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ABSTRACT

System size dependency of the minimum load-dispatching rate for dynamic load
balancing in parallel inference machines is described, where system size is the number of
processor nodes connected through a network and the minimum load-dispatching rate for
Inad balancing is the lowest load-dispatching rate in which a certain level of utilization is
maintained. Relationship between the minimum load-dispatching rate and system size is
measured in two load-dispatching strategies based on the sender-initiate concept by
simulation on the loosely-coupled multi-processor model. The minimum load-dispatehing
rate has sub-linear (increase more slowly than linear) dependency on the system size in
smart-random and max-min strategies. In high average utilization cases, it is
approximately proportional to n in the former strategy and (n - 1)/ n in the latter
strategy, where n is the system size. By decreasing system size, the minimum load-
dispatching rate cannot be reduced so much in max-min strategy, but can be reduced in
smarl-random strategy. The load dispatch may also be assessed from the point of view of
communication processing ability. In smart-random strategy, tashk division techniques
can adjust the minimum lead-dispatching rate for load balancing te communication

processing capacity.



1 INTRODUCTION

The Fifth Generation Computer Project has developed knowledge and information
processing systems based on a predicate logic programming language [Fuchi and
Furukawa 87}, [Nakashima and Nakajima 87], [Taki 86]. The hardware of these systems
has been dubbed an “Inference Machine”. Various parallel architectural concepts for the
inference machine were designed and evaluated [Ito et al. 861, [Kumon et al. 86], [Onai et
al. 85). Now, a parallel inference machine (PIM) prototype composed of about 100
processing-elements is being designed for the target language KL1 [Goto and Uchida 86].

The main research areas of I'IM are parallel processing overhead and processing-
element vtilization, The same ideas can be applied to inference processing itself as have
been developed for sequential inference machines. Both processing-element utilization
and parallel processing overhead depend on the granularity of parallel systems.
Generally, the finer the granularity, the larger the utilization, se if fine granularity is
designed, it will be easy to get high processing-element utilization, but difficult to reduce
parallel processing overhead. Utilization depends on the load-balancing feature of
parallel systems as well as the granularity. Parallel logic programming languages such
as KL1 have a suspend/resume processes feature for concurrent process control [Ueda
fi6]). This feature causes much parallel processing overhead. Load-balancing feature
research is important for improving processing-element utilization, since the PIM
prototype granularity is of coarse design.

Several load-balancing methods have been developed [Sakai et al. 86), [Hiraki et al.
86], [Yamauchi and Tanaka 88], in which lead dispatch targets are determined
dynamically by selecting the processing-element with minimum lnad. Once the

processing-element with minimum load is determined, all processing-elements prepare
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to dispatch loads to it. If there is a time delay between load status detection and
modification, load concentration on one processing-element occurs and the load
concentration degrades the performance of a PIM [Sugie et al. 88]. Two load-balancing
methods which can avoid this load concentration and realize higher performance than
these methods were developed [Sugie et al. 88]. In one load-balancing method (smart-
random strategy), load dispatch target is determined at random and then this goal
dispatch is aborted on the condition that the dispatch target has more loads than the
dispatching processing-element. In the other (max-min strategy), loads are dispatched to
the processing-element with minimum load by the processing-element with maximum
load,

To utilize parallel architecture efficiently, program localization of closely related
sequences must be considered whenever possible. A hierarchical structure is introduced
in the PIM prototype to utilize this program localization efficiently. Fig. 1 shows the
bleck diagram of the PIM prototype. Current technology makes it possible to construct a
PIM prototype with 2-layer hierarchical hardware. A processing-element is a bottom-
layer component, and a cluster is a group of processing-elements. In the bunch layer, 18
clusters are connected through a network. Each cluster has eight processing-elements
and a cluster controller for inter-cluster communication.

In the cluster layer, processing-clements and the cluster controller are tightly coupled
through chared memory and coherent caches, and so, only a small amount of overhead is
required for each processing-element to communicate with others. In programs written
in KL1, there is frequent communication among closely related parts. Therefore, by
assigning these program parts to the same cluster, we can efficiently utilize the

processing ability of the PIM prototype.



In the PIM prototype configuration, communication overhead is small in the cluster
layer. Inside the cluster, load balancing is achieved by frequent communication between
processing-elements. In the bunch layer, clusters communicate by sending/receiving
messages. Communication between clusters should be restricted since such
communication causes an overhead burden., Communication between clusters comes
from load dispatch. Information is necessary to execute program parts corresponding to
dispatched load and sume of it should be obtained in execution time through
communiecation between the dispatch cluster and the dispatch target cluster. Therefore,
load dispatch should be as infrequent as possible to reduce communication between
clusters. Frequent load dispatch is preferable for load balancing. The load dispatch limit
for dynamic load balancing in the PIM bunch layer is investigated in this paper. The
bunch layer of the PIM prototype is a usual parallel system which is composed of plural
processor nodes connected through a network. The load-balancing feature in the bunch
layver resolves into the same problem in a general parallel systems.

The load dispatch in parallel systems may also be assessed from the point of view of
communication processing ability. If parallel systems do not have sufficient
communication processing ability, frequent load dispatch eannot be realized. If
communication processing ability dominates the load-dispatching rate, which is defined
in a PIM as the ratio of all dispatched goals to all reduced goals, it is necessary to
decrease the minimum load-dispatching rate for load balancing, to the load-dispatching
rate determined by communication processing ability, The minimum load-dispatching
rate for load balancing may depend on the number of processor nodes. Task division
techniques in which a large task is divided into several sub-tasks and these sub-tasks are

assigned to suh-systems of the whole parallel system may reduce the minimum load-



dispatching rate for load balancing. The number of nodes in a PIM was fixed in the
evaluation of smart-random and max-min strategies [Sugie et al, 1988]. The purpose of
this paper is to investigate the system size influence on the minimum load-dispatching
rate for dynamic load balancing. The system size can be expressed by the number of
processor nodes, The minimum load-dispatching rates for load balancing are measured
in smart-random and max-min strategies and in different system sizes by simulation and
analyzed.

2 LOAD-DISPATCHING STRATEGY

There are two basic concepts of dynamic load balancing, receiver-initiate and sender-
:Litinte. In the former case, loads are dispatched to processing-elements when requested
because of idling. In the latter case, load dispatch is determined only by the dispatcher’s
situation, regardless of whether the target processor nodes have loads or not. If a small
number of processor nodes are installed in a parallel system, receiver-initiate method is
more efficient, because there is no wasted eommunication. However, this method is not
appropriate for a parallel system with a large number of processor nodes, because very
high throughput is needed for the channels broadeasting load requests. The sender-
initiate method is appropriate in this case.

It is difficult to extend the PIM cluster size to much more than 10 processing-
elements, because of tight couple through coherent caches. For example, a PIM bunch
laver with 1000 processing-elements would be composed of about 100 clusters. Therefore,
it is diffieult to apply the receiver-initiate method to the bunch layer. For future large
scale design of a PIM, the sender-initiate method will be used for the bunch layer load
balancing of the PIM prototype.

Tn the sender-initiate method, load balancing is controlled by determining whether a
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load is dispaiched and determining dispatch target. Load-dispatching strategies manage
these load dispatch conditions and targets. In the load-dispatching strategies, load
dispatch waste needs to be avoided so as to reduce parallel processing overhead. Sugie et
al, [1988] showed that smart-random and max-min strategies were efficient. Max-min
strategy has the highest performance. However, this strategy covers too narrow a region
in the low load-dispatching rate. Even if a network has sufficient throughput and a
parallel system has sufficient communication processing ability, max-min strategy
cannot utilize this capacity well. On the contrary, smart-random strategy covers wide
load-dispatching rate region and is expected to achieve high performance stably. The
following three load-dispatching strategies are examined.
strategy A (baka-random) : The node to which loads are dispatched is
determined at random.
strategy B (smart-random)} : The node to which loads are dispatched is
determined at random and then this load dispatch is aborted on the condition
that the dispateh target node has more loads than the dispatching
node.
strategy C (max-min) : The node with maximum loads dispatches a load
to the cluster with minimum loads.
Strategy A is classified as “blind”. It is examined to evaluuate the performance of

strategiegs B and C which are classified as “informed”.

3 SIMULATION

The minimum load-dispatching rates for load balancing are examined in three load-
dispatching strategies and in parallel systems with different sizes by simulation based
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on the loosely-coupled multi-processor model. Benchmark is 6-queens.

3.1 Simulator overview

Simulation is made on the PIM-R hardware simulator composed of 16 MCG8000
[Sugie et al. 85], using an interpreter for KL1. As the purpose of this simulation is
investigation of loud balancing in the PIM bunch layer, detailed structure and operation
inside the PIM cluster is not simulated.

In the hardware simulator, the event-driven method is employed to eliminate the
idling time during simulation. The simulator does not have a TOD (Time of Day Clock),
which uniformly manages time over the whole system, but it does have a software timer
in each processor. The timer count renews by adding a certain value every time a
transaction of any one of several functions is executed. When messages are sent to other
processors, network delay time is added to the timer count, and this value is attached to
the sent message to indicate the arrival time. The processor which receives the message
updates the timer count by comparing this arrival time and its own timer count when it
accepts the message. During simulation, all data measurements and some operations

such as gueue controls are managed, based on the cluster software timer,

3.2 Conditions

The simulation assumes the following:
(1) Processors are coupled through a collision free, equal-length network with
suffiviently large throughput.

(2) The processor has a sufficiently large input/output buffer and waiting time, due fo the



input/output buffer overflow not being taken into account.

(3) The processor’s sending and receiving message overhead is 10 % of reductions in case
of 4 processors and the 4-gueens benchmark (adjusted by using parameters).

(4) OR-clauses are tried sequentially at head unification time.

(5) Built-in predicates are not dispatched to other processors.

3.3 Results

The relationship between utilization and load-dispatching rate in parallel systems
composed of 2, 4, 8, 16 and 32 nodes is measured. The load-dispatching rate is defined as
the ratio of all goals dispatched to other nodes, to all reduced goals, as defined previously.

Fig. 2 shows the normalized processing time of strategy A, B, B', B " and C as a
function of the load-dispatching rate, where the number of nodes is 16, The difference
hetween B and B’ is the selection of dispatch goals, which is described in detail in the
next paragraph. Strategy B"” is a combination of strategy B and the strategy in which
goal dispatch is aborted on the condition that dispatching cluster has fewer ready goals
than the threshold. The normalized processing time is defined as the ratio of the
processing time for plural processors, to the processing time for a single processor. The
load-dispatching rate is varied by changing the simulation parameter which controls
load dispatch probability.

In order to reduce the minimum load-dispatching rate for load balancing, it is useful
to dispatch heavy goals, which need many reductions before no their descendant goals
are left. They can improve utilization of the dispateh target node. Fig. 3 shows 6-queens
program written in KL1. In strategy A, B, B” and C, “queen{U,[P|C].L,X,0)", underlined

in Fig. 3, is dispatched every time it is created. In strategy B, no goal is automatically



dispatched, but goals are still dispatched according to the probability. Comparing results
of strategies B and B in Fig. 2, it is shown that heavy goal selection for dispatch reduces
the optimum load-dispatching rate to 1/2.

Strategy B" has higher performance than strategy B, when heavy goals are not
selected for dispatch [Sugie et al. 88). However, strategy B” has approximately the same
performance as stralegy B in case of heavy goal selection for dispatch, as Fig. 2 shows,
because a dispatched heavy goal creates more ready goals than the threshold.

The normalized processing time is expressed by

normalized processing time =

(number of clusters) X (average utilization)

+ {1 + (parallel processing overhead)}. - - - (1)
Fig. 4 shows the parallel processing overhead as a function of the load-dispatching rate,
where parameter is the number of processor nodes. This figure indicates that the parallel
processing overhead is expressed by a straight line and that it is independent from the
number of nodes and is determined only by the load-dispatching rate. As the load-
dispatching rate inereases, occurrence of process suspension/resumption increases more
steely than linear. This tends to give super-linear relationship between parallel
processing overhead and the load-dispatching rate. An optimization is introduced into
the KL1 interpreter on the simulator which can reduce the communication between
nodes by storing values in a node which are instantiated in other nodes and sent to the
node through messages. Once such values are stored in the node, no more communication
is needed to get them. When load-dispatching rate is low, so few variables are shared
between nodes that the above-mentioned optimization is not effective. This tends to give
paralle] processing overhead sub-linear (increase more slowly than linear) dependency
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on the load-dispatching rate [Sugie et al. 88]. These two factors are thought to
compensate cach other and give parallel processing overhead linear dependency on the
load-dispatching rate on this simulation condition.

Figures 5, 6 and 7 show the average utilization as a function of the load-dispatching
rate for strategies A, B and C. In thesc figures, average utilization is saturated in the
high load-dispatching rate region. Fig. 8 shows the saturated utilization as a function of
the system size, which is expressed by the number of nodes. As the system size increases,
the salurated average utilization decreases, because 6-queens program do notl have
sufficient parallelism. The saturated average utilization decrease is approximately same
in strategies B and C, and is steeper in strategy A than in those “informed” strategies.
Fig. 8 indicates that “informed” load-dispatching strategies B and C can utilize
parallelism more efficiently than in “blind” load-dispatching strategy A.

Here, let us introduce the load-dispatching rate limit (diiy), defined as the load-
dispatching rate which gives 80 % of the salurated average utilization. This load-
dispatching rate limit can express the minimum load-dispatching rate for load
balancing. Fig. 9 shows the load-dispatching rate limit as a function of the system size. In
Fig. 9, the load-dispatching rate limit has sub-linear dependency on the system size in
three load-dispatching strategies A, B and C and its gradient is highest in strategy A,
medium in strategy B and lowest in strategy C. When the system size is 2 nodes, these
two strategies have the same load-dispatching rate limit, because they are the same. In
the 2 node configuration, one node is the dispatcher and the other is the dispatch target.
The dispatcher in strategy B has more ready goals than the dispaich target, and so, it is

the node with maximum load in strategy C.



4 DISCUSSION

The load dispatching rate limit determines how many goals must be at least
dispalched during a certain period, so as to maintain the average utilization during this
period as high as the past periods. Suppose that no goal dispateh during a certain peried
would make one busy node idle. Then, a goal must be dispatched to this nodeor n-{1-u)
nodes which are idle, where n and u the number of nodes and the saturated average
utilization.

Tn strategy A (baka-random), dispatch target nodes are determined at random and
goals are dispatched regardless of whether the dispalch target nodes have more ready
goals than the dispatching nodes or not. Therefore, probability with which a goal is
dispatched to one of those n-{1-u) + 1 nodesis [n-(1-uw)+1}/n,andso, n/{n-(1-
u) + 1} goals must be dispatched to maintain the average utilization. Length of the
period during which no goal dispatch would make one busy node idle is proportional to
the reciprocal of n - u, the number of reductions during unit time is proportional to n - u,
and so, the number of reductions during that period is constant, namely, independent
from n and u. Therefore, the load-dispatching rate limit in strategy A is expressed by

load-dispatching rate limit = const. X n/{n-(1-u) + 1}.---(2)

In strategy B (smart-random), dispatch target nodes are determined at random but
restricted to nodes with more ready goals than the dispatching nodes. Strategy B has
higher probability with which a goal is dispatched to suitable nodes than strategy A. In
the first order approximation, this probability may be expressed by constant X {n-(1-
u) + 1}/ n, and then, the load-dispatching rate limit is expressed by

load-dispatching rate limit = ¢ X const. X n/{n-(1-u) +1 }, oo (3)

where ¢’ is a constant less than 1.



In strategy C (max-min), the only node with maximum ready goals can dispatch goals.
Suppose such a special situation as one node keeps maximum ready goals and delivering
goals to the other nodes. This assumption may approximate well real operation of a PIM
using this load-dispatching strategy, because the initial guery is usually assigned to one
node and new goals created from it are dispatched to the other nodes. Assuming that all
dispatched goals have the same lifetime, which is defined as the average reduction
counts before their descendant goals are left, n-u -1 goals must be dispatched during 4
so as Lo maintain the average utilization during this period as high as past periods,
where 1] is the lifetime of the dispatched goal. The number of all reduced goals is equal to
f] - n - u. Therefore, the load-dispalching rate limit is expressed in this case by

load-dispatching ratelimit = (n u-1)/n-u-t).-++(4)
Results in Fig. 9 fit expression (2), (3) and {(4).

The load-dispatching rate limit may also be assessed from the point of view of
communication processing ability. In the PIM prototype, a cluster controller is
introduced into the cluster for inter-cluster communication processing. The cluster
controller is of approximately the same processing ability as the processing-element. If
communication processing ability is not sufficient to the load-dispatching rate limit
which is determined from the point of view of load balancing, the load-dispatching rate
limit must be reduced. The system size dependency of the load-dispatching rate limit
shown in fig. 9 suggests important directions.

The line for strategy C in Fig. 9 and expression (4) indicates that the load-dispatching
rate limit in strategy C is expressed by the function of the system size which quickly
saturate as the syvstem size increases. Therefore, it cannot be reduced so much by

decreasing the systern size. For example, in Fig. 9, the load-dispatching rate limit is
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reduced to 90 % of the value in 32 node case by decreasing the number of nodes from 32 to
16. When a program has sufficient parallelism, the saturated average utilization
becomes 1. By substitution of 1 into u in expression (4), is given
load-dispatching rate limit = (n-1)/n-fj.--* (5)
This funclion gives approximately constant load-dispatching rate limit in large n region.
In strategy C, task division techniques are not useful to adjust the minimum load-
dispatching rate for lead balancing to communication processing capacity. It can be
adjusted only by dispatching goals with Jong lifetime.
On the contrary, the load-dispatching rate limit can be reduced by decreasing the
system size in strategy B. By substitution of 1 into u in expression (3), is given
load-dispatching rate limit = ¢’ X const. X n.-+(6)
In the high saturated average utilization case, the load-dispatching rate limit is
proportional to the system size, as shown in expression (6), and half of the load-
dispatching rate can be achieved by decreasing the system size to half. In strategy B,
task division technigues can be applied to adjust the minimum load-dispatching rate for

load balancing to communication processing capacity.

5 CONCLUSION

The influence of the PIM bunch size on the load-dispatching rate limit for the bunch
layer load balancing was measured and analyzed in baka-random, smart-random and
max-min strategies. The load-dispatching rate limit has sub-linear dependency on the
bunch size in smart random and max-min strategies. By decreasing the bunch size, it
cannot be reduced so much in max-min strategy, but can be reduced in smart-random

strategy. In smart-random strategy, task division and assignment to sub-bunches can
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adjust the load-dispatching rate limit for load balancing to communication processing
capacily. In this adjustable feature, smart-random strategy is preferable to max-min

strategy.
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