ICOT Technical Report: TR-423

TR-413

Generating Rules with Exceptions

by
J. Arima

October. 1988

G988, 1COT

Alile Kokusai Ddg. 21F (03 456-3191= 5

|| :D | 3-98 Mita 1-Chome Telex 1COT J32964
Minato=ku Tokvo 108 Japan

Institute for Név& Generation Computer Technology

JoArimal

Generating Rules with Exceptions

Jun ARIMA

ICOT Research Center, Institute for New Generation Computer Techneology,
¢-28 Mita 1-Chome, Minato-ky, Tokyo 108 Japan
Phone: +81-3-456-43685, Csnetrarimefoicol jp@relay.cs.net
Junet: arima@icot Junet

ABSTRACT

Commonsense knowledge varies according to
the characteristics of the person who possesses it,
When we consider an intelligent system which
makes commonsense reasoning, we can notignore
the cost of changing commeonsense knawledge
pecording to the circumstances. Commonsense
knowledge must be acquired.

This paper deseribes the [irsi step to
formalization of the whole process from acgquiring
eommonsense knowledge to deing commonsense
reasoning usiog it.

1 INTRODUCTION

When we lock information, commonsense
raasoning will often lead us to useful conclusions
by making use of default assumptions that hold
generally. For instance, we can jump to the
conclusion, “Tweety flies”, given the fact, “Tweety
is & bird”, using a default assumption, “Birds
normalily flv". Major objectives of the research of
nonmendtonic reasoning are to formalize such
rommonsense reasoning and to realize intelligent
systems thal can use commonsense knowledge.
This kind of research ususlly starts from the
assumption that defauli assumptions are given,
However, default assumptions vary widely
asccording to the nationality, class and
temperarnent of the person whe possesses them as
well as depending on time and place. Changing
the set of default assumptions in an intelligent
system according Lo the various eireumstances in
which the system works would probably be very
expensive, so we should also try to develop an
intelligent system that learns commonsense
knowledge by itself, This paper attempts to
formalize the whole process from acquiring

default assumptions to doing commonsense
reasaning using them.

In formalizing the whole process of such
default reasoning, the problems that arise and our
solutions to them are as follows.

(1} Representation of default assumption

Default assumptions change depending on a
(sub-)domain. Consider & bird-world which
consists only of birds. In thizs world, a default
assumption with respect to flving will be such a
statement as “x normally flies ("Fly(x)")", then we
say, 'Fly' has positive direetivity in the bird-warld
in the sense that we assign ‘true’ as truth values
Lo ‘Fly(x) if possible.

WNow, consider a penpuin-world which consists
only of penguins, In this world, the default
assumption will be “x pormally does not fly
('"=Fiy(x)')", then we say, 'Fly' has negative
dirgctivity in the contrary sense. The directivity of
'Fly"has to be changed aceording to each domain.

How do we represent such default
assumptions? For this purpose, we propose a
general form of (parallel) circumscription
(McCarthy 1980, Lifschitz 1985), partially
directional (Pd-Jetreumseription, Circumsceription
makes the extenszion of certain predicates
(zymbols) closer to the extension of 'false’ (its
extension means empty =et) as far as possible,
whereas Pd-circumseription makes the extension
of properties closer to the extensions of sur
intended predicates in each (sub-ldomain, Pd-
circumscription is defined in the secand section.

(2} Representation of criterion for directivity of
the concerning property

J.Arima 2

We must still choose positive or negative
directivity of the concerning property in each
domain. How should we judge the direction? Our
treatment is very natural. If entities that are
shown to have the concerning property are much
more {much less) than entities that are shown not
to have the concerning property in some domain,
the directivity of the property should be positive
{negative) in the domain. That is, if many more
birds fly than do not, we consider that birds
normaliy fly. Thiz is the key idea,

For this treatment, we introduce an binary
erder over predicate names, called the surpassing
relation, The surpassing relation represents
whether entities that satisfy a predicate are much
more than entities which satis{y another
predicate. Depending on the relations, we select
the directivity of the concerning property. The
entities that are shoun to have a property are
interpreted as elements of minimum extension of
the property under given knowledge.

The third section presents these details, and
then constructs our objective form which
generates default assumptions and makes
comrmpngense reasoning using them. We call this
form the majority generelization, which is
expressed a second-order formula. The fourth
section explores the possibility of collapsing it
into first-order logic and the fifth describes how ta
use it and how it works.

2 PARTIALLY DIRECTIONAL
CIRCUMSCRIPTION

e we have already described the objective of
this paper and the problems that arise, we would
like to forus on explanation of gur solutions in the
later sections, The main probiem to solve in this
section is to provide a way to represent default
assumptions that are allowed to vary depending
on a sub-domain (sub-class)., We can use
circumseription to provide such a way,

J.MeCarthy provides circumscription
(MeCarthy 1980, 1966) as a form of non-
monotonic reasoning. Formula circumseription is
one wversion of cireumseription. It is a general
formulation in that a wif is minimized, wherzas
the earlier form minimizes some predicates.
Formula cireumscripiion iz a powerful way to
express non-monotonic reasoning, but in order to
use it, we must specify many predicate

b

parameters. The wif to be minimized is the most
impertant one to be given because to give the wif
means to characterize reasoning by giving
predicates the intended interpretation. However,
unfortunately, it is the most difficult, because
there are no constraints to decide it and the
problem is left entirely in our hands. Hence, how
to specify the wiT is a problem. In this paper, we
take the way of extending the earlier form, called
predicate circumseription.

Consider predicate circumscription, and
consider what character the formulation has.
Predicate circumscription can make the extension
of property P minimal. When we consider that it
makes the extension of P eloger to the extension of
'false' as far as possible, we can extend predicate
circumseription for our cbjectives. That is, what
we want is a formula which, aceording to the
characteristics of the sub-domain, can give an
extension of P so that the extension will be clogest
ta the extensions of our intended predicates. With
such a formulation, even if new information
contradicts an old theorem, the theorem would be
revised because the formulation does not fix the
extension of P to our intended extension, but
simply makes the extension closest to curs, Now
we get our form,

In this paper we simply write x instead of a
tuple of finite terms for brevity. By n-ary
predicate, we mean an expression, Ax.(a(x)),
where x is & tuple of n variables and a(x) is a wil
in which x occurs free and no other variables
oceur free. That is, a predicate is obtained from a
formula by A-abstracting all of the free variables
init,

Let P be a tuple of distinet predicate symbaols,
Pl Pn, and ¥ a tuple of predicates, ¥1,,%¥n,
where Pi and Wi have the same arity. [¥/F]
means & substitution, representing
[E1/P1,~ Wn/Pn] and usually abbreviated {'¥).
We write afx)[W/P) for the result of replacing
simultaneausly each occurrence Pi in alx) by Wi
And ¥x.(P(x) = ¥(x)) means Vx.(P(x) 2 W(x)) A
wx Pix) © Wix))k

Definition [partioliy directional circumscriplion
(Pd.circumseription)].

Let P and T be tuples of distinct predicate
symbols and disjoint each other, and ® and A be
tuples of predicates. Let A be a formula, The
particlly directional circumscription aof P o A
inside ® with variable Z is

A[PT]
AvpzlAlpzl A
My WV Pix) D ((Pilx) = Alfx)) 2 (pilx) = Ailx)H
3 A Y {ditx) O (Pilx) = pilx)), (2.1}

where Pi. Ai, @i and pi are elements of P, A, ©
and p respectively. This formuls is denoted by Pd-
circom(A; P~ ASDGED

It asserts that the extension of P cannot be
made closer to the extension of A inside an
extension of &, even if allowing Z to vary, while
they satisfy A. That is, intuitively, it can, under
A, give P the closest extension to A's extension
with allowing T to vary in the ®-domain. In this
sense, we sav I is directional to A\ inside & in AL

In this paper, 1 represents a tuple of property,
Ax.(false), with respect to which for all tuples of
entities the false value is nssigned constantly, and
similarly, T represents a property, Ax.(—false},
with respect to which the true value is assigned
constantly.

Proposition 1.

1) Pd-circum({&; P~ L/ T;Z} = Circum(A; P; Z),
where Circum(A; P ; Z) is the parallel
circumseription of Fin A,

2) If P consists of a single element, Pd-
circumscription is a specialized formulation of
formula circumseription.

Proofls,

1) By predieate ealeulus,

2) Pd-circumscription is equivalent to the formula
eircumscription that minimizes the wif —($x) =

(Pix) = Alzh).

Proposition 1 says that parallel circumscription
{which predicate circumseription is a special form
of) is to make some predicates directional to false
in 2 whole domain,

3 MAJORITY GENERALIZATION :
A FORM OF GENERATING RULES
WITH EXCEPTIONS

Mow, we bave a tool for representation of
default assumptions. In this section, we explore
the way to generate adeguate azsumptions, and
then a form of generating rules with exceptions iz
preposed.

iy

JArima 3

Consider a property, to fly (predicate, 'Fly"). For
any domain, we can consider the following three
cases; the individuals of the domain 1) generally
fly, 2)generally do not, or 3) otherwise, The caze
that all individuals fly {do not fly) is a special case
af 1) ¢ 2)). It would be adeguate fo generate
assumptions which have the positive directivity of
‘Fly’ in the case of 1) and negative in the case of 2).
In the case of 3), it would not be adeguate to
generate assumptions. To represent such cases,
we still need some preparations.

We assume that the syntax of the underlying
language ineludes names for predicates. That is, if
o is a predicate, let our language include a
constant term, a, as the predicate name. Now, we
introduce a comparalive relation over predicate
{names), called the surpassing relation which is
denoted by "> >'. When 'a > > [’ holds, we say
that ¢ surpasses B. Itz intended meaning is that
the number of entities that satisfying property, a,
is much greater than the number of entities that
gatisly the other, p. Based on this intended
meanicg, let the following sentence hold with
respect to the predicate and its predicate name.

For all predicates o, P and 7 (and for their
predicnte names):

1 e@x=pAp=>2r2@>>7) (3.1
it —fo>=>a) (3.2)
M {o=>>pAVeiax 27 3G >> [X3.3)
IV (o>> BAYLOpE D Bx) D0 > > rX34)

The following two formulas are not essential, but
here, we consider these as axioms.

(3.5
(3.6)

V saoxill{ex==>l1)
Vi b.a=23(]>>a),

where o = [denotes ¥x.(alx) = p(x)) anda = [
denotes —¥x.(a(x) = PB(x)). The conjunction of
these formulas (3.1)=~(2.8) is represented as
‘Curp'. ‘Surp'is handled as an axiom.

Other axioms with respect to surpassing
relation '> >'may be given by using a function to
count up entities that satisfly certain conditions
and by using some adegquate evaluate functions
for '> >, or may be given directly based un our
intuition.

New we introduce a formulation on generating
rules with exceptions (default assumptionsj. Iz
intuitive idea is that, in a certain domain @,

JArima 4

entities normally have a certain property P if, as
far as we kpnow, there are much more entities that
satisly the property than do not. And we assume
that a set of entities that we know to satisfy a
predicate P corresponds to the minimum
extension of P which satisly given knowledge. To
brief description, the form ula,

AL P A YR AR DV, (P i) Dpixdh, (3.7}
is represented by ‘Minp(F "

Minp({LP,) means that (I'; has a extension of P
which is smaller than the extension of any
predicate p satisfying the conditions satisfied by
P. That is, intuitively, (Py has the minimum
extension of P. In this sense, we say (P is the
minimum candidate of P in A when Minp(P)
holds. Conversely,

AFPUNA YR (Alp] S Ve, (pla) S TP, (3.8)

is represented by ‘Maxp(TF1)" and we say the
marimum condidate of P in A when Maxp(TP7)
holds.

Then, the mojority gerwrnfizuﬂ{rﬂ of P instde @
with variableT in A is

AlP]

AP, TP Ming{, P} A Maxp{(P7)
A (DA F () = = A (P(x)A=TP)
2 Pd-ireumi A :P=~T/d:Z2))

A WP, TPV Minp(P) A Maxp("P1)
A (P OA TP = = ha (P ()N T j(x])
SPdecireum(A P~ L/d;Z))(3.9)

This formula is denoted by ‘MajorlA; P/ d; Z), We
use this majority generalization with axioms on
the surpessing relation, that is, we consider
deduction from ‘Surp A Major{d; P/Ad; 20,

hed @) A Palx)) expresses the minimum set
of entities that exist ingide & and satisfy P. Ax.(
@ix) A I Pix)) exprezses the minimum set of
entities that exist inside @ and do not satisfly F.
That is, (2.2) declares that under A, P should be
directional to | inside @ (P has the positive
directivity inside @} if there are more entities
that satisfy P than not inside @ so far as we know,
And conversaly, (3.9) also declares that P should
be directional to L inside ® (P has the negative
directivity inside &} if there are more entities
thatdo not satisfy P than satisfy inside @ 5o far as

we know. OF course, it means that entities that
satisfy @ (do not) have a property P normally, so it
iz a declaration that anything that has a property
& should be considered (not) to have the property
Pifthere is nothing in knowledge A that prevents
it from doing so.

Example 1:

In & database, DB, three birds: Tweety, Jack
and P-suke, are registered, and the information,
P sulke cannot fly" is given. This may be
represented as follows:

Bird(tweety) /A Bird(jack) N\ Bird{p-suke)
A Flylp-suke). (E1.1)

Alzo, gssume that enough information on
surpassing relation ‘> >" is given, for instance,
assume the following knowledge:

Ax.(x=tweety) < < Ax.(x=jack\/ x=p-suke)
MAdx(x=jack) < < Ax.(x=p-suke v x=1weety)
A Ax(x=p-suke) < < Ax.(x=tweety x=jack].

(E1.2)

Let A be such information mentioned above and
consider Surp A Major(A; Fly / Bird). In this case,
L elearly satisfies the condition of (Fly) as the
minimum candidate of ‘Fly", and Ax.[" x=p-suke)
for FFlyY as the maximum candidate of Fly’, that
is, Minpiy(1} and Minpiy(l) hold!. Therefore,
using (E1.1),

dae(Bird(x) A (Fly () = L, (E1.3)

A Bird(x) A = TFlyl(x)) = hx.(x=p-suke),
{E1.4)

Wow from (3.5}
Axfx=psuke) >> 1 (E1.5)

follows. So, using (E1.3), (E1.4), (3.3}, (3.4) and
Majer(A: Fly / Bird), it gives Pd-circum(A ; Fly ~
L /Bird }, thatis,

AlFly]
MYp Alp] Avx(Bird(x) 2 (= Fly(x) 2 —plxl))

! How tecompute these generally is beyond Lhe seope of
this papar. However, the next section will partly solve the
probiem.

= W (Bird(x) D (Flylx) =plxl).
{E1.6)

Here, substituting L for p, we oblain

W Bird(x) 2 2 Fly(x)). (EL.T)

Recall the three cases mentioned in the first part
of this section. The above case corresponds to case
2)and (E1.7) is a result of the negative directivity
af ‘Fly'.

Also, (E1.7) shows generalization of knowiedge.
From (E1.7) and (E1.1) we can see that both
Tweety and Jack may be unable to fly.

Now, we add new information to the DB,
“Tweety can fly (Fly(tweety))". Then (Fly, is
Axix=tweety) and TFly] is unchanged. Under
this eircumstance, we cannot obtain either "Ax.(
Bird(x) A (Fly () > de(Bird(x) A =TFly(x)¥
or ‘hx.(Bird(x) A ~TFly (x)) > > hx.(Bird(xj M
(Fly (). Hence, (E1.7) is not a theorem of the
DB any more. This case corresponds to case 3).
However, if the DB alse knows “Jack can fly (
Fly(jack))", the theorems of DB will change more
dramatically. In this case, using (EL.2) Ax.(
Bird(x) A _Flyy(x)) == Az Bird(x} A —"Flylx))
follows, that is, this case corresponds to <)
Therefore, the directivity of 'Bird’ changes and
using Major(A A Fly{tweety) A Fly(jack); Fly /
Bird),

Vi Bird(x) 2 (Flylx) = —x=p-suke) (E1.8)

is chtained. This means “P-suke is the only bird
that cannot fly,” and P-suke comes to be
considered to be abnormal with respect to flying
inside the bird-world.

4 CONSIDERATIONS ON A FIRST-
ORDER FORMULATION

An discontented point ef the majority
generalization is on computational aspects which
originate from its expression by second order
logic. Let us try to collapse it into first order logic,
giving some constraints to given formulas A, The
way this paper treats the problem is to restrict A
to being a formula, called the symmetricaily
solitary formule, that has (speaking intuitively]
both the only minimal model (that is, minimum
medel) and the only mazimal model (maximum
model) with respect ta P

wm

J.Arime b

Thearem 1.a.

Let A be & given formula and (P, be a tupie of
predicates such that no predicate in P cccurs in
P, and that A[P] A V(P)(x) 2 Plx)) follows
from A, then

¥p. Minp[p]l & ¥x.(p(x) = P {x))). 4.1)
FProof.

From the assumption, A — A[P] A ¥z, (P lx)
= Pix) for some (P So, Alp] H Wa ((Palx)>
Pix))(p] (See {Kleene 1971)}. Here, no predicate in
F oecurs in Py, therefore, ([P (pl=P,. So, Alp] +
¥x.(Pyix} O plx}). Therefore, +
YplAlp! DVxLPy{x] 2 pix}). From this and A
AlLPjl, Minp[iP] halds.

{Right to Left) Obvious from the fact that
Ming[,P] helds.

(Left to Right) Assume that Minp{p’] holds for
gome p'. From the fact that Minp{ F1] holds,
Vp.(AlpID¥x.(P y(x) 2 p(x))) holds. Substituting
p' for p, Alp1O¥x.((Py(x) 2 p'ix)). From the
assumption that Minp[p] belds, Alp'] follows.
Therefore, ¥x.((Py{x) 2 p'(x)} helds. Similarly,
Vx{p'(x) 2 (Pilx)) holds.

Theorem 1.h.

Let A be a given formuls and TP be a teple of
predicates such that no predicate in P occurs in
'P1 and that A[TP1] A Ya(I Pzl Pix)) foliows
from A, Then

¥pd Maxp{p] = ¥x.(p(x} = TP(x))). (4.2)

Proof. Similar to that of Theorem 1.a.

Theorem 1 shows that if we can find Py and MF1
that satisfy the condition of theorem 1, we can
leave out second order formulas, Minp[1F) | and
Maxp(TP] , and the guantifier ¥ Py, TP, from
(3.9). How to find suck (P and FP7, for a certain
class of given formulas, A, can be easily shown.

Lifschitz shows that if A[P] is transformed into
a certain class of farmula, called solitery formula
(Lifschitz 1885), circumseription of P can be
collapsed into a first order sentence. Though we
need some refinement, we can basically use his
results.

Definiticn [symmetrically solitary formulal.

A formula, A, is an symmetrically solitary
formula with respect to P if A cen be transformed
inta the following form,

J.Arima 6

U A Ve (Lix = Pix)) Ave(Pix) 26, (4.8
where no predicate in P ocours in U, L{z) or Gix).

Lemma 1.

Let a formula, A, be & symmetrically solitary
formula with respect to P, U A Vx.(L{x) 3 P(x)] A
vx.(P(x) O Gi{x)). Then. L is the minimum and G is
the maximum candidate of P, that is,

Minp[L] A Maxp{G] (4.4}
holds.

Proof.
L and (3 satisfies the condition of Theorem 1.a.
and Theorem 1.b. respectively.

Theorem 2.

Let a formula A be a symmetrically solitary
formula with respect to P such that U A Ye(L(x)
o Pixe)) A V(Plx) D Glx)). Then,

Major(A; P/ D) =
A
A dl @) ALY = = Al @l A - Glx))
S dix) o (Plx) = Gix))))

A e (D) A = Gxd) = > (D) A Llx))
o e (@) 2 (Flx) = Lix)))) (4.5)

Proof. Using Propesition 1 and the result
which Lifschitz shows (Lifschitz 1985), we obtain

Pd-circum(P~ L/T) = A AV (P(x) = L(x).

Using expansion of this result and Lemma 1, we
obtain this theorem.

FProposition 2.

Let A be a symmetrically solitary formula with
respect to P and @ be a predicate which does not
contaip P. Then, the majority generalization of P
inside ® withaut varianles is alsc a symmetrically
solitary formula.

Proof. If bath A and B are symmetrically
solitary formulas, A N B is also a symmetrically
solitary formula. From this fact and Theorem 2,
we obtain this proposition.

Example 1 (reviewed):

A iz a symmetrically solitary formula with
respect to Fly, bacause A can be transformed iznto
the following form,

U Avxll 2 Flylx)
A¥e(Fly(x) O ~x=p-suke),

(E1.8)
where ‘Fly’ does not oceur in U, Using Lemma 1,
Minpyy(L) A Maxpiy(hx.(—x=p-suke)) (E1.9)
holds. Then, from Theorem 1 and ‘Surp’,
Major(A; Fly /Bird) =
A

A (A Bird(x) A L)= > ke Bird{x} A x=p-suke}
o Vx.(Bird(x) D(Fly(x)= = x=p-suke})}

A A (Bird(x) A x=p-suke)> > hx.(Bird(x} A L)
2 e (Bird(x) 2 (Fly{x) = L)))

e A AWx.(Bird(z) D ~Flylx)). (E1.10)

Sn we capn mechanically cbtain the sentence,
“birds can not fly”, from the majority
generalization of Fly and Surp.

5. AN APPLICATION TO IS-A
HIERARCHY

Consider a simple example of an is-a
hierarchical system.

Example 2.
Let A be

Sparrow = Bird (E2.1)
A Penguin = Bird (E2.2)
A Bird = Animate {E2.3)
A Reptilian = Animate (E2.4)
A ¥ (Sparrow(x) D Bird(x)) (E2.5)
A Ve (Penguinix) 2 Bird(x)) (E2.6)
A e (Bird(x) 2 Animate(x)) (E2.T)
M ¥x.(Reptilian(x) O Animate(x)) (E2.8)
M = Ix(Sparrow(x) A Penguin(x)) (E2.9)
A —3x (Bird(x) M Reptilian(x)) (E2.10)

A v (Sparrow(x) 2 Flylx)) (E2.11)
A Vx.(Penguin(x) 2 = Fly(x)) (E2.12}
A V. (Reptilian(x) > ~Fly(x)) (E2.13)
M Sparrow > > Penguin (E2.14)
A Reptilian > > Bird, (E2.15}

where the intended meaning of binary relation =
is'is-a',

Now, let us consider majority generalization of
Fly inside each class of this hierarchical system.
As we define the interpretation of Fly using the
majority gencralization inside each class, the
obtained definition of Fiy inside a class must
influence the definition of Fly inside other classes
that are obtained later. Therefore, the order in
defining has significant meaning. In an is.a
hierarchical system, we define Fly from lower
class to upper (from leaves to root), and we can
obtain natural results. For instance, in this
example, if we define Fly inside Animate
previously to inside Bird, we obtain

Y, (Animatee) A o Sparrowi{x) Z=Flylx
(E2.18)

However, rather than (E2,163, we prefer
Yx. (Animate(x) S o Bird(x) 2 Fly(xl) (EL17)

as & result in which we generalize 2 rule with
respect to Fly inside Bird previously and then
using the rule obtained we generalize il inside
Animate. {This result is illustrated latter.) Hence,
we use the majority generaiizaticn in the
following way:

Major{Major(---Major({A; F/Cil- ; P/Cy) P /Cal
{6.1)

n

where =(C;=Cj) (15 =i n)-(5.1)is denoted
b}" |FII'!El.i“:'l.[f"‘"-;]:,"l'lcll Tt I:ﬂ.-1~ C.:J]I'
Thatis,

Major(&; P/ Cy, -, Cp1, Cad = Major{Gn; P/ Cnl,
(5.2)

where Gg = A, Gi = Major{Gi.; P/ Cig). This
formula, Majer(a; P+ Cy, -~ , Cr-1. Crl, i5 called
the prioritized majority generalization,

Example 2 (continued)
From the definition of prigritized directicnal
generalization,
MajariA; Fly /Bird, Animate)
= Major(Major(s; Fly / Bird); Fly ! Animate)
(EZ.15)

Here, A is a symmetrically solitary formula with
respect 1o Fly, 5o, using Theorem 2 (the minimum

=1

JArme T

candidate of Fly in A is Sparrow and the
maximum candidate of Fly in A s
Lx. —{Penguin{x) v Reptilian(x])), we can easily
obtain the result,

MajoriA; Fly /Bird) =
A

MiAx (Bird(x) A Sparrowlxl)
== Ax.(Bird(x) A(Penguin(x) v Reptilianix})
o Ve Birdlx) O
{Fly{x)= = {Penguin(xlyReptilian(x}}}})

Ak Bird(x) A fPenguin(x)yw Reptilian(x)))
= = hedBird{x) A Sparrow(x))
OV [Birdix) O
(Flylx} = Sparrow{x)}})

= A A (Bird(x) A - Penguin(x) 2 Fly(x))
(E2.1%)

Similarly, the minimum candidate of Fly in
Majer{fA; Fly / Bird} is Ax.(Bird(x] A
—Penguin(x)) and the maximum ca ndidate of Fly
is hx. = (Penguini{x) s Reptilian(x]}. Therefore,

Mlajor(f; Fly / Bird, Animate) =

A
A WEBirdix) A —Penguin{x) D Fly(x))
AvxlAnimate(x) A - Bird(x) 2 —-Fly{x]}{EE.EU}

holds. (See (E2.17).)

Now, we add & new axiom ‘Bird(tweety) to A
and azsume that we want to know whether tweety
can fly or not. This new axiom gives no change to
above results, (E2.20). Ohviously, we can not
chtain the answer to the guestion from {E2.20). In
this ease, we must introduce predicates which are
allowed to vary, We consider the majority
generalization of P inside Ci with allowing all
predicates that represent subclasses
(descendants) of Ci to vary. That is, in this
example, we consider

Majer(Major{A; Fly. Bird: Penguin, Sparrow};
Fiy / Animate; Bird, Reptilian) (E2.21)

With respect o ‘tweety’, it is sufficient fo see
Malor{A; Fly/ Bird; Penguiz, Sparrow] {ELZ.2L)
Simiiarly, it yields

Pé-circumi{A; Fly~T1/Bird; Penguin, Sparrow),
(E2.23)

J.Arima B

and

va(Birdix) 2 Fly(x)) A Fly(tweety) (E2.2a)

follows. This shows that this formalization
generates a default assumption and makes
default reasoning using the assumption.

6 CONSIDERATION AND REMARKS

Ve have considered formalization of the whele
process from acquiring commonsense knowledge
to doing ¢ommonsense reasoning using it and
proposed & form, called the majority
generalizution. We have also considered the
possibility of collapsing the form into a first-order
formula and show an application. We will try to
apply this idea to the acguisition of various types
of commonsense knowledge.

This research may suggest a new view to the
field of concept learning (Mitchell 1977). One aim
of concept learning is to chtain some properties
which, for some set of entities, ali entities have in
common. Here, more generally, we can consider &
certain type of learning, in which one aim is to
obtzin some propertics which, for some set of
entities, most entilies possibly have in commen.

We hope this research extends the sphere of
interest of researchers in non-monotonic
reasoning and serves as a new stimulus to
mackine learning.

ACEKENOWLEDGEMENTS

I would like to thank Dr. Koichi Furukaws and Di.
Masavuki Numao for their useful comments. Also, 1
wish to express my gratitude te Dr. Kezuhire Fuchi,
Wirector of the ICOT Researck Center, who provided me
with the epportunity to pursue thiz research

REFERENCES
[1] Kleene,3.C.: Introduction to
Metamathematics, North-Hellend, 1971, CH.

VI

[27 Lifschitz,V.: Computing circumscription, in:
Proceedings of Nintk International Joint

Conference on Artificial Intelligence, Lus
Angeles, CA (19835) 121-127.

{3] McCarthyJ.: Circumsecription - a form of
non-monotonic reasoning, Artificial Intelligence
13 (1980) 27-39.

[4] McCarthy,J.: Application of circumscription
to formalizing common-sense knowledge,
Artificial Intelligence 28 (1986) 88-116.

[5] Mitchell T.M.-Version Spaces: A Candidate
Elimination Approach to Rule Learning,
Proceedings of Fifth International Joint
Conference on Artificial Intelligence,
Cambridge, Mass. (1877) 305-310.

