ICOT Technical Report; TR-425

TR-415
Knowledge Base Svstem in Logic
Programming Paradigm

by
H. Itoh. H. Monoi. 5. Shibavama(Toshiba).
H. Yokota(Fujitsu) and A. Konagaya(NEC)

Oetoher, 1983

C9ss, 100T

Mirn Kolusw 15idg, 21F [[E R TR

I' D ! =28 Mg D-Choow Toless TOOT Joiun
']

Mmate-ku Tekvo [N Tipan

Institute for New Generation Comput_é-f Tééhnoiogy

Knowledge Base System
in Logic Programming Paradigm

Hidenori ITTOH, Hidetoshi MONOI (ICOT)
Shigeki SHIBAYAMA (Toshiba Corp.)
Nobuvoeshi MIYAZAKI (Oki Electric Industry Co. Ltd.)
Haruo YOKOTA (Fujitsu Ltd.)

Akihiko KONAGAYA (NEC Corp.)

ABSTHACT

This paper describes the current research and devel-
cprment status of the knowledge base subsystem being
investigated in Japan’s Fifth Generation Computer Sys-
tems (FGCS) project. Our aim is to realize the subsys-
tem in the logic programming paradigm te manage large
knowledge bases shared by Al application systems. In
the intermediate stage of the project, several approaches
are being taken to realize the knowledge base subsys-
tem. Experimental systems are being developed in order
to study the technical aspects. These systems wiil be
integrated into the prototype of the FGCS in the final

stage
1 INTRODUCTION

The Fifth Generation Computer Systems (FGCS)
project aims to develop 2 prototype system for a knowl-
edge information processing system. The prototype sys-
tem processes knowledge in the logic programming and
parallel processing paradigms. To realize the proto-
typesysiem, we have developed parallel inference subsys-
terns and knowledge base subsystems in the intermediate
stage. These subsystems are integrated into the proto-
tvpe of the FGCS by the parallel logic programuming lan-
guage Guarded Horn Clauses (GHC} in the final stage
[Tteh B8]

The knowledze base subsystem provides convenient
environments in which te construct, retrieve, and ma
nipulate large, shared knowledge bases for AT applica-
tiens on the inference subsystems. The subsystem inher-
its most of the traditional database functions, such as
access path selection and transaction centrol. However,
knowledge base systems must have richer functions and
interfaces for manipulaticg knowledge than traditional
database systems. In other words, because the Al appli-
eation prosramn: use knowledge-representing data that
has 2 more complex structure, the knowledge base sub-
systerns must have high-level functions so that they can
handle a large amount of knowledge and high-level in-
Lerfaces between the knowledge bases and application
Programs,

In the initial {three-year] stage of the project. we
developed a relational database experimental system
Delta as the first step to research the knowledge base
subsystem [Murakami 83] [Kakuta 85). By deing this,
we accumulated arehitectural experience about systems
that must process large amounts of knowledge efficiently
(Itoh 87, We also developed an intecface between the
logic programming langusge Prolog and the relational
database on it so that we could study the technical prob-
lerns regarding their integration [Kunifuji 82| [Yokota 84]
[Yokata 56a).

We are in the intermediate four-year stage, and aim to
develop a prototype of the knowledge base subsystem.
The subsystem can handle more complex knowledge-
representing data directly and provide friendly interfaces
for the knowledge processing programs based on legic
programming paradigms, To develop the prototype, we
have defined and developed four medels of the subsys-
tem using the sequential inference machines that were
developed in the initial stage. To research the knowledge
base subsystem eficiently, we employed the following 2p-
proaches:

e The first approach is to extend a logic program-
ming language that supports knowledge base func-
tions. We have developed a practical knowledge
Lase systemn with a large amount of knowledge in
order to prove the effectiveness of the functions.

The entire system is developed on the CHI ma-
chine with a high- performance sequential inference
processor and a large-capacity memory. The mem-
ory capacity is sufficient for realizing a practical
memory-based knowledge hase.

+ The second approach is to perform distributed
knowledge base processing: the efficient retrieval
and management of knowledge bases in the dis-
tributed environment, The system is developed on
PS] machines connected by a local area network.

In this approach, knowledus bases are realized in
the context of deductive datahases. We have de-
veloped software and hardware systems L0 manage
distributed knowledge bases anil to process gueries.

o The third approach it to realize parallel knowledge
base processing. We have developed an experimen-
tal knowledge base subsystem with multiple pro-
cessing elements and a large-scale multiport mem-
ory. We have also developed the control software
for the paraliel processing. The experimental sys.
tem is made accessible from PSI through a logic-
based query language.

In this approach, we adopted a relational knowl-
edge model, an extension of the relational data
model. The architecture of the experimental sys-
tem follows the ideas behind database machines.

« The last approach is to research interfaces between
parallel lagic programming languages and knowl-
edge bases.

In this approach, we selected applicatiens to
study the interfaces in the parallel processing envi-
ronment. We adopted the parallel logic program-
ming language GHC and embedded knowledge-
base handling functions in it.

Technologies obtained in these approaches have been
integrated into the parallel knowledge base processing
model.

This paper describes each system with related research
topics. Section 2 descrihes the knowledge base system
an ihe CHI machine. Section 3 deseribes the distributed
knowledge base system using the PS5 Section 4 de-
scribes the parallel knowledge base processing model.
Section 5 describes the knowledge base interface system
for parallel logic programming languages. Lastly, Section
6 is & summary of this paper.

2 KNOWLEDGE BASE SUBSYSTEM ON A
SEQUENTIAL INFERENCE MACHINE

This section describes the high performance knowledge
base system developed on the CH! machine [Habata 87].
We developed this system in order to in vestigate mech-
amisms for the efficient retrieval and management of
knowledge bases. The novelties of the system are its
practicability in terms of performance and memory ca-
pacity, and its extension of multiple name space ina
multi-pracess environment.

2.1 Owverview of the System

CH!is oge of the inference machines developed in the
FGC3 project, designed for high performance execution
of large practical logic programming programs. Figere 1
shows the CHT hardware configuration. The hardware
corsists of a high performance processor (500k LIPS for
berchmark programs) and a large main memory (120

Fromt CHI
end processor
processar {500 KLIPS)
|
C - '
Main memory
O— (320 MB}

Figure 1. CHT hardware system configuration

Proceas A Frocesa B

e

Glebal stack

o |] e, | (]
\\

hared
e " knowledge base

Application layer

Inference
rules

Facls

Language
lnyer

Kermnel layer]

‘-.-ﬁ-—_

Figure 2. CHI software system configuration

MB) connected to a front-end processer for input-cutput
Gperal‘m:w.

The knowledge base system is composed of three lay-
ers: a kernel layer, a language-processing layer and
an application layer (Figure 2). The kernel layer pro-
vides basic functions for multi-processing and remote
input/oulput operations [Konagaya 87]. The language-
processing layer provides a full interactive programming
environment for SUPLOG [Atarashi 38], a Prolog dialect
with multiple name space. The application layer pro-
vides special inference rules end facts for specific arcas,
such as DNA sequence matching [Doolittle §6] and ma-
chine translation systems. All processes share the knowl-
edge base systems and execute logic programs with their
own execution environment: local, global and trail stacks
and a local knowledge base. From the user's point of
view, CHT acts like & domain-oriented knowledge-base
machine rather than like a Prolog machine, if applica-
tion layer programs are loaded with system programs.

The high performance comes frem spacial hardware for
unification, backtracking, clause indexing and sophisti-
cated compiler optimization [Habata 87]. To make use

of compiler optimization, we divided predicates into dy-
namic predicates (predicates that can change their defini-
tion dynamucally) and static predicates [predicates that
cannol change their definition dynamically). This divi-
sion distinetion 15 very effective because we can elimi-
nate the overhead of predicate calling for mest predi-
cates {static ones). We also endeavored to implement
high-performance dvnamic predicates, since the dynamic
predicates tend to form = bottleneck if they are executed
by an interpreter. We intreduced 2 “dynamic compi-
lation™ or “incremental compiling” technique that com-
piles a clause when asserted [Konagava 85]. As a result,
the CHT machine can execute dyvnamic predicates only
three times slower than it executes static predicates.
The large memary capacity (320 MB) makes it pas-
sible to realize 2 memory-based knowledge base system.
Finowledpe base systems require a large knowledge data
as well as ¢ number of inference rules. For example, a
DNA sequence matching system requires DINA data (20
million residues), and a machine translation system re-
quires a language translation dictionary (50,000 words).
from a practical poict of view, large knowledge data
retrieval is the most time-consuming process in the im-
plementation of practicel knowledge base systems. The
mmnr}r-bas:d know]:dsc base system solves this pmb—
lem, since it eliminates disk access time, which occupies

a large proportion of the data retrieval process in con- -

ventional computer systems,

A multiple-multiple name space has been intreduced
te aveid interprocess name conflict and to represent a
hierarchical knowledge database, To salve the inter
process name conflict, the multiple-multiple name space
facility copies name spaces when & process is created.
The name space copying scheme enabies processes to ac-
cess name spaces independently while sharing clauses.

The hierarchical knowledge database can be obtained
by the encapsulation, iaheritance and shadowing mech.
enisms of the multiple-multiple name space. The encap-
sulation mechanism enables the use of the same name in
& different way in the knowledge base. The inheritance
mechanism provides an efficient way of defining shared
ciauses. The shadowing mechanism is used for solving
name confliets that occur in inheritance. The mecha-
nism is alse useful for representing non-monotenic logic.

The following zections give further detailt about the
multipie-multiple name spaces that play an essential rols
it knowledge base svstems.

2.2 Multiple-Multiple Name Spaces

dMultiple-multiple name spaces provide an elegant way
of implementing a shared knowledge database in & multi.
process environment. The shared knowledge base is very
important, especially in the field of co-operative prob-
lem solving. The preblems that have to be salved are

Process A Frocess B
e Local knowledge base _ = Local knowledge base
--..______'________.-'

—.—-_-‘-'.
W
System

Facta

Shared knowledge
/ \ / haseur______
o] o]
Syatem Facts

Figure 3. Multiple-multiple name space

pame consistency and name conflict between processes.
The inter-process name conflict results from the inher-
ited nature of & knowledge base that permits it to update
itz component {clause) dynamically. A lock mechanism
may save this problem, but would still leave a schedul
ing problem; the results of the program might change
depending on the process scheduling. Our observations
about knowledge bases lead us to conclude that mest
knowledge bases are static date. We solved the problem
by dividing 2 knowledge base into two paris: a shared
koowledge base and a local knowledge base. The shared
knowledge base contains all system programs and the
static knowledge. The local knewledge base contains the
process' own programs and dynamie knowledge. To re-
alize interprocess communication, we chose a mail bex,
a message based communication, rather than the shared
knowledge base, since updating the shared knowledge
base canses nondeterminacy of knowledge base access.
The inter-process name conflict may occur when pro-
cesses shere a name space. To solve the problem, we
adopted the following name spece copving scheme. In
the scheme, each process capies the name tables of the
shared clause database, if one has been created. The
point is that the copied name tables are in the local
clause database, so each process can change any name
space without affecting other processes. Figure 3 shows
an example of this scheme. [n this example, each pro-
coss has three shared-name SPACes: “system”, “rufes”

and “facts” and two local name spaces: “new_rules” and

1
“maw facts”,

Process scheduling does not affect program execution,
no matter how the program changes a clause database
dynamically. Local clause database can be removed

when a process iz terminated or killed.

2.4 Hierarchical Knowledge Base

Multiple-multiple name spaces also give us an elegant
wey of representing a hierarchica! knowledge base that
supports encapsulation, inheritance and shadowing of
predicates. These facilities make it possible to repre.
sent frame-like hierarchical knowledge naturally in logic
programming paradigms.

Encapsulation The encapsulation facility reduces
name-conflict and increases reliabifity by hiding inter-
nally used predicates from outer-worlds. For example,
the kneowledge about Mr. Konagaya's account may be
written in the following way.

;= in.packaga(konagayal.
;- export withdraw/2, depesit/2.
1= dynamie eurrent_sccount/l.

vithdras{imount New balance} :-
retract{account{Balancal},
Nou_balance is Balance - Amount,
{¥ew_balance = O
=% asgert{account(New _balance));
print{"Not encugh balance!"],
grzert(account{Balancel)).

dnpu:.it{llﬂ‘m‘l.": .Il'w_'balann) i=-
retractlaccount (Balanca)),
Wew_belance is Balance + Amount,
asserti{account (New_balancel).

In the above case, the predicate account/] is used enly
for keeping Konagaya's current balance. So it should be
hidden so that no one can access the balance directly.

Inheritance The inheritance facility enhances hierar-
chical knowledge representation such as frame theory
[Minsky 74] and scripts. One of the great advantages of
the name-based inheritance in 2 clause database is that
we can construct both rule hierarchy and data hierarchy
in the same way. That is, we can provide more flexible
and powerful ways of mixing rule sets and data sets than
conventional Al-tools can.

For example, a class of bird may have a general prop-
erty of birds, such as that a bird has two wings, or a bird
can #y. These rules can be described as follows.

= in_packagelbirdl.
i~ axternal wings/1, canflyfi.

ving=(2).
eanfly.

A class of sparrow can be defined inheriting 2 class of
bird.

Itl.n_ﬂj I I_na_nf_wiug: [ijJ

Figure 4. Inheritance in knowledge bases

:= in_package(sparrew, [Suse(pird)]).
:= axternal coler/i.

ealer(brown) .

Shadowing The shadowing facility makes it possible
to hide some predicates so that they are not inherited
from the super class. A kind of non-monotonic knowl-
edge can be represented by using the facility. For exam-
ple. & elass of penguin can be defined inheriting a class
of bird, but the predicate canfly/0 can be shadowed.

:- in_packaga(penguin, ($use(bird)]).
:- axternal colerfi.
;- shadowing canfly/f0.

color(b & w).
canfly := fail.

2.4 Summary and Future Works

A clause database can be extended to a knowledge
base by means of & multiple-multiple name space. The
multiple-multiple name space also gives an elegant way
of sharing & knowledge base among processes.

The knowledge base system can be extended to an
object-oriented base by introducing a history-dependent
data structure, that is, objects. In the system, a clause
may be used te define constraints between objects.

3 DISTRIBUTED KNOWLEDGE BASE
SUBSYSTEM

Coordination of various knowledge bases and process-
ing knowledge bases in a distributed environment is it

o AF cApplieation

program

GHEM :Global knowledge
base manager

LKEBM :Local knowledge
base manager

Figure 5. Logical configuration of the PHI system

portant for future knowledge information processing sys-
tems. One of the most fundamental issues in the study
of the knowledge base is the knowledge base model as &
framework. We have selected a deductive database as a
fundamental platform te study keowledge bases in dis-
tributed environment., We call this system a distributed
deductive database (DDDE) svstem.

3.1 Owverview of the System

A deductive database eonsists of an intensional
database (IDB), & set of rules, and an extensional
database (EDB), 2 set of facts. The EDB is assumed
to be much larger than the IDB. There is a well known
one-to-one correspondence between a ground unit clause
of the EDB and a tuple of a relational database. We have
adepted 2 two-layered configuration: the lower layer,
2 relational database management system, handies the
EDE and the upper laver handles the IDEB.

In order to support a disteibuted environment, we gave
the deductive database system global knowledge man-
agers and local knowledge base managers. An exper-
imental svstem, the Predicate logic based Hlerarchical
knowledge manzgement [PHI) system, is being devel-
oped to study technical issues. In this system, one glabal
meneger and one or rore local managers are dynamically
assigned to each user or application program as shown
irr Figure &.

The principal teehnical issues being investigated in the
pesearch of the DDDB syatem are as follows.

« Distributed query processing.
« Distributed database updating and management.

s Interface between logic programming languages
and the DDDEB system.

o Architecture of a dedicated processor for efficient
handling of the deductive database.

PsI __PsI

Haost . ow Host

| | 1cor Law

DM fpem, peve || POM

EML, KML
KMbe |[peme || | FMie || DBML
GEEM LKBM GKEM LKEM

pst PSI

DCM : Distributed sontrel module
KML : HKpowledge management layer
DEBML : Data hase managernent layer

Figure 6. Physical configuration of the PHI system

=

HKnowledge Base Engine

1COT LAN

Figure 7. Wnowledge base angine
g [-4

The PHT physically consists of & number of personal se-
quential inference machines { P57s) as shown in Figure 6.
Fach site has & global manager and a local menager. A
dedicated processor 5 designed as an attached proces-
sar of & PSI. The processor adopts a superimposed code
scheme, and has an accelerator for processing indexes
based on the scheme illustrated in Figure 7. An experi-
mental application program for software development is
also being developed to investizate the functionality and
performance of the system.

3.2 Distributed Deductive Database

Principal Features A DDUE consists of a deductive
database distributed over 2 uumber of sites. A set of
ground unit clauses (facts) having the same predicate
symbol corresponds to & relation, [DB is regarded as
an extension of views in relational database. A yuery is
denoted by a goal atom or a set of clauses. The answer

iz & set of ground ipstances af the query that are “logi-

cal consequences” of the set of clausges in the deductive

database and of the sets of clauses in the query.
Principal features of the PHI are as follows.

e The database is a st of function-free clavses which
may have negative literals in their bodies.

» Data manipulations are performed by means of a
logie data language that includes extended definite
clauses.

s The query processing strategy is a bottom-up strat-
egy with query transformation and dynamic opli-
mization.

» Concurrency centrol is performed by a two-phase
lock method.

s Hecovery is performed by a two-phase commitment
method.

s Security management is provided using password
and data catalogs.

Algorithms used for the last three [eatures above are
similar to those developed for traditional distributed re-
lational databases.

The interface of the PHI is designed to be embedded
in sequential logic programming languages such as Pro-
log and ESP {Self-contained Extended Frelog). The FHI
computes the answer to a query a5 & sei, and returns the
answer piece by piece to the user program by instantiat-
ing values to variables in order to adjust to the sequential
execution of the host languages. If a backtrack occurs in
the user program, the system returns an alternative an-
swer

Distributed Query Processing Strategy In DDDE
system, it is important to reduce the commuaication cost
to transfer intermediate results by determining appropri-
ate transfer directions. For instance, when the system
joins two intermediate results, transferring the smaller
one i¢ better, There are two ways to determine trans-
fer direction. One is a static optimization strategy that
determines the directions by predicting the sizes of inter-
mediate results before the actual processing. The other is
a dvnamic oplimization strategy that determines the di-
rections by comparing sizes of actual intermediate resuits
during the processing. The PHI uses the dvnamic opti-
mization strategy because it is diffieult to predict sizes of
intermediate tesults for recursive queries. This decision
reduces the management overhead of statistical informa-
tion necessary to predict the size of intermediate results,
but increases commuanication overhead to compare sizes
of intermediate results [Takasugi 87]. The latter prob-
lern is not serious in the PHI because of the broadeast
comenunication capability of JCOT-LAN [Taguchi 84].

-0

Recursive Query Processing Strategy Hecursive
query processing strategies are classified into top-down
strategies and bottomeup strategies, A top-down strat-
egy computes the answer to a query by generating sub-
queries in & similar way to that of Prolog. A bottom-up
strategv computes the answer by generating intermedi-
ate results from relations in the EDB. We have adopted
a bottom-up strategy in the PHI because a top-down
strategy results in large communication overhead with
frequent interactions belween sites. Bottom-up strate
gies have two problems:

I. Theyr compute unnecessary results because they
compute all elements of the least fixpoint (least
Herbrand model) of the database.

9. The iterative procedure which computes the least
fixpeoint involves a lot of redundant computations.

To solve the first problem, query translormation proce-
dures are used. They transform queries to other forms
that have smaller least fixpoints while preserving the
equivalence of answers. To solve the second problem,
a differential computation techmique [Balbin 87] is used.

Query Transformations Query transformalion pro-
cedures called Hoen clause transformations (HCTs) are
used to transform a zot of clauses to an equivalent set
of clauses [Miyazaki 88a] [Miyazaki 83b] [Sakama 87].
Three Linds of HCTs have been proposed for the sys-
temn. They are all based on 2 fundamental procedurs
called “clause replacement”. Because unnecessary in-
formation is removed from the database, the resultast
database has a smaller least Herbrand model than the
original database. Adding logical consequences preserves
the equivalence of the transformed result for a given goal.
HOTs are briefly described below.

HCT/P (HCT by Partial evaluation) :

This is a procedure Lhat uses resolution to cbtain
logical consequences. It is regarded asa generaliza-
tion of a procedure that substitutes the relational
algebra expression of a (derived) relation for the
relation symbel, 1t is called HCT /P because it is
based on the partial evaluation technique devel
oped for program transformation.

HCT/R (HCT by Restrictor) :
This is a procedure that uses new predicates called
restriciors in order to construct clauses that are
logical consequences of original clauses based on
the subsumption. HCT/R results in a similar
transformed database to the magic set transforma-
tion [Bancilhon 56].

HCT/S {(HCT by ground Substitution) :
This it a procedure that substitutes ground terms
for varishles of a clause to obtain logical couse.
quences. Thiz procedure is & generalization of pro-
cedures that move the copstant in transitive closure
operation.

3.3 Handling Negations

The PHT allows negative literals in bodies of clauses.
This extension introduces some difficulties to the system:

+ The semantics af such a database is difficult to de-
fine without some syntactical restrictions.

s Efficient query processing for such database is more
difficult than for definite databases.

The PHI restricts the database to a “stratified”
database [Apt 85]. A stratified database is a set of
extended clauses that has no recursive paths involving
negations. The stratified database can be partitioned
into lavers, and the semantics of the database are de-
fined layer by layer from the lowest layver. The semantics
of stratified databases has been extensively studied by
mazny researchers [Apt 88) [Van Gelder £6] [Gelfond).

For instance, let us consider the following extended
clause.

(XY} = plX,Y),-alX, I}

This clause has a variable, 2, which appears only in a
negative literal. This Z is attached by an implicit uni-
versal guantifier according to the standard logical inter-
pretatien of clauses, It is inefficient to process this kind
of elavse bv a bottom-up procedure, hecarse it is neces.
sary to check all instances of g{X,2) or actually obtain
ground instances of =q(X, Z). So the PH/[handles these
kinds of variables as if they are attached by existential
quantifiers instead of universal quantifiers. With this
convention, the above clause i3 equivalent to the follow-
ing clauses.

(XY} :— p(X ¥),~q1(X).
gi(X} : = qfXE).

This convention enables us to compile negative literals
to difference operations in relational algebra [t is also
used in manv Prolog proceszors.

Cluery evaluation methods for stratified databases
have been alse 'mw:sliga.tﬁd by several researchers. As
i the case of definite databases, these methods are
classified into either top-down computation or bottom-
up computation. Az for top-down computation, sev-
eral guery evaluation methods for stratified databases
have been recently proposed [Seki 85] [Kemp-Topor 88]

Since the usual SLDXNT . resolution = obviously insufh-
cient, these methods have incorporated some bottom-
up computation features into a top-down algorithm, In
[Seki 85, for example, & query evaluation methad called
OLDTNF-resolution has been proposed, which is based
an OLDT resalution {(Ordered Linear Resclution with
Tahulation) [Tamaki 86], augmented with negation as
failure rule. OLDTNF-resolution was shown to be sound
apd complete with respect Lo the standard model seman-
ties for a class of stratified programs under reasonable
assumptions for database applications.

The bottom-up query processing of stratified database
in the PHT is basically same as the gquery processing
of definite database. The PHT ficst transforms a query
te an equivalent form using HCUTs, and then computes
the results layer by layer. However., wnconditional us
age of HCTs may result in anstratification. HOT /P and
HCT/S can be used in stratified database without lim-
itation, because they preserve lavered structure of the
database. HOT/R may transform e stratified database
to an unstratified database, and it is difficeli to handle
unsiratified database in general,

3.4 Superimposed Code Scheme for Deduetive
Databases

In & deductive database svstem that adopts a bottom-
up strategy, cperations such as selections, joins, set op-
erations and set comparisons are frequently performed.
The frequent usage of set operations and set comparisons
iz & major difference between a deductive database and a
relational database. The concept of superimposed codes,
which originally was proposed for text processing, possi-
bly provides a unified approach that will realize efficient
processing of both EDB and DB [Wada 88] [Merita 88).
Superimposed code schemes have been studied for the
knowledge base engine.

Superimposed Code Scheme for the EDE In re-
lational database, indexes to atiributes are used for effi-
cient access to tuples in an EDB. f only a few attributes
are frequently used in conditions of queries, the design
of the indexes is easy. This 15 usuvally the case in busi-
ness applications. Ve consider that more uniform treat-
ment of attributes is necessary in deductive database.
An index scheme based on superimposed cedes is 2 good
candidate for such a purpose. The index is obtained asz
follows {Figure 8).

1. The value of each key atiribuie is hashed to a code
called 2 binary coded ward (BCW)

=]

. Al BCOWs far a tuple are ORed together to obtain
a superimposed code word [SCW)

The 3CWs are much sinaller than the original tuples.

Relation SCW index

lodex
Hash
V1= 100_01

V2 =+010_00
V3 -»110_00 (OR
110__07 |aeoam 110__01

Query mask
Hash

V2 =k 010__00

v3—»110_00 (OR
Query mask: 110__00
Figure 8 Example of SCW

&

1 | V2 { V3

Query VZand V3

Hetrieval using this index is performed as follows.

1. The value of each key attribute in the guery is
hashed to abtain BCW,

2, BOWs are OHled together to obtain & guery mask
Q.

3. Check the SCW index if each SCOW satisfies [
fand' SCW = @). If a tupie corresponding to the
index gatisfies the query condition, the SCW satis
fies this condition.

Set operaticns and set comparisons necessary to pro-
cess recuraive queries can also be performed with SCW
indexing. The SCW indexes are used to make pairs of
indexes whose corresponding pairs of tuples may be the
Because the SCWs are much smaller than the
original tuples, we can improve performance by prepro-
cessing with the SCW index.

The advantages of the superimposed code scheme are
as follows.

saime.

e The total size of the indexes is smaller than in othee
index schemnes if there are many key attributes. In
deductive databases, all atiributes might be keys,

= Performance is better if more than one key at-
tribute is specified in a query.

s Index processing can be easily performed in paral-
lel, bacause the structure of the index is simple.

The disadvantages of the superimposed code scheme
are as follows.

» A whole index scan is usually necessary, Although
the index may be small, the index sean is still time
consuming.

¢ Retrieva! cannot be efficient]y handled with ranpe
conditions.

o .
......... P
i 1)

it LI

s:ia
Index lor figla,b}.X)

Query mask for TX kel
Figure 8. Example of S350W

Dedicated hardware, a parallel processing architecture,
or a combination of both can solve the first problem.
Dedicated hardware is used in the experimental system
for index processing.

The superimposed code scheme can be extended for
structures [functions) and rules. Structures and rules
can be hendled by & supenmposed code scheme for
terms. The extended scheme uses structured superim-
posed code words (SSCW) an example of which is illus-
trated in Figure § [Merita 83].

4 PARALLEL KNOWLEDGE BASE
SUBSYSTEM

This section describes the knowledge base system
based on the parallel knowledge base model. The dis-
tributed mode!l mentioned in the previous section as-
surmes an environment where inference machines (F51s)
are connected by a local ares metwork, In that sense it
investigates a knowledge base processing scheme among
the distributed processing powers. The parallel model,
however, is a processing scheme to enhance the process-
ing power of & netwaork site.

4.1 Owerview of the System

This system aims at implementing an experimental
parallel knowiedge base system {Mu-X) as the backend
af the PST machines, In this approach, dedicated hard-
ware with multiple processors and a large-scale multipert
shared memary is implemented.

The Mu-X adepted the term-relational model pro-
posed in {Yokota 86b]. The term-relational model was
used as a candidate for bridging the gap between logic
programming languages and databases. The model could
be considered to be a basic mechanism to implement
deductive database systems. Howaever, in this research,
more attention was paid to providing primitives of term-
relational model manipulation. The term relations can
naturally store basic logic programming constituents
{terms) and provide retrieval capabilities, based on uni-
fication, for terms. As a concrele example, a unification-
based query language has been implemented [Manoi £8b]

an the mod=l, [t is based on relational calewlus and in-
terfaces PSI programming environment and the experi-
mental machine. A set of classes were written in ESP
[Chikayama §4] and added in the PS5/ programming en-
vironment. Thess classes provide methods {predicates)
which interface with the user in the PS's programming
environment and the Mu-X. The classes are activated
by the method call from user programs. It forwards the
message specified by the methed call (typically, & “re-
trieve” predicate) to the Mu-X using network facilities
for execution.

Put simply, the Mu-X's role in this context is to be a
nackend machine for execution of the gueries dencted
by the retrieve predicates of ESP. Parallel processing
was adopted to accelerate the retrieval. This will be
deseribed in later chapters. This experimental machine
shares manv research issues with parallel database ma-
ehines [Shibayama §7].

4.7 Hardware Considerations

Mu-X has a shared memery multiprocessor architec-
ture (Figure 10}, There are two types of shared meme-
ries. One is conveational word-granularity shared mem-
ary for control information storage and can be regarded
as an interconnection structure for multiple processing
elements. The other is page-granularity conflict-free mul-
tiport page-memory for working knowledge baze starage
{Tanaka 84b]. The multiport page-memory consists of
2 set of ordinary memary banks, a switching network
for interchanging the multiple perts and memory banks,
port controllers attached to each port and & main con-
troller. By evclically interchanging the network and ap-
propriately reading/writing the proper part of memory
banks, simultaneous access from each pert to arbitrary
memory pages s realized. The multiport page-memory
was incorporated so that several idle processing elements
(PEs) could participate in the processing of & query with-
out any memeory access intesference. From another point
of view, the multiport page-memery can enhance the
memory bandwidih to the multiple of memoary banks
{usually, number of ports).

The 10 bandwidth enhancement is achieved by pro-
viding a disk system to sach of the PE. Term relations
are horizontally partitioned and stored across the disk
svalermns.

This architecture follows that of the knowledge
base machine architecture given in [Yokota §6b] and
(Morita 86]. However, simulation study of the architec-
ture [Sakai §8] [Monoi 88a] revealed that even multiple
brute-farce hardware engines did not provide a perfor-
mance improvement propertienal to the number of PEs.
This is because of the input-length dependency of the
processing times. If 2 join processes the area of a rect-
angle that has sides whose lengths are the cardinalities

FEFP
| Interconnection |
[PE] [PE] |PE|—-~
| | I
MPPM

Figure 10, Hardware configuration of the parallel knowl-
edge base system

Table 1. Hardware specifications

Numbar of PE &

FPE core RCEI020 at 12.50MHz

FE memory B

Multiport page-memory | 8 ports |
64MB with §12-bvie pages
5MB feec/port transfer speed |

of the relations, division of the ares increases the total
input data that must be read to be processed.

So even using a lot of engines that can process join with
only the data input time will not reduce the processing
time. It was also recognized that a hardware-oriented
engine could only perform a limited class of operations.
At the time the hardware design of this experimental
machine began, it was not clear what operations should
be supported by the processing element core.

For these reasons it was decided that the Mu-X would
not incorperate hardware engines. Instead, it incorpo-
rated general-purpose microprocessors in place of the
hardware engines. The effort to implement a more flex-
ble unification engine is carried out separately. The mul-
tiport page-memeory was implemented with eight ports
and has a capacity of 64MB. The specification of the
hardware is shown in Table 1.

4.3 Software Considerations

The software’s aim in this system is to pursue paral-
lel processing technology in the field of knowledge base
processing. This aim shares much with database sys-
tems research. There are numerous researches belong:
ing to this category, for example, GAMMA [DeWitt 26],
Grace [Kitsure §2], MPDC [Tanaka S4a], and MDES
[Demurjian 86). The characteristics of this research are
as fellows:

« Moderate size of experimental machine.

Grace and MPDC, for example, are systems that
require enocmous effort to implement because of

the variety of hardware components and the com-
plexity of the software, The Me-V{alls into 2 sim-
pler category of parallel processing. There are two
kinds of hardware components that must be pro-
prammed. One is the processing element (FE), the
core of the processing, and the other is the front
end processor (FEP). Since the FEP's functions
are very simple, the PE is the only component that
needs intensive programming.

» [ncorporation of terms as the basic data represen.
tation scheme

This system manipulates terms in much the
same way that inference machines do. We not enly
provided an additional data type (term] but also
adopted it as the basic data representation scheme
in the system. For example, in the interface be-
tween PS[and the FEP, term representation is
used io denote the query language,

» Flexibility of the software

The system iz experimental, so later medifica-
tion or eddition of operations 15 quite probable.
The system software has been designed Lo cope
with those changes,

Parallel Processing

{a) Consideration of hybrid memory systems
he paralle! processing in this system is strongly in-

fluenced by the two types of memory system: a conven-
tional shared memory and the multiport page memory.
The software is designed to make the best use of the
characteristics of the memory systems,

The conventional shared memory has the following
characteristics.

+ The unit of access is typically a word.

e There is potential access conflict among multiple
PE:.

¢ Access (when there i3 no memory access conflict)
is quick, tvpically within a few microseconds.

The multiport page-memory is a page-based mermory
svstem activated by means of 2 control bleck (page trans-
fer control block, PTCE for short). It has the following
charecteristics.

The unit of access is a page.
s There is no aceess conflict among PEs (PE ports),

* Access is associated with overheads.

The overheads are of three types. The firet is the over
bead similar to the latency of disk access. This is the
time that it takes for the asynchronous memory page ac-
cess request (through the PTCE)} to be recognized by
the port controller that polls for the request. [o this im-
plementation, the polling interval is egual to the page
transfer time, so on average there is half the page trans-
fer time latency. The second type is the overhead of
one-page transfer. This is the time that it takes for the
requested page to be transferred Lo a buffer space. The
last one is software overhead required to preparea PTCAH
for the multiport page-memory. It consists of search-
ing the multiport page-memaory directary for the proper
page number, assigning a destination buffer, making up
& PTCE znd so on. In the current implementation, four
physical pages of 517 bytes constitute a logical page of 2
KE. As physical page transfer time is 100 micreseconds
and is the interval of request polling, one logical page
transfer requires 4 x 100 + 100,/2 or 430 microseconds on
average. The software typically requires about 500 mi-
croseconds. To sum up, the transfer time for one logical
page is about one millisecond. Both the hardware speed
and software speed could be improved using faster tech-
nology far the former and a faster processor with cache
memory for the latter.

Considering these characteristics, using the multipert
page-memory as a buffer memory for the databaze pages
was a natural choice, We also decided to place the system
directory in the multiport page-memory. Initially it is
stored in the disk and at startup time is loaded into
the multiport page-memeory so that the PEs can access
the shared information quickly., The directory related to
a PE is further copied in the local memory of the PE.
Other control information, such as command queues, is
placed in the conventional shared memory. Locking is
done using the conventional shared memory by means of
atomic read-modifyv-write instructions.

(b} Scalability consideration

The multiport page-memory is & hardware component
that has a scalable propertv. We tried to keep the hard-
ware's scalability within the tolerance of the conventional
shared memory's bandwidth. For example, the control
software is not placed on a special {centralized) control
processor. Instead, any processing element can become
the control processor in & upit of a transaction. When a
transaction is received fraom a PS5/ machine, an idle PE
is assigned to be the master of that transaction. The
transaction master takes care of the compilation, paral-
lel command generation, and response generation of that
transaction. Parallel command execution is a task for
multiple PEs {possibly including the transaction master
PE). In that sense, parallel processing is applied toward
(1) inter-transaction and {2} parallel command execu-

e o=

T

@Tunn:ﬁm master Farallel command

task processing
Communizatian i:‘ Idie

Figure 11. A parallel processing timing diagram

Tuple |Fizmi- Helative |Fixed- Flelative | Vardabie [Variahle
beader|leagth |peinter |leagth |pointer plenpih Llength
atirbuls teribute attribute jatiribute
body ¥ body [bedy
» »
|

Figure 12. Representation of variable-length records

tion levels. Figure 11 shows a timing diagram of query
processing where parallelism in the command execution
level is realized. In thie figure, PEQ is the transacticn
master and takes care of the master's tasks. This js &
set of serialized operations performed intermittently be-
tween parallel command executions. The parallel com-
mand execution is done by idle processors as shown in
Figure 11.

Terr: Data Type Suppert From seftware's poiut of
view, relational knowledge base support 15 (1) the ad.
dition of & data type (term) and (2) the addition of a
sot of operations to relational database enhanced with
the term data type. To do these, the basic data struc-
ture supports tagged data and variable leagth recards,
which is required because the term relational model al-
lows variance of atomic and structured data as in Prelag.
The structure of a record that supporis variable-length
recard is shown in Figure 12

Efficiency Consideration [n database machine re
search, the importance of elimination of seftware over-
heads 15 often stressad. The software system has besn de-
signed and eoded with this elearly in mind. The system
awes the file svsiem and the sollware development envi-
ronment to the residing operating system. However, the
rest of the sofiware was made [rom scratch. To develop
5o much new software was expensive, but helped to make
2 specialized, compact and efficient system. For example,
the control software of the PEis a single-process program
and there is little overhead in switching between transac-

Frocessing lime (s]

1= Communicaton
Parallel ezmmand processing | .7,
0.8 p— {max —overage! | .
Parallel commmand processing
{ouerogel
06—
04—
0.2 1 FM]
4]
1 2 4 L] g

FE count

Figure 13, Performance of the zelection operation

tion master tashks and paraliel command execution tashs.
Considering the nature of the svstem and preliminary
evaluation results, we are convinced that this has been a
good choice. We note that there are numerous decisions
we took that have to undergo further evaluation.

4.4 FEwaluation

5o far, we have made a preliminary perfermance eval-
uation. This eveluation was to obtain the basic speed of
the hardware and the efficiency of the parallel processing
method, not to discover the fina] performance values,

The queries we took were selection and join aperations.
The selection query selects 111 tuples from 1600-tupls
relation, the size of which is 300 KE. The join is per-
formed between a 13 KB, 111-tuple relation the result
of the previous selection, and a 20K-byte, 215-tuple re-
lation. A nested-loop algorithm 13 used. The result is
37 tuples. MNete that the tuples are variable-length and,
according to the parallel proceseing scheme, the query is
processed as shown in Figure 11,

Figure 13 shows the result of the selection. The total
processing time is almost identical to the time for parallel
command execution. The averhead of parallel execntion
{in this case, cormmunication time] is ot recognized un-
til the number of participating processors reaches six,
Still the overhead is quite low, The efect of pacallel pro-
ressing is thus satisfactory, at least within the machine's
degree of parallslism.

Figure 14 shows the result of the join. In contrast
to the selection case, the total processing time of the
join saturates at the processor count of six. In this case
also, the effeet of parallel command execution is good.
However, the overhead increases as the number of pro-
cessars increzses, The source of overhead is the variance
in the processing times of PEs. The communication time
is hidden hecause the absolute processing time is about
ten times greater than in the case of selection.

This phenomenon is ciearly illustrated by comparing

Processing time (5]

12— Communicatien |
10— — FParallel command processing
[maz —swerage)
Faralle] command processing .

B— {awerage)

[—

44—

ot | E ﬁ

1]

1 2 4 & B PEcpunmi

Figure 14, Performance of the join operation

Processing times of PEs
1o 'I'l!l_ 12 [E)]
0.8 10
. & ,
0& ! Selection Jain
8
04 :
i
0z II . "II m E
0 L
12 4 6) 1 2 4 & 8

PE count FE count

Figure 15. Comparison of processing times

the processing times of PEs in sclection and join cases
{Figure 13). The reason why there is variance in the
ioin is hecause the size of the source relation is not large
enough to be evenly shared by the PEs. The 20 KB
relation (ten 2K pages) is divided by eight PEs, so two
PEs have to process two pages while the remaining six
only have to process one page each.

This evaluation is done using the first version of soft-
ware where there are neither indexing schemes nor clus-
tering schemes. The hashing based indexing scheme
and, for join operation, bucket-wise hash-join method
'Kitsure 83a] i+ being implemented. We leave more de-
tailed evaluations for the future.

5 INTERFACE BETWEEN GHC AND
FARALLEL KNOWLEDGE BASE
SUBSYSTEM

The knowledge base subsystem should retrieve infor-
mation quickly from a large amount ol knowledge and
treat a variety of knowledge objects uniformly. Then,
it should manipulate the retrieved knowledge elements
efficiently. The goal of the FGCS project is to build
a knowledge information processing system using legic

-

programming paradigms. Combining 2 parallel logic pro-
gramiming language and a dedicated system for operat-
ing a knowledge base seems to be one possible way to
implement apphcations of FGCS project.

This section describes interfaces that combine a par-
allel logic programming language and a knowledge base
system.

5.1 Owerview of the System

Retrieval-by-unification (RBU) operations have been
proposed [Yokota 86h] as the dedicated system for oper-
ating a knowledge base. RBU operations are an exten-
sion of relational database operations for manipulating
the variety of knowledge objects. A knowledge element
is represented by a term, & well-defined structure capa-
bie of handling varizbles. A knowledge base consists of
eets of terms called term relations. The RBU system
searches the term relations for desired terms, these unifi-
zble with a search condition. We have implemented two
extended relational algebra operations: unification re-
striction stream {urs) and unification join stream (ujs).
Other conventional retrieval eperations, such as union,
projection, jein, and selection, and updating operations,
such s insert and delete, have alse been implemented.

Cuarded Horn Clauses {GHC) {Ueda 85}, a parallel
logic programming language with committed choice se-
mantics, 15 the kernel language of the FGCS. It handles
parallel processes and streams for communication among
processes efficiently, but is inadequate in searching for al-
ternative knowledge elements, since a variable of GHC
can be assigned only once. GHC also has trouble han-
dling global information such as that in knowledge bases
GHC has no appropriate means of guaranteeing the con-
sistency of knowledge bases during parallel updaling.

RBU enables GHC to process knowledge bases. REU
conmands for retrieving and updating term relations are
issued from paralilel problem-solving systems writlen in
GHC. A term relation is used to control consistency in
paralle! operation. The combination of GHC and RBU
is useful in many types of knowledge information pre-
cessing system for the FGOS project.

5.2 Parallel Retrieval

“ow, consider production (rule-based) systems check-
ing for feasibility of the combination of GHC and REU.
The basic concept of a production system involves ap-
plving state transition production rules from an initial
state to reach a goal state that satisfies termination con-
ditions. Several states can be generated from a single
state by applving the production rules, and the state
transitions make a search tree. The goal of a production
system is to derive a path from the initial state to 2 goal
siate by traversing the search tree.

FProcess tree

Figure 16. Process eonfiguration and a search tree

Parallel processing is viewed as a way of reducing the
large amounts of time eonsumed by production systems
[Gupta §7]. One implementation is the parallel traversal
of & search tree in which pew states are generated from
different states in parallel. Limits on memory and the
number of processors require the use of special search
straiegies. The best first search [Barr R1] is one such
strategy. Tt selects a state from & search Lree using state
evaluation of the current state to generate new states.
The state selected has the best evaluation value in the
tree at a given time. The centralized contral of this strat-
egy makes finding the best value a bottleneck, however,
Contre! must be localized for efficient parallel process-
ing. We propose a new search strategy called the Better
Firsi Search. The strategy looks enly in & subtree of
the search tree for the state that has the best evaluation
value. Although this value 15 good, it may not be the
best in the entire tree; we call it a “better” value,

We use a tree structure as the process configuration to
implement the Better First Search in paraliel. The tree
configuration is not directly related to the search tree
traversed by the production system. The three types of
nodes (processes) in the process tree are the root node,
leaf nodes, and other branch nodes. FProductions are
performed at the leal nodes. Production pricrities are
controlled at the branch nodes based on their evaluation
values. Svstem control such as that of the user inter-
face is performed at the root node. Figure 16 shows the
process configuration and & search tree.

MNodes in the process tres are implemented using per-
petuzl processes generated from recursively called GHC
elaizes, Process behavior is controlled by streams bound
to variables in arguments in the clauses. The streams are
treated as messages for the process. This configuration

p

|
|
I
!
1
i
i
1
1
|
|
I
I
I
I
I
i
i
1
1
|
1
i
I

Figure 17. Implementation on the parallel madel

is suitable for the parallel model of knowledge base ma-
chine mentioned in Section 4. A number of processors
and shared storage compose a cluster in this machine,
making it impertant to localize processor communica-

tions. We plan to locate each leaf process in 2 processor
(Figure 17).

£.3 CHC Interface

A production is perfarmed by retrieving knowledge el
ements from a knowledge base and vpdating the knowl
edge base based on production rules. The knowledge
base is a global state for paraliel production processes,
GHC cannot handle global states among perpetual pro-
cesses, nor effectively retrieve and update the knowledge
base, even if a common stream is prepared as an argu-
ment of every clause to implement a global statein GHC.
The unification implemented in GHC canuot be used to
search for multiple knowledge elements, because a GHC
variable can ooly be assizoed a value once. Onee bound
to a knowledge element | the GHC variable’s binding can-
not be chung_ed-

Connecting GHU to a dedicated system that processes
knowledge bases enables 2 parallel production system to
be built, RBU knowledge elements are terms defined in
the same first-order logic a3 GHC, thus eliminating syn-
tactica! transformation. RBU stores a set of terms 23 2
term relation which is used to guarantee the consistency
in knowledge bases during parallel updating

The special predicate rbu{C) is provided in GHC teo
enable the use of RBU. Commands for retrieving and
updating knowledge bases are bound te the stream ar
gument C.

For example:

< {urs{t:l,ll],p{ﬁ,stlj},[i],xL

wis(rry, [2],er2, (1181).+ o).

The first command sentence, wurs(tri, [,
pla,5{1)), [1], X), dictates a search of the first at-
tribute of the term relation trl for terms unifiable with
the condition pla.$(1)}, yielding the derivation of the
first attribite as a result, Results are returned as 2
stream bound to the variable X in the cormnmand sen-
Lence:t

X = [pla,g(35(2))). pla.g(Bd), -]
The second command sentence, wjs{ tz1, [2], tr2, [1],
[31, ¥), is used to derive the third attribute of a result
relation generated by a unification join operation which
searciies the second attribute of tri and the fiest at-
tribute of tr2 far unifiable terms. Results are returned
bound to the variable Y.

¥ = [g(3(10),¢),--°]

The special function symbel § is used to indicate a
varizble in command sentences and in results. GHO vari-
ables cannet be used for knowledge retrieval, so other
symbols are nesded to indicate variables for retrieval.
These variables are bound to knowledge elements in
REEU, but unbound in GHC, This corresponds to un-
bound variables appearing in & template predicate of the
setof predicate in Prolog systems.

5.4 Tmplementation of RBU

Different approaches have been propesed to improve
retrieval speed, One approach was to use dedicated hard-
ware: for example, a unification engine was proposed by
Morita 86) [Yokota 86b]. [Ohmori 87] proposed a hash
vestor for indexing clauses. Superimposed code words for
terms and & dedicated engine for manipulating the words
were proposed by [Wada 88]. We use indexing that ze-
trieves a set of terms by upification and backtracking,
Retrisved terms resemble each ather somewhat because
they are unifiable with the search condition. For efficient
backtracking, these terms must be located near an index.
The trie is a type of tree structure that shares identical
elements [Kouth 73] and meets this requirement. Fig-
ure 15 gives an example of a trie {or 2 set of terms.

The costs af unification are proportional to the count
of comparisons between componeats of the object terms.
A trie reduces the number of comparisans when unifica-
tion iz performed. For example, consider what happens
when the set of terms in Figure 18 is searched for terms
that can be unified with the condition p(2(a, b} ,hic}).
Using the trie structure, the component p is compared
only onge, whereas four comparisons are necessary if the
trie structure is not veed, Usiog the trie structure, 10
comparizons are needed to search for all terms unifiable
with the copditicn; 18 comparisons are nesded if the trie
shruciure is not UEE{E-

Hash
table

[

PIHINGISZIN PSS pRa SO BRI piflabhhis(1i)

Figure 18, Tuple index with hashing and trie structure

5
BB without indexing 00—

ABU with indexing = =-u
Quictus Prolog s=+=

045

0.3r
02k
= -
0.1 -
o =
a 250 500 7580 1,000
tuples

Figure 19, Comparison of search speeds

4 hash table is used before the trie structure when
storing many types of terms in a term relation (Fig-
ure 18). The first components of terms are used as hash
entries. The trie structure is combined with hash colli
sion resolution.

We compared the search and updating speeds of the
REU prototype with those of the Quintus-Proleg inter-
preter. Prolog compilers do not support assert and re
trace predicates, (they cannot update knowledge bagesh,
s0 the compiler has not been examined. Figure 19 com-
pares the search spesds of the Prolog interpreter and urs
with and without indexing. The urs without indexing is
about four times slower than the P‘I‘U]ﬂg, clause search.
This search time increases with tuple count in both Pro-
log and urs without indexing. However, the search time
of urs with indexing scarcely increases regardless of the
number of tuples. Far 1000 tuples, it is ebout one-fourth
of the time that a Prolog clause search would take. This
is a result of the indexing.

Figure 20 compares the luple insertion speeds of the
two systems. Tuple insertion using RBU takes only
about one-sixth the time of a Prolog consult operation.
The overhead for making an index for a term relation is
ahout one tenth of the insertion time.

6 CONCLUSION

In this paper, we have deseribed the current status of
tesearch and development concerning the knowledge base

W0r ABEU lsad o= "
25+ EBU load + mkicdes w=-n e
Quintus Proleg w—-=s I_.."'.'
20 F L
15+ e
.--"-.l
10 F -t
|"‘P

5h ..-"'" ______
U_x" raar el AT T T T T N

5 250 500 T50 1,004

tuples

Figure 20. lnsert speed comparisen

subsystem in FGCS project. In the intermediate stage,
we have investigated and experimented on the fellowing
four knowledge base mechanisms required for construct-
ing the prototype of the FGCS.

{1) The knowledge base system developed on the CHJ
machine

The knowledze base system on the CHI ma-
chine provides a very high performance knowledge-
retrieval mechanism, 2 practical memory-bascd
knowledge database, and a hierarchical clause
database for a multi-process environment, In the
system, multiple-multiple name spaces play an es-
sential role in avoidiog interprocess name conflicts
and in hierarchical knowledge representation. The
system will be & good wehicle for the next knowl-
edge base research project.

{2) The distributed knowledge base system based on
deductive databases,

A distributed deductive databese system has
been developed. It uses PST machines connecled
by JOOT-LAN. The query processing strategy of
the system is based on a bettom-up approach com-
bimed with guery translormation procedures. A
dynamic optimizatien methed is used to process
distributed queries. Dedicated hardware for pro-
cessing indices has also heen designed based on a
superimposed code scheme for efficient knowledge
base processing.

(2} The paralle]l knowledge base system,

The total system with the experimental hard-
ware and knowledge base management software has
been developed. The system can manipulate sets of
terms eMciently in parallel. The bardware config-
urasion proved wselul for knowledge base purposes.
The system connects to PS5/ machines, and a pow-
erful unification-based query language has been de-
'm'mpr.d as an interface,

{4) The knowledgs base interface system for parallel
legic programming languages.

We proposed to introduce a parallel logic pro-
gramming language interface into a dedicated
knowledge base system. We considered 2 parallel
production system to check the feasibility of the
combination of RBU and GHC. Parallel processes
for the production system are implemented by per-
petual processes written in GHC, Each process is-
sues RBU commands for retrieving knowledge. We
alse outlined the concept for interfacing REU with
GHC using streams, and evaluated the search and
updating speed of our RBU pratotype.

The various kinds of Lechnology developed in this stage
will be incorporated into the FGCS prototype.

ACKNOWLEDGMENT

We would like to express our gratitude to the other
members of the third laberatory of the ICOT Research
Center. Each systern described in this paper has been
developed with the close co-operation of manufactuzers,
Thanks goes alse to the manufacturers’ people who were
engaged in the implementations. We are indebted to the
members of the KBM Working Group for their fruitful

discussions.

References

[Apt 83] Apt, K.R., Blair, HA. and Walker, A., "To-
ward A Theory of Declarative Knowledge™, Minker
{ed), in Foundations of Deductive Datgbases end
Logie Programming, Mergan Keufmann Publishers,

1988

jAtarashi 53] Atarashi, A., Yaoagida, 5. and Kona-
gave, A, “SUPLOG Reference Manual®, 1935 (In
Japanese)

[Balbin §7] Balbin, I, and Ramamohanarae, K., "A Gen-
eralization of the Differential Approach to Recus-
sive Query Evaluation™, J. Logic Programming, Vel.d
No.3, 1987

[Bancilhon $6] Bancilhon, F., Maier, D., Sagiv, Y. and
Ullman, J.D., "Magic Sets and Other Strange Ways
to Implement Logic Programs™ S5th ACM PODS,
1956

{Bars §1] Barz, A. and Feigenbaum E. A in The Hand-
book of Artificial Inielligence, 1, William Kautmann,
Ime. 1521

[Chikayama 24] Chikavama, T., “Unique Features of
ESP", in Proc. Inl. Conf. Fifth Generation Com-
puter Systems, pp.292-298, 1984

[Demurjian 85] Demurjian, 5.A. and Hsiao DR, “A
Multtbackend Datzbase Svstem for Performeance
Gains, Capacity Growth and Hardware Upgrade™, in
FProc, Int, Coenf on [Deta Engineering, pp.342-534,
1986

[DeWitt 36] DeWitt, D.J., Gerber, LH., Graele, G,
Heyiens, M.L., Kumar, K.B. and Muralikrishna, M.,
“GAMMA - A High Performance Dataflow Database
Machine”, in Prec. 12th fnt. Conf. Very Large
Databases, pp.228-237, 1956

[Doolittle 86) Doolittle, R. F., “Of Urfs and Orfs, A
Primer on How to Analyze Derived Aminc Acid Se-
quences”, University Science Books, Mill Valley, CA,
1986

[Gelfond]} Gelfond, M. and Praymusinska, H. and Przy-
musinski, T., "On the Helationship between Circum-
scription and Negaticn as Failere™, to appear in Jour-
nal of Artificial Intelligence :

[Goto 87) Goto, A., “Parallel Inference Machine Re-
search in FGCS Project™, in Froe. of the US-Japan
Al Symposium 87, pp. 21-36, 1937

[Gupta 87] Gupta, A., in Parallelism in Production Sys-
temns, Morgan Kaufmann Publishers, Ine., 1987

|[Habata 87} Habata, 5., Nakazaki, ., Konagaya, A,
Atarashi, A. and Umemura, M., *Co-operative High
Performance Sequential Inference Machine: CHI, in
Froc. ICCD'87, New York, 1987

{itoh 87] Twoh, H., Sakama, C. and Mitomo, Y., “Par-
allet Control Technigues for Dedicated HRelational
Database Engines”, in Proc. 3rd fnt. Conf Data
Engimeeming, pp 208215, 1987

[itoh 88] lioh, H., Takewaki, T. and Yokota, H.,
“Knowledge Base Machine Hased in Parallel Ker
nel Language”, in eds. Kitsuregawa and Tanaka, in
Databuse Mochines ond Knowledge Base Machines,
Kluwer Academic Publishers, 1938

[Kakuta 83] Kekute, T., Miyazaki, N., Shibayama, 5.,
Yokota, H. and Murakami, K., “The Design and
Implementation of Relational Database Machine
Delta”, in Prec. [ni. Werkshop on Datsbase ma-
chines "85, 1985

[Kemp-Tepor 83] Kemp, B.D. and Topor, W.R., “Com-
pleteness of & Top-down Query Evaluation Procedure
for Stratified Databases”, Dept. of Computer Sci-
ence, Univ. of Melbourne, Technical Report, 1988,
also in Proe. 5tk Int. Conf and Symp. on Logic

F‘mgmmm ing

[Kitsure £7] Kitsuregawa, M., Tanaka, M. and Mote
oka, T., “Helational Algebra Machine GRACE™, Lee-
ture Notes ¢n Computer Science, Springer-Werlag,
pp.181-214, 1952

[Kitsure 83a] Kitsuregawa, M. Tanaka, M. and Moto-
oka, T., “Application of Hash to a Data Base Ma.
chine and Its Architecture™, in New Generafion Com-
puting, OHMSIHA, 1, 19583

[Kauth 73] Knuth, D. E., “The Art of Computer Pro-
gramming™, 3, Sorting and Searching, Addison-
Wesley, 1073

[Fonagaya 87] Konagaya, A Nakszaki, R. and
Umemura, M., *A Co-operative Programming En-
vironment for a Back-end Type Seguential Inference
Machine CHI", in Proc. Int. Workshop on Parullel
Algorithms and Architectures, East Germany, pp.25-
30, 1987

[Kenagaya 88] Konagaya, A., “Implementation and
Evaluation of a Fast Prolog Interpreter”, in IPS
Japan SIG-5YM 46-4, 1935 (in Japanese)

i]'{upifuji 32] Kunifujli, S. and Yokota, H., "Prulug and
Relational Database for Fifth Generation Computer
Swstems”, in Proe. Workshop on Logical Bases jor
Data Bases, Galluire, et aleds), ONERA-CERT,
1982

[Minsky T4] Minsky, M., “A Framework for Represent-
ing Knowledge", MIT Al Memeo Neo.306, 1974

{Miyazaki 85a] Miyazaki, N., Haniuda, H and Iteh,
H., “Hern Clause Transformation: An Application
of Partial Evaluation to Deductive Databases™, in
Trans. [PSJ, Vol.28, No.l, 1988 (in Japanese)

[Mivazaki 83b] Miyazaki, N., Haniuda, H., Yokota, K.
and Itoh, H., *Query Transformations in Deductive
Databases” ICOT-TH 377, 1988

{Monoi 83a] Monei, H., Morita, Y., Itah, H., Sakai, H.
and Shibayama, 5., “Parallel Control Technigue and
Performance of an MPPM Knowledge Base Machine
Architecture™, in Proc. Jth [at. Conf Dale Engi-
nesring, pp.210-217, 1938

|Monoi B85] Monot, H., Marita, Y., Itok, H., Takewaki,
T., Sakai, H. and Shibayama, 5., “Unification-Based
Query Language for Relational Knowledge Bases and
its Parallel Execution”, in Prec. [nt. Conf. Fifth
Generation Compuler Systems, 1958

[Morita 86] Morsita, Y., Yoketa, H., Nishida, K. and
Itoh, H., “Retrieval-By-Unification Operation on 2
Relational Knowledge Base™, in Pree. of Ifth Int.
Conf. on Very Large Databases, pp. 52-59, 1986

Iﬁ.

[Morita 88} Merita, Y., Itoh, H. and Nakase, A, “An
Indexing Seheme for Terms using Structural Supe:-
imposed Code Words™, ICOT TR-383, 1933

[Murakami 83] Murakami, K., Kakuta, T., Miyazaki, N.,
Shibayama, 5. and Yokota, H., “Relatiopal Database
Machine: First Step to 2 Knowledge Base Machine”,
in Proc. J0th int. symp. Cemputer Archilecture,
pp.423-426, 1983

{Ohmori §7) Ohmeri, T. and Tanaka, H. “An Alge-
braic Deductive Database Managing a2 Mass of Rule
Clauses”, in Proe. of 5tk Int. Workshop on Dotabase
Machines, pp. 291-304, 1937

[Sakai 83] Sakai, H., Shibayama, 5., Monai, H., Monta,
¥, and Itoh, H., *A Simulation Study of & Knowl-
edge Base Machine Architecture”, in Database Ma-
chines and Knowledge Base Machines, Kluwer Aca-
demic Publishers, pp.585-598, 1988

[Sakama 87) Sakama, C. and Itoh, H., “Partial Evalua-
tion of Queries in Deductive Databases”, Workshop
on Partial Evaluation and Mixed Computation, 1987

|Seki 85] Seki, H. and Itoh, H., “A Query Evaluation
Method for Stratified Programs under the Extended
CWA”, ICOT Technical Report TR-337, 1985, also in
Proe. 5th Ini. Conf and Symp. Logic Pregramming

[Shibayama ST] Shibayama, 5., Sakai, H., Monoi, H.,
Morita, Y. and Ttoh, H., “Mu-X: An Experimen-
tal Knowledge Base Machine with Unification-Based
Retrieval Capability”, in Prec. Fronce-Japan Arti-
fieial Tntelligence and Computer Science Symposium
&7, pp 343357, 1967

[Taguchi 84] Taguchi, A., Miyazaki, N., Yamamote, A.,
Kitakami, H., Kaneko, K. and Murakam:, K., “INI:
Internal Metwork in the ICOT Programming Labe-
ratory and its Future™, in Froc. of Tth JOCC, 1984

[Takasugi 87] Takasugi, T., Haniuda, H., Mivazaki, N.
and ltoh, H., “Distributed Query Processing in
KBMS PEI", in [PS Japen SIG-MDP, 34-9, 1987
(in Japanese)

[Tamaki 86] Tamaki, H. and Sate, T., “OLD Resolution
with Takulation”, iz Prec. of 3rd [CLF, 1936

[Tanaka 84a] Tanaka, Y., *MPDC: Massive Parallel Ar-
chitecture for Very Large Datzbases™, in Proc. [Int,
Conf. Fifth Generation Computer Systems, pp.113-
137, 1954

[Tanaka 84b] Tapaka, Y., “A Multipors Page-Memory
Architecture and A Multiport Disk-Cache System”,
in Mew Generation Computing, OHMSHA, 2, pp.241-
260, 1934

[Ueda 83] Ueda, K., “Guarded Horn Clauses™, in Logic
Programming '§5, E. Wada (ed)., Lecture Notes in
Computer Science 221, Springer-Verlag, 1936

[Van Gelder 86] Van Gelder, A., "Negation as Fail-
ure Using Tight Derivations for General Logic Pre-
grams”, in Proc. 1986 Symp. on Logic Programming,
[EEE Computer Society, pp. 127-135, 1986, also to
appear in Jowrnal of Logic Programming

[Wada 88) Wada, M., Morita, Y., Yamazaki, H., Ya-
mashita, 5., Mivazaki, N. and ltoh, H., "A Superim-
posed Code Scheme for Deductive Databases”, io eds.
Kitsuregawa and Tanaka, in Database Machines and
Hﬂpw.fm'.ge Base Mechines, Kluwer Academic Pub-
lishers, 1938

[Yokota 84] Yokota, H., Kumifuji, 5., Kakuta, T,
Miyazaki, N., Shibayama, 5. and Murakami, K., “An
Enhanced Inference Mechanism for Generating Rela-
tional Algebra Queries”, in Proc. 3rd ACM SIGACT-
SIGMOD Symp. Principles of Database Syslems,
pp.229-238, 1884

[Yokota 86a] Yokota, H., Sakai, K. and Itoh, H., “De-
ductive Database System Based on Unit Reselution”,
in Proc. fnd Int. Conf Datz Engineering, pp.228-
235, 1986

[Yokota 86b] Yokota, H. and Iteh, H., “A Model and
2o Architecture for a Relational Knowledge Base”,
in Proc. 18tk Int. Symp. Compuier Archilecture,
pp-2-9, 1986

- 1? —

