{22) when 1is 0, ter is O, and
(b) s is a variable or 1, s¢ is 1, ris <>, and
(b1) when t is a variable, 1o is a variable, or
(b2) when tis 1, to is 1.
Hence, for any success-suspension forests F,G in the definition of monotonicity of “shout-

wait,” the computation forest G itself is a computation forest of {ahaut—wnﬂ(:,t]} with
answer subsiitution o.

Example 4.1.3 Let Figop be the following GHC program:
C: loop(X) = | loop(X).
Then, Pigop is monotonic. For example, “loop™ is monotonic, because the initial computation

forest of {loep(t)} is extended to the commitied extensions below, hence there is no success-
suspension forest of {loop(t)}
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loop(1) loop(t) loop(t)

} {} {}
C C C
| |
loop(t) loop(i)
{} {}
C C
|
loop(1)
{}
C

Example 4.1.4 Recall the GHC program Fp, of Example 1.4 as follows:

Cop: pHX,Y,Z) :- | double(X,XX),double(Y,YY) merge(XX,YY,W),one-by-one(W,Z).

Coz: p2(X,Y,Z) :- | double(X,XX),double(Y,YY),merge(XX,YY, W) two-ai-once(W,Z).

Cps: double(0,AA) - | AA=[0,0].

Cps: double(1,AA) - | AA=[11].

Cos: merge([A|Xs),Ys,Zs) - | Zs=[A|Zs1), merge(Xs,Ys,Is1).

Coe: merge(Xs,[A]Ys],Zs) - | Zs=[A|Zs1], merge(Xs,Ys,Zs1).

Cor: mezge([ ],Ys,2s) - | Zs=Vs

Cos: merge(Xs,| ],Zs) - | Zs=Xs.

Coe: one-by-one([A|W),Z) :- | 2=[4|21), next-one(W,21).

Cip: mext-one([B|W],Z) - | Z=E.

Cyy: two-at-once([A,B|W],Z! - | Z=[A|21], Z1=(B].

Cio: complement([0|W],Y) :- =1,

Ciz: complement{[1]W].Y) :- | Y=0.

Then, Pg, is monotonic. For example, “merge” is monotonic. The reason is as follows:
Suppose that there exists a success-suipension forest F of {merge(ty,1a,13)} with answer
substitution & and a success-suspenzizs farest G of {merge(ly,12,13)0} with answer substi-
tution 7. Then,

{a) if the clanse part of & Ron-tzzmirs node of F is Cos or Cos,

(al) either the same clans: - :z¢ zlause part of the corresponding non-terminal node
of G,

(a2) or the opposite claus: is <5 clause part of the corresponding non-terminal nodes
of G when the head slemezis of the first and the second arguments of the atom
parts are identical in &, and

(b} if the clause part of a non-terminal node of F is Cpr or Cos,

(b1) either the same clanse is the clause part of the corzesponding non-terminal nodes
of G,

(b2) or the opposite clause is ilie clause part of the corresponding non-ierminal nodes
of G when both the firs: z=< the second argnments of the atom parts are [] iz .

Let §' be the computation forest obi1:-=2 from G by changing the clause part of non-terminal
nodes to conform the clanse part -7 '-: -orresponding nodes of . Then, §' is a success-
suspension forest of {merge(ty, 1z 15, with answer substitution o7, and the unsolved goal
of ¢' is identical to that of C.

Example 4.1.5 Let Phop be the ©Z 7 zrogram as follows:
Cyp:mon(X,Y) - | X=C. vl %),
Cz: non(X,1).
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Cy: any(0,Y) - | Y=0.
C4: any(0,Y) - | Y=1.
Cx: wait0(0).
This program is not monotonic, because, although
(2) computation forests F left below is 2 suspension forest of {non(X,Y)} with answer
substitution < X < 0>, and
(b) computation forest G right below is a suspension forest of {non(0,Y)} with answer
substitution <>,
there exists no success-suspension forest §' such that ¢' is a success-suspension forest of
{non(X,Y)} with answer substitution <.X <=0> and the unsolved goal of ¢' is identical to
that of G.

non({0,Y) non(0,Y)
{} {1}
G Cs
P
0=0" waito(Y)
{} {}
Co Cs

(2) Monotonicity for Composed Goals

The definition of monotonicity does not immediately guarantee that the monotonicity
holds for composed goals.

Theorem 4.1 If a GHC program P is monoionic, then any goal T is monotonic in P.

Proof. For two substitutions # and o', we will define ' < ¢ when there exists a non-renaming
substitution n such that 5o’ = . This partial ordering < is obviously well-founded. (The
least substitution w.r.t, this partial ordering is a renaming substitution. For simplicity, <>
is nsed as a representative of renaming substitutions in the following proof, since the empty
substitution <> is a special renaming substitution.) The theorem is proved by induction on
this well-fonnded ordering of answer substitutions.

Let F be a success-suspension forest of Il with answer gubstitution ¢, and let G be a
success-suspension forest of Ile with answer substitution T.

Base Case: When o is <>, computation forest § itself is a success-suspension forest of II
with answer substitution or.

Induction Step: When ¢ is not <>, from Lemma 3.2, there exists an atom A in II such
ihat the maximal committed subextension ¥4 of {A} in F has a non-renaming amswer
substitution o4. Let ¢' be the substitution such that o740 is o, and I be Ma,. Then, Fis
a success-suspension forest of [I' with answer substitution o' and § is a success-suspension
forest of II'¢’ with answer substitution 7. From the induction hypothesis for o, there exists
a success-suspension forest §' of II' with answer substitution o' and the unsolved goal of ¢
is identical to that of G.

Let G, , be the maximal committed subextension of {44} in ¢' with answer substi-
tation 74. From the monotonicity of P, there exists & success-suspension forest G such that
" is a success-suspension forest of {A} with answer substitution g474 and the unsolved
goal of G'] is identical to that of G}, -

Let H" be a success-suspension forest of Il obtained by
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(a) first applying GHC resolution in the same way as G, and

{b) then applying GHC resolution in the same way as §'.
Then H" is a success-suspension forest of Il with answer substitution o and the nnsolved
gozl of H" is identical to that of G.

4.2 Sucecess-Suspension Set
Mow on in Section 4, let P be a2 monotonic GHC program.
{1) Success-Suspension Atom

Definition Success-Suspension Atom

An atom A is called 2 suecess-suspension atom (resp. suecess atom, suspension atom)
in P when there exists a snccess-suspension forest (resp. success forest, suspension forest) of
goal {A} in P. The success-suspension forest is called the associated forest of A.

{2) Success-Suspension Set for Composed Goals

Definition Success-Suspension Pair for Goals

A pair (T,T'e) is called a success-suspension pair (resp. success pair, suspension pair)
for goals of P when there exist a success-suspension forest (resp. success forest, suspension
forest) F of goal T with answer substitution ¢ in P. The success-suspension forest F is called
the associated forest of (I', I'e). Two success-suspension pairs are considered identical when
they are identical modulo renaming of variables.

Definition Success-Suspension Set for Goals

The set of all the success-suspension pairs (resp. success pairs, suspension pairs) for
goals of P is called the success-suspension set (resp. swccess set, suspension set) for goals of
P, and dencted by SS(P) (resp. #uccess( P), suspension(P)}).

The overlining is nsed to indicate that the quantities are concerned with the compu-
tation whose initial goals are multisets of possibly many atoms, while no overlining is to be
zsed to indicate that the guantities are concerned with the computation whose initial goals
are singleton goals. Note that two pairs corresponding to different computation forests with

the same answer substitutions are comsidered identical elements in success-suspension sets
for goals.

Example 4.2.1 Consider the GHC program P;;, of Example 2.1 defining “join,” “<" and
“».” Then, Fuccess(FPjoin) includes

':{m'!"'ﬂ'!{[l]: [ 1: X),merge(X, [2]1 ZJ} ' {'mtrgt[[I], [ ]! [li]l mfrge{[]]F [21? [1' 2”}}?
that is, {fein([1),[ ], X), join(X, (2], 2)} succeeds with answer substitution < X = [1],Z <=
[1,2] >. suspension( P ) includes

({join([1),Y, X)), join(X,[2], 2)}, {join([1],Y, X), join{ X, [2], Z)}).
that is, {jein([1),Y,X), join(X,[2], Z)} is suspended with answer substitution <>.

Example 4.2.2 Consider the GHC program P, of Example 4.1.2 defining “shout-wait,”
“echo-back,” “wait0” and “weitl.” Then, an initial computation forest of {shout-wait(X,Y),
echo-back( X, Z)} is, for example, extended to the committed forests below:
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sho at-wait(0,Y) echo-back(0 i) shout-wait(1 YY) ech o-back(1,1)"

{} {

C1 Cg Cl G‘E

I | Y |

om0 waito(Y) 0=0" 1=1"  waitl(Y) 1=1"
{} {1 {} {1 {1} {1
Co Cs Co Co Ce Ceo

The left computation forest can be extended to a SUCCESE {orest if variable “Y™ is instantiated
to constant wg™, while the Tight computalion forest can be sxiended to B guccess forest if
variable “Y™ i8 instantiated to constant “17. Hence, auspmsian(}’,chn} incluodes
({shou twait( X, Y ) echo-back(X, FA) R {shaut—wuit[ﬂ, Y),echo-ba ck(0,00});
{{shﬂui-waﬁ{X,Y},cchwback[X, FALE {shnui-waii[l,Y},tcho—hack{‘l?l}]].
that is, {5huut~wait{x ,Y};ccho-buck{x JZ)yis suspended with answer substitutions <X =
0,Z4=0>01< Xe=1,Z«1>- { variable “Z7 were uy * the computation {orests above ale
extended to success forests so that 5ucee8( Pecho) includes
{{shnui—waii[x, Y), echo-back(X, Y )}, {ahwt-wnit(ﬂ.U},zcho-hn:k{ﬂ, o)},
{{shaui-wait{j(, Y},cuho—buckf_x, Y} { shout-wait(l, 1‘_|,cz:ho-i:uci:{1, 1}
that is, {shanl-wail{}.’ Y echo-back( X, ) succeeds with answel substitations < X«
0,Y«=0> apd < X =1, Y12

Example 4.2.3 Consider the GHC program Pioop defining “[ggp.” Them, suapcnsiam{.ﬁm]
is empty, while sueceds( Ploop) includes only pairs of the form

{5y = hysa =10 %k =t} =2~ f9,.--1 8k = 13}

where T is an m.g.1. of {53 = 1,52 = fa,.. 25k = 1 }. (This set is included in surcess( P)
{or any ProgIAm P)

(3) Success-Suspension Set for Atoms

Definition Success-Suspension Pair

A pair (A,Ar) s called 2 success-suspension pair (resp. success pair, suspension pair)
of P when ({4}, {Ac})is e success-SuSpension pair (resp. success pair, snspension pair) fot
goals of P.

Definition Guccess-Suspension Set

The set of all the success-snspension pairs (resp. spccess pair, suspension pair) of P
is called the euccess-suspension set (resp. success set, suspension set) of P, and denoted by
S5(P) (resp- success( P suapcminn[}"}].

Note again that two pairs corresponding 1o different computation forests with the same
apswer substitutions aI¢ considered identical elements in snccessrsnﬁpenaian sets.

Example 4.2.4 Consider the GHC program Fjen- Then, suceess( Pjoin) incindes
Cioin((1), 2), 2), join((1), (2. 0,2D)
auspcnaiun{Pjain] includes

(join(X.[2): 2); join(X, (2], £))-

Example 4.2.5 Consider the GHC programm Foeho. Lhem, success( Pecho) includes
(s hout-wait(X,0), shout-wait(0,0)),
(shout-wait(X,] )s shout-wait(1,1)})-

suspe-nsinn( P.cho) includes
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(shout-wait{ X, Y), shout-was2(0,Y)),
(shout-wart( X, V), shout-wait(1,Y)).

Example 4.2.6 Consider the GHC program Fiaep. Then, success( Ploop) includes only pairs
of the form

(¢ =1t,30 =17),
where ¢ is an m.g.u. of 5 and 1. suspension(Pasp) is empty.

(4) Denotation of Monotonic GHC Programs

Definition Denotation of Goals, Atoms and Predicates of Monotonic GHC Programs
Let P be a monotonic GHC program. The denotation of goal T in P is the following
set of pairs:
Dp(T)={ (I,Ie) | I is an instance of I' and (I, o) € S5(P) }.
The denotation of atom “A” in P is the following set of pairs:
Dp(A)={(B,Bc) | B is an instance of 4 and (B, Be) € 55(P) ).
The denotation of n-ary predicate “p™ in P is the denotation of atom (X, Xa,. .., Xa), e,
DP{P} = { ':F“h"zw L rtﬂ]:P“l;tZ- .- -rth}u] I
(Pf‘h t2,... Jn)rP(‘h I2,-.4, I:]g] € SS(-F]
where 13,15,...,1, are any terms }.
The subscript P of Dp is ommitted when P is obvions from the context,

Definition Denoctation of Monotonic GHC Programs
The denotation of monotonic GHC program P is the union of all the denotations of
predicates | Dp(p), ie., SS(P).
P

Note that we have thrown away the details of associated forests except their initial goals
and their answer substitutions so that only the sets of atom (or goal) pairs are considered in
the denotations.

Example 4.2.7 Consider Pjoin. Then D(join) includes, for example

Goin([1),,2), join([1]{ 1. (1)),

Goin([2].Y,a]), join({3},Y,[1])). _
D(<) includes any pair (1, < 13,1, < 13) when some instances of ty and i are suc'(0) and
suc’(s), where i < j and s is any term. Similarly D(>) includes any pair (t; < 15,1, < 1)
when some instances of #; and 1, are suc’(4) and suci(0), where § < j and s is any term.

Example 4.2.8 Cousider Pepo. Then D(shout-wait) includes
(shout-wait(X,Y), shount-wait(0,Y)),
(shout-wait(X,Y), shout-wait(1,Y)),
(shout-wait(0,Y), shout-wait(0,Y)),
(shout-wait(1,Y), shout-wait(1,Y)),
(shout-wait(X,0), shout-wait(0,0)),
(shont-wait(X,1), shount-wait(1,1)),
(shout-wait(0,0), shout-wait(0,0)),
(shout-wait(1,1), shont-wait(1,1)).

D{echo-back) ineludes
(echo-back(X,Y), echo-back(X,Y)),
(echo-back(X,0), echo-back(X,0)),
(echo-back(X,1 }, eche-back(X,1}),
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(echo-back(0,Y), echo- back(0,0)},
(echo-back(1,Y), echo-back(1,1)),
(echo-back(0,0), echo-back(0,0)),
(echo-back(1,1), echo-back(1,1)).
D{wait0) and D(waitl) include

(wait0(Y), waitd(Y)),

(wait0(0), wait0(0)),

(wait1(Y), wait1(Y)),

(waitl(1), wait1{1)).

Example 4.2.9 Consider Pioop. Then D{loop) is empty.

Example 4.2.10 Consider the GHC program Ppa of Example 1.4 defining “pl,” “p2,”
“double” “merge,” “one-by-ome,” “nezi-one,” “two-ai-once” and “complement.”™ Then
D{merge) includes, for exzmple,

(merge([0,0),YY,W), mer ge([0,0],YY,[0[W1}))
which corresponds to the snepension forest below. (Notice the clause part Cps of the right
child node.)

merge([0,0],YY,[0]W1])
{}
Cus
/ A\
[ojw1)=[0 W) merge([0],YY,W1)
Co Cos

D(p1) includes, for example,

(p1(0,Y,2), p1(0,Y,[0[Z21])),
which corresponds to the suspension forest below:

p1(0,Y,[0|Z1])
{1}
Co1
double(0,[0,0])" double(Y,YY) merge([0,0],YY,[0]W1]) one-by-one( [0]W1],[0]Z1])
{} {} {} {}
Cos Cos Cos Cos
| I\ /\
f0.0}=[0.01 (O[W1]=[0]W1]* merge([0],YY,W1) [0]Z1)=[0|Z1]" mext-one(W1,21)
{1} {} {1} {1} {}
Co Co Cos Co Cio

while D(p2) does not include
(p2(0,Y,Z), p2(0,Y,[0]22])).
Hence, “pl” and *p2” are discriminated in our success-suspension set semantics.

Remark. One might expect that we may adopt the success-suspension set for goals S3(P)
as a semantics of GHC programs. However, it is too global. The set SS(F) considers all
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possible changes of goals whose initial goals possibly consist of many atoms. If this line were
followed, the denotation of n-ary predicate “p” would be defined as follows:
Dr(p) = {(T,To) | (T,Tc) € 55(P) and
I' contains p(t,12,...,1,) , where y,15,...,1, are any terms }.
However, according to this definition, the denotation of “p™ is concerned with all possible
executlon environment, i.e., co-existing goals, so that it lacks a compositional character. This
set D(p) depends on other predicates in P, which might have no relation with “p.”

4.3 Goal Composition for Monotonic GHC Programs
(1) Computation of Success-Suspension Set for Composed Goals

In the previons section, the denotations of aloms were defined nsing the success-
suspension set for atoms, Then, how can the denotations of composed goals be restored
from those of composing atoms?

We will prepare one more notion, which is to be used when it is necessary to obtain A
from a given Aeg.

Definition Descendant Goal

Let P be a monotonic GHC program, T be a multiset of success-suspension atoms in
P of the form

{Ahﬂia*“r‘&k}'
A multiset of success-suspension atoms A in P of the form
{BIIBEI-'-:Bi}-

is called » descendant goal of I' when A4, is an instance of B; by a common substitution o
forl=1,2,...,k

Note that, for any given A and substitution o, descendant goal A always exists,
although it is not always unique. In the following goal composition, when A appears in the
same contexi as Ag, it denotes any of the descendant goals of As.

By abuse of terminology, we will nse the following terminology:

Definition Goal Interpretation

Let P be a monotonic GEC program. A goal interpretation of P is a set of expressions
of the form

({Ah A;. T |Ai}l {‘4‘161 -'42‘,! e 1"!&’}]
where A; and A;o are success-suspension atoms for I=1,2,...,k.

Then the transformation for goal composition is defined as follows:

Definition Transformation for Composing Goals of Monotenic GHC Programs

Let P be a monotonic GHC program, and Tiompose be the transformation of goal
interpretations defined as follows:

Teompose(T) = { (TUA,Te U Ae) | (T, Te¢) and (Ao, Ac) arein ] }
U{(TuA,TerUAer) | (T, I'e) and (ToU Ao, ToruAer) arein I }.

The first set in the right-hand side, which corresponds to the base case of the inductive
definition, says that, if goal T is maximally extended with answer substitution o, and goal A
is maximally extended without instantiation when ihe instantiation o is received, then the
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composed goal ['U A is maximally extended with answer substitution #. The second set in
the right-hand side, which corresponds to the induetion step of the inductive definition, says
that, if goal I' is maximally extended with answer substitution ¢, and goal TUA is maximally
extended with answer substitution v (possibly including further instantiation of I'c) when
the instantiation ¢ is received, then the composed goal ' U A is maximally extended with
answer substitution er.

Theorem 4. 3,1 Let P be a monotonic GHC program. Then
S5(P) = U Teompose (SS(PYU{(T,O)}),
where atom pur I[A Ar) in S5(P) is identified with goal pair ({4}, {Az]}).

Proof. We will show the ntlnwing twe inclusion relations:
Right Inclusion: S5(F) 2 U Teompass(SS(P)U {(3,0)}),

Left Inclusion: S5(P) C U campare(SS(P)U{(0,0)}).

Note that the monotonicity q:ml;r aﬁ'er_ts the proof of "]-'ughl Inclusion.”
Right Inclusion: We will show that any element in I7,,, ;... (SS(P)u{(D0,0)}) is an element
in S5(P) by induction oz n.
Base Case: When n = 0, then ﬁ{P] 2 55(Pyu{(D,0)} is obvious.
Induction Step: Suppose that S5(P) D Tompose(SS(PYU {(O,0)}).
As for the first set in the right-hand side of the definition of T.ompose, let (I, I'e) and

(A, Ac) be pairs in T, 0, (SS(P)U{(D,0)}). From the induction hypothesis, there exist
their associated forests F and §. Then the union F U ¢ is a computation forest of T'U A
with answer substitution o,
_ As for ihe second set in the ﬁght -hand side of the definition of Teompose, let (I', o)
and (I'c U Ao, Tor U Aer) be pairs in T7,.,..(SS(P) L {(0,0)}). From the induction
hypothesis, there exist their associated forests F and GUH. Let G' be the maximal committed
subextension of I'e in G U H with answer substitution . Then, from the monotonicity of P
and Theorem 4.1, there must exist & success-suspension forest G" such that G" is a success-
suspension forest of T with answer substitution 7' and the unsolved goal of ¢" is identical
to that of G'. Let GU H be the success-snspension forest of I' U A obtained by

{a) first applying GHC resolution in the same way as ¢", and

(b) then applying GHC resolution in the same way as § U H.
Then, G U H is a success-suspension forest of I U A with answer substitution o,

Left Inclusion: We will show that any element in S5(P)isin U mpm:{ss{}’]u{(ﬂ, o)

by induction on the well-founded ordering < of answer snbsht‘ulmns. (See the proof of
Theorem 4.1.)} Let (I',['c) be a pair in S5(P), and F be its associated forest.

Base Case: When ¢ is <>, let T' be {4;,43,...,4x}. Then the component computation
trees of F, whose atom parts of the root labels are A;, As,...,.A;, aTe success-suspension
forests of {41}, {42},...,{As} with answer substitution <>. Because the corresponding
pairs are all in SS(P), by applying Teompose 1o SS(P) k times, (T, T) is in T2, ., (SS(P)U
{(0,0)}).

Induction Step: When # is not <>, from Lemma 3.2, there exists an atom A in T such that
the maximal committed subextension ¥, of {4} in F has non-renaming answer substitntion
4. Hence, pair ({A}, {Ae,})isin T:ampﬂu{SS[P)U {{0,0)}) for any I > 0. Let o' be the
substitution such that ¢4¢' is #. From the indunction hypothesis for &', pair (Tey,Toao') is
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in TP mpese (SS(P)U{(D,0)}) for some n. From the definition of transformation Teompore,
pait (T,Ta,e’), ie., (T,T0)is it U Thompen (SS(P)U{(D,O))).
=0

Example 4.3.] Consider Pjgin. Since 55(Pjoin ) includes

(jein([1],[2],2), join([2],[2],13,2])),
_ Qoin([1),] L)), jein(],[ LLD
S55(Pjoin) includes

({join([11,[ 1121}, join([1]},[2),2)}, {ein{[1),[ J,(2]}, jein([1],[2]),[2,2])})-
Again, since 55(Pjuin) includes

(Gein([1],[ 1.X), Jein{[1],[ L,[2])),

(Pjoin ) includes

({ein([1),[1,X), join(X,[2],2)}, {join([1],[ J(1]), join{[1},(2],(1,2)})-

Example 4.3.2 In the previous example, the information of instantiation is propagated from
one process to the other process only once. In general, the execution proceeds by passing
information to each other more than once, e.g., “seesaw™ of Example 1.3. Here, consider
P,.ho. Since S5(Pecho) includes
(echo-back(0,Y), echo-back(0,0)),
(echo-back(1,Y), echo-back(1,1)),
(shout-wait(0,0), shount-wait(0,0)},
(shout-wait(1,1), shout-wait({1,1)),
55(P..ne) includes
({shout-wait(0,Y), echo-back(0,Y)}, {shout-wait(0,0), echo-back(0,0)}),
({shont-wait(1,Y), echo-back(1,Y)}, {shout-wait(1,1), echo-back(1,1)}).
Again, since SS(Fecho) includes
(shout-wait(X,Y), shout-wait(0,Y)),
(shout-wait(X,Y), shout-wait(1,Y)),
S 5(Pecho) includes
({shout-wait(X,Y), echo-back(X,Y)}, {shout-wait(0,0), echo-back(0,0)}),
({shout-wait(X,Y), echo-back(X,Y)}, {shout-wait(1,1), echo-back(1,1)}).
Note that these pairs in Fuceeas(Pono) would not be computed if suspension(P..n,) were
not included in the denotation.

Example 4.3.3 Consider Pigop. Since SS(Peop) includes only pairs of the form
(# =150 =17

where ¢ is an m.g.u. of s and ¢, 55(P,,p) includes only pairs of the form
({81 =t 82 =13,..., 0 =ti}, {5y =11,82 =1a,..., 5 = i }7),

where 7is an m.g.u. of {s; = t;,50 =13,...,5, = 4 }.

Example 4.3.4 Consider the GHC program Pp,. First, since SS(Fp,) includes
(p1(0,1,[0]21]), P1(0,3,[0,1])),
(complement([0,1],1), complement([0,1],1}},
S5(Pp,) includes
({p1(0,1,[0]1Z1]),complement({0]Z1},1)}, {p1(0,1,{0,1]),complerent([0,1],1)}),
Next, since S5(Pg, ) includes
__ (complement([0|21],Y), complement([0]Z1],1)),
SS(PBA} includes

({p1(0,Y,[0]Z1]),complement([0]Z1],Y)}}, {p1(0,1,[0,1]),complement([0,1},1)})-
Then, since 5S5(FPga) includes
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U0Y.2), PO, RIZI),
S5(Ppa) inclndes

({p1(0,Y,Z),complement(Z,Y}}, {p][fhl,[E!,‘.I]],cumplement([ﬂ,l],]}}],
while S5(FPp4) does not include

({ p‘l{U,Y,ZJ,cnmplement{I,Y]}, {p2(0,1 10,1]),complement([0,1],1)}).
since S5(Pg4) does not include

(p2(0,Y,Z), p2(0,Y,[01Z1]))-

Remark. It is not difficult to modify the definition of Teompose above 50 a5 1o Tespect the
distinction between success pairs and suspension pairs. Let Teompose be ithe iransformation
of pairs of goal interpretations defined as follows:
Tmmppu[fi: Ii] = [-Il: J?J where
J,={(TUA,Teu Ad) | (T, To), (Ao, Ag) arein I; }
U{(Tuj,lTeru Aer) | (T, Te)isin iU Tg, and (TeU Ao, TorU Ao} isin I, }.
Jo={ (TuA,Teuas) | (T, T'e),(Ae, Ag) are in [ U Iz and at least one isin Jg }
u{(fTva,Teruaer) | (T, I'e) isin Iy U Iz, and (TeuAr,TorUder) isin Iz }-
[=_=]

Then, (Fuecess( P), suspension(F)) = U T o pose(success(P) U {(T, 0}}, suspension( P)).

(2) Replacement with Equivalence

s it permissible to replace one atom in & goal with another atom, when they have the
same denotations?

Definition Equivalent Goals, Atoms and Predicates of Monotonic GHC Programs
Let P be a monotonic GEC program. Two goals T and A are said to be equivalent in

P when

{a) the set of variables oceurting in T' and that in A are identical, and

(b) (Fe,Ter)isin D(T) i and only if (Ae, Aer) is in D(A) for any substitutions & and 7.
Two atoms “A” and “B" are said to be equivalent in P when two singleton goals {A}
and {B} are equivalent in P. Two n-ary predicates “p” and “¢” are said to be equivalent
in P when two atoms p(Xy, X2, .-, Xa) and g( Xy, Xay..., Xn) are equivalent in P, where
X, Xa,..., X, ure distinet variables.

Theorem 4.3.2 Let P be a monotonic GHC program. Then, for any two atoms 4 and B
equivalent in P, goals T'U {A)} and T U {B} are equivalent in P for any goal I'.

Proof It suffices to show that ((L U {A})s, (I U {4))or) is in S5(P) if and only if (I
{B})a, (MU {B})er) is in SS(P) for any 1 and o, 7. Then from Theorem 4.3.1, it suffices
to show that ((TI U {A})e, (T U {A})er) is in T;mw"{SS(P] u {(0,0)}) if and only i
((Mu{B}e.(Mu{B}jer)isin T2 mparel S S(FI LU (G, 0)}) for any I, o, 7 and n. Thisis
easily proved by induction on n using the definition of transformation Toompose -

To summarize, for monotonic GHC programs,
(a) the denotations of composed goals can be computed from the denotations of composing
atoms, and
(b) if two atoms A and B are equivalent, then any two goals obtained by adding A or B
to any common goal aze also equivalent.
Hence, the success-suspension set SS(P) (or something containing the equivalent informa-
tion) is one of the qualified candidates of the semantics of monotonic GHC programs.
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E. Semantics of General GHC Programs

Unfortunately, neither the goal composition method would work nor the semantic prop-
erty in Section 4.3 would hold for general GHC programs if the SucCess-suEpension sets were
adopted as their semantics. This section first examines why the semantics is not appropriate
for general GHC programs, then defines partially ordered snccess-suspension multisets as
their semantics, and last generalizes the results in Section 4.3

5.1 Problems of Non-monotonic GHC Programs

What is the reason the previous goal composition method does not work for non-
monotonic GHC programs?

Example 5.1.1 Recall the GHC program F,,. of Example 4.1.5.
Ci: non(X,Y) - | X=0, wait0(Y).
Ca: non(X,1).
Ca: any(0,Y) :- | Y=0.
Cy: any(0,Y) - | Y=1.
Cs: wait0(0).
Then, since 55( Py.on) includes
(eny(0,Y), any(0,1}),
(non(0,1), non(0,1)),
Teompore (SS( Pagn) U {(T,0)}) includes
({non(0,Y),any(0,Y)}, {non(0,1),any(0,1)}),
Again, since S5( Foon ) includes
{nnn{X:Y}: nun[ﬂ,Y}],
T2 pore (SS(Pacn) U{(D, 0)}) includes
({ron(X,Y),any(X,Y)}, {non(0,1),any(0,1)}).
Hence 55(Puen) would include a wrong pair if the goal composition method for monotonie
GHC programs were adopted for non-monotonic GHC PIOgIams.

Is it the responsibility of the goal composition method, or the responsibility of the
semantics jtself? The following example says that it is the responsibility of the semantics
itself.

Example §.1.2 Consider the following two programs:
Py ¢ non(X,Y) = | X=0, waito(Y).
non(X,1).
non(X,1) :- | X=0.
any(0,Y) :- | Y=0.
any(0,Y) - | Y=1.
wait0(0).
Pz : non(X,Y) :- | X=0, wait(Y).
non(X,1).
non(X,1) - | X=0.
any(0,Y) - | Y=0.
any(0,Y) - | Y=1.
wait(0).
wait(1).
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Then, although D(non) and D(any) are identical for P, and Py, goal {non(X,Y),any(X,Y)}
cannot succeed with answer substitution < X<«<=0Y<1>in P, while it can succeed with
answer substitution < X +0,Y<1>in Fa.

In general, if two computation forests with an identical answer substitntion are consid-
ered identical, then the extension ordering between success-suspension forests is not reflected
in the semantics so thai pairs at different positions w.r.i. ihe extension prdering are consid-

ered identical, which leads the goal composition method in Section 4.3 1o computing wrong
pairs.

5.2 Partially Ordered Success-Suspension Multiset
Now on in Section 5, let P be a general GHC program.
(1) Success-Suspension Atom with Superscript

Definition Success-Suspension Atom with Superscript

A parenthesized superscript of atom A is used as an identifier for success-suspension
{orests of goal {A}. Twe parenihesized superscripts of atom A are identical if and only if the
computation forests of goal {A} identified by those parenthesized superscripts are identical.
(Two parenthesized superscripts of different atoms may be identical even if the computation
forests identified by those parenthesized superscripts are different.) Parenthesized super-
scripts, simply superscript hereafter, are denoted by (a),(b), (), (d), (), (f)-

An atom with superscript A(8) is ealled a success-suspension atom (resp. success atom,
suspension atom) in P when there exists a success-suspension forest (resp. success forest,
suspension forest) of goal {A} in P identified by superscript (a). The success-suspension
forest is called the associated forest of Al®),

Let A(®) and B(® be success-suspension atoms in P whose associated forests are F and
G. Then Af®) < B®) if and only if F is extensible to G.

Note that, an atom A(®) satisfying A(®} < Ac'®) always exists uniquely for any given
success-suspension atom Ao(?) and atom A, because, if G is the associated forest of Ael®),
then A(®) < Ac(® if and only if the associated forest F of Af®) js the maximal committed
subextension of {A} in §.

Example 5.2.1 Consider program Puon. Supe rscripts (1) and (2) are attached 1o non(0,Y) 10
make a distinction between two seemingly identical atoms, because two computation forests
below are different computation forests of non(0,Y).

non(0,Y) non{0,Y)
{} {}
C, Ca
PN
0=0" wait0(Y)
{} {}
Co Cg

Similarly, saperscripts (1) and (2) are attached to non(X,Y), becanse two computation
forests below are different computation forests of non(X,Y).
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non(D,Y) non{X,Y)

{}
G; GE
P
0=0" wait0(Y)
{} {}
Co Cs

Note that, due to the distinction by their snperscripts,

non(X,Y)* < non(0, V)3,

non(X, Y ) < non(0, Y)(2),

non(X, Y)Y £ non(0,Y)),

non(X,Y)? £ non(0, Y )11
Also note that non(0,Y)2) 2 non(0,1), while non(0,Y)® = non(0,1). (In the follow-
ing, when atom A has only one suceess-suspension forest, ils superscript is ommitied for
notational simplicity.)

{2) Partially Ordered Success-Suspension Multiset for Composed Goals

Definition Suoccess-Suspension Pair for Goals with Superscript
A pair (T4®), To!®)) is called a success-suspension pair (resp. success pair, suspension

pair) for goal of P when there exists a success-suspension forest (resp. success forest, sus-

pension forest) F of goal T with answer substitution & in F such that

{a) the superscript (a)is an abbreviation of the sequence of the superscripts (a,){az)--- (ax)
of [''s component atoms A4, 4s,..., Ay, where (a;) indicates that the maximal com-
mitted subextension of {A;} in F is the success-suspension forest of A; identified by
(a))for 1=1,2,...,k, and
(b) the superscript (b) is an abbreviation of the sequence of the superscripts (b1 )(b2) - - (bs)

of I'e’s componrent atoms Ao, Ase, ..., Axer, where (b;) indicates that the I-th com-
ponent computation tree of F is the success-suspension forest of A;c identified by (&)
forl=1,2,...,k.

The snccess-snspension forest F is called the associated forest of the pair. Two success-

suspension pairs with supetrscripts are considered identical when the corresponding goals are

identical modulo renaming of variables and the corresponding superscripts are identical.
Let (I®}, T'o'®)) and (A1), Ar{®)) be two success-suspension pairs of the form

{{ﬁihjri‘l{:h]: L .J‘iih}}- {Ayot®) Aqaits) | Apel®))),
({BEY, BY) . BNy [Byr(e1), Byr(en), . Byrien)}),
Then (1), Tel®)) < (A, Ar(e)) if and only if AL*) < B{*) and Ai0®) < Birl*) for
1=1,2,...,k

Definition Success-Suspension Multiset for Goals

The partially ordered set of all the snccess-snspension pairs (resp. success pairs, suspen-
sion pairs) for goals of F is called the snecess-suspension multiset (resp. success multiset, sus-
pension multiset) for goals of P, and denoted by SS(P) (resp. Figeesd( P), suspension(F)).

Although the term “multiset” is a little confusing, we have used it 1o mean that seem-
ingly identical pairs of goals are distingnished only by their superscripts.

Example 5.2.2 Consider Py.,. Then, the fignre below is a part of §5(Paon )-
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{non{0,1), any(0,1)}

{non(0.0), any(0,0)}
{non(0,0), any(0,0)} {non{0,3), any (0,10}
I\ I\
non(0,Y)M, any(0,Y)V} {non(X0), any(X,0)} {non(0.Y)?, any(0,Y)*} {non(X,1)s any(X. 1)}
{non{0,0), any (0,00} {non(0.0), any(0,0)} {non(0,1), any(0,1)} {non(X,1): any(X,1)}
{nun(}{,Y}“]', a.njr{x,"f]m'} {non{}{,'f]“}, uj{K,Y]“j}
{non(0.0): any(0,0)} {non(X,Y)®, any(X.Y)}
(3) Partially Ordered Success-Suspension Multiset for Atoms
Definition Succexs-SusPenﬁiun Pair with Superseript
A pair [ﬁ'{“],ﬂa{”) is called 2 success-suspension pair (resp. success pair, suspension
pair) of P when (LAY, [Ac)t))is 2 success-SUSpension pair (resp. success pair, suspension
pension pairs- Then I'_A{'\J,A:r“'?‘]

pair) for goals of P.
Let [AL‘j,.&:r{"F‘] and {B{d},Bf{‘]] be two SCCeSs-5uS
ﬁwmﬁ#ﬂﬁmmmhﬂuﬂmAmvmjummAmﬁﬁ.

Suspension Multiset

dered set of all the succ
he succassrsuspensinn mu
by SS(P) (resp- succe

figure below is a part

non{0,0} non(0,1)

non{0,0) non(0,1) non(1,1)

I P I\

non(0,Y ) non{X,0) non(0,Y)? non{X,1) non(1,Y)

non {U,Y']m non(0,0) non(0,Y ) non{X,1) non(1,Y)

N/ — |

pon(X, )V pon(X. )
non(0, YY) non(X,Y)*
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« of atom p(X1, X21--0

predicate «p” in P is the denotatio
T tﬂ]r“}: P“lstif sany tn}a{b)] |
g ) pltn 12 1)) € $5(P)
., 1n are any terms }-
The subscript P is obvions
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Definition Denotation of General GHC Program
The denotation of general GHC program P is the union of all the denotations of
predicates [ Dp(p), ie., SS(P).
F

Note that we have thrown away the details of associated forests except their initial
goals, their answer substitutions and the extension ordering between those computation
forests so that only the partially ordered multisets of atom (or goal) pairs are considered in
the denotations.

Example 5.2.4 Consider P,,,. Then, D(non) is the partially ordered multiset of Example
$.2.3, and D{any) and D{wait0) are the partially ordered multisets below.

any(0,0) any(0,1)
any(0,0) any(0,1)
i\ FAAY
any(0,Y)(V) any(X,0) any(0,Y)(® any(X,1)
‘NII'{ﬂ:U) m‘?(xsm M}'{G:I} any [x'r]}
Y/ NS
any(X,Y)1) any(X,Y)®
any(X,Y)) any(X,Y)®
wait0(0)
wait0(0)
|
wait0(Y)
wait0(Y)

Note that superseripts (1) and (2) are attached to any(0,Y) 10 make a distinction between
two seemingly identical atoms. Also note that any(0,Y)?) < any(0,0) and eny(X, ¥)() <
any(0, ¥)(3).

Remark. Lei (A, Ag) be a success pair in D(p}. (For simplicity, we have omitted the
superscripts of snccess-suspension atoms.) Let o', " be any snbstitutions such that o'
is o, and § be any substitution for the variables occurring in Ae. Then, (A¢', Ao'c") and
(A8, Ach) are snccess pairs in D(p), and
(A, Ag) < (Ae', Ac'c") < (Ach, Acd).

Hence, the partial ordering structure of D(P) above snccess pairs are determined indepen-
dently from program P. The interesting part, which depends on program P, in the partial
ordering structure of D{p) is that below success pairs,

5.3 Goal Composition for General GHC Programs
(1) Computation of Partially Ordered Success-Snspension Multiset for Compased Goals

Then, how can the denotations of composed goals be restored from the denotations of
composing atoms for general GHC programs?

Again, we will prepare one more notion, which is to be used when it is necessary to
obtain A from a given Ae. '
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Right Inclusion: We will show that any element in U Tiomporc(SS(PYU {(D,0)}) is an
I=0

element in S5(P) by induction on n.
Base Case: When n = 0, then S5(P) D §5(P)u {(D,0)} is obvious.
Induction Step: Suppose that S5(P) 2 Thmpese(SS(PYU {(D,0)}).

As for the first set in the right-hand side of the definition of Teompose, let (T(#}, Tr(®)
be & pair in Thp 0, (SS(P)U{(D, 0)}) 2nd (Asl®), Acte)) be a pair in Tl pase (SS(PIU{(D
,0)}). From the induction hypothesis, there exist their associated forests F and . Then
the union FUC is a computation forest of I¥*) U A(?) with answer substitution o, since ald)
is a descendant goal of Acle),

As for the second set in the right-hand side of the definition of Teompose, let (Ite), Tel™)
and (To® U Acle), Tor(®) U Agrif)) be pairs in Thmpo, (SS(P) L {(O,0)}). From the
induction hypothesis, there exist their associated forests 7 and H. Then H is a snccess-
suspension forest of T®) U Al9} with answer substitution o7, since Ald) is a descendant goal
of Agl®), o
Left Inclusion: We will show that any element in S5(P)isin | Tlompose(SS(PIU{(T,D)})

I=0

by induction on the well-founded ordering < of answer substitutions. (See the proof of
Theorem 4.1.) Let (I1®), To()) be an element in S5(P), and g be its associated forest.
Base Case: When o is <>, let T() be {4{*,49),...,4{"*’}. Then the component
computation trees of G, whose atom parts of the root labels are Alen) gloa) | ,Ai“'}, are
success-suspension forests of (A%, {A[;’}}, ey {Ai"}} with answer substitution <>. Be-
cause the corresponding pairs are all in S5(P), by applying Teampose 10 SS(P) k times,
(T, 7)) is in Thmpese(SS(PYU {(O,0)})-

Induction Step: When o is not <>, from Lemma 3.2, there exists an atom Afse) jn Tis)
such that the maximal committed subexiension G4 of {Af"']‘} in € has non-renaming answer
substitution 0,. Hence, pair ({4}, {465*}) is in Ty (SS(P) L {(D,0)}) for any
! > 0. Let o' be the substitution such that o 40" is o. From the induction hypothesis for o',
pair {I‘rrf}. Teac'®))is in Tl pose( SS(PIV {(0,0)}) for some n, where I'u'f,:':' is a descendant
goal of T'ol®). From the definition of transformation Tcompose, Pair (I®), To40'9)), ie.,
(T49), Tol@)) s in U Thorm,ene(SS(PYU (D, 0)}).

=0

Example 5.3 Consider how D{{nen(X,Y),any(X,Y)}) is computed from SS(Pron). Fizst,
Teompose(SS(Pacn ) U {(0,0)}) includes the partially ordered muliiset below:

{non(0,0), any(0,0)} {non(0,1), any(0,1)}
{non(0,0), any(0,0)} {non{ﬂ,l]:-; :ny(ﬂ,]}}
I\

{non(0,Y)®, any(0,Y)} {non(X,0), any(X,0)} {non(0,Y)?), any(0,Y)?} {non(X,1), any(X.1)}
{non(0,0), any(0,0)} {non(0,0), any(0,0)} {non(0,1), any(0,)}  {mon(X,1), any(X,1)}
\/
{non(X,¥)®, any(X,Y)}
{non(X,Y)®, any(X,Y)*}

For example, pair
({non(X :ﬂ}“) ;any(X,0)}, {nen(0,0),3ny(0,0)}),
is in Toompore(SS(Pron ) U {(0,0}}), becanse
(non{X,0)}), non(0,0)),

32



Definition Descendant Goal

Let P be a general GHC program, and %) be a multiset of success-suspension atoms
in P of the form

{A¢ (a1} AEH]T-- ) A{“”}
A multiset of snccess-suspension atoms A) in P of the form

{Bﬂrﬂ H{bﬂ Bﬂ?h]}
is called a deseendant gaai of T'(e) when A; is an instance of B; by a common substitution o
and B{" < Af*) for1=1,2,...

Note that, for any given Aet®) and substitution o, descendant goal A(#) always exists,
although A is not always unique. However, once A is fixed, A'Y) is uniguely determined. In
the following goal composition, when Ald) appears in ithe same context as ﬂa'(‘], it denotes
any of the descendant goals of Agle),

Again, by abuse of terminology, we will use the following terminology:

Definition Goal Interpretation

Let P be a general GHC program. A goal interpreiation of P is a partially ordered set
of expressions of the form

(LA, A0, APYY, (A0 ®), Aga®), .. 44000},
where AE“‘]' and Ajo'™) are success-suspension atoms for 1 =1,2,..., k.
Let (I*), To®)) and (A1), Ar(*)) be two pairs in & goal interpretation of the form
{{Aiﬂ}:‘d‘rﬁ“]r* ' ?"li" }}11 {Al ’(h]l A?"'(hﬂv . 1Ai "'{h}}]r
(B, B, . B{™)), {Byr(e), Br(ea), .., Byurlea))).
Then (T1®),Te®) < (AW, Ar(9)) if and only if Al < BI* and 410 < Byrle) for
1=1,2,...,k

Then the transformation for goal composition is defined as follows:

Definition Transformation for Composing Goals of General GHC Programs

Let P be a general GHC program, and Teompose be the transformation of goal inter-
pretations defined as follows;

Teompose (1) = { (T U A} Tel®) U Agle)) |
(I*2), T'g(®)) and (Agl®), Agl®)) are in T }
u{ (I'=)uaA@) Terldu Agrlf)) g
(T{s), I‘r.r':a:'] and (Te® U Ael®) Torld U AorD) arein I }.

Note that, in the definition above, A?} is a descendant goal of Acl®).

Theorem 5.3. 1 Let P be a general GHC program. Then
35(P) = U Tiompose (SS(PYU {(T,O)}),
where atom pm {A'[“:‘ Ac™)) in S5(P) is identified with goal pair ({4}*), {45}8)).

Proof. The theorem is proved along the same line as Theorem 4.3.1 taking the distinction by
superscripts into consideration. Again, we will show the following two inclusion relations:

Right Inclusion: S5(P) 2 ([ Tlompese(SS(P)U{(B,0)))

I=0
Left Inclusion: SS(P) C ;G ILMN,:[SS{P] u{(o,o)})
=0
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{any(0,0), any(0,0))
are in 55(Pyon) and {any(X,0)} is a descendant goal of {any(0,0)}. Note that the denota-
tion of {non(X,Y),any(X,Y )} computed by Teompose(SS(Paon) U {(0,0)}) is the partially
ordered multiset of Example 5.2.2 except that one pair at the left bottom is missed. Then
next, T2, poue (SS(Pron ) U {(9,0)}) includes the pair below which has been missed.

\ W4
{nan(X,Y)), any(X,Y)V}
[non(0,0), any(0,0}}

Note that pair
({non(X,Y)*) any(X Y2}, {non(0,1),an¥(0,1)}),
is mot in T::'umpnu(‘gsujﬁﬂﬂ-) U {{D: 0}}), because,
({non(X,Y)*}, {non(0,Y)?})
is not in Teompose( 5SS Paon) U {(0,0)}}), although
({non(0,Y)(®, any{0,Y)*)}, {non(0,1),2ny(0,1)})
is in Teompose (S5 (Pron) U {(O, 0)}). Note also that, although
({non(X,Y)}, {non(0,Y)(})
15 in Teompose (SS(FPron ) U {(0,0)}),
({non(0,Y)), any(0,Y)}, {non(0,1),any(0,1}})
is 1ot in Teompose( S S(FPron ) U {(0,0)}).

Remark. As before, it is not difficult to modify the definition of Teompore above so as to
respect the distinction between success pairs and suspension pairs.

(2) Replacement with Equivalence

“Definition Equivalent Goals, Atoms and Predicates of General GHC Programs
Let P be & general GHC program, Two goals I' and A are said to be equivalent in P
when
(a) the set of variables occurring in T and that in A are identical, and
(b) there exists a one-lo-one correspondence between the set of the goals with superscript
occurring in D(T) and that in D(A) such that

(b1) Tol®) correspond to Ael®”} for any substitution o,

(b2} (Tol®), Ter®)) is in D(T) if and only if (Acte’), Aer)) is in D(A) for any
substitutions # and v, where ['e(®) corresponds to Act®’) and T'e7{*) corresponds
to Acr®), and

(b3) (Tol®), Loy < (o), Taarf®™)) in D(T) if and only if (Al Ay 7)) <
[&a-(;“},aa?a.-ib’}} in D(A), where Iaf"l corresponds to ﬁnrf“*} and I‘nr;r}"'j
corresponds to Aoy T,[b'j fori=1,2.

Two atoms “A” and “B” are said to be eguivalent in P when two singleton goals {A}
and {B} are equivalent in P. Two n-ary predicates “p" and “g" are said to be eguivalent
in P when two atoms p(X;,X2,...,Xa) and ¢(Xy, Xz,..., Xs) are equivalent in P, where
Xy, Xg,...,Xn are distinct variables.

Theorem 5.3.2 Let P be any GHC program. Then, for any two atoms A and B eguivalent
in P, goals T'U {A} and T U {B) are equivalent in P for any goal I".

FProof, It suffices to show that
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(a) (Mot®)u{Ac}®), NorMu{Aer}®))isin S5(P)ifand only if (Hol®)U{Bo}"), Mar®Iy
{Bor}¥')) is in S5(P) for any II and o, 7, where {Ao}(<) corresponds 10 { Bo)(¢'} and
{Act}4) corresponds 1o { Bor}(¢), and

(b) (Wof*Iufher o), Woy r{* U Ao 7, }40) X (TP U{ A0}, Moar{*IU{ Agary}99))
in S5(P) if and only if (Mai®) U {Boy}0), Moy rf*) U {Bayr }4)) < (Del* U
{Bog)lea), Hﬂgféb:jU{Eﬁg 72}(43)) in S3(P) for any II and &y, o2, 7y, 72, where { Agy }{<0)
corresponds to {Boy}*) and {Aeyn}¥) corresponds to {Bain}{‘:} forl=1,2.

Then from Theorem 5.3.1, it suffices to show that

(2) (o™ U {Ae} ) Mor® U {dor}9)) is in TR .,.(SS(P)u {(D,0)}) if and only if
(Mel®) U{Be}) Mor® U{Bar}@)) is in TR, 0. (SS(P)U{(D,0)}) for any I, 0, 7
and n, where {Ae}(<) corresponds to {Bo}") and {Aer}¥) corresponds to {Bor}{¥),
and

(b) (el u{des}i), Tay w0 { Agy ry }40)) < (Mol U{dea}o), Moars DU doara}d2))
iR T2 pose (SS(P)U{(D,0)}) if and only if (He'* ' u{ Be, }(i), Ty " U{ Boy ry }141))
= (Lot U {Baa}(), Mooy U { Boara}($)) in T2, (SS(P) U {(T,D)}) for any
I,o1,02,7,72 2nd n, where { Aoy 1) corresponds to {Bey}{<) and {Agyn}(4) corre
sponds to { Beyn }4) for 1 =1,2.

This is proved by induction on n using the definition of transformation Tiompose-

To summarize, for general GHC programs,
(a) the denotations of composed goals can be computed from the denotations of composing
atoms, and
(b) if two atoms A and B are equivalent, then any two goals obtained by adding A or B
to any common goal are also equivalent.
Hence, the partially ordered success-suspension multiset §5(P) (or something containing the

equivalent information) is one of the gqualified candidates of the semantics of general GHC
programs.

6. Comparison with the Semantics of Prolog Programs

So far, we have focused our attention on the semantics of GHC programs. It is an
interesting problem whether there exists some conmection beiween the semantics of GHC
programs and that of Prolog programs. This section first shows how we compare the se-
mantics of them, then intreduces three formulations of the semantics of Prolog programs,
and last shows that these semantics enjoy the same compositional character and the same
semantic property as GHC programs.

6.1 Prolog and GHC

As was mentioned in Section 1, the second role of the commitment operation has been
ignored in this paper. Hence, as far as our semantics is concerned, it is natural to compare
the semantics of GHC programs with that of Prolog programs after the following conversion.

Definition GHC Program Corresponding to Prolog Program
Let C be a Prolog clanse of the form

F':I_‘h"‘-?r' : --tﬂj - HLrBIr“‘:BTH
Then the GHC clause Cgge of the form

P{Xthu ' .Xm] = | Xl = fl,Xg zfg.,... ,Xm = im,Bl,Bg,...,Bn
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is called the GHC clause corresponding to Prolog clause O, where X, X3, ..., X are distinet
new variables.

Let P be a Prolog pregram. Then the GHC program Fsge obtained from P by
converting each Prolog clause in P to the corresponding GHC clause is called the GHC
program corresponding to Prolog program P.

First, note that suspension(Pgpe) is empty so that S5(FPeme) = success(Psge),
because the guard of each GHC clause in Pgge never renders any computaion suspended.
Henee, the partially ordered success-suspension multiset semantics is reduced to the success
multiset semantics for Perc, and the definition of Teompose is Teduced as below:

Ttn‘rrlpwctf} = { (PEG} u &“],I‘arf‘:‘ I &FT{:}} I
(T{e}, To®)) and (Ag'®), Agrl/)) arein 1 }.

Second, note that we may ignore the distinction (nsing superscriptz) between seem-
ingly identical success goals as well as the partial ordering relation between sunccess goals,
because the consideration on intermediate suspension forests is no longer necessary. Hence
the partially ordered success mulliset semantics is rednced to the success set semantics for
Ferc-

6.2 Semantics of Prolog Programs

(1) Atom-Answer Set Semanties

Definition Atom-Answer Set Semantics of Prolog Programs

A program is a set of definite clauses. A Jabelled tree is a finite tree whose nodes
are labelled with expressions of the form “4 = B®, where 4 and B are unifiable atoms.
‘Substitutions oy,a3,...,0, ate said to be uwnifiable when there exists a substitution ¢ such
that, for each o;, there exisis & substitnion = satisfying ¢ = o;7. A substitution 7 is calied
the most general unifier of 41,09, ...,0, when 7 is the most general substitution among such
substitutions.

Let P be a program, T be a labelled tree and T3, T%,..., Ty be its immediate subtrees.
The labelled tree T is called a proof tree of atom A with answer substitution ¢ by F when
there exists a clause C in P of the {form

B B, B,,.... Ba
such that

{(a) A and B are unifiable, say by an m.g.u. ¢,
{b) the root node of T is labelled with “A = B”,
(c) T1,T%,...,Ta are proof trees of By, Ba,..., B, with answer substitutions 1,02,...,0x
by P respectively, and
(d) o is the restriction of an m.g.u. of #,0;,02,...,¢, 10 the variables occurring in A.
The clause C is said to be used at the root node,

Let Ty, T,...,Ti be proof trees of atoms A;, Az, ..., 4 with answer substitutions
C1,02,...,0k. A multiset F = {I,Ty,...,T%} is celled 2 proof forest of atom multiset
{A1, Az,..., Az} with answer substitution ¢ when ¢ is ar m.g.u. of 74, 02,..., 0%

The set of all the pairs (I, I'e) such that there exists a proof forest of I' with answer
substitution ¢ by P is called the success set for composed goals of P, and denoted by
Fuecess;(P). The set of all the pairs (4, Ao) such that there exists a proof tree of A with
answer substitution ¢ by P is called the success set of P, and denoted hy successy(F).
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The denotation of goa! I is the set of all the pairs (II,ll¢) in FEccezs(P) such that
T is an instance of I'. The denotation of atom “A7 is the set of all the pairs (B, Bo) in
successy(F) such that B is an instance of A. The denotation of an n-ary predicate “p” is
the denotation of atom p{ Xy, Xs,..., 5% ), where X3, X9, ..., X, are distinct variables, The
denotation of program P is success(F).

Example 6.2.1 Let Py, P» and P be the following three Prolog programs:

Py : pla).
p0{a).
Py : p(X).
p0(a).
Ps . p(X).
p(a)-
p0(2).
Then success, () includes
(p(X), p(a)),

success ( Pa) includes

(p(X), p(X)),

and success;(Py) includes both of
(p(X), p(X)},
(p(X), p(a)).

It is obvicous that this semantics directly corresponds to the success-suspension sel
semantics for converted GHC programs.

{2) Extended Herbrand Model Semantics

Definition Extended Herbrand Model Semantics of Prolog Programs

A program is a set of definite clauses. A labelled tree is a finite tree whose nodes are
labelled with atoms.

Let P be a program, T be a labelled tree and T, 73,...,T, be ils immediate subirees.
The labelled tree T is called a proof tree of atom A by F when there exists an instance of a
clause C in P of the form

A - A:,A:, -“,A.
such that 73,75, ..., Ty are proof trees of A;, Az,..., Aa, Tespectively. The clanse C is said
to be used at the root node.

Let Ty,Ts,..., T, be proof trees of atoms Ay, As, ..., 4. A multiset F = {T1,T4,...,
T} is called a proof forest of atom multiset {4y, As,..., A}

The set of all the goals [ such that there exists a proof forest of I' by P is called the
snecess set for composed goals of P, and denoted by Ficegssz(P). The set of all the atoms
A such that there exists a proof tree of A by P is called the snccess set of P, and denoted
by successy(P).

The denotation of goal T is the set of all the goals I in successy(P) such that 1T is
an instance of I'. The denotation of atom “A” is the set of all the atoms B in sueccesso(F)
such that B is an instance of A. The denotation of an n-ary predicate “p” is the denotation
of atom p(Xy, Xa,...,X,), where X;, X3,..., X, are distinct variables. The denotation of
program P is successy( P).

Example 6.2.2 Let Py, P; and P; be the three Prolog programs as before. Then successy(FP;)
includes
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pla),
while successa(Ps) and successa(Fy) includes
p(X),p(a).
Note that successy does not make a distinction between P; and Pj.

It is obvious that, il success,(P) = success;(Q) for two Prolog programs P and Q,
then successa(P) = success,(Q), since

successa{ P) = {Ac | (A, Ag) € success; (P)},

successa(Q) = {Br | (B, Br) € success: (@)},
but not vice versa.

(3) Herbrand Model Semantics

Definition Herbrand Model Semantics of Prolog Programs

A program is a set of definite clauses. A labelled tree is a finite tree whose nodes are
labelled with ground atems.

Let P be & program, T be a labelled tree and 73,7%,..., T, be its immediate subtrees.
The labelled tree T is called a proof tree of ground atom A by P when there exists a ground
instance of & clause C in P of the form

A - Al,ﬂg, ---’Aﬂ
such that Ty, T, ..., . are proof trees of Ay, As,..., Aa, respectively. The clause £ is said
to be used at the root noda.

Let Ty,Ts,...,Ti be proof trees of ground atoms Ay, Ag,...,Ar. A multiset F =
{T\,Tz,...,Ti} is called a proof forest of ground atom multiset {A;, Aa,..., A 1.

The set of all the gronnd goals I' such that there exists a proof forest of T by P is
called the success set for composed goals of P, and denoted by Ficcessz(P). The set of all
the ground atoms A such that there exists a proof tree of A by P is called the success set of
P, and denoted by successs( P).

The denotation of goal I is the set of all the ground goals II in Fuecess;(P) such that
Il is an instance of I'. The denctation of atom “A” is the set of all the ground atoms B in
sﬂf{fssafP} such that B is a ground instance of A. The denotation of an n-ary predicate
“p” is the denotation of atom p( X, Xa,..., X, ), where X, X5, ..., X are distinct variables.
The denotation of program P is successa(F).

Example 6.2.3 Let P, P and P; be the three Prolog programs as before. Then successs(Fy),
successa(Py) and suecesss(Fi) include

pla).

Note that successy does not make a distinction between Py, P; and F;.

It is obvious that, if successo(P) = successs(Q) for two Prolog programs P and Q,
then successs(P) = successs(@Q), since

successa( F) = { ground instance of 4 | A € successz(P)},

successg(Q) = { ground instance of B | B € successa(Q)},
bnt not vice versa.

Remark. For each definition of the semantics, we have the corresponding multset semantics
by modifying as {follows:
(a) A program is a set of pairs consisting of clause identifiers and definite clauses. (We
assume that no pair has an identical clause identifier so that two definite clauses of the
same form are distinguished.)
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(b} Each node label of a Jabelled tree has an additional second component €, where C is
the clause identifier of a pair in F.

(c}) Each node label of a proof tree has an additional second component C, which is the
clause identifier of the definite clause used at the node.

(d) The multiset of all the atom pairs (resp. atoms, ground atoms) corresponding to differ-
ent proof trees is called the success multiset of F, and denoted by success;(P) (resp.
successy(P), successy(F)). The success multiset for composed goals and denotaions
of atoms and predicates are defined aecordingly.

6.3 Goal Composition for Prolog Programs
(1) Computation of the Semantics for Composed Goals

Then, how can the denotations of composed goals be restored from the denotations of
composing atoms?

Definition Transformation for Composing Geals of Prolog Programs

Let P be a Prolog program. For the atom-answer set semantics, a set of expressions
of the form {I', o) is called a goel interpretation. Teompase i5 the transformation of gosal
interpretalions defined as follows:

TeompaselI) = { (TUA,Ter U Aer) | ([,[e) and (Ae,Aer) arein [ }.
For the extended Herbrand model semantics, a set of atoms is called a goal interpretation.
Teompose i5 the transformation of goal interpretations defined as follows:

Teomposel I} ={TUA|T and & arein J }.
For the Herbrand model semantics, a set of ground atoms is called a goal interpretation.
Teompose i5 the transformation of goal interpretations defined as follows:

Teomposel I) ={TUA|T and A arein I }.

Theorem 6.3.1 Let P be a Prolog program. Then
=]
success(P) = |J Timpnu{successl{.?} u{(o,0}),
I=0
=]

Fuccessz(P) = U T*mﬂ"(sucﬂuag{P} u{O}),
=0

]

Fuccessa(P) = IUDTIMNHESHECESJ:;{P:I u{a},

where atom pair (A4, A.r.r} in successy(P) is identified with goal pair ({A}, {Ac}), and atom
“A” in successz(P) or successa( P) is identified with goal {A].

Proof, Obvious.
(2) Replacement with Equivalence

Definition Equivalent Goals, Atoms and Predicates of Prolog Programs
Let P be a Prolog program. For the atom-answer set semantics, two goals I and A are

said to be equivalent in P when

{2) the set of variables occurring in T and that in A arte identical, and

(b) (T'e,Ter)isin D(T) if and only if (Ac, Aer) is in D{A) for any substitutions ¢ and 7.
For the extended Herbrand model semantics, {wo goals I and A are said to be equivalent in
P when

{a) the set of variables occurring in T and that in A are identical, and

(b) I'z is in D(T) if and only if A isin D(A) for auy substitutions o.
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For ihe Herbrand model semantics, two goals I and A are said to be equivalent in P when
(a) the set of variables occurring in I' and that in A are identical, and
(b) e isin D(T) if and only if Ao is in D(A) for any substitution & which substitutes
ground terms to the variables occurring in T and A.
Two atoms “A” and “B” are said to be equivalent in P when two singleton goals {A}
and {B} are equivalent in P. Two n-ary predicates “p” and “g” are said to be equivalent
in P when two atoms p(X;,X2,...,4n) and g(X;,Xz,...,X5) are equivalent in P, where
X3, Xa,..., X, are distinct variables.

Theorem 6.3.2 Let P be a Prolog program. Then, for any two atoms A and B equivalent
in P, goals T U {4} and T U { B} are equivalent in P for any goal T

Proof. Obvicus {rom Theorem 6.3.1.

Remark. The semantics of Prolog programs was first established by employing the Herbrand
model semantics [6]. More detailed discussions following it, e.g., those on strong complete-
ness of SLD-resolution, naturally considered answer substitntions separately (5],(1],{20]. The
extended Herbrand model semantics was investigated in [7]. Following the trends of the
semantics, theoretical works on reasoning abount Prolog programs have usually employed the
Herbrand model semantics. For example, the meaning of “equivalence preservation™ of the
program transformation originally shown by Tamaki and Sato [37] is that the least Herbrand
model of the initial Prolog program and that of the final Prolog program in their transfor-
mation sequence are identical, Recently, it was proved that Tamaki-Sato’s transformation
also preserves equivalence in the sense of the atom-answer set semantics [15], and even in the
sense of the atom-answer multiset semantics [14].

7. Discussion
(1) Related Works on the Semantics of Data Flow Networks

A data flow network is a directed graph whose nodes are operators (or processes) and
whose edges are communication channels (or communication lines). An operator represents
either an indivisible primitive operator or a composed defined sub-network. A communication
channel represents a one-way data path between operators.

Each operator operates when necessary data are ready ai its (not necessary all) input
ports, and transmits the computed results to its {not necessary all) output ports after an
unspecified amount of time. The input ports of each operator are always ready to receive dats,
and the (potentially infinite) received data are buffered at the input ports for later use. These
operators autonomously operate in parallel, and communicate only by the asynchronous
transmission of data through their input and oviput ports.

Each communication channel links an output port at one node to an input port at the
other (or possibly identical) node. They transmit data within an impredictable, but finite
amount of time,

A (possibly infinite) sequence of data observed on each edge is called the history (or
stream) of the communication channel. The empty history is denoted by A. If a history
X is a prefix (initial subsequence) of history Y, then relation X € Y holds. This relation
is a partial ordering relation with its minimal element A, and called the prefix ordering.
Moreover, this partial ordering relation is (chain) complete, i.e., any increasing chain X; C
X, €. C X, € hae a least upper bound li_m X, , 1e., a history which is larger than
any X, and smaller than any snch history. e
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The problem of the semantics of such data flow networks is to characterize the possible
behaviors of the entire network in terms of the behaviors of its operators so as to make
various reasoning abeut such data flow networks possible.

Kahn and MacQueen [11] [12] considered a class of data flow networks, called functional
data flow petworks, which satlisfy the fullowing two conditions:
functionality:
Each operator with » input portis and m output ports is a function f from n-tuples
of histories to m-tuples of histories, called the history function of the operator,
continuity:
f{nii_.mwxn} = .-.]'.l-IEa. f{X.) for each history function f.
Here the latter condition “continuity” immediately implies
monotonicity:
FX)C f(Y) if XCY for each history function f.
Iniuitively, monetonicity means that receiving more input can only provoke the cperator to
send an output that extends the output provoked by the current input, and conlinuity means
furthermore that each operator never waits for infinite amount of input before it decides to
send any finite output. With such a data flow network, Kahn and MacQueen associated a
set of mutual recursive equations relating the histories on the communication channels using
the history functions, and chracterized the behavior of the entire network by the unique least
fixpoint of the sat of equations, whose existence is guaranteed by the least fixpoint theorem
for continnouns functions on complete partially ordered sets. They then utilized Scott’s theory
for proving inductive properties of such a data flow network as well as for showing that the
composed network still has a continuons history function.

Following the success of Kahn and MacQueen’s semantics, several attempts had been
made for generalizing their approach to nondeterministic data flow networks, whose operators
“are nol necessarily functions, hence, do not always vield the same output when given the
same input. The attempts, however, immediately exposed several inherent diffienlties, which
then leaded to the proposals of several alternative approaches to overcome these difficulties.

Keller [16] discussed the problems of the semantics of nondeterministic data flow net-
works in detail, in particular, pointed out that, when the output port of 2 nondeterministic
operator (e.g., the merge operator) is linked to its input port in a network, the operaior
does not necessarily shows the same behavior in the entire network as it shows as a single
separated component. To solve the problem, he then devised several preliminary technieques
for representing the semantics of such data flow networks and proving properties of them.

To solve the same problem, Kosinski [17] presented an idea to associate a tag with each
datum in each history {or identifying the sequence of arbitrary decisions made by nondeter-
ministic operators (e.g., the “merge” operator} which have contribuied to the existence of
that datum in that history. By considering a set of such tagged histories satisfying some
causality conditions for the generation of these tagged histories, and by defining a complete
partial order on the tagged history set, he characlerized the behavior of the entire network
using the least fixpoint technieque in the same way as Kahn and MacQueen.

A natoral generalization of a history function for nondeterministic data flow networks
is a history relation. Brock and Ackerman [4] found a very clear example, called Brock-
Ackerman’s Anomaly, which demonstrates that a naive generalization of history functions to
history relations does not adequately characterize the behaviors of nondeterministic data flow

40



networks. Instead of naive history relations, they proposed an alternative characterization,
called scenarios, which incorporates the causality relations between data received at input
ports and data transmitted from output ports. Two datain the histories are causally ordered
if the event of producing one must precede that of producing the other. A scenario is a pairs
of input histories and output histories augmented with a partial ordering on data in the
histories showing this causality constraint. Brock and Ackerman showed that two data flow
networks indistinguishable by the naive history relation sem antics are distinguishable by this
scenario model semantics, and gave a composition rule for scenarios of data flow networks.

Pratt [30] considered a set of traces. A tracein his paper is a partial ordered multisets
of events, an event is either production or consumption of & datum at some port, and the
partial ordering denotes necessary lemperal precedence between the events. He defined a
network compesition rule based on the notion called consistent network trace. This netion,
similazly to the least fixpoint operator, works for excluding never occuring computation by
ruling out the cycles which a naive compesition rule might generate in the partial ordering
of events in the composed neiworks.

Staples and Nguyen [34] considered partially ordered multisets of input/output history
relations. In their approach, the behavior of each operator is specified by equations (or term
rewriting rules). Two seemingly identical input/output history relations are distinguished
when they differ in the choice of the equations on the computation paths. Two input Joutput
histories are partially ordered if the least computation returning the output histories of the
first can be extended 1o the least computation returning the output histories of the second.
They then defined an operation for network composition, called Link, nsing three op erations
Step, Iter and Closit.

Nguyen, Gries and Owicki [29] treated the problem within the framework of Manna-
“Pnueli stvle temporal logic [23). They considered infinite sequences of observations. An
observation in their paper is a pair consisting of finite sequences of eventis at all ports of
a network up to some peint in an execution of the network (called a trace in their paper),
and port-state information about on which ports the network is ready to communicate at
that point (called communication functions). Their specification language is that of (lin-
ear) predicate temporal logic with port-variables, communication functions and the binary
predicate corresponding to the precedence relation between events in the traces. They then
gave a proof system, which includes an inference rule for network composition based on the
notion “consistent network iraces” by Pratt, as well as a proof of its soundness and relative
completeness, and demonstrated that two inequivalent assertions are derived for the two
networks of Brock-Ackerman’s anomaly.

{(2) Motivations of Our Approach

Let us show how we have reached the formulation presented in this paper. Fist,
we started reformulating Kahn’s results [11] within the framework of GHC. Following van
Emden and Kowalski’s approach, we first considered pairs (A, ¢) consisting of initial goals
and their answer substitutions corresponding to actually successful computation. We then
immediately found that, even if each atom has no actually successful computation, com posed
goals consisting of such atoms might have successful computation. (Moreover, even if each
atom has al most one actually successful comprtation, composed goals consisting of sach
atoms might have more than two actvally successful computation. See Example A4 in

41



Appendix.} Hence, we decided to consider not only actually successful computation but also
potentially successful computation.

Next, however, we encountered 2 difficulty in computing the success-suspension set for
composed goals from the success-suspension sets for aloms. Because we had then employed
the notion of maximal commitied forest withont using the clanse part of each label, some
path through which goals can succeed if appropriate instantiations are given from outside
were missed.

There were two alternative ways to overcome this difficnlty. One is 1o comsider not
just the changes to maximal committed forests but all the changes to any committed forests.
However, this would lead us to considering the very details of computation almost step by
step. The other way is to define suspension forests as maximal committed subextensions just
as we did.

Then, we found an example of non-monotonic GHC program for which the success-
suspension set for composed goals could not be computed exactly from the success-suspension
sets for atoms by the naive goal composition method presented in Section 4.3. This time,
unsuccessful computation conld be included in the computed success-suspension set for com-
posed goals,

Again, there were two alternative ways. One is to consider not the pairs of initial
goals and answer substitutions, but the trios of initial goals, unsolved goals and answer
substitntions. The unsolved goals can show how far the execution has proceeded and with
what goals the execution should resume. However, the unsolved goals would expose the
internal details, i.e., what goals are called how from the upper-level goal. This characteristics
iz undesirable for the abstractness of the semantics we would like. The other way is to
introduce some structure into success-snspension multisets, and assume some condition for
the siructure so that the naive goal composition method of Section 4.3 works for the simple
case. The condition is exactly the monotonicity we have defined in Section 4.1. (Then,
we noticed that the key notion for the success-suspension set semantics is not functionality
but monotonicity. This is the reason the reformulation of Kahr’s results about data flow
networks is in Appendix.)

Last, we tried to generalize the goal composition method for general GHC programs
without assuming monotonicity. Defining the goal composition method, while taking the par-
tial ordering structure into consideration, was the last step. After several hand-simulations,
we fonnd that the alternative representation (A, Ag) is more convinient for explaining the
transformation for goal compaosition, since the relation between generated pairs is more easily
captured using this representation.

Qur approach is very closely related to Staples and Nguyen’s approach. The main
differences are
{a) their approach considers the least computation returning given output histories, while
our approach considers the maximal computation for given input instantistions, and
{b) their approach considers all partial computation, while our approach consideres only
maximal partial computation, which makes the denotations of deterministic predicates
(or operators) simpler.
Very roughly speaking, the Step operation in their paper corresponds to the inverse of
Teompose in OUT paper, the Iter operation to that of T:m“m and the Closit operation 1o

that of |J T s, (CT. the top-down goal composition in Appendix (3).)
1=0
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Our approach is also telated to Brock and Ackerman’s approach. Let (A#,Af8'r'),

(A#, Afr) be pairs in SS(P) such that
(AF", A8'T") < (A8, AfT)

and let 8" be the substitution such that #8" is 4. (For simplicity, we have omitted the super-
scripts of success-suspension atoms.) Then there exists an m.g.u. of #'r' and # (see Section
6.2 (1)), say o, and a substitution 7" such that 7 is ¢r". This means that the additionel input
instantiation 6" has caused the additional cutput substitotion 7. By considering all such
# and ', we can decompose subsiitution # into #1056y, substitution 7 into myre--- 7y,
and define a causality ordering between 8y, 85,. .., 8, and 7y, 72,..., Tm. This is an alterna-
tive formulation of the idea behind Takeuchi’s approach [36], which is an adaptation of the
scenario set model by Brock and Ackerman to GHC.

(3) Other Works on the Semantics of Parallel Logic Programs

There ate several attempis for formalizing the semantics of parallel logic programs,
either operational or declarative.

Operational semantics of GHC was first examined by Ueda [39]. He focused his atien-
tion on the effects of the truly parallel execution. He discussed, in particular, the problems of
distributed unification, and by assuming an appropriate distributed unification mechaniem,
explained the “rule of commitments” and the “rule of snspension™ using some layered nested
box structures.

Beckman [2] discussed the semantics of parallel logic programs based on the CCS (Cal-
culns of Communicating Systems) by Milner [24],{25] by translating paralle] logic programs
into CCS-type transition systems. Saraswat [31),[32] also studied the semantics of (some
class of ) Concurrent Prolog and GHC programs based on Plotkin-style transition systems.

Takeuchi [36] has been investigating the semaniics of GHC by adapting the “scenario”
model of Brock and Ackerman [4] to GHC. Shibayama [33] has been studying a compositional
semattics of GHC. Murakami [27] has been constructing & Hoare-style axiomatic system for
GHC so as 1o utilize it for verification of GHC programs [26].

The declarative semantics has not vet been fully studied. Within the framework of &
constraint committed-choice language, Maher [22] investigated when the committed-choice
language can be said to have Jogical semantics in the same sense as Prolog, and gave some
sufficient condition for it, data sufficiency (no suspension due to insnfficient instantiation of
arguments) and determinacy (no two guards satisfying an identical call).

Levi and Palamidessi [18] have studied the declarative semantics of synchronization in
particular, by introducing functor annotation “producing” and “consuming” into the term
structures. Levi [19] specialized and simplified the above approach for the semantics of flat
GHC programs by considering the set of trios consisting of atoms with distinet variables
arguments, their argnment form restriction (input guard equations) and their instantiation
substitutions (output equations), and charcterized the set as a least fixpoint of some trans-
formation. Murakami [28] has extended it for flat GHC programs with perpetunal processes.

Several attempts for reasoning about GHC programs, e.g., verification [13],[(26][27],
transformation [8],[9],[10],[42], and debugging [21],[35], have been made as well.

8. Conclusions

A preliminary formalization of the semantics of Guarded Horn Clauses (GHC) has
been presented particularly emphasizing on a compositional character. Further refinement
and logical formalization of the semantics are left for future.
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Appendix. Semantics of Functional GHC Programs

This appendix shows a reformulation of Kahn's results about data flow networks
[11},[12] within the framework of parallel logic programming fox finite computation based
o7 OUT success-suspension sei semantics.

(1) Functionality of GHC Programs

Definition Functionality of Goals, Atoms and Predicates

Let P be a GHC program. A goal I is said to be functional in P when, for any instance
T of T, there exist no two success-suspension forests of II with different answer substitutions.
An atom “A” is said to be functional in P when singleton goal {A} is functional in P. An

n-ary predicate “p” is said to be functional in P when atom p(X1,X2,..., Xa) is functional
in P, where Xy, X=,..., X are distinct variables.

Definition Functionality of GHC Programs
A GHC progrem P is said to be functional when any predicate is functional in P.

Note that, when a goal I is functional in P, there might exisi two different proof

forests with an identical answer substitutions, hence, S5(P) is regarded as a sef rather than
a multiset when functionality is considered.

46



Example A.1 Consider Pjoin. The predicates “join,” “<” and “>" are {unctional.

Example A.2 Consider Pyepo. The predicates “wait0,” “waitl” and *echo-back™ are func-
tional, while “shout-wait® is not functional, since

(shout-wait(X,Y), shout-wait(0,Y)},

(shout-wait(X,Y), shont-wait(1,Y))
are both in suspension{Pecno)-

Example A.3 Consider Pjgop. The predicate “loop” is functional.
(2) Functionality for Composed Goals

The definition of functionality does not immediately guarantee that the functionality
halds for composed goals.

Theorem A.l If a GHC program P is functional, then any goal I is functional in P.

Proof. Suppose that, for some goal T', there exist proof forests F; and Fp with answer
substitution o) and og, respectively. We will show that 7y and o2 are identical (modulo
renaming substitution) by induction on the well-founded ordering < of answer substitutions.
{See the proof of Theorem 4.1.)

Base Case: When o, and oz are <>, they are the same answer substitutions, hence the
theorem trivially holds.

Induction Step: Otherwise, from Lemma 3.2, there must exist an atom A in T' such that the
maximal committed subextension of {4} in F, or F3, say in 7, has a non-renaming answer
substitution o4. From the functionality of P, the maximal committed subextension of {A}
in F, also has answer substitution o4. Let o} be the substitution such that o0 is &9, and
¢!, be the substitution such that g40% is 02. Then, 7y and Fy are success-suspension forests
of Tory with answer substitution ¢} and ob, respectively. From the induction hypothesis for
¢!, and o}, substitutions ¢} and ¢, must be identical modulo renaming substitution, hence
oy and og are also identical modulo renaming substitution.

Example A.4 One might expect that the definition of functionality can be weakened as
follows:
“A goal ' is said to be functional in P when, for any instance I of T, there exist no
two success forests with different answer substitutions.”
With this definition, however, the theorem above does not hold. For example, consider the
following GHC program:
shout-wait(X,Y) - | X=0, wait0{Y).
shout-wait(X,Y) :- | X=1, wait1l(Y).
echo-back(0,Y) :- | Y=0.
echo-back(1,Y) - | Y=1.
wait0(0).
wait1(1).
Although shout-wait(X, Y} and echo-back(X,Y) are functional if this definition is adopted,
& query
7. shout-wait{X,Y), echo-back(X,Y)
can return two answer substitutions
<X +=0,Y+=0>,
<X&=1,Y+&1>.
Similarly, one might expect that the definition of functionality can be weakened as follows:
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“A goal T is said to be fanctional in P when, for any instance Il of T, there exist no
iwo success forests or no two suspension forests with different answer substitations.”
Again, this definition does not work. For example, consider the following GHC program:
shout-wait(X,Y) - | X=0, wait0(Y).
shount-wait(X,Y) = | X=1, Y=L
echo-back(0,Y) - | Y=0.
echo-back(1,Y) :- | Y=1.
wail0(0).
Although shout-weit(X,Y) and echo-back(X,Y) are fanctional if this definition is adopted,
a query
?- shout-wait(X,Y), echo-back(X,Y)
can return iwo answer substitutions
X =0,Y+=0>,
<Xe=1,Y+=1>.

(3) Success-Suspension Set Semantics of Functional GHC Programs

Due to the following theorem, the success-suspension set semantics in Section 4 is valid
for functional GHC programs.

Theorem A.2 If 2 GHC program P is functional, then P is monotonic.

Proof. Let A be an atom such that
(2) there exists a success-suspension forest F of {A}, say with answer substitution &, and
(b) there exists a success-suspension forest § of {Ac}, say with answer substitution 7.
Let ¢' be the maximal committed subextension of {A}in §. Then §'is 2 success-suspension
forest of {4} with answer substitution o, since P is functional. Hence ris <> and G' is
identical to G itself, which means that P is monotonic.

In particular, the denotation of each predicate contains no two paire with identical
first elements. Hence, not only the bottom-up goal composition method in Section 4.3 but
also the following nondeterministic top-down goal composition method, which corresponds to
Kahn's method for functional data flow networks [11], works for functional GHC programs,
where argument I' is a goal some instance of which can succeed.

compose{:goal): pair-of-goals;
ru = I‘; 1= l:l';
while there exists A € I'; such that (4, Ag) € SS(P) and A # Ac do
Pigri=Tie; i:=0i4+1;
endwhile
return (I', i)
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