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Abstract

This repart details e reseacch conducted by the author al the Institure of New Gen-
eration Computer Technotogy (1COT) for the one-vear period beginning September 1987,
A comparison between committed and nov-conumitted logie programming language archi-
tectures was conducted, KLL a bvte-rode architecture for Flat Guarded Horn (lavses
(FGHO and Aarora. o bvte-code acchiteciure for Or-parallel Prolog were respectively
chosen for this comparison. Three tvpes of paraliel emulators were used 10 mensure sach
of these architectures on a Sequent Sviuveiry host multiprocessor. The measorements
were made on a set of benchinarks developed by the author. Timing emuolators were
nsed to measure raw spoed of the benchmarks (o dewermine velative perforinances and
speedups, Instrumenied (high-level) emulators were used 1o measure gross characteristies
of the benchmarks. such as number of procedures calls and number of instructions exe-
cuted. Instrumented {low-level ) smulators were nsed 1o measire detailed charactoristios
of memory refersneing and cobierent cache performance. such as wiss and traflic ratios,
The resulrs of this study indicate 1hat wany problems are well-spited 1o Prolog’s powerful
wiification avd hacktracking mechanism: however. Aurora is lmited at the algorithm level
b the prisnary weakness of OR-parallel search: that processes cannol communicate, Oy
the viher hand. most problems can exploit dependent AN D-parallelism more sasily than
OR-paralielisne. but the inefliciencies of the WLY madel [no hacktracking, exveessive wse
af memory | evershadows the beacfit: of parallelism, There are a elass of problems 1hat
perform equally well on Both architsctares and elasses of prabioms That Tavor one or the
adhier of the arehiteetures, hose resolts indicate that o Lieh performanee svatemn shold

have backiracking and Tull unification as well as 1ir'|‘.mr|c[{'||r ..'ll.."\-”-[ml'i_l.”f:‘“ﬁll;l.
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1 Introduction

With the conunercial success within the past four years of shared-memeory mltiprocessors (to
the extent of making the front page of the NY Tunes[12]). the time has fnally come to im-
ptement high-level parallel programming languages. Several parallel Lisp and Prolog efforts.
by far the most popular targets, have been underway in various universities and research or-
ganizations for some time. The need for high-level languages cannot be stressed enough. Even
with a sophisticated ool set, such as the monitor-based tools described in Lusk[32], procedural
programming (e.g., in L'} 1s difficult and error-prone. The family of parallel logic programming
languages derived from Prolog, and Prolog itsell, offer mueh higher-level programming, protect-
ing the programmer from the machine and reallocating the job of extracting parallelism and
svirchronizing parallel processes from the programmer (o Lhe system.

Note that although the above goals of high-level parallel language programming are often
touted, the realities of implementation may cause the designers to mislay their initial goals. Of
course there is no point to designing a parallel system that cannot achieve speedup. However,

more strongly, as Lusk et. al. [33] claim:

“The botiom hine for evalnating a parallel svetem 12 whether 1t 1= truly competitive
with the best sequential systems. To achieve competitiveness, it is necessary Lo
make a parallel logic programming svstem with a single processor execution speed
as close as possible to state-of-the-art sequential . svstems, while allowing multiple

processors (o exploit parallelism with the mininnon of overiead.”

Of the various sources of parallelism present in logic programs [17] AND- and OR-parallelism
{or their combination) offer special promise and are currently heing considered in several pro-
posed parallel logic programming systems {e.g.. 48, 30 16, 66, 33, 200 28]). Efficient technigues
for implementing OR-parallelisin have been proposed and are currently under development by
various groups. AND-parallelism. although offering advantages such as being abic 1o exploit
parallelism in determinate prograius and inherent efliciency. has until recently been difficult to
nuplement due to the overhead involved in handling shared variable hindings and becanse of its
imteraction with “dont know” pon-detenmmism. Conscquently, mauy proposed parallel logic
programming svsteins that exploit this tvpe of parailelistn do net implement 1the conventional
“don’t know” non-deterministic sewantics of logic programs [31] and implement conmitted-
chocee (e “don't care” | pon-determinism instead [1%].

This study compares the flt‘:ﬁigll anel execution p:'l'l'n:'r‘r|.cn|c't' ol two |Jn.a]"rl|”1=| logie progran-
ming architectares. both of which have been implemented by independent groups 5. 33] on
Seguent shared-memory muliiprocessors[47]. Aurora is an OR-parallel Mrolog system retaining

the full semantics of Horn Clawse logie (Le. backtracking von-determinism). W11 s an AND-



paratich FOHO svstem that i a committed-cholec archtecture (e no backtrackimg ). Although
the perforimance measurennents presented here do not compare favorably with O onr feeling is
that in their corrent forms. these svstens execnte at least 1050 times slower than equivalent
programs witten in Cwe doubt very nouch that large parallel programs can be written m
with the same ease. Compiler technology is expected to bridge some of this gap. Le. current
logie programming compilers still lag behind procedural language compilers,

A high-performance programming svstem enables the development of powerful (parallel,
memaory efficient. declarative. fast) algorithins, as well as Lhe ellicient execution of the archi-
tecture. The former without the latter results m a top-heavy svstem, eg. GHO as compared
to FGHC. In this case. the language is too complex to implement efficiently. The latter with-
out the former results in the oppusite:r a language casily implemented. hut inherently weak,
e.g.. FGHC as compared 10 Prolog. Note that the examples of GHC, FGHC and Prolog given
above arc opinions nel just of the author. but of the designers of the languages themselves.
It has heen said that commitied-choice languages are just “machine langnages™ with which to
build more complex Janguages. A potential pitfall of this approach is the loss of efficiency due

1o levels of meta-interpretation and/or translation. This 3 an old argurent about! “semantic
gap” [36]. i.e.. that the user language and wachine architecture should be as “close™ as possihle
for efficient execution. Within the past ren vears however. research in reduced instruction set
computers (RI5Cs) has shown that semantic gap can be closed guite effectively by aptinnzing
compilers, instead of powerful architectures. I remains an open question as to whether high-
level languages can be efliciently implemented on top of committed-choice languages i any
mwanner. On the other hand. ie shonld be noted that Prolog may fall prev to the “top-heavy”
probleni stated above, The Aurora svstens measured bere is the initial stage of a more general
ANMD-OR-parallel svstem called Andorra [4]. The overheads of explotting both tvpes of par-
allelisng wav vegate mel of 1he gain, It is relanvely clear, however, {from tie resulis of 1his
~tudv, that fall mwification. hackt vad J:-LIIII-!‘.';_ el til'j:c'lllh'n'l ,"5,\{]}-|u||:|';|,||:‘! (=11 l'nl]|1n|1r|'::'.-|1iqm}
svnclironization are all necessary o a high performance logic prograimmnung svsten,
Architectures ave conpared i this study at vations levels of abstraction. in an effor 1o give
L'II1't'i"“-~i‘n""|l‘t robiped podeds uf ]u'f'rn]'!n.'lrn'i'. A e |1_:-|:- Iewve] raw execution III1||i||_F_*;- u[' |:|ﬁt';1”|:']
ertlators runing onoa host mltiprocessor are presented, Specdips easuned on various
benelimarks are compared and analveedl. A the neat Tesel, dvnamie areliieci nre cseont jon
I'J]ill:'.t'“"|':.:-=|i['5'- e |!l'_'-.‘.'n'1‘]'.!1"r.i. sied) as sy relereteos iade sl |ar'u|1-4]|1|¢.- |';|]Jx |'xw'|||c-||_

These: mivasurerent« ;:i"-" reiares 1nistadie betor Thee sleowit e dbiforomees ol e enelinmarks aol

E""‘""""ﬁr”"‘-‘ I"“E"”H"" aned arehitectires. MO the thind Tevell cache rolerene e chinraclerst s ape
|'If"'="Il|i'fi- sueecly as nnies vatio sl tradfie ration Tl yveanrernent <, colloeled an bt enent e

versions of the einulatores help understanad the stirengths apd weaknesses of 1he starage odels



of the architectures. From all three levels of analysis combined, a picture emerges of how OR-
and AND-parallel systems, as well as noncormmitted-choice and committed-choice languages
compare in terms of of program performance.

The paper is organized as follows. The Prolog and FGHU languages are briefly reviewed
in Section 2. The corresponding Aurora and KLI architectures are described in Section 3. In
Section 4. a review of the relevant published literature is given. In Section 5, the methodology
of this study is outlined, including detailed descriptions of the parallel cache simulator and
the benchmarks measured. In Section 6 the Aurora and kL1 architectures are discussed once
again, this time with respect to the measurement tools previously described. Whereas Section
4 describes the architectures as they were designed, Section 6 describes the architectures as fhey
were modeled. Sections 7-9 present the main body of this study: the statistical measurements
of memory performance. Finally, in Sections 10 11, conclusions are given and future rescarch

plans are outlined.

2 Languages

In this section. two parallel logic programming languages are introduced al a fairly elementary
level. 'I'he languages, Prolog and FGHC, can be viewed as representing a far larger family of
languages based on their paradigms. Prolog is the language base of the Aurora [33]. ANDORRA
[4]. PEPsys [66. 11], and RAP [25] svstems, to name a few. FGHC is closely related to Flat
Parlog [13, 14] and (somewhat less related to) Flat Concurrent Prolog [48].

For a good introductory hook about Prolog please refer to Sterling and Shapiro [30]. Bratko
[3]. and Clocksin and Mellish [13]. Maier and Warren [34] is a good introduction to the im-
plementation architecture of Prolog. Gregory [27] gives a coherent introduction to commutted-

choice languages. specifically Parlog.

2.1 OR-Parallel Prolog

The OR-paralle] Prolog language discussed in this paper is essentially SICStus Prolog [97 with
user annotations 1o denote procedures that are permitied 1o be executed in OR-paraliel search.

Prolog is a logic programming language based on Horn elanses of rhe form:

e —n,.

... H,.

where H s the head of the clause and the goals #, comprise the bhody of the clause. The
head and goals may each contain zero or more arguments, Arguments are feprms, for example
variables, integers. atoms, or complex terms such as list= and structures (which niay be nesteld )

A variable is an unhound valoe cell which s defined within the scope of the clanse onlyv (e 1.,

o5



there ave no free variablis as i Lisp, there are no global or non-loeal variables as o Pascal |
Sute that head atrnrenl e :'nl'Tf‘}'-pl.}.!lt] 1 Forinal Jrarammeters 1 ||||'|;:|:'1'i|u|'u.| Jnnguag:*_ il |m1,|".'
goal arguments corresponi] To passed parameters,

Procedures are composed ol sets ol one or more clanses with the samee parie and arguinent
muznber (arity ). A procedare is nos-determinate if more than one clanse can snecessiully execute
tor a piven set of argnments. A Prolog praocedure call involves wnifyrng the goal (the caller) with
it clanse head (e callec). 1 no clavse head can anifv, the call fuils. Failure returns contral
ned necessarily to the caller, bt 1o the last ehodee pornt. e non-determinate procedure with
alternative clauses (this b= called baekdraching). Proloy is applicative 0 that a variahle can
be bound at most once within scope with determinate goals. but if the scope contains non-
deterninate goals. backiracking can veset the hinding of a variable.

S1OStas OR-parallel Prolog allows the user 10 annotate any procedure with o parallel
declaration. If the procedure is non-determinate. such annotation permits the svstem o fork
independent processes for each alternative clanse at the procedure’s choice point—1this is ralled
a branch point. One can envision the creation of a “process tree” consisting of nodes and
arcs, A nede with more than one branch is a branch point. Nodes with only one branch may
or mav nol be branch points- the scheduler may decide to cxecute potentially parallel code
sequentially because of seheduling heunsues. Note that solutions to the program are found at
the leaves of the tree, A deseription of this abstract model is given by Warren[64] and reviewed
e Section 4.2,

As a trivial examiple of Prolog programming. twe procedures ave shown i Figure 1. The
mportant point of this t‘xhlup]f' 1= thiat Een i deteriinate, grm‘l'aling a list of i:]li'gf‘l'!‘ Tromn

O to N, whereas del is vondeterninate. generating multiple solutions, Tor exaniphe.

T dEl{ I:l ..'2,3?- .:’:,T}
produces he answers;

¥=1, T=[2,3]
X=2, T=[1,3]
¥=3, T=[1,2]

Pl unroll procedure 1= an unrolied version of del that can spawi donne chiddven per heaneh
paint. The benchmarks presented o ties study tepieally use procedives like del and unrell
tor e plodt all Ol -paratleli=ng o the prosran.

U e <paescial Bugbton presicate 00 {ealled cntd ds msed Do renmae sl alternatives g Lo anel inebiedine the

prededinre neowlaels 1t ||':ch|,'.'1”_'; HITTTHI N Iy cnlire words., ETR aral all clyiee |r|:i.||r.'-_ e Tl iy vl el F""i“'
:I'if‘:‘ill'_ﬁ':l created for thae prvesces linpe contariine e enn are feewaed . g1 g ]"I’Ililllllll_‘-' gl 0oy s=onaeew|at
L Je s prograiignimg vl e obaate the weed Tor cheeks ::.;Iinr:';.-l ik aliernal e cames. 4 alses cnnses

wnediate rernenal of chioice points s inereasting Ve efieenes of storee aaageneal



gen(0, [J) :- 1.
gen(N, [NIX]) :- M is N-1, gen(M X).

:~ parallel del/3, unroll/3.

del([XIT], X, T).
del([HIT], X, [HIR]} :- del(T, X, R).

unrell([XIT], X, T).

unrell([A.XIT], X, [AIT]).

unrell ([A,B,XIT], X, [A,BIT]).
unrell([H|T], X, [HIR]) :- uwnroll{T, X, R).

Figure 1: Fxamples of I'rolog Procedures

2.2 AND-Parallel FGHC

Flat Guarded Horn Clauses (FGHC) (58] is also a language based on Horn clauses. An FGHC
clause is of the form:
H:-0G,...Gy|By,Bs,.... B,.

where H is the head of the clause, (7, are guards, “|” is the commit, and [, are the body
goals. In FGHC. as in Prolog. procedures are composed of sets of clauses with the same name
and anty. Unlike Prolog, there are no non-determinate procedures. Execution proceeds, like
Prolog. by attempting unification hetween a goal (the caller) and a clause head (the callee).
If unification succeeds, execution of the guard goals are attempted. In FGHC. these goals can
only be system-defined builtin procedures. e g.. arithmetic comparison. If the guard succeeds,
the procedure call “commits™ to that clause, i.e.. any other possibly good candidate clauses are
dispussed. If the head or guard fails. another candidate clansge in the procedure is attempted
(if all clanses fail. the programn fails). In FGHC there is a third possibility however: that the
call suspends. This is described in detail helow.

FGHO vestricts unification in the head and guard {the “passive part”™ of the clause) to he
input unification only, e, bindings are not exported. Output unification can be performed
only in the body part (the “active part™). These restrictions allow AND-parallel execution
vl bodv goals and even OR-parallel execution of passive parts during a procedure call (the
nuplementation discussed herein execntes passive parts sequentially and executes body goals
i & depth-first manper). Svnchironization between processes is inherently performed I the
requitement that no output bindings can be made in the passive part. Ha binding is attempted.
the call poientially suspends. Il none of the causes suceeeds, and one or more potentiallv

suspend. then the procedure call suspends (possiblv on wnltiple variahles).

“In the dislect of FGHC used in this study. there is 5 special clanse enlled otherwise. Any wimmber of

ctherwise clauses iy appear i s procedure, each appearmg as if & wmi s lanse. bt acinally hﬁlongng RIS
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1.
Xs], M := N-1, gen{M,Xs).

append{[A1X],Y¥,2):~ true | Z=[AlZ21], append(X,Y.Z1).
append( [],Y,Z) = true | Z=¥.

mergel( [K1Xs], ¥s, Z) :- true | 2 = [X|Zs], merge{Xs, Ys, Zs).
merge(As, [¥|Ys], Z) :- true | Z = [YiZs], merge(Xs, Ys, Zs).
merge([d. Y. Z) :- true | Y=Z.
merge(X, [1, 2} :- true | X=Z.

Figure 2: Examples of FGHC Procedures

When any of the variables 1o which an export binding was attempted are o fact hound (by
another process . the suspended call is resumed. These semantics permit stream AND-parallel
execution of the prograw. e, incomplete lists of data can he sireamed from one parallel
process to another in 2 prodieer fconsumer relationship. For example, when a stream runs dry.
the consumer receives the unbound tail of a list and suspends. When the producer generates
more data, the consumer is resumed and coutinues processing the transmitted data. In the
maplementation discussed herein, these data sirictures all reside in shared memory,

The FGHO abstract execution model is a reduetion mechanism wherein the initial user query
fa et of goals) is reduced to the erepty set. A single goal is reduced by anifving it suceessfolly
with a clause and then replacing the goal with the hody goals of the matehing clause. Reductions
ol goals can proceed inany order. Superimposed on this moded is o suspension meehani=ny thar
canses goals to suspend and resines A Tprocess tree” model conld be develuped for FGHO
asin Ol-parallel Prolog, but bas ot been hecanse i1 1s less uselul (the main backbone of the
I'radog tree ate branch points. of which there are none in FGHOL Such a model might be useful

lowever for schednling

g. to help deternine the granolarty of goals. The FOHO architectnge
tupelied] here pees H.IH'![:H:H.II' "|.|Llu| il .gf1i||:-" el o] [J |}_

Asa trivial exanple of FOIIC prograniming, theee procedives are shown m Figonre 2 that
are nsed later in this paper gen correspaonids 1o the Prolog procedure o Figure | append
s oddeteriminate st concatenation, merge nondeterninately joins two streams (1he first wo
argianwentstnto one (the last arcnment | merge <horts Msell when it receives a [7 from eithe:
mipnt stream, This procedure s asefud Tor ronting messages e an objeet-oriented prograniming

=tvie

prasrac| e 't'l-'lji'l"' ‘ll"_‘t |1';liil.1||__'|. Al I tesan ool Ih:' -|.'|1|-m--' I>T||"|1"I|!|l_;‘ niy otherwigse ~gjecvedd, npnld ope or
[11E1a] -'1."I.IH'-- Fan |:|rlr'lll-i-:1||:l.' sllfeeciped. L 1hie [ire weal 1.:|| =1mpm ||-.|-. l”l‘]li_l- lr :1” I las l'|'1|l:—-l'-~ '|Fl:u'l--.".|i!'|:.'_ Al
atherwise fal wall the vesnatnder of the clanees tupo o e gest ctherwisel be chiecker]. otherwise is progarily
il mi o s e it s leana |'l|'~'i'.'!'HII|I|lIIJI-.'.-"lf'-|“. tocodn e e e for woards, 1 lms ‘\_:.ll'l‘dli||1_'-t||l Fliee PILAEHET

Tis cffier rang bee :-'guili- Ant
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3 Architectures

An architecture is an instruction sct, storage model. and execution mechanisin uplementing
a language. The OR-Parallel Prolog architecture {Auroral64, 33]) and the FGHC architecture
(K1.1[25]) are called “high-level” architectures because their instruction sets are more abstract
than those of couventional computers. Both of these architectures have been implemented
on the same general-purpose host (the Sequent Balance and Symmetry multiprocessors[47])
via emulation. Although these implementations of both systems are preliminary and not of
commercial quality, they represent two of a very recent group of true-parallel, high-level language
implementations,

The architectures of these two svstems are summarized in this section, Concentration is
placed on those parts of the architecture that radically effect performance. Not ali of these
aspects come into play in the benchmarks studied here. For instance, although garbage col-
lection (GC') is extremely important in both systems when running large applications, GC is
not a significant performance factor here. Other aspects, such as compiler optimizations, are
also extremely important, and unfortunately unequal between the two systems. A group of
such differences affect system performance in unison. Thus separation of individual effects and
svsiem calibration are difficult. The complexity of these systems must be kept in mind when

interpreting the results presented in later sections.

3.1 Overview

3.2 Engine Architecture

The instruction set design of an architecture determines the instruction execution times, the
memory bandwidth required, and the compiler optimizations allowed. The Aurora system
uses Carlsson’s (510 Stus) version of the Warren Abstract Machine {WAM)[01] instruction set.
Modifications were made 1o implement binding, dereferencing, and trailing with respect to
binding arrays (see Section 3.3). The KL1 system uses Kimura’s version of the WAM. called
KL1-B[30]. KLI-B is both simpler than the WAM because hacktracking has heen removed.
but also more comples than the WANM becanse hoth suspension and locking mechanisiis have
been integrated. Both systems use the compilation technique of clause mdexing.

The compilers of the twa svstems differ in sophistication. The Aurora coinpiler generates op-
timized code for shallow backtracking. t.e.. backiracking among the clanses of a procedure. The
KL compiler generates somewhat round-about code with redundancies in order 1o reduce the
locking interval on a variable heing bound {c.f.. Foster's compiler for Flat Parlog[21]]. Mayhe

the greatest difference is in the instruction formats: Aurora uses a large set of “fused”™ WAM



st reetiotis, et are cotmbinations of two or hree of the cteinal tistroeions as defiped by
Warren, Pl WL compiler vsed i this study has few fused tnstrmetions (ndexing inst ructions
may be considered fused, sinee they are more soplisticated o those i the WAM L Thos K1
progratms tend to exeeute taany more instractions than Aurora programs (mterestinglv, KL

vode ]f]l'Hl'-I[_"-' = e Jr-'.'.ﬂlr-'f sthan Anrora code ]Lu".‘tlﬂ}', as discussed 1 Sechion .,5-._]'|

3.3 Binding Mechanism

I parallel svstemes, Tinedings are the means by wlhicl processes connoinicate among themselves
and with the outside world, Tn Aurora. parallel proeesses exeenting a nonodeterminate prroces
dure produce independent solutions, e they can potentially produce conllicting, but valied,
bindings. To trplement maltipie bindings, the Aurora svstent uses a hesiding array per pro-
cessor wherein bindings to vanables shared among branches reside (Le bindings to variables
that miav potentially differ ainong 1he processors), In fact., Aurora miplements two types of
binding arrayvs: Jocal and global. Tlhe local array is used for variabiles on the eovironment stack.
and the global array 15 used [or variables on the heap, Both areas are local 1a the PE. je.,
are nut shared by other PR As disenssed in Warren [64], binding arrays keep dereferencing
andd funjhinding operations constant time vperations. However, binding arravs tgract task-
switeliing tine becanse the overlead of “spawning a process" is the wark reguived changing the
values m the hinding arvay 1o vefleet the new process"s Tocation {in the process troe).

The bindmg arvay b a stack o values, the grovth of which ollows the movement of a worker
aronnd the OR-tree. N wneowdidconal hivding, Lea binding W o non-shared variable, need
not nse the binding arvey wechianism and 35 performed doretly on the variable cell jtself, If
the binding is condifronal e i there is a branchpoint at or helow the point the variable is
created and above (e point at wloeh s Irulllu!'-!fll;. s dratded [hondr varable el address
awel value) and the howd value is wiitren v the banding arrav cell. wod 10 the variable coll
1=el], |JJi'.iéI|]_'-'_ avarialde cell poines inta 1l hinding array with an “unbwal™ 140, Dhiring
condivional hinding. the varialde coll remains pointing 1o the arrav, and only the array cell is
siodilicd, Dereferencing in Aurora is therefore steaight forward: i the 1ae i= “unbonnd ™ then
the corvespomding Dindig avvay coli is develerenead, OF conrse. eacls worker™® Las its own Array
arel adl arrayv™s have a one-1o-one corresprotrdeice Tor cach variabilde enoonnieyed,

Lharing Tatiure Gnpem backtiacking i the vrail is popped inoorder 1o nabind sl SPITIONS
Indines. The 1rail address ey ottt the vartabile, which W comdivional, proaiint s 1a e

Bindding arrav, The tratl entev adso Bodds e value of 1he bineding. Phis s nsed sdurimg task-

. . .
The berims gooker. pepes e procrssoe nl P are sl e fmngesbily ok mforeadl o s praapeer. Hioady
Hee Awrora anpd LD sy sterns studied Do allvine o siongle peoeess per proscessor. T e Ao Biersbire {)is

= cailed aoworker
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switehing as follows. When an idle worker moves up the OR-tree, it de-installs bindings from
the trail in the same manner as if it fuiled back to destination node. When an idle worker
moves down the OR-tree, it mstalls bindings from the trail. The portion of the trail dehmited
by the start node and the destination node is read. For each trail entry read, the value must
e installed in the worker's binding array. Note that OR-tree operations such as these must
be protecied by locks. In Aurora, workers move incrementally up and down the tree, locking
and (delinstalling binding for each node separately. Note thal locking is nof necessary for
{un)binding or dereferencing variables.

In kL1, AND-parallel execution implies that all processes have equal authority to bind any
variable at any time. Thus the binding problem becomes a locking problem. The binding {in
the active part of a clause) of variables (passed from the passive part of the clause) must bhe
lorked. This is related to code generation because to reduce the locking penalty, somewhat
roundabout code is generated to minimize locking times (as mentioned in Section 3.2).

Dereferencing in KL1 involves following a pointer chain to a value, possibly an “unbound”
or “hooked™ value cell. Tn some cases. safe derelerencing is necessary. i.e.. the ponter chain
must be locked as it is traversed in order 1o prevent another PE from racing toward binding it.
This is implemented in a straightforward way by lecking and then unlocking each pointer as it
is traversed.

In all cases of KT.1 dereferencing, the initial variable cell may be overwritten with its deref-
erenced value, Qverwriting speeds-up subsequent. dereferencing, but more importantly, reduces
sharing of data among PEs. This optimization cannot always be performed in Prolog because
of backtracking constraints. In both Prolog and KLIL, derelerencing chains are very short. ai-
most alwavs immediate or single referenced data [56. 43]. In the case of sequential Prolog, the
overwriting optimization does not pay off; however, in KL1 it reduces hus traflic by decreasing
reads to shared data ou the heap.

Binding a KL1 variable must alwavs be protected by a lock to prevent another PE from

also binding it. Variables are never trailed however becanse there is no backiracking.

3.4 Scheduler

The process scheduler must be efficient in two major respects. First. the work must he evenly
distribnted among the processors (good load halancing).  Second, the overhead of process
spawning fsuspending fresuming nst be low. 15 anlv large-granularity goals are spawned on
ditferent processurs., both of these cviteria will be met. Whereas goals are stored inoa tree
structure i Aurora. in kL1 all goals are treated equally, and stored i goal-lists Jocal o
each provess. Hotl the Aurore aud KLY research groups have explored various scheduimg

miechanisms{d9. 7. 20 34); bowever, the measurements presented in this paper were made on the
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following tivesd systens,

Aurara scheduling is performed localle by the process with a distributed =trec-walking”
algorithm (the " Arvgonne scheduler™ 170 6300 Ao idie worker (one that succecded or ailed.
and therefore has o further work ) traverses e O dree, constrained by several henristics,
searching lor work. This traversal s in the pablic section of the 1tree, above all the private
sections where the husy workers are executing in their WAM engines. The separation of public
and private sections is necessary to keep efficiency lagh by obviating the need for locking in
Lthe private section. Sinee idle workers canmot travel down into private branches, no locking
i necessary and the WAM engives are as eflicient as i osequential Prolog. o certain cases
however, an idle worker communicates with a sy worker I ralsing a (soft) interrupt flag that
is checked once per reduction 1 the engie.

The idle workers traverse the tree inerementally, e locking one node at and thoe and
(deimstalling bindings for that node 10 regain consisteney. Note that locking the node prevents
other workers from walking by in either direction.  Traversal must be kept to a minimu
because althongh an idle worker has free CPU cyeles. traversal causes cachie interference and
mereases the bus bandwidth requirement. Therefore. the top-most node of a private section
is periodically released 1o the public section. 'his implies that new work is created closest to
where the idle workers are positioned,

Anadle worker positioned at a public pode st make a decision about what 1o do. Al the
miformation necessary to this decision is given in the current node aud the nodes snronnding
the current node. If the node has as ver nuexecuted aliernatives, the idle worker ereates a
braneh for one and hegine execution. W lie node has o further alternatives, Tt one of it
children does. the idle worker moves down 1o that child. I 1the node and 1= ehildren have no
further alternatives then the idle worker moves up. ete. There are several possibilitios specified
m this “move 1o work” logic. and completeness i guaraniesd. Unexecoted allerpatives may
appear. however, at anyv time in the private section. Thos the default action of an idle worker.
when all other options loak pointless. i 1o sleep for a bit (see Seetion 6231 and then iy to
miake a decision again,

The Argonne seheduler performs quite woll for programs with an alimndance of OR-parallelisi.
as veported by Butler et el (70 and fuohis report alsos Blowevers as shown Leves when par-
allelisin 1= searee. the schednler teneds 10 eat W ANy Fiei= r'_\'t'|1':~ b the e 1o work” I“”'l"
deseribed above,  he Taudament al probilent i« Low 1o antonaticalle reooalate the pnmber of
active workers, ez g on twa PEs i oone posrt i ol g program, and chen eialn 11«
avother, Shen and Warren also podnt thi= ot Teoen Digher-level sitfat iL.||hi L'lj_ Ilie prablen

.;‘||JI‘.JI'-".5']I'.'L T |,H' I]IIII.'i'I WAL ”Ii:!ll ||'Il."'.' el ii'ii'l?ﬂl.'il !ll.J'u".'t"l.'l:':_ .-I”.r i1 i||'_', [T ‘-|||.1” |||||||||1~'|'-. .-||' i’l-u.



I KLY sclwsbuding is petformed in a semi-distributed manver. An idle process {one with
an empty goal-list ) requests work from a busy process, via a (sofl) interrupt. The interrupt flag
is checked onece per reduction. A pointer to a goal available to be execuled is passed back to
the idle 'E. Thus the goal-lists are virtually independent, but in actuality, become intertwined
as execution proceeds.

Scheduling an idle KL1 worker has none of Aurora’s overheads of (de)installing bindings,
locking nodes. making private nodes into public nodes, clc. Any worker can execute any goal
at any time. The problem in KL] is one of granularity: it is not efficient o give an idle worker
a trivial goal to execute hecanse the goal will be quickly completed and then the 1dle worker
must issue another interrupt,

Anidea of compile-time granularity analvsis was developed for KL1 wherein weights are cal-
culated as estimators of the relative granularity of procedures in an FGHC program{i7]. The
idea is based on the scheduling heuristics used in the Argonne scheduler. Preliminary experi-
ments show that the method does not benefit FGHC as much as Prolog because FGHC often has
critical timing dependencies that can incur large synchronization overheads if tampered with.
In fact, it appears that for committed-choice languages on shared memory multiprocessors.

reducing suspension overheads is more important for performance than improving scheduling.

3.5 Storage Model

The eritical issue however. is the abilitv of WAM s parallel offspring { Aurora and KL1} 1o retain
an efficient storage model. All parallel computer architectures execute on some organization of
processors coupled with memories through an interconnection network. Because the memaories
necessary o hold the working set of large application programs are not large enough Lo be inte-
erated with the provessors. and because processors need to communicate (to varving degrees)
1o execuie a program in unison, memory/network bandwidth inevitably becomes a bottleneck
1o performance. Thus the exploitation of locality, both spatial and temporal, becomes critical
1o the architecture,

T".]rmu:_r]'}' A ingeeed I~ lnportant 1o retain e ﬁ]}ﬂli‘n] ]m'i—;]jf_‘.‘ needed 10 make r"{i.ili'it"lll s
of local caches. In addition. eHicient memory management creetes less garbage and therefore
garbage collection 35 ineorred less often. In Awrora, a group of miertwined stacks (called
a stack-group) 1= assigned 1o each PE An Aurora stack-group is similar to that of the WAM,
containing a control stack {choice-potnt=}, local stack fenvironments L global stack (heap), trail.
and binding arrav{s). The stacks are the plasical storage areas comprising the virtual OR-

tree. Consider branch-points inodest as the ot obvious case. The nodes of the OR-tree

TAgain, thus deseription apples 1o e svstem messured motlos stady other KL svstems may Jifer,



are “Hattened” mto o st of control stacks, gne per PEL ITnoother words these =cacius™ stacks
logically forns the OR-tree. The other stick fvpes in the group are related 1o 1he control stack
i the saime inanner as in Lhe sequential WANL

One dhiileronee hetween Anrora and WAN =1 Lo protential creation of holes or it r.lmfe.wiﬁl,
28] Heles mmay form in the stacks when a parend stack spawns a chibd stack, and the child then
spawns a prandchild on the paent s stuck. The frequency of this tvpe of garbage s not currently
known.  Aurora can recover this garbage when il natural backiracking reclais stack spaee
around the hole. Another difference is the size of stack frames in Anrora and the WAM, Aurora
branch-pomts are larger than WAM choice-points (comtaim six additional cilries ), containing
inforination necessary to manage OR- parallel Lranches. As previoushy mentioned. the trail js
alzo bigger with double word entries,

The Aurora local and global stacks are accessed in mueh the same way as WAN, Dhuring
execution in the private part of the OR-tree. these stacks and the trail are accessed i1 a WAM-
like manuer. offering high locality. In addition. the binding arravs are also accessed. maost Likely
i a more random manier. Note however that the binding arravs are purely local to the PE
and are not shared. The local and global stacks and trail. although used loeallv. mav be read
from other "Es (e.g.. during dereferencing). During a task switeh, the 1op of 1he local and
global stacks are allocated 1o a different hranch of execution in the OR-tree. Thus loeality is
somewlial lessened.

The Aurora control stack 18 accessed m a more random fashion bhecanse when a worker
becomes idie, it mmst search 1he control stacks for work. This accurs in the public portion of
the OR-tree. and involves complex scheduling henristies 10 determine where the jdle worker
should search. In general. control stack referencing is expected to have little locality and a Ligh
degree of sharing among Pls. o addition. as the worker 1raverses the tree, the trail i= nsed in
an equally disjoimt manver 1o jdedinstall bindings in the binding arravis).

I KL L eack processor has a storage growp consisting of a heap. goal record hist SHSpension
record Bst, and commnniication area. The lisiz are allocated from a larger group of {ree-lists.
sphit among the processors to avord contention, The neagr b= nsed 1o store all values, atomie and
strnctires. A gowl recopd l"UI'Id'=-!au1Iti.~= to e cnviropent i The WAM: however, all I:i];;]i”!_-__-;
are made to the beap to Tactlitate deallocation of the goal recard, A suspension record is o far
"-:l”ljli"' Chwo wole] | ST enel i T resary 1o ITHEEETTRE ncbironnizal joa, WWhen oltd unilicaton
e attempted in the head of g clanse, the vartable in question s pushed ono a sl i By sfied
aned the ness elavse 1w attempted. W ogone of the elanses of e procedune snceecod, then e
procedue call s othicialle suspended. The suspension stack is popped and cael variable is made
T ottt “hooked™ ) Loa newlv created snspension cecord, e stspetision second proitits to i he

ﬂi‘*].rﬁ']l:h‘f] soal [procedove calld, When A the variabile 35 Loned, the Doe kel _L_-.L,-,l,l 1= re=uel.



The suspension stack is not considered a major storage arca in the architecture becanse it rarely
grows large (just a few cotries- it is similar in status to the unification stack or PDL of the
WAM). Finallv, the commmunication area s used to pass messages from an idle PE to a working
PE, requesting work.

(Goal records are accessed for the most part in a single-write, single-read manner. This
corresponds to Warren's “goal-stacking model” for Prolog [62]. A goal is reduced to a clause
body which replaces it in the goal list. Thus each goal 1 actually written and read just once,
and not kept for future reference like a Prolog environment. The goal list is accessed in a
first-in-last-out (FILQO) manner. Locality is thus high and sharing low except if spawning is
frequent.

When a goal is spawned, the goal is simply rewired from one PE's goal list to another PE's
goal list. This saves copying. and on a shared memory organization is the lowest cost method of
task switching. However, this method implies that if goal spawning 1s frequent, spatial locality
is destroyed. This is similar to the problem in Aurera: if task spawning 1s frequent, 1.e., OR-
parallel goals have too fine granulanty, then many child nodes must be created at great cost
with almost no computational benefit. Thus Shen suggested a threshold heuristic {see Section
4.2}, In the KL1 architecture such a heuristic is not used {although related ideas have been
examined by the author [37}). In any case. Aurora is different in that spawning a task involves
creating a new branch, and that branch phyvsically resides in the stack-group of the worker.
In KLY, the spawned goal physicaliv resides wherever the goal record was allocated from a
free-list.

The KL heap is accessed as in Prolog: however, there i= no backtracking to automatically
reclaim heap space. Thus the heap referencing marcles monotonically through the allocated
area until garbage collection ceeurs. The suspension area s randomly arcessed, but frequency
of access should he low in most programs. ‘The romimunication area is accessed in a single-write,
single-read manner. The messages are sent mainly when seeking work and when resiming a
goal on another PE.

In general, kL1 storage management is siinpler than Aurora’s. but the KLI model creates

garhage at a significantly faster rate. as discussed helow.

3.6 Garbage Collection

Al languages that dynanmicallv create structures reqivive some formt of garbage collection (G,
i Anrora. the WAM antomatically recovers memory npon backivacking, e when searching
for all solutions to a non-determinate problen. memory used 1o explore bad paths is casily
recovered. However, the deteriate portions of programs can still produee garbage {in the

forin of temporary data stroactures needed 1o get from one intermediate point o anat ber.
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and then discarded ), There s no explicit GO for determinate garbage in the Aurora svsiemn
mieastred e this stody,

FOHC generates more garhage than does Prolog becanse OR-parallel search 1= nwitt gy
simpubated by the architecture[538] which therefore cannot antomatically recover memory upon
backiracking.  Taking another view. because there is no backiracking. logical nmification is
meomplete, 1.e., 1t cannot be undone (via the trail). Thus the construction of a solution
te & problem in FGHO must frequently copy data structures.  Prolog, on the other hand.
can avord copving by rebinding the same logical variable many times. With shared logical
variables, cortain algorithims are extremely efficient in memory usage and execute time (e.g.,
register allocation or resnlving labels in compiled code [60. 41] and constraint problems  see
HKqueens and Puzzle in this study).

Varions methods of GO are currenthy bemg explored by TOOTTIT, 26, 12], These methods
are bevond the scope of this paper and will not be discussed. The K11 svstem described i this
paper uses sequential “stop and copy” GO onlyv. However, for the benchmarks studied. (GO s

not a significant factor,

4 Literature Review

In this section. the published Hterature related 1o this sindy is examined. These papers fall into
two approximate categories: the wark done at [COT on performance neasurement of stream
.";.\']'J-pm-a]]el architectures. and the work done at Manchester [-111"'.1‘!'.“'11_'\ anel _\rgunm* National
Laboratories on performance measurement of OR-parallel architectures,

There are many other papers avatlable related to committed-choice architectures (ep. FOP
and Flat Parlog abstract machines) and non-committed-choice architectures (eg. KA and
PEPsyvs abstract machines). However. the two architeciures chosen for this stadv. KLT and
Avroras alone are reviewed. Many of the research results concerning these tuo arclintertares

i b directlv related 1o the otler models,

4.1 KL1 Research Papers

Matswmto B3 chiaracterizes 1he beliavior of o colieren cacli i_|1':~i_"'_;l=. specialized for KL ex-
cention. He measnred one benelnpark, BUP [ Botton-Up Parser ) execnting unrealistic and
Hillél” irliHH l|j:|n. Hi IZ_:-H'1|. il "||~=||1'r]c;-;;.ﬂ:',‘f.]riv I".,[ 1-:1||:5.'11ur' Tii |-','|.'|r]11n'- i f*.|.'|q.lr4'-..--1]'4u.r' Hh'
fur latow mpnt tooa cache stomlator. The evnlatens ranmd=ralin <cluedi e [rERE e, st
ing cach vednenion, Thos the measnrements o not accuratele rellect real locking behavior
Matswmwoto™s primaey result = that the cache optimization of a *direct weite”™ aperation {ihat

Avierls 11'Ti'|'||-!!:'_ A bk Tronn TR Eieicy, foar |~_w;i|:1|]1|r~ 1y D It_-f-"(‘l 1.\'f;+-r| c-]-1JH1i:|g A sITre b s
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the top of the heap). saves 315 of the 1otal reguired bus bandwidth of the progran. Similar
optimizations (read-purge and read-buffer cache operations) for the zoal and conmunication
areas saved an additional 6% of the bus eveles. Thus using direct write for the heap alone
offered 84% of all savings, and therefore in this study, for KL1. direct write is used only for the
heap. As is discussed in Section 9.1, the real parallel simulator used for this study gives more
accurate timing and shows lower suspensions for BUP than measured by Matsumoto. The
primary effect of this reduction is to increase the relative weight of goal and communication
traffic, and the relative importance of the read-purge and read huffer optimizations.

Matsumoto's paper is a good introduction to the cache protocol measured in this study also.
He discusses tradeoffs in cache organization, such as number of sets and line size. These 1ssues
are not nvestigated in this study, rather we defer to Matzumoto’s suggestions of four sets and
four word lines,

Nishida [38] presents measurements and analysis of the multiple referenee bit (MRB) in-
cremental garbage collection method [12].  He measured the BUP henchmark previously
mentioned® executing on another “psuedo-parallel” emulator developed specifically for MRB
studies. MRB garbage collection (MRB-GC) concerns the heap only (the goal and communica-
tion areas can be incrementally reclaimed as noted hvy Matsumoto[33]). Nishida’s main result
is that MRB-GUC reduces heap hus trathe significantly for a few PEs. and then loses its ability
with increasing numbers of PEs. The reason given is that MRB-GC causes cache blocks to be
shared, thereby increasing the frequency of cache-to-cache invalidations with mcreasing PEs.
On eight PEs. Nishida's data indicates that MRB-GC reduces heap bus traffic by about 607,
Scaling this savings by the expected percentage the heap contributes to bus traffic in BUP.
264490 (see Section 9.1, we get a savings of 15-26%. On 12 PEs, the eflect of nvalidations
becomes pronounced, and the saviugs decreases to about 7-12%. In all these cases, the traffic
savings iz significant. Unfortunately, MRB was not implemented in the parallel emulator used
in this study. and therefore comparizons with Nishida's work cannot be undertaken.

Taki 53] presents measurements of two 8-Queens (FGHC') programs running on the Multi-
P51 V) multiprocessor. The purpose of his study is 1o analvze iner-PE conumunication costs on
a distributed WLL multiprocessor. The benchmarks incorporate user-detined pragme 1o allocate
the goals to specitic PEs {varied from 1-6). The paper i< an interesting mtroduction to the
problems involved iu the conunumeating clusters of the PIN (251 However. no results are given
estimating the performance or conmnunication costs of real application programs,

Sato (44, 43] deseribes the paraliel KLT etoudator (also used inothis study ) and presents

measurement s of its execution of a =et of benchmarks, The papers present a good overview ol

*The BUI' progran tneasured by Matsuimote finds all solutions fr parsing s single complex sentenes. | le

DU progrann wiessored by Nishida wis prdilied 1o parse ten ndependent sentences comeerrent by



the KLT architecture, its instruetion set and storage model. I TH] two disteibution methods
are compared: randon {(upon procedure call, the called goal will antomatically be thrown to
a random PE) and on-demand (an idle PE will ask for a goal to exeentel. Hoth schemes
use pragia. although defined differently than Taki (above), Sato’s main result is that on-
demand distribution is better than random distnbution for two benchimarks: 8-Queens and
BUP. Mavbe more interesting is the dilference hetween the two benchimarks given on-demanid
distribution. More realistic 1 modeling real applications than (Queens, BUP's percentage
idle time is 17 times larger than Queens’. BUPs distvibution ratio (percentage goals ithrown
to other PEs) 1= 31 times Queens’. These differences indicate that any parallel performance
measuremnents of Queens will be nisleading at best.

Satw [43] extends his measurements to imclude Quick-sort. Prime. and Maxflow|52].
These additional benchmarks have little speedup (using the Sequent Balance multiprocessor.
a specdup of 8 on 16 PEs). Sato’s main result is that the most important factor degrading
svstem performance is idle time, followed by number of suspensions. Locking and inter-PE
conununication have minimal effect. The result that idle time is most eritical to program
performance implies that the KL1 svstem has low overhead in exploiting parallelism. This
also restates two tautologies. Programs with little porallelizn get poor specdup. Programs with
sufficient parallelism requive a fair and efficient load disteibution wethod. Within the beneliumark
suite Sato measured, the distribution ratio varied from 1.7% 1o 6.7%. a factor of fonr. The
suspension ratio (suspensions per reduction) varied from (L0 to (L4, Thus the expected ratios
of real application programs are unknown. Ju addition. the program with the least speedup.
Maxflow. had oue of the highest distribution and suspension vatios. Tlis inplies that the
on-demand distribution is not efficient for Maxflow. and as Sato points out. more efficient
scheduling mechanisms must he swudied. o the the study presented here. suspension ratios
vary from 0.0 vo 0,08,

A collection of FGHC programs is given in Takagi [325 OF the 16 programs. Timied evalu-
ation mecasarcments are give for three of then. None of the evaluation was done on a parallel

svstern. One of the programs, Pascal. is used in g modified fornn as a benelimarl in this studs

4.2  Aurora Research Papers

A iraduction to OR-paraliel compntation and the Anrora svstenn in particalar are siven by

Warren [fi:l, fli'} and Lusk o1, i‘.|,l.'i:i]_ Warren Ill'i-fi_} clisensses alterpative desjegs lor [}H-“gunﬂe-]

execintion of Proloe. He analvees several schewess the = Nraonne medel™ [0 10] wiliving a

“favored binding™ optimization and hash binding tables. the “SRT nwdel™ utilizing binding

figs - LT . . R -
Soe theat Satao I_|-I_ gt e e el uste r coRiaieat o, ool raEt toe Tkt = sonsestr e = lp_.: ol fafivi-

cluster vopmnuaication,



arravs, and various other models. The conclusion reached 15 that perhaps an “SHI-Argonne
model” is best: however, no hard data is presented. Since that time. Shen and Warren [49] and
Disz et. al. [19] did extensive measurements and found that the “favored binding™ optimization
was not particularly effective. Therefore. later designs (64, 33, are based on simple hinding
arrays only.

Shen and Warren[49] present measurements and analysis of the Argonne model. They sim-
ulated the executiou of 20 benchmarks, all small except for CHAT [65]. A psuedo-parallel
simulator was used, where the time step was one reduction. The maximum size benchmark
studied was 3662 reductions (c.f., the mintmum size OR-parallel Prolog benchmark studied
here 15 33,595 reductions). Shen draws manv interesting conclusions about OR-parallel execu-
tion, that have since steered the design of Aurora. There was limited OR-parallelism in the
benchmarks studied, suggesting that limiting the number of PEs was most cost-effective. The
“favored binding” optimization was found to be inefficient and therefore Aurora did not adopt
the idea. Work distribution strategies were briefly examined and the scheme of spawning the
highest choice point” in the OR-tree was found to match a simple method of spawning the first
choice point ereated (FIFO). Aurora chose a variation of the former strategyv. Shen also suggests
placing a constraint on spawning choice points whereby a threshold number of reductions must
first be made before the choice in enabled o spawn., The threshold attempts to discrimuinate
between long and short branches eminating from the choice point. Aurora adopted this idea.

Disz et. al.[19] present timing and high-level measurements of OR-parallel Prolog bench-
marks. measured on a real-parallel implementation of the Argonne madel. Two of benchmarks
studied are too small to use for cache siudies. Another, Semigroup. is large enough and is
analyzed here. Ihsz discusses the “favored binding” optimization in detail and analvzes its
performance. In addition, the paper concludes that neither OR-parallelism or independent
AND-parallelism [18], by itself. is sufficient for high performance svstems. This conclusion is
reenforced by a conclusion here that veither OH-parallelism or dependent AND-parallelisr. by
itself, 1s sufficient.

Warren |64 gives a more abstract view of OR-parallel computation in terms of an OR-tree.
The nodes of the tree correspond to a task (a set of goals, clauses and bindings) that needs
to be reduced. A node is reduced [ “extended” ) into a new node helow 1t where one of the
goals 1s replaced by the hady of a clause which it matches, I muhiple matching classes exist. a
node may have multiple children. This tepe of node is called & hranch-poim and corresponds ta
sequential Prolog’s choice-point. The execution of an OR-parallel prograim consists of extending

the root task (the user query ) until all branches i the tree are generated. Branches with a leaf

"By “spawning a choice point” we mean allowing an idle worker to execnte ap alternative hraneh fron the

cholee paint.



node contamimg an empty goal list represent solutions. O conrses mnliiple solution branches
A st

Warren deseribes optinzed operations on the abstract tree Lo manage s stzes Phese o)
crations, “dieback.” "coptraction.” ad "straightenmg.” have corvespondences with sequential
Prolog's backtracking, WAM's trust, and cut. respectivele™ Tuany case, the hey point about
the tree is that descendant nodes of an ancestor can share (in a read-only fashion] all variahles
{and structures) inherited from above, This is 1he basic idea beliamd Linding arrayvs (see Section
Ad ol this paper). Warren's paper [61] can be considerad a blueprint for the Anrora svstem,

Lusk et. all [33] present a sunnisary of the Aurora OR parallel Prolog system. This paper
15 basically an npdated version of i64] including some preliminary timing and high-level mea-
suremenls. Five benchimarks (Queens. Salt & Mustard. CHAT. and Tina) were measured.
Speedups of up 1o 14 on 16 PEs [Fucore Multimax ) are shown, 1t is noted that Aurova is 205%
sthower than SICStus Prolog Trom which i s derived, which is in turn twice as slow as Quintus
Prolog(i], These factors, in addition 1o the difficulty multiprocessors are having keeping pace
with sequential microprocossors, are stated as the reasons that “truly competitive bot tons-line
performance” is not vet in sight. If however these results are compared to the published K1LJ
results. Aurara better achivves this goal, One of the purposes of this study i determine why
Awrora is betrer achieving 1his goal. 151t because of more advanced implement ation technology,
fundamentally lower parallel overhieads. or greater “semantic potency” than KL17

Butler et al |70 presern a sunuary of the “Argonne scheduler™ used in the Aurora svsiem
(thiz iz one of two alternatives currentlv implemented. The other 1< the “Manchesier scheduler”
written by A Calderwood], Butler™s paper s primarily concerned with the ramifications of
implementing {ull Prolog in OR-parallel—specitically how 10 finesse side-effects by scheduling
aronnd them (note 1hat benchmarks witly side-effects are not stadied beee). The Avgonne
scheduler works in conjunenion with a WAN engine tor each worker (PR m the svstenn A
anv point in tme the worker = either hosy G the enained or iwdle (searching for work or resting
m the sehedulery. The dietails of the seheduler algorithm are given by Botler and reviewed iy
section 3. Butler shows relative speedups of 700 G000 and T8 am s Segquent Balanee Tor the
Salt & Mustard. Zebra il Turtles henchmarks respectively. However, also given i= an
exatmple of a degenerate program that gets linthe speedap because of weampatible sehedaling
protodols.  Fhat exampis and two caatiples given in s stody indicare that the Argonne
sefednlor 1= ore sensitive o prograni= that do ot sut? i than 1= the stiimple KL seliednder,

Inas ver unpublished works. Calderwom! [5Dand Szevedif30] present a grean wealth of
fighedevel data measured froon a rge wroonp of Aarere enclonarks, Calbilerwood analvzes the

performanee of Bis vwn Manchester schoduler, B eomparison o the Avgonne seliedaler.

"The Auriira syvaberne frHAsired i Llpis sy poerkarins e binck ol conteaction gt gen -.|'ra|,1,||'|q-|||||g_



4.3 Summary

The various papers reviewed in this section are al the very edge of a new field of research in
parallel logic programming. It is therefore nol SUrPrising that Lhe papers show hittle rigor o
the performance analysis given. Relative speedup may be used to illuminate an architecture in
a friendly light. Inefficient, but highly parallel, benchmark programs may be used to illustrate
efficient scheduling. Few papers make any realistic comparisons hetween systems (Foster and
Taylor [21] is one exception ).

The purpose of the research study presented here is to correct some of these deficits. A multi-
level performance analysis is given of both dependent-AND and (independent) OR parallel
logic programming systems. The architectures are compared empincally at hoth high (e.g.,
number of reductions) and very low (e.g.. bus traffic ratio) levels. for the same benchmark
programs. Although this study fails in several respects—most notably in that large application
programs could not be measured—it is hoped that this paper encourages members of the
logic programming community to fairly, quantitatively, and accurately access the value of their

systems.

5 Methodology

The Aurora and KL1 system architectures were measured and analyzed empirically by studving
the results of executing a set of benchmark programs. The benchmark programs were collected
and written to solve a given set of problems in hoth Prolog and FGHC. In most cases, a
group of programs were written for a given problem, and compared for their speed. Through
this process of refinement, the benchmark programs presented represent well-written relatively
efficient programs.

The benchmarks were trauslated by compilers for their respective languages. and the re-
sulting object files were executed by abstract machine emulators. These emulators run on a
Sequent Symumetry multiprocessor and are truly paratlel. These tools are illustrated in Figure
4. The basic Or-parallel Prolog emulator is the Aurora systemn written by various researchers
at the Swedish Institute of Computer Science (SICS). Manchester University and Argonne Na-
tional Laboratories (ANL). The Aurora compiler [9] was written by M. Carlsson of S1CS. The
basic FGHC emulator is the KL svstem written by M. Sato of 1COQT. The KLI compiler was
written by Y. Kiura of ICOT. In Section 7 it is shown how the compilers compare in terms
of {'illﬂ]iT}' of corde p1'i'-t"|l.lfl‘l'.‘l. and how the smulatars compare in terms ol exeeiLicn f}ffir'lf*n('_\'.
Overall the two svstems are closely calibrated and therefore allow a fair comparison of hoth
raw Limings and instrumented simulations,

Each arclutecture is emulated at three different levels of abstraction:
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1. Timing—measure the raw execution time of the architecture, e.g.. to determine speedups.

2. Instrumented (high-level)--measure the high-level execution charactenstics of the

architecture, e.g.. number of procedure calls.

3. Instrumented (low-level)—nieasure the low-level memory and cache referencing char-

acteristics, e.g., traffic ratio of a shared-memory multiprocessor model.

These three levels, each a successive refinement of the previous, are now described in more

detail.

5.1 Timing

Measuring raw execution time of an emulator for a given architecture on a host machine permits
a gross comparison of systems performance. In one sense, raw timings are the absolute measure
of an architecture. However, the high-level logic programming architectures discussed in this
paper are not. well-mapped onto current shared memory multiprocessor hosts. lor example, the
host used in this study—the Sequent Symmelry—uses a write-through cache to ensure cache
coherency. Other types of broadeast copvback caches would reduce bus traffic and perforin
more efficiency. Such a handicap affects different architectures to varying degrees. Other
mismatches involve optimizations beneficial to the specialized architectures that are absent
from the general-purpose host. For example, Awora Prolog architecture, based closely on the
Warren Abstract Machine (WAM). can benefit greatly from a small set of shadow registers
for implementing shallow backtracking(36]. Likewise. KL1 can benefit greatly {rom hardware
assisted incremental garbage collection based on the MRB method [12], hardware assisted meta-
control, ete. Both architectures can greatly benefit from an increased word size, so that a tag
can be included. In addition, KL1 requires a lock bit and possibly MRB within each word.
These differences between the host and the emulated architecture lessen the importance of
raw timing measurcments. However, for gross comparison the raw timings are valuable. Often
timiings are used to prove the abilitv of the architecture to exploit parallelism efficiently. The
Holv Grail in this game is “linear speedup.” i the ability 1o execute Lwice as fast on two
PEs. four times as fast on four Plis. ete. Speedup however is a deceptively complex statistic,
A common definition. referred to in this study as selative speedup 15 the ratio of the execution
time of the program/architecture running on nnltiple PEs to the execution time of the sane
program/architecture running on a singie I'F. Ly this definition. all the overheads of parallel
execution remain n the single PE tming. o that good speedups are somewhat casier to achieve.
Another definition of speedup. veferred 1o in this study as absolufe speedup 35 the ratio

ot the execution time of the program/architecture running on muliiple PFs 1o the execution
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time of the fastes! sequeatod prograo el oot tomning o a sigle PR o this case, the
single PE mweasuretnent does pol contain the overhioad of parallel management, nor does the
algoritlim necessarily even support parallelisn, Using this definition. good speedups are diffienlt
Lo achieve,

In this study, measurements are prescided lor bath relative and absolute spesdups for Aurora
and WLL. For Aurora. the S1C5%tas VOB Prolog system is used as a baseline with which o
measure absolute speedup. For KLT no related sequential architecture exists, Therefore an
artificial architeclure was ereated. from the parallel WLL svstem, wherein most overheads of
paraliel management were removed. These overheads include locking/unlocking and comiples

dereferencing.

5.2 High-Level Instrumentation

The Aurora and KL1 systems have been imstrumented for high-level statisties by P Szeredi of
Manchester Universiv[31] and M. Sate of 1007, The instrumentation in both cases consists
of software counters inserted throughout the svstem o collect event tallics. These counters do
not greatlv disturh parallel sxecation and therefore present a fairly aceurate picture of program
characteristics, The dvnamic statistics (of interest to this study ) collected in these svstems are

listoed below,
o reductions: sumber of procedure calls executed,
o anstroctions: numbaer of abstract machine instroctions execnted.

o hackrracks: (Prolog only b vnber of clanse fallures causing execution of an alternative

clause,

o suspensions: (FTGHO onlvl mneber of procedire calls Toreed 1o suspend {doe 1o svneliro-

pIEInn ).

5.3 Low-Level Instrumentation

The colierent cache <tmmbator =i ETRENTES |,||1_x wigs wrptten |-_'., A Marsameto of 10T, The
colierent cache protocel used o this stady s docmpemted o P50 oo thar stady owever,
a peucdo-parallel cache stmndator was nsed, Hereo the simnlator Bias Levns extended o ran
m parallel, beowhen integrated dnto o svstem suel s Aurora or KL there = one cache
process (sipnlating a local cache ! tor cock svstenn process (enmlating a2 workerl, When rannme
o Svinmetrys each worker feache pair execntes ona dedicated host processor, The caclies

communirate via shaved mesorss Lo periornn the cohereney protoeol, cachies st senehivaniee
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Figure 4: Timing Diagram of Low-level Instrumented System on Eight PEs

when making a simulated bus request. This is to ensure that requests for shared blocks are
properly detected by snooping caches. This synchronization is implemented on Symmetry by
an m_sync() library call (barrier synchronization}. The effect of this call is to force all PEs to
wail inside the cache simulator, just before the code which simulates a bus request, for all PEs
to arrive. When the last PE arrives at this location, they may proceed,

Figure 4 illusirates the execution of the cache simulator interacting with an abstract em-
ulator on eight PEs. Time proceeds vertically. A bar is shown for each PE representing the
type of work it is executing: waiting at the m_sync() for barrier synchronization, waiting for
a bus lock (necessary to avoid races when processing the bus requests), executing the bus re-
quest, and executing inside the emulator. The top of the diagram illustrates the most common

case when there is no bus collision. A bus collision accurs when two or more PEs make a bus



reguest for the sanee address, Alter cach mosyncO) . cach PE clicecks a common Lus reqguest
veetor amd deternomes mdependentlv il a bus collision has ocenrred. 1D there s no eollision, e
cache simlators proceed o parvallel as dllustrated, 1 there = a eollision, all cache simudators
attemnpt to lock the simulated bus. This action sequentializes the bus operations: however,
as each completes, the corresponding ennnlator is reentered and continies execuling (see the
lower portion of Figure 4). Because bus collisions are very infrequent. the emulation procesds
ethiciently,

The barrier senehronmization mside the cache simnlator has many inplications. First. it
artificially forces the program to execute in a manner that retains the timing of the non-
mstrumented svatem, In other words, one PE s not allowed to execute o weries of ceductions
while other PEs are slowed down due 1o instrmmentation.  In previous simulations of KLI,
psuedo-parallel simulators where used. wherein a process switch was taken at each reduction.
Such simulations retained onlyv a coarse-grain approximation to the original parallelism in the
prograns. o additiou. suelh round-robin task switching disallows the accurate measurement
of locking and other time critical events., ldeally the wltimate in accuracy i & svsten that
svnchronizes at each simulated machine cvele. This was not implemented becanse the overhead
of such frequent svachronization is excessive. lnstead, we chose i syuchrouization granularity
between a reduction and a machine cvele: a bus request. This choice also fits nicely inio the
requirements of the cache simulator. Lven this compromise has a high overliead in terms of
simulation vime. The [ully mstrmmented svstems measured 1m0 this study executed at about
100 times slower than corresponding ueu-instrumented sy=tems,

Another important implication of barrier svnchrosization i= e poiential s creates for
deadlock and livelock. The wmstrnmented svstens do locking in order 1o svuchronize parallel
processes within their architecture model. For Aurora. thils locking is coarse-grain. at 1he level
of locking a node n the OR-tree representing the problewn space. The node i usuallv locked
lor a significant period of time while a worker process aceesses and for updates the statns of the
e 1 an eflort 1o begin executing that branch of the vree, For KLLL locking s line-gram. at
the level of locking a single varabie. The variable is usually locked onbv long enough to eheck
e tag and then possiblc bind it

I Bostin eases, the abstract-level .tJt'I{iIIE'_ and the cache-tevel bareie B rehironization can
interiere with ecach uther 1o canse e lock amd livebock. W oo alastvaet=leved loily 1= =i |I_'l. A
PEC sl .wl]ljﬂ‘l’.|1?|{"111i.'~ does a =tnnlated cache redorenre 1hat canses o wipnnglatese] b= rodpLiesl
thar P17 wall ]lﬂrlf_ﬁ. 'L1.'..l1'lilljg for =4 rechiroreizalion. However, anotbor PPl at the abist root ennlad IFH]
level, may reguite the absiract-level loek previonslv set, The seconed 1P will Ly waiting lur
the lock 1o be freod. Thos deadlock cusues. Liveiock can ocenr when one P - watl ing i the

cache sunulator wlwn anotler PPE Decomes 1dle and ontere vhe selidilor lowliing o work to e,

s



typedef struct {

int data;
short tag;
char safe;

slock_t lock;
T abstract_werd;

#define MY_UNLDCK(x) {{x)->safe = 0; m_sync();}
gdefine MY_LOCK(x) Y
for(;:}d{ A
if ({x)-»safe == 1) { A
m_sync(); 5
continue: A\
¥ else { A\
S_LOCK{&((x)->lock)); 5
if {{x}=»safe == 0} (x)-»safe = 1; A
elsa A
S_UNLOCK (& ((x)=>1lock)) ; \
continue; \
1 A\
S_UNLOCK(&((x)=->lock)); \
\]:.rraal: ::

Figure 5: Special Lock Macros for Cache Instrumentation

In general, the schedulers of these systems are quite complex. and make scheduling decisions is
hased on manyv factors. [t can occur that because one or more PEs are hung at a level lower
(the cache simulator) than that understood by the scheduler, a confused decision is made to
essentially do nothing. Thus some PEs are hung in the cache simulator and others are looping
aimlessly in the scheduler—livelock.

In general. deadlock can be prevented by never placing a call to the cache simulator mmaide a
lock interval in the emulator. Livelock can be prevented by carefully placing m_sync{)s inside
the scheduler idle loops. This method of deadlack prevention is not difficult for a svstern like
IWL1 with short lock intervals that are easv to spot inside the svstem code. However, for systemns
like Aurora. this method 1= almost impossible to implement.

In both svstems. a different deadlock prevention method is used here. A new set of
fock funlock macros has been defined in O that is used to “protect”™ the lower-level Symme-
trv lock funiock library functions, These macros force a PE waiting for an abstract-leve] lock to
issuc m_sync (J)s. These m_syne (s will kick other PEs out of their calls to the cache simulator.
and keep the emuiation progressing. The macros used for K11 are defined in Figure 5 { Aurora
macros are sunilar, but used only for nodes in the OR-tree). The abstract machine word is
defined first. Tt consists of a data and tag field, followed by two lock byvtes. The lock livte is

the official Svmmetry lock. The safe byvte is a soft-lock permitting control over the busv-wait.
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5.3.1 Cache Protocol

Thee cache modeled e this stady s a copyback broadeast cache witl weite allocation (il o wite
r'e-qun_‘.-il 1]|j:-1:-.{*> '1:| lll.(‘ f'ﬂu.']u*, :h{' |a1:|_{f‘1, |-im' ]h r1“1 {'hl'l| fronn T & m] H”ﬂr'ﬁil"‘{! it the l'r'“"hi":'.
The broadeast protocal. deseribed in detail in Matsmoto [35]0 involves a five state automata:
EAM (exclusive modified ). FC {exclusive clean ), SM (shared modibied ), 5 (shared ). 1 (invalid ], 1o
addition. a lock directory is assumed. separate from the cache directory. The lock directory is
managed in three-states: L {locked ), LW {waiting for Jock). 10 (not locked ), The eache pratocol
is hased miost closely 1o Bitar’s model [2]. Le. modifications to shared data canse dnealidad ions
to be broadeast to other caches. ln addition, when transferring a dirly hine Ironn one cache 1o
another. shared memory 15 ol updated.

Matsumeoto argues why the invalidation protocol 1s best for the KL1 architecture. kLI
sharing of data 1= very fine-grained, nsnally the communication of a logical vaniabie hetween a
single producer process and a single consumer process. Thus broadeast of updated values is not
necessary, i.e.. shared data 1= rarely reused over and over. Iu Aurora, data sharing has vastly
different cliaracteristics. The node tree is shared by all processes, who make frequent accesses,
Thus a update broadeast protocol seems to be a better choiee for Aurora than an invalidation
protocol. Unfortunatelv, the cache simulator avallable for this «tudy does not implement npdate
broadeast, and so invalidate broadeast was used for all simulations. inclnding Aurora.

The memory operations simulated in this study are a subset of the operations offered hy
the cache simulator. These are referred (o as: R,W, D8, LR UW UL Read (B) and write (W) have
obvious meanings. For locking. LR 1« lock and read and UW is write and unlock. Ly addition.
simple unlock 15 used (U1, The KL] svstem makes extensive use the optimized UW operation.
This 1s necessary because locking is very fine-grained. The Aurora system uses only the standard
unlock (U) operation. The UW optinnzation is not necessary hecause locking is coarse-grained.

The final operation used in this study 15 DW. the direct write operation. Lhroct write s
efectivelv a oy write: however, if the wrte misses in the cache, the cache will nof fetch
the target line from memory. Tustead, the line is allocated i the cache without mitialization,
hrect wriie 1= used when ereating new data oljects on the top of a memwory stack of some
sort. Sinee the architecture kuows o prioed that the memory wilth he overwntien, ferchimg of
lines from wemory can be avoided, and the cache allocated divectdy This optimization s used
1 bothy the WL and Anrora svstems,

[t should e poted that the cache stnmlaror oflees other optimized operations that are not
nsed e this study, hese operators were designed specifically for WL and are not especially
vsedad for Aurora, Matsmnoto clatms that all u]}THH]'}',.'-H ines connbined, f‘t‘{t']1lf{irlg OW. afford onlv
a 6% rednetion i bus trathe, Furthermore, his meazarements indicate that DW alone offers o

I veduetion i bus trattic, These chatactenstics are specific to KL where most bus oveles
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] . T
BUS-WIDTH | || L[ 1| 1| 1] 2] 22|22
MEM-ACC-TIME | ® | 7! 6| 5| | 81 7,6(5|0
FROM-GM-SOUT | 135 | 12 ] 11| 10 10| 11]10 9% |6

FROM-GM=-ONLY | 1 [ 12 001 L 10 5011 10 9153
MCTOC-S0UT 10 10|10, 6 6{6 6|6

MCTOC-ONLY Tl 7Tl T T sl 55055
CCTOC-SOUT | 10| 107 10 (10|10 6 6|6 |6|6
CCTOC-ONLY tlalb sl 7l 7035 5lals]s
SOUT-ONLY 50060 5 5 A 3 33313
INV-ONLY P2 2 i 2l o2 2] 2y 22 ‘E 2

Table 1: Shared Memory Mulliprocessor Bus Models (units in bus eveles)

are due to heap referencing, a result of a free-list style of memory management. Characteristics
of Aurora are different  the major contributer to bus traflic is the code area and the control
stack. Because Aurora memoryv management is based on stacks {c.g.. {ree-lists in KL1), the
DW operation can be used without the help of other special operations to reduce the memory

handwidth requirement.

5.3.2 Shared Memory Models

The cache simulator utilizes an internal model of a shared ermory multiprocessor w caleulate
the bus traffic generated by the henchmark program. For each of varions bus operatious. a
certaln nuiber of bus cveles s required. The requirement b= based on the assumed bus width,
the main memory access time. and the sophistication of the bus manager. In Table 1. ten
alternative models are presented. differing in these parameters. At the top of the 1able. bus
widthe of one and two words are listed. as well ag main memory access times of zero and 58
cveles. The 3-8 memaory aceess time models wse a simple bus model wherein bus operations
cannot be overlapped inany wav, The zero memory aceess (e models are special o that they
eetimate the performance of a sophisticated bus that can overlap operations (thus the offeet of
walting to access memory disappears), Listed in Table 1 are the nmber of eveles required for
each bus action. FROALGALSOTU T i letehine a block frone zlobal memory while swapping om
a block from vachies FRON-CAONLY Bs fetching a bloek from global memory only withow
swap-out. Sinilarle, MOTOC 12 4 cache-to-cache transfer of a maodified block, COTOT = a
cache-to-cache trap=fer of a clean block, SOUT-0ONLY 35 a swap-out of & block from cache to
ghoba® memory, INV-ONLY 5 an ivabidation of one cache by another,

Vomagor point 1o note s that as memory acoess tne 3= decreased, e hos operation ov-

cles do pot decrease proportionally. This s because only FROM-GM aperations aceess (he
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memory, and even those operations have overbeads that overshadow the access time, As will
e seen in the measurements of kL1 where cache-to-cache transfers arve heavy, faster global
memories do ot significantlv decrease bus traffic. o contrast, by increasing bus width. the
bus aperation cvele times in Table | decrease signilicantlv. This observation is also supported

by measurements presented n later sections.

5.3.3 Sample Cache Simulator Output

A discussion is now given explaining the outpnt ol the cache simulator. For this discussion.
a sample of the oulput is presented, hroken down into its constitueni parts and annotated.
This is the output of a test program running o the Aurora OR-Parallel Prolog emulator. The
header below gives this information. including additional cache parameters: eight processing
clements (PEs). 64 columns. four sets per column. four words per block (line}, one sub-hlocks
per block. In the simulations analyzed in this paper. only number of columns was varied from

this organization.

furora DR-parallel Prolog
B PE -- cB4,s4,wd t1

GUVNPTCL 00000001, GVNGMOD 00000003, BYTOWD 00000002, AURORAM 00000001
GYNBE 00000008, GVNSET 00000004, GVNCOL 00000040, GVNBLE 00000004
GVNSECT 00000001, BUSWIDT 00000001, MACCTIM 00000008, CTCXTIM 00000001
INVTIME 00000002, GOALAPS 000000cB, GOALCYC CGOQOOOZZ

The next table shows the breakdown of memory references to different areas i the abstract

machine. Note that for Aurora. UW is not used,

TABLE GIVEN-CPU-COMMAND(AREA)

GVHCMD HEAF INET ENY NODE LEA GBA TRAIL TOTAL
R 1908856 2184300 163560 1461802 32102 601789 113857T  T482277
W 13010 0 12746 910418 30BOE  BE6GE1 1127825 26814E6
oW 153204 o o 0 0 g o 153204
LR o 0] 0 3545 0 O Q JE4E
W #] 1] 0 v} Q o 0 0
i o o 0 3545 Q o] a 3545
TOTAL 2074870 2184800 178298 2379310 63209 1188470 2266402 10334057

Pl nest table shows the hreakdown of bus operations 1o different areas i the abstract
machine, The theee bus operations are: feteh (Fio ferel and invalidate (FT). and mvalidaie
CIVE Feteh is nsed for instance on a vead (R miiss. Fetel and invalidate is used {or lock and
peai] (LRI operations and write (Wi misses Tovalidate = ased Tor a wrte (W]or lock sl read
iLRY rache Tt on shared data,

I the data befow. we see that trail referencing has excellont spatial localitv, missing less
than 190 i the cache. In contrast. instonctions appear 1o bave the Jeast localite, joissimg over

e . : L . .
S Gl its references, We also =ee that references 1o nodes [ivor write misses whereas refereners
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to the heap and to environments favor read misses. Note that the control stack (nodes) exhibits
a high invalidation (IV) count. indicating {as one would expect } that sharing of the OR-tree s

common among the PEs. In contrast, the heap and environment stacks show almost no sharing,

TAELE ISSUED-BUS-COMMAND(AREA)

BUSCMD HEAF INST ENV NODE . LBA GBA TRAIL TOTAL
F €3630  1211b9 5543 11382 1055 7978 11196 221953
FI 183 0 29 17708 296 6826 8738 33TE1
Iv 33 a & 1430 0 0 267 1785
TOTAL £3848 121155 BETT 30591 13561 14804 20201 257529

The previous three bus commands are decomposed into bus operations dependent on the
staic of the data (if in the cache). The following table gives the breakdown of the bus aperations
across the abstract memory areas. Thus we see for instance that cache-to-cache copy without
swap-out (CCTOC-ONLY) for instruction references is the most frequent aperation. Some of the
operations have no counts hecause their corresponding cache commands are not used {Lhese are
the optimizations mentioned earlier]. For this program, we see that the instructions generate

the most bus operations.

TABLE BUS-USE-TYPE(OPERATIOR)

CYCLE:PATTERN HEAP IKST ENV NODE LB& GBA TRAIL TOTAL
13 :FROM-GM-S0UT 844 1788 452 3541 149 2548 3283 12611
13 :FROM-GM-0ONLY 4034 E018  49E&8 18333 1202 12368 15552 61955
10 :MCTOC-30UT 96 d b 138 0 ) 34 274
07 :MCTOC-0NLY 39t a 61 2748 o 0 284 3486
10: CCTOC-50UT 14234 30980 13 13% o o 122 45458
07 :CCTOC-ONLY 44210 B340k B3 3603 o ¥ 649 131950
05 :S0UT-ONLY Bl4 0 o o o Q 0 214
05 :S0UT-EXTRA o O 0 o o 0 0 o
02 :INV=0ONLY 33 a 5 1480 0 0 287 1798
05 :FLUSH-BACK o o G o o Q 0 0
05 :FLUSH-EXTRA o o o o o 0 0 0

TOTAL 64860 121153  BETT 30581 1361 14804 2020 258343

The following table multiplies the previous bus operation counts by evele times. The cveles
times, listed at the left-land-side of the table. are derived from a simple model of shared
memory. The madel shown below assumes an eight evele shared memory access time and a
one word wide bus, Although this specific model mav not be the most realistic, this table gives
insight into the trouble spots of the architecture. For example, instructions and heap are far
and away the bigeest hurners of bus bandwidih, In addition, the cacheto cache transfers are

byv far the maost frequent operations

TABLE BUS-USE-TYPE(CYCLE)

CYCLE:PATTEHRN HEAF INST ENV NOLE LEA GEA  THRAIL TOTAL
13:FROM=-GM-S0UT 10972 23218 BETE AR033 1937 33098 42809 1639243
12:FROM-GM-ONLY 52442 65234 64484 24612% 15626 159354 202176 805415
10:MCTOC-50UT S60 o 50 1390 0 340 2740
0T :MCTOC-ONLY 2TEE v 427 19222 1988 24402
10 CCTOC-30UT 142340 303500 130 1380 1220 454580
O7:CCTOC-DNLY 309470 EBE3B3S 581 25221 4543 223650
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05 : 30UT-0NLY 4070 o Q 0 0 o o 4070
C&5:SO0UT-EXTRA o 0 0 0 0 o 4] 0
02 INV-0ONLY 66 ] 19 2980 Q 0 £34 3890
05 :FLUSH-BACK a 0 Q 0 a 0 0 o
0L :FLUSH-EXTRA 0 0 Q o o 0 ¥ 0

TOTAL E33085 9B17HT 71528 342365 ITE63 192452 253610 2382380

The following table displays the total number of cache operations (right hand column].
broken down into hits and misses. The first four columns of the table further break down the
carhie hits by the state of the hit data: exclusive {elean EC. and modified EM} and shared (clean
st and modified M5 Nate that unlocks (U) rarely miss, as we expect. Note that DW rarciy
misses. Lo the line s already allocated in the cache. Therefore direct write has little heneficial

efiect 1n this program.

TABLE PREVIQUS-STATE(AREA) ALL.: ALL-AREA

CFUCMD EC EM aC SH T=-HIT T-MISS TOTAL
R 23361% 3484581 3538973 13141 7270324 2219853 T4922T7
W 23618 2739887 £38 497 2784850 31733 2796383
DW 164 34094 & 13 3427E 4015 38290
LR 164 673 510 150 1497 2048 3645
Uw Q 0 o a o 0 0
u 210 2380 1 853 3544 1 3545

TOTAL 28T8TE 6261635 3540126 14654 10074200 255750 10334040

The [ollowing tahle breaks down ail cache misses (right-hand column] into where the data
is retrieved from. Recall the pratocol is a write allocate policy. The areas of retrieval are lrom
another cache (FROACHE) and from shared memory {FROM-CM]). Cache retrieval is further
broken down (first two columms) inte FRMO (from modified cache) and FROC (from elean
civchied,

We observe {or this benchmark that most missed lines are retrieved from another cache
instead of shared memory. by a ratio of over 2:1, hy addition, almost all cache-to-cache transfers
are clean, Therefore organizatious should coneentrate on making clean cache-to cachie transfers

{ast. possihlv at the expense of memory-to-cache translers

TABLE MISS-ANALYSISCAREA) ALL.: ALL-AREA

CPUCHD FRMC FRCC FRCACHE FROM-GM  T-MIZS
i aTaed  LTE4ET 170227 42728 221983
ER 0 ¢ a 0 O
RF 0 0 2 0 a
W Q &Y £T ZLETS 31733
e o v o 4015 4015
LR o 1884 1884 164 2048
U o ] o Q a
I 0 ¥ C 1 1
TOTAL aTED 177408 181168 TB5E2 255750

The follonwing table gives a sammary of the effectiveness of the DW operation. Lhe GIVEXN
count is the wimber of diveet weites requested by the PEs. The ISSULD connt i the rmmber of

OW operations with a line address, Le. an address that 15 a vmltiple of a cache line. The ISSURD
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count is the actual number of cache line allocations saved by the DW optimization. Other DW
requests are simply treated as normal write (W) requests. The final two rows in this table give
the number of 1SSUED DW operations that did {not) require swap-out, These statistics show
that direct write is saving about 4000 line transfers from shared memory. Given the total

number of misses {about 260.000), direct write reduces memory bandwidth reguirement very

little.

TABLE DW(DIRECT=-WRITE)=ANALYSIS(AREA)} ALL.: ALL-AREA
GIVEN 153204

ISSUED 3291

WITHOUT=-SWAP-0UT 3201

WITH=SWAF=0UT 214

The following table calculates the miss ratio of the sirmulation. The definition of miss ratio
1s somewhat complicated by the direct write operation. The definition described here is due to
Matsumoto. Direct writes that miss in the cache do not require fetching the target line from
memory. The allocation of the target line may require however the swap-out of a resident line.
For the calculation of miss ratio, direct write misses without swap-out (DW-WITHOUT-S0UT) are
considered as hits. Other direct write misses (with swap-out) are considered as misses. This
is & somewhat conservative definition of miss ratio. The second row gives the total number of
hits and the third row gives the total number of misses. Hit and miss ratios are then calculated
by dividing these totals by the total number of memory references. We observe again that for

this program. direct write has almost no effect on reducing miss ratio.

TABLE CACHE-EIT-RATIOCAREA} ALL.: ALL-AREA

320 DW-WITHOUT-20UT
10077491 T-HIT + DW-WITHOUT-SOUT
256548 T-MIS5 - DW-WITHOUT-50UT

97.52 [#) HIT-RaATIO
2.48 [%1 MISS-RATIO

The following three tables give low-leve! characteristics of cache operation. The first shows
a suapshot of the cache directory (what =tates) at the end of program execution. The second
shows a snapshot of the cache directory (what memory areas) at the end of program execution.
I'he third table shows the eccurrence of bus collisions in the cache simulator. Recall that the
cache simulator synchronizes PEs before every simmlated bus operation. A bus collision is a
simulation cycle wherein two or more PEs performi an operation on the same address. To
cope with this sitnation. some of the PE requested operations nnst he transformed 1o retain
consistency, For example, i two PEs both issue o write request 1o the saine address, ihe PF
that is serviced first by the simulator will jssue an IV (invalidate) hos command. invalidating
the other PE. The second PE alsa issued an IV command. but this is no longer correct. The
IV cominand is transformed by the simulator ine an FI {feteh and invalidate) command. We

observe no collisions in this henchmark., indicative of little sharing.
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TLELE CACHE-DIRECTORY-STATE Snapshot-after-execution

EC EM sC SM C 1 UNUSED  TOTAL
180 455 1202 T2 o 129 0 2048
TABLE CACHE-DIRECTORY-AREA Snapshot-after-execution
HEAF INST ENV NODE LEA GBA  TRAIL INVALID  TOTAL
427 417 30 468 pri=} 180 388 129 204E
TABLE BUSCMD-IS-CHANGED-BECAUSE-OF-BUS-COLLISION
HEAF INST ENV NODE LEA GEA TRAIL TOTAL
g 0 o o o 0 o ]

The following portion of the cache output is devoted to the bos traffic vatio (B1I'H). BTH
i delined as the total number of bus eveles (BC') divided by the total mumber of memory

references (MR
BTR = BC/AIR

Thus BT H has the units eveles /reference and is not rigorously a “traffic ratio™. This delinition
is useful to compare different systems. Unfortunatelv, in itsell. BT R does not indicate the
reduction in bandwidth requiremient allorded by a cache. The reader may wish to use the
following statistic:
- B
BIR = TR
where T, is the memory access time, Alternatively, the seader mav wish to use Matsurnotu's

bus usage ralio { BUR) statistic [33]:

where T is the total nnmber of execnted imstructions and P s the gross execution rate in uinits
of instruetions per second, These three statistics give differing views of the same thing. In this
studv. we nge BT R onlv because our main objective is 1o compare twea svstems, We informally
pefer 1o the TR as & ~teafhie vanio”

Below. several BT Hs are caleulated for alternative organization models. The results for this
program show that bus width i= the most nnportant factor in deterinining trafiic ratio. Memaory
aceess time is rather unimportant becavse as shown in earlier statistios, most trallic i= cache-to
cache, This <hows that relatively slow shared memories can he used without detrimental effect.
bt that ligh bus bandwidth is required. Buaddition. the sophisticated (overlappoed operation)
Tis model iIMEM=ACC-TIME = U offers a slgnificanmt reduwertion of traffie winh respect 10 thee 1omn-
overlapped model. This gap s most sientficant for wider Tos modelss Al the henchmarks
atidied fodlone hese 1peneds,

TABLE BUS-TRAFFIC-RATIO
BUS-WIDTH[W] MEM-ALCC-TIME MEM-REF BUS-CYCLE TRAFFIC-EATIOD

1 8 10334057 2382390 0.231
1 T 10334067 230TE24 0,223
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[ e size(dir) | size(data) | size(total)
42 Mg B 20k 24128
G4 TO40 ik X000

| 2= 13h6R S0k Hh4Es
256 26112 160K 189952
512 H1T6 320K 377856

Tahle 2: Carche Sizes Simmlated {in bits)

1 6 10334057 2233258 0,216
1 5 10334087  21EBE02 0.2089
1 0 10334057 1848917 0,179
2 & 103340L7 1777830 0.172
2 T 10334087 1703264 0. 185
p 6 10334057 1628698 0.158
2 & 10334057 1554132 0.150
2 0 10334057 1212135 0,118

The cache sizes measured in this study range [rom 512 words Lo 8K words. The abstract
architecture word size need not be specified. It suffices to assume that both the Aurora and
L1 architeetures have approximately the same size word. Abstract machine logical addresses
are assumed to he fonr bytes. For the purpose of presenting cache statistics as functions of
cache sizeo the abstract machine word gs assumed to be 5 bytes. Cache size is calculated as
the sum of the cache directory size, cache data area size, stains bits and least-recentlv-nsed
(LRU) bits. The maodel of cache size shown below is due to A, Goto[24]. For all simulations,
we assume 10 bits per word (b = J00 four words per block (w0 = 4), four blocks per set (s = 4],
one sub hlock per block. three status bits per block (n = 3. and two LRU bits per column

(I = 21, The number of columns (¢) is varied. Table 2 shows the cache sizes measured in this

Hlud}'.
b= (a2 =logtw) =logiel+ulx s+
§y = ¢
sizeldatal = -y
sizefdir) = berow s
sezelfolal) = sizdldata) + sizeldir) = ry + hews.
5.4 Benchmarks

The benelmarks studied here are parallel solutions of small symbolic manipulation problems,

This s v no means a complete cross-section of the types of problems that can be solved with
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logic programmnmng svstems: however, the problems do represent a subiget of these applications.
The benchmarks were necessarily kepl small 10 Taciltate their construction. debngging and
execution on 1he npstable svstems used. I addition, program solutions in hoth languages were
requived for each problen. and therefore small proflens were chosen,

Descriptions of the benchinarks are listed Bedow, Ses the Appendix for a compiete sonree

histing of cach program.

o Triangle- finds all (133 winning solutions to a triangnlar peg gaine. This problen: is the
samie as B, Gabriel’s Lisp henehmark [23]. except that here, three initial moves are taken
on the triangular board. This initialization is necessary to reduce the proablem space lo
a reasonable size. See Tick [54] for the sequential Prolog version of this program. The
FGHC program was iranslated from the Prolog by an autonatic “continuation” based
method as deseribed by Ueda [39]. Post translation optinuzations were then performed

by hand [22].

e Puzzle finds all {65) solutions 10 a puzzie packing problem. This problem s hased
o R. Gahbriel's Lisp Denehmark, but modified to drastically reduce the problewn space,
allowing search for all solutions. Here we pack a S solid {with corner missing) with
seven pleces: (30 3x2xl. (2) badxl. (1) 3x3xd. (1) Ix2xl. See Tick [51] for the sequential
Prolog version of the original form of this problem. The FOHO version was written by

the author,

e Pascal generates the 100th row of Pascal’s Driangle, using intoger hignmmns 1o represent
the coeflicients. FTlhe maximmn cosflicient of the 10011 row is represented as [97256,
48124, 19332, 45564, 13445, 100831, The Prolog version af this program was written
b the anthor, using the bigmn fibrary from DEC T Prolog. written by R, (' Reefe of
Quintus Compter Ines The Prolog program nses a optimized form of AL Carlsson’s hack
for implementing AND-in-OR parallelisia [10]. See lakag [52] for the original version of
the FGHO program. written by Eo Sugine. The version measured here ielndes an FGHO

translation of the Gnteger addition) bignum hibrary,

s Semigroup  sencrates all (313] members ol a Bradt Semigroup Bl aiven a s of four
generators, The elenents of the senngroup are lists of Teneth L The Prolog version of
this prostant is s modilied version of the original written Tno 10 Overhesk of ANL 105

The FOTC ver=ton was written by N Tehivoshi of [CO1.

e Queens  Ginds all (7210 solintions o the 10-Quecns problen. There are several gueens al
gorithines measured.distinenished Ty the initale of the names of their anthors. HKqueen.

written b T oo ol NTT . uses constraints implemented via logical vartables in Prolog.
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IBqueen. written by I Bratko [3]. uses constraints implemented with fists of diagonal
offsets (in Prolog). MBqueen. written by M. Brovnooghe. uses a fused generate and
test algorithm (in Prolog—this is the “classic™ Queens program). KKqueen, written
by K. kumon of Fujitsu, 15 a stream-hased FOHC program. AOqueen. written by A.
Okumura of ICOT. is a layered-siream-based FOHC program [39]. KUqueen, developed
by K. Ueda of 1COT, is a continuation-based translation of MBqueen [59].

Note that these henchmarks are not “as is” programs taken from an authentic user base. lustead
the benchmarks were carefully rewritten to perforin efficiently. A structure-based version of
Triangle was determined to be inferior to the list-based version given Lere. The KL1 version of
Triangle was hand-optimized after its translation from Prolog. A list-based version of Puzzle.
due to L. Sterling, was determined to be inferior to the structure-based version given here. The
kL1 version was rewritten countless times to increase its efficiency. Initially, a Prolog version
of Pascal written by Sugino was uged. hui this did not permit exploitation of OR-parallelism.
The refined version presented here uses unrolling to increase the coarseness of AND-parallel
goals to allow AND-in-OR parallel techniques. Semigroup was optimized several times by
Overbeek and Ichivoshi. in both languages.

Several versions of Queens were also developed —in this case. some of the programs are
included here to give further insight into how changes in algorithm can radically effect the
interpretation of cache simulation results. HKqueen and AOgqueen are most often compared
because they represent the fastest algorithms in Prolog and FGHC respectively. The lesson
taught by this simple benchmark is thal parallel algorithms for the same application varyv
greatly in performance {more so than sequential algoritlins ). and thus analvsis of a large set of
algorithms for a set of given applications is necessary to fully understand parallel architecture
tradeofls.®

The various solutions to these problems, i both Proleg and FGHO. are summarized n
Table 3. The table gives the number of static procedures. source lines, and clauses. Dynamic
measures are given for the execution time on eight PPEs (in seconds) on a Sequent Symmetry,
the speed-up on eight PEs (relative to the same program on a single PE). and the number of
provedure eafries executed. For Prolog. a procedure entev is either a reduction { procedure call)
or hackivack, For FGHC, a procedure entry is cither a reduction or suspension. As can be
seenn. the programs are small 1his 5 4 major Bmitation of this <t udy, Although the amount of
computation of the programs is sullicient 10 exercise the caclie sinpidators, the bhenchmarks do

et have Jarge working sets as do big applications like CAD. natural language, compilers, ete,

“IBqguesen = not e laded nooany reas i rerneE presenied heee becagse o 1akes o lone o execate, my £
. I 14 EIven ils

“orions metliciencies. Whereas HRqueen reguired 11625125 data relerenees 1o execute [-queens, IBgieen

reaguired 922000 0N
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| henr:hrnar]; procs | lines | clauses | seconds spe_e;dup 1 entt_‘j_ﬂ
N o Prolog -___ l
Triangle 51 6 14 12.0 _T.T_-! ani03%
Semigroup 21 126 47t 15.6 3.2 153555
Puzzle 15 283 KR (PR T 143106
Pascal $21 26 T | 20 267276
HKqueen diED 170 143 | 56| 334782
MBogueen = i 15 2105 i 6.6 | 2779
_lEquc'f:n , L 11 821 1. T3 1996096 :
O FGHC |
| Triangle 5] 1| - TN 5.8 ’LIL[;_&_J
Semigroup | I Il LU 63 NT5 | 1.8 292307
Puzzle 1 131 151 | 5 533 - 6.5 | 832608 |
Pascal 510 410 153 1 6.6 6.1 320113 |
| AOqueen o 2 273 63 | 36180
KKqueen 6] 2% 1o .5 | T NTHIN |
B U queen 4 31 149 450 | 7. | 1026112 |
Tabie 3 Shart Summary of Benchmarks
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T'he programs all have significant parallelisin and most can exploit that parallelisim efficiently
{with the exception of Semigroup and Pascal in Pralog). In general. the OR-parallel Prolog
programs display less parallelism than the FGHC programs. Looking at procedure entries and
raw execution time, in general, the Prolog programs do less work than the corresponding FGHC
progranms.

When FGHC performs more procedure entries it is characteristic of the lower semantic
power of the langnage as compared to Prolog. Prolog can exploit [ull unification coupled with
hackiracking to solve many of these problems quite efficiently. FGHC s limited to one-way
unification and must “emulate” backtracking at the source language level. Note that although
Triangle performs more Prolog procedure entries, the Prolog executes about four times faster
than FGHC. In Puzzle. the difference is more pronounced. ln both programs, Prolog can use
unification of logical variables to avoid the structure copying necessary in FGHC. Comparing
the two fastest Queens algorithms, HKqueen and AOqueen, we find that Prolog’s ahility to
hacktrack over unification gives it a 2:1 speed advantage, whereas procedure entries are almost
equal,

The remaining two benchmarks. Semigroup and Pascal, solve single-solution problems.
Prolog Semigroup uscs a 2-3 tree [5] to store the elements of the semigroup. This sequentializes
the search for an element. but the search iz quite efficient. kL1 uses a pipeline of filters to
store the elements of the semigroup. 'This parallelizes the search for an element (different
searches can be pipelined). at the cost of an inefficient {linear) search [or each element. Pascal
hias no OR-parallelism. so that Aurora must simulate AND-parallelism via meta-interpretation
(this iz calied AND-in-OR parallelism [10]}, at great overhead. The overhead ol exploiting
AND-in-OH parallelism (FGIIC is over twice as fast as I'rolog on eight PEs) comes from the
bookkeeping needed 1o execule many fine-grained processes. It should be poted that Carlsson
et. al. [i10] measured a marimum speedup of 2.2 for an AND-in-OR parallel compiler running
on Aurora. Although the compiler had coarse-grain paralielism. 30 of the compntation was
sequential, thus miting speedup. In general. FGHC can manage fine-grained processes nmich
more efficient]y than can Prolog, whereas Prolog can manage coarse-grained processes more
etficientlyv than FGHC. The amount of such paralielism in real applications i 4 vel unanswered
g ueslion.

Interesting resalts of this study are the comparizon of the algerithims forced upon the pro-
srammer by the langnage defitution. [ FGHOC encourages abject-oriented programming style
by the nature of strean comnuiication. then the performance objeci-oricnted programs is -
portant to study, Likewise the various nses of logical vanables and bhackirackimg that Pralop
FII['G'I]T:]E!.".‘; e EI]TF]H'.II'1 ant to mcasnare.

The algornthms chosen are sometnnes different i each language. often in definition of data



structures. In Semigroup. Prolog’s use of 220 trees gives 1t s defimte advantage over kL1
The KLI pipeline process structure can conceivably he rewritten inlo a free stracture ihal
will speedup up the search. In Puzzle. Profog's nse of lowle variables obviates the need for
copying large data structures. as is necessary b KL1. Because Puzzle i< an all-=olutions search.
K11 destructive arrays cannot be used to represent the data structures. This is also true fo
Triangle. IBqueen in Prolog is naturally auited for arravs. but arrave are not implemented
in Aurora, so mefficient lists are used instead.

Most of the benclimarks chosen in thie study perform an “all-solutions scarch™. This means
that the problem space confains multiple. independent solutions that st all be found by the
program. Pascal is a completely determinate program, finding a single solution (calculating
a row in Pascal’s triangle). Given a problem space containing multiple solutions. all-solutions
cearch is used in a benchmark to avoid unreliable measurements. I for instance only one
solution is required from a multiple solution space. a differen! solution may he found when
the same program is run on different numbers of PEs. This may result in either sublmear or
superlinear speedups. This problem is one of determinacy — a goad henchma rk is a determinate
henchmark. Nondeterminacy can canse high variance in performance measurements that 1s not
attributable to the architecture or svstem. but rather to luck,

Tnfortunatelv. choosing all-solutions scarch problems give OR peralle]l Prolog an advantage
over FGHC. Prolog can colleet alt solutions with builtin lunctions {such as findall and bagof)
ehat backirack over solitions more efficiently than can be simulated in FGHC. An all-solutions
cearch problem guarantee OR-paraliel Prolog a source of easily exploitable paratlehi=m. How-
ever. OR-parallelism in single-solution problems is not so easily ancovered by Profog. Twu
single-solution problems. Semigroup and Pascal. were chosen 1o dlusirate this contrast. As
<een in Table 3. the Prolog solutions 1o these problems have the lowest speedup of all the Lench-
marks. 1 i shown in later sections that 1he overheads of exploiting even that small amonn ol

parallelism is great o tenns of absolnie speed and program reacdability [declarativity).

6 Architecture Models

Tnstramentation and analvsis of an epmlated architeciure is an crnporical and inexact seenee. In
addition 1o the mechanical problenis (Section 537 of shimulating the precise tinmeg of the antic
ipated target host. there i< additionally the smprecise pature of the instrmentation. | [1eer ey
rars inchide Tack of cotplete nstrumentation. inaccuarate ovder of instrumentat o, nisinatclies
between the emulator and tareet host with respeet to storage odels, instroction formats and
svstem overheads (e.ge garbage collectnian. The naceuracies present in the svstenis stuadied

here are antlined i this section, with a disenssion about their relative importance,
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6.1 KL1
6.1.1 State Space

Modeling a real architecture on a target host, with an emulated architecture on a partially
mapped host, requires creating a correspondence between emulator vaniables and target machine
registers and memory. I'or example, in his study of the Prolog WAM, Tick [55] assumes that
the WAM. stale registers and argument registers are implemented in hardware (on the target
host ), even though they are actually implemented as ' variables in the emulator. Au extended
model assumes the top choice point of the Jocal stack is also stored in a register file (similar to
the Pegasus microprocessor [16]). Such correspondences allow the system designer to evaluate
the effect that bulfering hardware has on reducing the bandwidth requirement.

In the KL1 measurements presented here, we assume a very liberal correspondence of ar-
chitecture state to registers. The reason for this is two-fold. Firstly, the emulator code is
complex, not documented, written by a different person than the instrumentor, and lacks data
abetraction. Thus the ability to determine a winimum necessary architecture state space was
difficult. Secondly, even when certain particulars of the emulator were understood. it was often
not clear if they were to be considered a fundamentally necessary part of the architecture (for
example, see the next section about meta-counts).

For these reasons, most emulator variables were considered either not necessary for the
target architecture, or able to be allocated to temporary registers. In addition, the KL1 state
variables, as defined by Kimwura [30] and defined internally to the emulator, and goal arguments
were also mapped onto registers. Note that the number of KL1 state variables defined internally
15 much larger than described by Kimura, comprising all g-oal gueue pointers, processor sta-
tus, communication bulfer pointers, interrupt slatus, suspension stack pointers, meta-counts,
garhage collection pointers. ete. Assuming these can all be placed in registers is a best case
assurnption for KL1. Of course. memory references to the inajor storage areas (heap. goal.
instruction. suspension, and comnunication ) were instrumented as target architecture memory

relerences.

6.1.2 Meta-Control

HRecall {from Section 2.2} that execulion of an FOHC procedure can result in one of three states:
sticeess. fallure, and suspension.  Melo-control is a generic name for architecture extensions
allowing stronger control of ane process (the caller) over anather (the callee). For example, an
operating svstein needs to call a nser program and have the program status returned: success,

failure or deadlock. One such mechanism for FGHC is deseribed by lehiveshi [29]. Essentially

the difficulty i determining deadlock. or even termination. is that suspended goals “float™
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around the sterage space. hooked only to the variables they were suspended on, There st
be a synchronous method of determining when all the goal quenes are erupty and af there are
no floating suspended goals.

The details of 1he actual proposed schemes do not concern us herer however, the overheads
of these systems do. The benchmarks measured i this study are all single programs with no
meta-control. In the KL enmmlator used here, a single program 1= execiuied and returns its
status 1o the emulator. A meta-count is a special conpter {one pel P11 in the emulator ased
to keep track of called processes. It is from the metla-counts that the program’s completion
ciatus can he determined, Each reduction. the meta-counts are manipulated to keep track of
things. Matsumaoto measured this overhead (for single program execution, assuming a given
meta-count scheme). and reported that 4% memory references and 15% bus cveles are devoted
1o this type of bookkeeping.

It is felt that 159 is far too large a penalty for a real systew running a single, correct
user program with ne weta-control. In a real system. compiler optinization and hardware
assist would reduce this overhead. 1o this study. no assuniptions are wade about meta-cont rol
complexity and overheads. We assume that the meta-counts are implemented with hardware
registers, and further that simple. single program execution {like the benchmarks diseussed here)

requires no meta-control memory references. This henefits WL1 as a hest case asswinption.

6.1.3 Unification and Suspension Stacks

The K L1 architecture nses two snall runtime stacks for managing recursive fgeneral) unification
and the suspension mechanism. The former is similar 1o the Prolos anilication stack. called the
PDL (push-down-list) by Warren [61]. In the case of KLI. each PE has its own PDL. used for
{general) active unification. passive wmification. and anti-unification, Each T'E also has its own
suspension stack. used for teporarily storing variables that reguare oui bindings during
head unilication. Ieferences to these stacks are mof instrumented as abstract machine memory
references in this studv. The nnification stack is experted 1o display characteristics similar to
Prolog. where less than 2% of all data references were 1o the PDIL [56) and spatial locality is
extremely izl The suspension stack is expected toalso display hish spatial locality and small

maximmu growth,

6.1.4 Spatial Locality

The KL1 and Aurora enalators were instrimented assaming that the abstract machine shared-

memory addresses are the same as e Sequent shared-memony addresses. ot her words, when



issuing an abstract machine memory request. the Sequemt virtual address is issued.'" This
method avoids the necessity 1o translate each Symmetry address into a kL1 machine address,
thus saving simulation time. The method has the disadvantage that locality s somewhat
lessened (from what it would be on the target host), There are several places o the enulator

where locality is lessened:

¢ instruction size: the emulator uses large indexing instructions consisting of many words.
These instructions waste space, thus the instrumented architecture sees a code space with

lower locality than an architecture with an optimized set of formats. This effect is minor.

s goals size: the emulator allocates fixed-size areas for goal records, even though goals have
differing numbers of arguments. This causes the memory to be allocated more rapidly
than on the target host. However, the unused portion of the goal records are never

referenced, and thus cache performance is not significantly affeeted.

* heap overloading: the emulator allocates goal records and suspension records on the heap,
instead of allocating them on independen eoal and suspension areas. Thus spatial locality
is somewhat lessened. The effect is miner however because these records are multiples
of the cache hlock size and are alwavs allocated on a hlock houndary. The normal heap

data may be interrupted by the inclusion of this extraneous data.

6.1.5 Timing

The lock (LR} operation 1« issued affer the Svmmetry lock 15 obtained instead of belore. This
cnsures that the abstract machine lock state does not change prematurely, 1o, belore the

corresponding Symmetry lock 1= captured, This imcreases the accuracy of the simulations.

6.1.6 Direct Write to Goal and Communication Areas

1he read buffer and read purge vperations of the KL1-specialized cobierent cache model(35]
were nof used i this studv. Therefore direct writes could not be imstrimented ta the goal and
comimunication areas. Its anticipated that these optimizations will help reduee the veguired
BT b bandwidth by a <ignificant amount, Because these operations are specific to KL1L and
cannot be nsed in Aurora. o= feblt that including them would complicate the comparison. and

lesaen tlie Girness, of (he eaclie stalisties,

© The KLI snmwlator manipulates & byie absiract words. the expected ward size of the 10O designed PIM
(23 The Aurora emulator mwaipalates 3 bae alstraer words, The Svinwetry is by addressalile, <o i order
to make a fair comparison, the cacle sinmlator shifis KL alidessses i 3 Bits arnd Aorora addpesses b 2 hits,
Ths pwvans that hotl sys<tems are stomlated as 07 the basic word size of their arclutestures wepe squal (whatever

siz= that ay hel. The cache statistics presented here assume that size s A0 hits,
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6.2 Aurora
6.2.1 State Space

Many of the comments in Section 611 coneerning mapping the KLL state space apply 1o
Anrora also, The Aurera svstem however has [airly good data abstraction. facilitating this
mapping. Still, neither Aurora nor KL1 was implemented with instrumentation in mind. and
as a result, hidden pieces of the state space have remaimed hidden. The Aurora system s
sphit. into two major pieces: the worker (essentially a WAM engine) and the scheduler fin this
case, the Argonne version). The worker is modeled ax s a sequential WAM. assnming that
the WAM stack-group state (e.g.. B. E. etc.] are implemented in vegisiers. In addition, all
{emporary variables used in the worker functions, and the complex data structure defining a
worker are also (liberally) assumed to be mapped onto registers, Assuming these can all he
placed in registers is a best case assumption for Aurora. Or course, memory references Lo the
major storage areas (heap. control stack, local and global stacks. trail and binding arrays) were

instrumented as targel architecture memory references.

6.2.2 Warm Start

The Aurora system is a complete Prolog svstens that is hootstrapped with a top-level read-eval
luop written in Prolog. running on all PEs. This is in stark contrast with the KLL svsten where
the tup-level read-eval loop is implemented inside {he emuiator. in O runuing on one PE before
Jlave PE< are forked. Thus when starting the Aurora svetem, the system boots izl reguiring
e evecution of several hundred lines of Prolog code. Arer the hoot e benchmark object
image is loaded and then the henehmark i= execnted. The entire startup generates about 200,001
memory references. distributed in an unknown fashion across the PEs. This i« most significant

for Puzzle. where it represents 2% of all memory requesis. A facihty 1o re-initialize the cache

simmlator from Prolog was not nnplemented. and so the Arora measurement s oresented i this
paper include the effects of this {(“warm™) start. WL1T measurements are 4 pure meold” start.

This difference 1= minor.

6.2.3  Argonne Scheduler Sleep Time

After tnstrumenting the scheduler, we noatieed s Arastie. unbeliovable inerease in controb stack
INODE Y reads on muliple PE< with vespect 1o single Pls o the Semigroup anud Pascal
bepelmarks where afl other relerence arcas connts remained e same), I hese Denclimarks
cannot exploit OR=parallelisim elficientlv and therefore on maltipie PE s the workers are spend-
g a great deal of time i the schediler, jouking fon worde

Fie Aurora =vstenn istreisented for this stady nses vhe Argonne seheduler(7. The seledules

-



has a main loop in which an idle worker attempts to find an OR-goal 1o execute, H the worker
fails, 1t sleeps for a short period, awakens and retries. If it 1akes 100 many short sleeps it s put
into a deep sleep of a much longer period {although it s believed that deep sleep does not ocenr
for the benchmarks studied). The sleeping mechamsm was installed in the original Argonne
scheduler no doubt to prevent precisely the type of excessive control stack referencing that was
observed here. Thus the question remained as to why the sleeping mechanism did not do its
job.

The problem {as noticed by A. Ciepielewski) was that the mstrumented emulator runs many
times slower than the released svstem, but the short sleep period was set constant {a tight loop
of 80 iterations). In the instrumented svstem. B0 iterations is proportionallv too short. and
must be scaled by the slowdown in emulation speed.

In addition, if the short sleep loop is lengthened, then it must issue m_sync()s to continue
svinchronizing cache simulators jn other PEs (sce Section 5.3). The modified short sleep code
is in fact a nested loop wherein the inner loop of 20 iterations finishes with a single m_syne ().
The outer loop is used to scale the sleep.

The short sleep modification reduced the control stack read count significantly. Suill, tun-
ing the outer-loop of the short sleep to give optimal performance. or even fair performance on
all benchinarks, is difficult. Even for the non-instrumented svstem. short sleep time can be
tuned to increase the performance of a given henchmark. We hyvpothesize that svstem per-
formance increases with increasing short sleep time. and then decreases. To determine how
sharp the performance peak is and how it varies for various benchmarks, sensitivity analysis
was performed.

Table 1 lists the results of a group of 26 sensnivity experiments. Two henchmarks were
measured: Pascal and MBqueen. These programs represent the extremes in availability of
easv-to-exploit parallelism. Benchmark input data size. nomber of PEs, and <hort sleep time
were all altered in the experiments.

By increasing the short-sleep time, idling workers disturb the svstem less often and make less
memory requests. checking for work. Of course if the sleep time becomes too great, the progran
runs slower because workers are lethargic abont finding new work, We cee this orcurring in
Pascal. Note however that even if real-time execution increases afller a certam point. the
number of NODE references contines 1o decrease {beranuse the workers are checking up less
often). Thus it is difficult 1o determine exactlv what is the ost realistic sieep-time, e, where
the maximum speedup is attained.

Une way 1o do this is to compare the real-tine execution of the cache mstrmented system.
When this execution tine is minimal, one can assume that specdiup Gnoa correspouding non-

istrumented system) is maximal, Thus the emory statistios at that point are accurate. As



mentioned earlv. note however that oven i the non-inst ramented Anrova systens, sleep tine i
not optimal for all programs. hu other words, for Lenelinarks will Hittle paralielism, slecp-time
3s probably not optimally adjusted 1o attain maximang speedug,

Pascal(50) running on four P does not obey the chararteristics previously seen for |-
2 PFs. MBgueen on eight PEs also shows intolerance of a large sleep time. In general,
MBequeen. and all programs with sufficient parallelism. are not significantly affected b thie
sleep time. Also. programs running on eight PEs appear to he little affected by large sleep
times. In the measurements presented in later sections of thix paper, o sleep time af ane (30
terations) was used for all benclinarks with sufficient parallelism and/or runuing on eight
PFs. For benchinacks with insufficient parallelism (Pascal and Semigroup). a sleep time of
100 was used in conjunction with two PEs. This combination represents the hest conditions

under which to run these two troublesome progranes.

6.2.4 Direct Write to Control Stack

The current instrumented Aurora svstem does nof implement direct write references o the
control stack. Currently, the cache simulator implements direct write only for stacks thal
grow with increasing addresses {“positive stacks™ |, Unfortunately. the Aurora control stack
is a “negative stack.” One possible scheme. due to A Matsumato. to fool the simniator into
correct v treating direct writes to the control stack. is 10 pass the ones-complement of the stack
address. This has not vet been altenpted. 1t is anticipated that direct write will help reduce

the control stack bandwidth requirement significantly.

7 Timings and High-Level Characteristics

Inn this section real-parallel execution timings and speedups are presented for bot i the Aurora
and WL1 svstems. In addition. a buet summary of Ligh level statistics i= given, The Aurora
and KL1 systerns were calibrated for timing 1ests with the KKqueen program {see Appendix
[.5.25 This program was chosen hecanse it can L transiated diveetfyto Prolog, The program
i alen superior to the usual calibration prograims. append or nrev. hecase s (shphtlohmore
complex. Single processor execntion on the Sequent Svnmetry ' mave TG seconds Tor Aurora
and 13400 seconds for WLL. This is bess than a 2% diference. 10 can salely be asimaed herelore
that hoth svstems are perfornumg simple idesing and simiple detertinate computation equeally
well.

Table 5 gives the raw Dhnines, refative and abeolote -p-*whl.]rr- of the hepclmarks ' Note

TA 1D proeessor Sy s utiliving fonel sisG CP Vs Lach O s o B bl wriearbroagh el
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benchmark | PE | sleep | sec R | R/R(1) LR | LR/LR(1)
Pascal(30) | 1] 1| 94| 101932] 100] 413 1.00
Pascal(30) 2 L] 309 | 2037064 | 1980 | 39466 0556
Pascal(30) | 2| 101 120| 363040 | 337 8837 21.45
Pascal(30) 20 40| us| 215203 199 6245 15.12
Pascal{30) 20 80| 92| 188301 174 5493 13.30
Pascal(30) 2 160 92| 175648 1631 3217 12.63
Pascal{0) 20240 91| 171594 1601 5135 12.48
Pascal(50) ] 1317 | 239912 1.00 0 833 1.00
| Pascal(50) 2 1] 1648 | 12153127 | 50.66 | 117397 140,93
Pascal({30) 2 10 | 400 | 1464906 | 6.11 | 13603 16.33
| Pascal(30) | 2| 160 | 303 | 399601 | 167 | 6890 8.27
Pascal(30) 2 200 | 245 d80469 1.549 G771 8.13
Pascal(30) 2| 240| 290{ 369531 154 | 6674 8.01
Pascal(30) 21320 296 | 333663 144 | 6320 7.83
Pascal(30) 4 10| 1414 | 6542753 | 27.27 | 105196 | 126.29
Pascal(30] 1) s0 1512 | 6127034 | 2354 102222 19272
| Pascal(30) FO160 1003 | 6rodTe2 | 27 | 12ied | 13530
' Pascal(50) B 210 981 T01I234 | 2922 1 118461 14221
Pascal(30) 110500 1193 | 8651592 | 36.06 | 145453 | 174.62
MBqueen(8) | | Vel 16T Loo 7 .00
MBqueen(S) | 2| 1| 119 238139 | 204]| 7623 99,00
MBqueen(S) | 2| 100| 11| 166020 l42| 4731 6l7d
- MBqueen(8) 2 2000 | 113 165173 1.44 . 1974 fid. 0
| MBqueen(s) | s T 91| 219218 | 188 | 9963 | 12030
| MBqueenis) = ] s | R0 2 1211 1os.13
i MBgueen(s) = JLALH] | i 1 .EJIHJ,i: R | 1:200m2 | R

Table 1 Short Sleep Time Sensitiviny: Analvsis
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that by averages., FGHC has preater parallelism than Prolog because the poar relative specdup
of Semigroup and Pascal lowers the Prolog average. Prolog also has lower absolute speedup
than FGHC because S1CStus (V0.6). used as the baseline for Aurora, has a more efficient
compiler than Aurora. The KLI baseline (labeled “sequential” in Table 5) uses the same
compiler as does the parallel kL1 system. The KLI1 baseline is essentially the same as the
parallel svstem except that locking is removed.

At the bottom of Table 5, the ratios of KL] to Aurora raw execution times are given.
On a single PE, Aurora outperforms KL by a factor of 1.2-7.5. This advantage is reduced
on multiple PEs. Most notable 1s Pascal in which KL1 gains an advantage via parallelism.
Semigroup and Queens also illustrate the superior parallelism of KL1, but the underlving
weaknesses cannot overtake Aurora. Note that the KL1 system measured here has subsequently
been improved to execute about 10% faster (via compilation optimizations of fusing common
instruction pairs) [43]. It is obvious from the measurements however that an improvement of
-9 times is necessary to become on par with Aurora. It is wrong to assume that differential
is a result purely of Aurora’s mature {and KL1's immature) svstem implementation.

Figure 6 compares the speed of the benchmarks on a single Symmetry processor. Four
svstems are shown: the baseline sequential systems (seq) and the parallel systems (par} runuing
on one PE. Figure 7 compares the speed on the benchmarks on eight Symmetry processors.
Figure 8 compares the relative speedups of the benchmarks on eight Svmmetry processors.
Iigure 9 compares the absolute and relative speedups of the benclimarks on 1-8 PEs. Note
again that the wide gap between alsolute speedup curves of KL1 and Aurora is because of
two reasons.  First, the sequential baseline fur Aurcra (SICStus Prolog) has a far superior
compiler than Aurora. Second. the sequential baseline for KL1 is the exact same kL1 system
madulo locking. Thus realistically, KL1 absolute speedup should be lower and Aurora ahsolute
speedup should be higher. Note further that in terms of relative speedup, the different between
the svstems is less than their distance from ideal speedup on eight PEs.

lable i presents some results from the high-level instrumented emulators. Some of the
data presented in Table 3 is repeated here. In addition, references are broken down into
mstruction and data. Statistics calculated are jnstructions per reduction, instructions per
procedure entry, suspensions per reduction. nstruction references per instruction. and data
references per instruction.

Fur KL1. even in moderately suspending programs. suspensions compose less than 107 of

all procedure entries. Thus instructions per reduction and instruetious per entry are the same.

I this and all ather sommary data the means (ECH) and standard deviations (sd (1) are caleulated from
the five main benchmarks of this study: Triangle. Semigroup. Posgle, Pascal. and HKqgueen (for K101
AQguecn), Fach beaclimark s given egual weight in the sunamary calealations. Other benchmacks are o

melinded fn the smmimary sratistics,
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The average instructions per reduction of 200 has Iittle variance among the henchmarks.

For Prodog, many programs have a sigiificant amount of backtracking. Comparad to KL1,
the instructions per entryv 1s lower because clause selection in W L1 conunis as only one procedure
entry, whereas in Prolog, shallow backtracking may count as many procedure entries. Prolog
instructions per reduction is higher only for two programs: Triangle and Puzzle. For each
of these programs, the KL1 code executes many more (smaller) procedures 1o simulate all-
solutions search. The Queens programs also perform all-solutions search, but the overhead is
not so great because the search tree s very simple.

WAM has (.70 instruction references per instruction and 2.32 data references per instruction
as reported by Tick [36]. KL1 has 1.03 instruction references per instruction and 1.41 data
references per instruction. Aurora has 1.37 instruction references per instruction and 5.26 data
references per instruction. T'he high instruction references per instruction is nainly hecause
the WAM micasured by Tick used real byte-code formats, whereas the systems discussed here
have all instrictions on word houndaries. Data referencing characteristics are more inleresting,

Both KL1 and Aurora have high variances for data reference counts due to Semigroup
and Puzzle respectively. Nonetheless, in general we can say that the KL1 instruction set
has weaker potency than the WAM because it does not implement backtracking. Suspension
referencing of course increases this statistic with respect to Prolog: however. as previously
shown, the benchmarks studied do little svuchronization. One exception is Semigroup. with
0.09 suspensions per reduction. and 4.24 data references per instruction. This is significantly
higher than auy of the other benchmarks mcasured. AOqueen also has a high suspension
ratio, but 51311 retains low data references per instruction.

On the other hand. Aurora displavs sigoificantly higher data references per insiruction than
the standard WAM. This however is not due 1o increased potency becanse both langnages are
Prolog. The henchmarks stndied here do a significant amount of complex pattern matehing
and backiracking. thus increasing data referencing above that of the more “realistie” programs
studied by Tick (1wo compilers. CHAT. and a theorem prover). Puzzle is the most intensive
programm of the group in this respect, with 10,15 data references per instruction. In addition.

thes overheads of :-i-:‘hrduﬁng al=0 merease data referencing.

8 Memory Referencing Characteristics

In this section. the memors and bos usage chavacteristios of Aurora and WL are deseribed.
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8.1 Memory References

Tables 7 and & give the raw =inmlation menmory relerencing proliles of the benchmarks measired
i this studv. For each henelunnark, the memory veferenee connt s hroken down by referenee
tvpe and area. For each row and colntmin. pereentages are displaved. Note thal for Semigroup
and Pascal in Aurora, two 1PE emmlation statisties were used throughont. This s because
these benchmarks display excessive scheduler beliavior on eight PEs that prevents viewing a
“normal” execution profile.

The raw data is snymmarized in a sevies of tables and hgures, Tables 9 and 10 give the means
and standard deviations of the memory references broken down by storage area and memory
operation. Figures 10 and 11 smmnmarize this data i the torm of pie charts, Each figure shows
summary statistics for all references, and for data references oniy.

The KL1 and Aurora referencing characteristios are primarily skewed by the large percent-
age of KL instruction references. 474 of all references compared to Aurora’s 27%. Aurora has
on average 276 data references per instruction refevence. LT has on average §.04 data refer-
ences per instruction reference. Prolog was measured even higher at 3,16 daia references per
instruction reference [56]. The differences are due in part 1o the instruction formats. paraliel
overheads. and language poteney. Awrora is the most efficient’y encoded instroction set {more
eliicienty than the Prolog svsient measured by Tick) I addition. Prolog 1= more semantically
powerful {potent] than FGHU . and its corresponding architertire is also more powerful (e,
mare work is performed by eack individual instruction, on average ). However. Aurora has over-
heads of paraliel execntion: schednler work is connted as data references with no instruction
fetehes made, Overall. Aurora iherefore Balls inbetween Prolog amd kLT iu data references per
instruction reference.

The over 2:1 ratio between Avrora and WL for this statistic is also felt in the skewed
read reference counts. Even given 1his bias however, WL and Aurora have alinost the same
percentage of reads. When insiruction references are removed from the statisties, Aurors has
0% reads 1o KLs 614, In botl cases. the readiwrite ratio is higher than Prolog (53 1ead
data veferences [36]1. The reason for this i not because the architectures arve more efficient
than Prolog. it becanse cacl bas seheduling and svuchironization cverhieads that require nany
roads, In Aurora. the tree-walker senerates comrol stack read tralfies In KLT. we mweasure .59
vead data reforences 1o lock variables fduring derefereneing and for binding )

The divect write aptimizarion was atilized 2 080 of KL data references at Jd L0 o Nirara
data rerelerences, Tlns sialsine s biasedd II!!i.hil']_'.' towareds BT Deecnise 1he Narora contral staek
was rol mstrnmenied with vt wreibe operations. ol honeh okl Jroves Daesge s Seet o
t":.'\:'.-lfl. | e statistiaes ;:rn*ar-llln‘ni sl i (R R 1 R ferr gt Sk s rsed] Lo i:.Hil-|r'I:'-‘||IL'-| NHIE
Ve wride-read Tanffers faee Section G, KL ean atiiize these opiimizatioss guite vileetivels
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Table 8: KL1 % Memory References by Area and Operation
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Figure 10: Memory Heferencing Characteristics {by Area) of KL1 and Aurora
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for the goal and communication areas, However, Aurora canno! nse sucl optinnzations,

The data referencmg charactenstics of each architeciure are now discassed inomore detail,
Note that these statistics are deceplive becanse bos iratfic, the critical concern 1 a shared
memory multiprocessor, 1= only indirectfy related to the raw relerence counts, Localitey and
sharing in the areas radicallv effects the hus traflic generated. as shown later in this section,

LI data referencing charactenstics measured in this study differ significantly from those
measured by Matsumoto for the BUP benchimark. Yet as shown in Section 4.1, the BUP
statistics calibrate on both simulators. T'his shows that FGHO programs ave vast]y different
characteristics and that many benchmarks need o be studied 1o get a fair and aceurate picture
ol processor performance. Tn this study, the heap is referenced 62% on average, goals 32%. and
conmunication 3%. Suspensions do not eflect reference counts significantly.

Aurora is more complex, with a halanced mix of references to heap. environment, coutrol
(node), trail. and binding array areas. This profile is radically different than that measured
for Prolog (33% control. 23% environment. 209 heap. 3% trail). The differences are explained
as follows. 11% of Aurora references are devoted to tlie biuding arravs. so these references
must be {actored out when compared 1o Prolog. In addition. trailing in Aurora requires saving
both an address and value. twice the storage requirements of the Prolog trail. In addition.
the Aurcra compiler generates ellicient code that can reduce node referencing during shajlow
backiracking. The Prolog statistics were gathered on a svstem without such optimizations.
These considerations help to calibrate the two variations of the WAM: however, the rather low
environment data reference count in Aurora has not vet. heen explained. This is again possibly

due 1o the sophistication of the Aurora compiler.

8.2 Bus Traffic

Tables 11 and 12 give the raw simulation bus traffic profiles of the benchmarks measured in this
study. For each benclunark. the percentage bus tratfic is broken down by area. This raw data
1s redisplayed in graphic forin i Figure 13, The model used to generate these measurements is
a shared instruction data (14D cache conpled with a one word bus and eiglht cvele memory,
This data is presented with the intention of delineating the trouble spots in caclr architecture,
However. note that a split instrociion and data cache and for a different s and memory jnodel
will produce different profiles for the same benclimarks. Note also that 1he sionmary statistics
arc caleulated with Aurora Semigroup and Pascal running on two PPEs.

Awrora’s bus traffic characteristies vary greatlv with each henchmark. Tnsteaction bus tralfie
varies from 15 7000 Within data traffic. Leap bus trathic varies from | 397 and node bos 1reaffie
varies from Y-380. The other arcas are more stable across the benchmarks. KE1s bus (ealie

characterstics also vary withs each beuclinark, lustrnction bus trallic varies Trom (b1 1995

fid



benchmark | INSTR | DATA | HEAP I GOAL | SUSP | COMM

Triangle | 21 97.9| 278] 338 00 36.4
Sf:migruupf 200 98.0 523 14 20 334

Puzzle 491 9.0 T43] 105 05 9.7
Pascal 0.7 993 324 155 61 453
AOqueen | 0.1, 999, 272| 61| 100]| 360
KKqueen 0.0 | 999 453 255 02 29.0
K Uquecu 0.1 999 720] 133| 01| 146
El(all} 2.0 us.0 | 423 15.4 a9 36.2
aiall) 1.7 1.7 18.2 9.0 3.8 15.4
E(data) 43.6 15.7 3.8 36.9

Table 11: KL1 % Bus Trafhic by Area

benchmark | INSTR | DATA | HEAP | FNV | NODF | 1LBA | GBA | TRAIL
Triangle 179 52 13| 380 a84 | 07 22 56 |
Puzzle 32| 655 69] 29| 129, 06| 50| 15
SCnugroup 4.9 I 93.2 0 107 18 MmO 0 1.0 4.0
Semigroup™ 1541 s4610 3vgal 47 275 0] T4 1.5
(Pascal | 16| 54l 20 12] 6] 03] 13 1.0
Pascal® - Th.6 23.5 5.2 210 9.4 (Lt 1.1 2
Clkqueen | 256 | TH4 | L4 14 583 03] 23| 21
MBogueen TI 2401 TULY ! 94| 1.3 ’;T__’ I]-.-l T l‘n I. 12|
| Mbqueen | . a4y 15]
CFlall) 601 su9] 126] 30! 3] orl s2] g4
lotal) | 202 w2 @i 120 163 02 b 2.1
Fideata 2000 50 88D L] Tl Tl

Table 120 Avrora Y Bus Traffic by Area (7 = 2 PEs)
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Within data traflic. suspension bus tratiic vavies from 0 10%W and commmnication bus traffic
varies from 10 -56%.

The most signiflicant difference between the architectures is the istruction bus traflic. Au-
rora generates a great deal of instruction bus trafhe, whereas KL1 has almost none. It wonld
therefore appear than KLI has superior code Jocality. This may be due to the fact that KL1
does not backtrack. and in these henchmarks, does little svnchrontzation. Thus execution is
determinate and jumps are infrequent, With few jumps, the prefetch effect of four word cache
blocks gives WL1 a very low instruction miss ratio. On the other hand, the Prolog programs
are heavily backtracking. This however cannol explain why Paseal instruction traffic differs
by a factor of (7, whereas Aurora makes only 63% of KL1s instruction requests!

Another interesting statistic is that Aurora heap bus trathic is on average 21% of all data bus
traffic. compared to 44% for KL1. Similarly, Aurora environment bus traffic is on average 5%
of all data bus traffic, compared to 16% for KL1. These results indicates in part that Prolog’s
stack-group storage management has superior spatial locality to KL1's heap-based storage
management. The resulls also derive from Aurora’s high scheduling overhead: the coutrol
stack alone generates 59 of all data bus tratfic. The hinding arravs and trail account for 159
more, One can ronghly compare tlis ta hL1's suspension and communication traffic of 119,
Thus the statistics reenforce the hypotheses that committed-choice languages require simpler
management than do non-committed-choice languages (because there s no backiracking. nor
multiple bindings of the same vanable), bul that committed-choice languages have less data
locality because of the necessity for heap-based management. Specificallv. ONR-parallel Prolog
requires high control-stack bus bandwidtlh because the mdividual PEs are walking around the
OR-tree. execuling the program. AND-parallel FOHU requires heap-based storage management
hecause procedure environments cannol be stored effectively ou a trie stack,

Looking at Aurora, SEﬂligl‘ﬂup and Pascal have diflferem characteristies for two and eight
PF<. Semigroup is data intensive in either case, Althougl node bos trallic decreases 1o 27.5%
of all dlata bus traffic on two PEs. 846 of all bus eveles are spent on data transfers. Pascal i«
nof data intensive, as is shown by the decrease of node bus traffic to only 9.4 of all data bus
tratiic on two PEs. As a resull, instruetion traffic hecomes significant on two PEs: 7669 of all
bies eveles. These characteristios can be seen in the benehark code Semigroup manipulates

lists ol 40 integers whercas Pascal manipulates varving size lists of at most s integers,

9 Cache Performance

b this section. cache simelation results for the Aurora and KL svstems are presented. Fiest

the tindacenracies of the cache model nsed are deseribed. T the ease of KL, the shnulato

i3



is calibrated against an earlier simulator measured by Matsumoto [33), Second. the eache

measurements. i terms of miss and bus trallic ratios are presented and analyaed.

9.1 Calibration

I thns section. calibration with Matsumoto’s results using a psendo-paraliel simulator [35] are
presented. Calibration of the Aurora svsten s nat possible because there have heen no previons
studies of Aurora’s cache hehavior,

Table 14 shows the percentages of the memory references and bus eveles for each area i the
kLI abstract machine. for both the new and old {psendo-parvallel} simulators. The benchmark
measured 1= BUP. All measurements presented are for a no-indexing version of BUP (heeanse
the oid compiler did not have indexing).  In addivion. the old statistics are calibrated by
removing all references to neta-counts (the new simmlator does not count meta-countrol).

Table 14 shows that the new and old simulators are closely calibrated. There are a few
significant differences however. The new simmlator perforins fewer suspensionus than the old
sinulator—this is no doubt due to timing differences. The lower suspension count of the new
simnlator is felt 1o be more accurate than the old simulator. The decrease in suspension count
affects the other statistics. for instance the decrease in heap references.

The old simulator uses direet write (DW] conunands for the goal and communication arcas,
The new simulator does not implement this optiniization. Note that although the old simulator
made 329 more goal references. it used 63% fower bus cveles. Sinilarly. the old simulator made
10% more communication references, bt used 379 fower bus eveles. i the case of commmmica-
tion. the old simulator is inaccurate because it does not lock and unlock the conmmunication area
hefore: sending a 1nessage. as 15 necessary in a real-parallel syvstem. Matsumoto [35] reported
that cache optimizations 1o allow ditect writes to the goal and conmunication areas reduced
total bus traliic Iy 6. We see here that sinee suspensions are aclualiv lower than measured
h_\.' Matsimoto, and assumine that mneta control van he ]|]||r|1'"1|31"||t{-hrl ail low cost. the relative
savings afforded by direct write 10 the goal and commnmication areas i far greater than 67,
Nete that whereas i the old sinmlation. heap referencing aceonnted for the most has trafie.

i e new sinulation, conmmication referencing is e culpril.

9.2 Resnlts

Phe majority of the plots presented i this section have ineveasing eache size on 1he N-axis,
anil HICTOaS Y 11 ]ss | o s Pratfie s ratio on the Yoaxis [iless HIE e statedd, all =immilations
were run withe clght PEsL s cache Block size of fonr words, Tour-way set associativity, and write

allocation (e il write rognest misses i 1he cache. the tareet line is allocated in the cacliol,



- references r bus eyeles |
area | old:new | % new | % old | oldinew % new | % old |
INST | R sas] stal 1w ,':i'.'qa_l;"_-_t'u'.-ém|
DATA | 138 472 | sG] 17 we1] w32
HEAP | 1.09] 176] 155]  216| 258] 436
GOAL | 1320 270 284 037 211 5.4
SUSP 16% 0.6 2.1 5.74 1.4 19,5
COMM | 110 20| 2. 063 3390 146

Table 14: Calibration of KL1 Sinmlators Using BUP

Stmulations marked with an asterisk (7} were run witl {wo PEs.

The cache sizes simulated are 32, 64, 128, 256, and 512 columns. corresponding to data
areas of 512, 1024, 2048, 4096 and 8192 words. In the plots however, Lthe plotted cache sizes are
as calculated 1 Section 5.3.3. This calculation assumes a 5 hyvte data word and accounts for
(HI'H'L!‘.'-I'}-' size. Tht'm-gh this discussiwon. cache sizes are di-:ti.ngu'lﬁ]:r:d h_x thelr word size, ef.,
“a 2048 word cache.”

The bus iraffic vavio (HT K} plots presented all assume a two word bus and eight cyele
memory aceess time. Figure 12 shows the effect of these parameters on the BTR. The X-
axis coordinates represent the ten models considered. For example the third coordinate is 2.6
represeiting a two word bus and a <ix cvele memeory access, Hecall from Seetion 5.5.3 that zero
access time models imply that bus operations can be overlapped. Twao tvpical benchimarks are
given in Figure 132, Tor each. bus traffic increases as the models degrade. With the standard
non-overlapped bus model. bus trathe 1= onlv weakly dependent on memory access time. The
intraduction of an overlapped bus offers the most reduetion of trafiie. However, it is clearly
more benelicial to double the bus widith than speedup the memory or implement & complex
overlap manager.

The main plots illustrate the following experimental space: two architectures { Aurora and
L1 five benchmarks. five cache sizes. two cache Tvpes | [|;‘|1H-nnl}' and imstruction<+datal, two
statistics (s ratio and has traflic ratio). In addition, plots ave given tllostrating a subset
ol the Tollowing extensions 1o this spaces other benchmarks. twa processor configurations {two
and erght PESI ten svstem mealels (varving bos width and menmory access time).

Fhe cache simmlations performed for this studv are “enpirical” i s stronger sense of 1he
word than statdard nnipracessor cache simlations, ur coen pruedo-parallel maltiprocessor
cache sonnlations. Here aoreal-parallel enulator and cache simulator were run. and so the
statistios mehide 1he prohabilistie effeets of tming, Pherelore occasionally 1he data appears

“toeo dn the wiong divection™  this should indicaie the variances invalved. In other words, if

he
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Figure 12: Comparison of Bus Traffic for Different Svstem Models

a large cache performs worse than a smalier cache for some experiment, it may well be that
the timing of the two simulations was such that the smaller cache accidentally made better
scheduling decisions. This problem is especially severe for timing critical FGHC programs,
such as AOqueen. AOqueen is a drastic example where the cache simulation interfered with
the timing to the extent of significantly aliering the number of suspensions. affecting both
high-level and low-level statistics.

Examining 14D caches first {Tables 13 and 14), we find Aurora achieving lower niiss and bus
traffic ratios than KL1 as cache size increases. The kL1 curves {except for Triangle) flatten
out almost precisely at 10° bits {2048 word cache), whereas Aurora continues to improve. Note
that different benchinarks have drastically different behavior on the two systems, as we would
expect from the high-level results in previous sections. For example, Semigroup and Pascal
display higher bus traffic for a 2048 word cache in Anrora (even on two PEs) than in KL1.
However, at 8192 words, Aurora can achieve lower bus trafic on two PEs, but still not on eight
PEs (due to scheduling bandwidth). For Triangle. the roles are reversed, and Aurora has
consistently lower hns tratic. Puzzle and Queens show almost equal performance for both
svstems on 512 word caches, but Aurora improves more rapidly with increasing cache size,

In general, KL| performance is “Hat.” indicative of an architecture with a ever changing
working set. KL1 monotonically walks through memory, referencing [resh areas on the way

{until GO is incurred}. Still. reasonable cache performance 1s achieved hecause the execntion

4



miechanisi reveferences the same area Trogquent v, ss e walk throngh nemory procesds. Aurora
performance is more “classical.” e, bus traffic and mnss ratio continae Lo decrease gracefully
with cache size. Most of the benchmarks have their entire working sets captured in caches of
20458 words and larger.

Comparing the D-cache 1o the I4+D-cache statistics. we find that Aurora and KL1 have
opposite results. Aurora D-cache performance s betfer for all the benchmarks except Semi-
group. than its 14D cache performance. kLI performance is exactly opposite. This confirms
the results seen i Section 5.2 that Aurora instroction referencing has lower locality than K11
instruction referencing, and visa-versa for data referencing. Again, these characteristics can
be explained hw Awrora’s more efficient stack-based storage model and its more “jumpy” code
sivle.

Table 15 shows the two and eight ’E versions of Semigroup and Pascal. These graphs
don’t say much. simply that overall the extra traffic induced by the scheduler has a constant
effect for all cache sizes. Table 16 shows an in-depth look at the miss ratios for the Queens
benchmarks runmng on eight PEs (bus trathe ratios are similar). The relative performance
gap hetween algorithms is easily viewed. For KL1, the beneficial effect of adding instructions
to the cache is seen. For Aurora. both data-only and [+1Y caches have the same performance.
AOgqueen displays unstable behavior because of fiming sensitivity, but in general, all the K11
programs gel no improvement with increasing cache size. This 1s because the kL1 working sets
are constantly changing. The Aurora curves show the behavior of larger caches capturing the

wm-king sel.,

10 Conclusions

This study attempts 1o guantify the performance differences between committed-choice and
not-committed-choice parallel logic programming language architectures. Specifically, the Au-
rora OR-parallel Prolog syvstem is compared to the KL1 AND - paraile]l FGHC' svstem for equiva-
lent benchmark programs. Because the svsteins diller in both the tvpe of parallelism exploited
and the lacility for non-determinate execution. separation of effects 1= difhienlt 1o analvze.
Added are the diferences of schoduling methods, garbage collection, and varions other svstem
support. This study elaims not o convincingly analvze each efeet in separation. but does
present data that can belp designers understand architecture tradeoffs. The field of paralle] ar-
clutectures is not so very young. but the field of parallel high-level Tangnage architectures {e.g..
Li':i] and ]‘]'{}|{rg-|ih'ﬂ""i| :Eall_Efltht'hj b almst adantile, 1 herefure 4'}.|:H|_'i1-'|1q_'{- wills U hose L3 e ol
architectures is lmited, and acowrate measurenents of these cxpericnces s even more limited,

..|_-,|i-~ | bet DHAT ||.|',_-.f...l-'|l1h |.J!.|,‘- |'ir'.~='.| et a1 lid ]‘:r"l"[:.|_;1'r1|.;-'|t||"|L |,'||.:-:||'.:|¢‘1(=-|"i-:1'|r"-: .',1. 'I}.:q]';.”rl] ':.;'.gi;‘ ]11'(JE|';|r||]'|'|_i:||g
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architectures.

The most important resnlt of this study was a confirmation that indeed (independent)
Of-parvallel wrchitectores have betfer memory performanee than {dependent]) AND-pavallel ar-
chitectures. The reasons are that Ol-parallel architectures can exploit an efficient stack-hased
storage model whereas dependent AND-paralle]l architectures must resort 1o a less ellicient
heap-based model. For all-solutions search problems. a further result is thal non-commitied-
choice architectures have beticr memory performance than committed-choice architectures. This
i5 because backiracking architectures can efficiently reclaim storage during all-solutions seareh.
therehy reducing working-set size. Committed-choice architectures, like functional language
architectures, consume memory al a rapid rate. Incremental GC can alleviate some of penalty
for this memory appetite, but incremental GC also incurs its own overheads. Thirdly, for
single-solution problems. OH-parallel architectures cannot exploit parallelism as efficiently as
dependent AND-parallel architectures can, Although OR-parallel goals mav exist. thev are of-
ten tao fine-grained for the cxcessive overheads necessary to execute them in parallel. In this
respect. dependent AND-parallel architectures can crecule fine-grain parallelism more efficiently
than caon OR-purallel arehitectures.

From the raw timings we saw that even with the anticipated 10% improvement in KL1 speed
due to compiler optimization [43]. 2-9 times improvement is needed to equal Aurora's speed.
Pascal is the single exception where KL1 outperformed Aurora because the Argonne scheduler
went erazy trvmng to find parallelisin that did not exist. In any case, both systems calibrated
on a sitnple determinate beuchmark. There is no doubt however that the benchmarks favor
Prolog. Triangle was translated [rom Prolog 1o FGHC'. therely incurring overheads. Puzzle
e LT invalves excessive structure copving. Semigroup in KL daes not use a 2-3 tree as does
Prolog. AOqueens uses layered-streams. thereby ineurring suspensions. On the other hand., is
there w more natural or mowe «ficient way to wede these programs in FOHCY Prolog-to-FGHC
continuation-based trauslation. lavered-streans. ubject-oricuted programming, pipelined par-
allelism. ete. are all publicized wethods of paraliel FGHC programming. I there are better
versivns of these programs. 1 would be very eulightening to measire then,

A Thottomeheavy” systenn. such as KL makes a tradeoff hetween the ease of exploiting
parallelisn and the power of language constructs. Backtracking and {ull fogical unification
frave boeen traded for stream- AND paralieliso, Thore is a loose analogy i the tradeoff made
by Prolog with respeet to Lisp, Prolog makes a tradeoll hetween declarative sernantics and the
power ol fangnage constrnet= We also see tie abont the same perforance ratio hetween Prolog
and Lisp [5] and Profog and FGHC. On the other hand. Aurara makes a tradeotl between Lhe
power of Janguage constructs and the availabiling of parallelism, This leads 1o dismal resnlts for

progratis with no OR-parallelisng like Pascal or the conpiler stndied by Carlsson [10]. There



15 large class of problems. not vepresemted here. requiring intelligent search strategies, e.g..

Maxflow and Bestpath. These problems cannot he solved efficiently by Aurora.

11 Future Work

The benchmarks in this study are too small and in the future should be replaced by more
realistic application programs. Benchmark developiment is a troublesome problem in a young
field such as this where language and architecture definitions are constantly changing, and
where system implemnentations are immature. Additional algorithms should be developed for
the problems alreadv analvzed. For example, the FGHC version of Semigroup should be
rewritten to use a data/process structure equivalent to the 2-3 tree.

The Aurora OR-paraliel Prolog architecture exhibits data sharing characteristics that are
highly centralized. All processes frequently access the same shared node tree (control stack).
This study presents measurements of mvalidation broadcast caches only: however, for Aurora,
update broadcast appears to be more matched to centralized sharing. In the future an update
hroadcast protocol should bhe measured.

The KL1 AND-parallel FGIIC architecture displays a high bandwidth requirement. similar
1o that of functional programming language architectures. Thnus these architectures require
varbage collection {GO') subsyvsterns. lu the KL svstem measured m this study. a naive stop-
and-copyv GC was mmplemented. This has the advantage of allowing large benchmarks 1o he
tested. but because 1t 12 not ineremental. it dees not significantly reduce the handwidth re-
gquirement. Ineremental GO schenes such as MRB[12] provide this abilitv. Nishida[38] claims
MRH can reduce KL1 bus traffic {on a shared memory multiprocessor madel] by 15-26% on
cight 'Es. The measurements presented in this paper should be extended to include optional
incretiental GO for comparison.

Lmpirical studies sucl as this one make mapy assumptions and approximations to facilitate
miaking measurements. The mapping of the emulator state onto the target architecture state is
especially difficult and error prone. To obain more accurate measuremenis, Le., measurenients
that more closelv mode] the real svstem that is being designed. this mapping must be made more
exact. For example. in the Aurora and K1L| svsteims. varions global data structures are used to
represent inlormation about each PE. In this studv, references 1o sucl data structares are not
redarded as abstract enwry reterences. In omore accurate models, perhaps these struct ares
will e accessed from memory.

Head-purge and vead - hufler cache aperations shonld he instrumented in the WL real-parallel
svstem. Comparison with Matsumoio's earlier results indicate that these operations may redoee

s vradlic by inore than expecied,
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A Appendix: Prolog Benchmarks

A.1 Triangle

J M e e s s m s s e e e e e
Program: Triangle (all sclutions, OR-parallel)
Auther: E. Tick

Date: August T 1288
Netes:
1. To run:

7- golT,N).

where output T is the execution time and output N should be 133.

2. The initial board:

1 1 1 1 1
which is represented by the structure:
b{1,t,1,1,0, 1,1,1,1,1, 1,1,1,1,1

iz simplified by making the first three moves,
to reduce the solution space:

1 0 1 1 1
which is represented by the structure:
b{1,1,1,1,1, 1,1,0,1,1, 1,0,1,1,1)

i1 0 0 1
which i represented by the structure:
b(1,1,1,1,1, 1,1,0,1,1, 1,1,0,0,1)

1 1 1 O i
which is represented by the structure:
b(t,1,1,1,1, 0,1,0,0,t, 1,1,1,0,1)

The goal of this game is to remove all the pegs {(i1's) from
the board. 4ny peg can jump over any other peg

along a straight line and land in an open hole. The jumped
Peg is removed. This translates into 38 posegible moves.

The goal of the triangle benchmark is to calculate all

winning sequences of moves (there are 133 given these Iirst
three moves). Winning sequences are collected with a bagef --
the solutions are then counted. The program can be greatly
lengthened by remcving the initial forced moves.



:- parallel mave/2.

go{T N} :-
timel_),
bagof (X.play(3.b6(1,1,1,1,1, 0,1,0,0,1, 1,1,1,0,10,%},L3,
time{T),
count (L,N}.

time(T) :- statistics{runtime,[_,T]).

count{L ¥} :- count(L,Q,N).
count{[XiIXe] ,M,N} :- M1 is M+1, count{Xs,M¥1,N).
count([],N K.

play(13,_, [0} - '.
play(M,Board, [FIX]) ;-
move(F ,Board, NewBoard) ,
M1 is M+1,
play(Ml, NewBoard, X).

move{l,b{ 1, 1,X¥3, 0 ,X5 %6 ,X7,X8,%9 510 ,X11,X12,%13,%14,%15),
Bl O, 0,X3, 1,¥5,%X6,X7,%E8, %9, X10,841,%12,%13, 514, X15)) .
move{Z,b{X1, 1,%3, 1,%X5,%6, 0,X8,X9,X10,%11,%12,%13,%14,X15),
b(Xt, 0,%3, 0,XE %6, 1,%58,%9 X10,X%11,%12,513,%14,%15)).
moveld,b{X1 X2 ,X23, 1,85 X6, 1,%8.%X9,.X10, 0,X12,X13,X14,%15),
b{X1,%2 X3, 0,X5 X6, O,X8,X9,X10, 1,X12,X13,%14,%15)).
move (4, biX1,%2, 1,X%4. 1.X6,%7, 0,X9.%10,%11,%12,%13,X14,%15),
b{X1,%2, 0,%4, O,X6,X7, 1,X9,X10,%11,%12,%13, 414, 01537.
meval(s,b(X1,X2,X3,X4, 1,X6,X7, 1,X9,X10,X11, 0,X13,X14,X15),
b(X1,%2,%3,%4, 0,X6 X7, 0,X2,X10,X11, 1,X13,X14,X15)).
movel(6,b(X1,X2,%3 %4, %5, 1,X7.X&, 1,X10,%11,X12, ©,%X14,%15),
b(X1,X2,%3 %4 ,X5, 0,X7.X8, 0,X10,%11,%42, 1,%14,%18)).
movel(7 bl 1,%2, 1,X4,X8, 0,X7,X8,%9,X10,%11,%12,%13,X14,X15},
b( 0,X2, 0,X4,¥5, 1, X7 X8, X9,X10,X11,%12,X13,%14,%15)).
move(8, b(X1,X2, 1,X4,X5, L,K7,XB,X9, O©,%11,X12,%X13,X14,X15),
v(X1,¥2, 0,%4,X5, 0,X7,X8,X8, 1,X11,X12,%13,%14,%15)).
move{%,b{X1,K2,X3,%4,X5, 1,%7,%8.%5, 1,%11,%12,%13,%14, 03,
b{X1,X2,%3,%4,%5, O,X7.X6,%9, O0,%X11,%12,%13,%14, 1)).
move{10,b(X1, 1,X3,X4, 1,X6,X7.%X8, 0,%10,%11,X12,X13,%14 %15},
pl{Xt, 0,%2,%4, 0,X6,X7,%8, 1,X10,X11,X12,513,%14,%18)).
move(11,b(X1,X2,X3,X4, 1,X6,%7,%8, 1,X10,%11,%X12,%X13, 0,115},
B{XL,X2,X3,X4, 0,X6,X7.%8, 0,%10,%11,%12,%13, 1,%183),
move(12,b(X1,X2,%3, 1,356,866 ,07, 1,%%,%10,%11,X12, ©,¥14,X158)
b(X1,X2,%3, 0,X5,%6,%7, 0,%%,%10,%11,%12, 1,%14 X151},
move(13,b{X1,X2,X3,%X4,%5,46,47 ,%8,%8, %10, 1, 1, 0,%:14,%X158),
b(X1,X2,%3,%4,%5,X6,X7,X8,%9,X10, ©, O, 1,%X14,X15)).
move{14,b(X1,X2,85,%4 X5, 46, X7, 46,38 ,%10,%11, 1, 1, O,X18)
BOXL, X2, 83,04, 05,%6, 57, 58,459,310, %11, O, 0, 1,%1E3).
move{15,5(X!,X2,X3,X4 X5,%6,%7,%8,X9,X10, X111, %12, 1, 1, ©O)
OXL,X2,55 04,55 %6, X7 48,09, %10, 011,12, 0O, O, 1),
move(18,b(X1,X2,X3, %4 ,X5,%6, 1, 1, 0,%X10,¥11,%12, 513 %14 %15},
B{KL,X2,%23,%4,X5,%6, O, ¢, 1,%810,%:1,X12,%13,%14,%1562),
move(17,b{X1,X2,X3 X4 06,56 ,57, 1, 1, 0,¥11,¥12,%13 %14 X158},
p(X1,X2,%2,%4 X5 ,%56. 57, 0, 0O, 1.%11,%12.%13.%14.%15}).
move (18 ,b{X1,%2,%3, 1, 1, 0,57 ,X6,%X2,%X10,%11,X12, 413,414, %183,
BCEL,X2,X3, 0, O, 1,%X7,%8, X9, X10,%11 X172 %13 ,X14,X16)1}.
move{19,50 0, 1,53, 1,X5,%6, 07,%6,%% ¥10,%11,%22, %13, 114, %150,
b1, G.R3, O, KE,X6,X7,XB X5, %10, %11, %12, %153, %14 . 5163,
move(20,5(X!, 0,X3, 1,X5,X6, 1,X¥8,X9,X10,X11,%12,%123,%14,118),
DiX1, [.EE, O,X5,¥6, O,KA X9 X10 811, %12, %813 114, %1800,
move(2!,b(X1,X2,%3, O,X5,X6, 1,%X8,X8,010, 1.X12,X%12.3%14.%15),
BLX1,X2.%3, 1, X5.%6, O,%8,X9.%10, O,X12,%13, 514, 0153),

™



move(22,b0XL, X2, O,X4, 1,%6,%7, 1,%X5,X10,X11,%12,%13,%14,%15),
biX1,%2, 1,X%4, 0,%6,X7, O,X%, X10,%11,%12,X13, K14 ,%15)).
move(23 ,bIX1,X2,X3,%4, G, X6,X7, 1,X9,%10,%11, 1,%13,X%14.%X15),
b(X1,X2,X3,%4, 1,X6,X7, 0,%9,%10,X11, O©,%13, %14 %15)).
movel2d4,b{X1,%2, %3, %4, X5, O.X7,X8, 1,X10,%11.X12, 1,%14,X18),
b(X1,%2,53,X4 X5, L,X7,X%8, 0.X10,X11,X12, O,X14,%15)).
movel(25,b( 0,%X2, 1,K4,X5, 1,X7,X8,X9,%10,%11,%12,%13,%14,X15},
©l 1,%2, 0,%4,X5, 0,.X7,X8,%9,X10,%11,X12,813,X14,X15)).
movel(26,5(X1,X2, 0,%4,%5, 1,X7.%8,X9, 1,Xi1,%¥12,X13,X14,%15),
B(X1,X2, 1,X4.X5, ©0,X7.%XB,X2, 0,X11.X12,%13,%14,X15)),
move(27,b(X1,X2,X3,%4,X5, 0,X7,.X6,X2, 1,X11,%12,X13,X14, 1),
b(Xi,X2,%3,%4,%5, 1,X7,%8,%9, O,X11,X12,X13,%14, @)},
move(28,b(X1, 0,X3,X4, 1,%6,X7.,X8, 1,%10,X11,%12,%13,X14,¥%15),
b{Xi, 1,53,%4, 0,%6,X7 X8, 0,X10,%11,X12,%13,X14,%18)) .
move(2%,b(X1,X2,X3,%4, 0,X6,%X7,%8, 1,%X10,¥11,%12,%13, 1,%18),
b{X1,%2,%3,%4, 1,%6,X7,%8, 0,X10,%11,%X12,X13, 0O,%X15)).
move(30,b(X1,X2,X3, 0,X6 X6, X7, 1,X9,X10,X11 %12, 1,X14,X15),
b{X1,X2,%3, 1,X5,%6,X7, 0,%X9,%10,X11,X12, 0,X%14,X15)).
move(31,b(X1,X2,X3,%X4,X5,%6,X7 %8, X9, %1C, O, 1, 1.%14,%X18),
B(X1,X2,%3,%4 X5, 56,47 %8 ,49,X10, 1, O, O,%X14.%15)).
move(32,b(X1,X2,X3,%4 X6, X6, X7 X8, X9, {10,112, 0O, 1, 1,%18),
bOX1,X2,43,%4 X5 %6, X7 ,%8,X9,X10,%11, 1, 0O, O,%15)).
move({33,b(X1,%2,X3,X4 X5 X6 X7,X8,X9,%10,X1¢,%12, o, 1, 1},
biX1,X2, 43 ,X4 X5 X6 X7 ,X8,X9,X10, 511, %12, 1, 0O, Q).
move(3d, b(X1,%2 X3 X4, X5, %6, 0, 1, 1,%¥10,X11,%12,%13,%14,%15),
biX1,X2,43,%4,X5,%6, 1, 0, O,X10,X11,%12,%13,%14,X153).
move(35,b(X1,X2,X3,X4 X6 X6,%7, O, 1, 1,¥11,X12,X13,%K14,%X15),
bOX1, X%, 63,84 X5, X6,X7, 1, 0, 0,X11,X12,X13,X14,%15)).
move(36,b(X1,X2,%3, 0, 1, 1,XV,XK8,X9,X410,X41,¥X12,%13,%14,%X15),
b{X:,X2,%3, 1, 0, 0,X7,X%8,X9,X10,%11,%12,%13,%14 515} ),

s(



A2 Puzzle

Program: Puzzle (all solutions, OR-parallel)
futhor: E. Tick
Date: July 4 1988

Notes:
1. To run:
T- golT,N).
where cutput T = time and N = 65 (number of solutions).

2. This is Ex4x3 puzzle with chip in corner.

2. This version cocllects ansvers in a list. Each answer is a list of seven
pleces indicating the crigin at which they were placed.

:- parallel £ill/4,p321/3,p431/3,p331/3,p421/3.

golT,H) :-
timel_),
make _board (Board),
initialize(Board, Pieces),
findall{Game, play(Board, Fieces, Game,0), L},
count{L, N},
time{T).

4 chip-off corner to remove symmetry. .

initialize(ls(z,_,_,_)1.1,0[a,b,c], [d,e], [f1, [g]1).

plav((],..0..0. Y game over
play([siV,_,_,_)IRest] ,Pieces Nz M) :- % spot already filled
nonvar{V¥),!,
M1 is M+1,

play(Rest,Pieces ,Ns ,M1) .
play([Spot|Rest] ,Pieces, [[N|¥]INs] M} :-
fi11(Spot,N,Pieces NewPieces), % spot empty - try to fill
M1 is M+1,
play(Rest,NewPleces s, M1},

fili{Board, ¥, [[Mark|P1]|1TT,[P1]1T]}
fill{Board N, [P1,[Mark|P2}IT], [P1,P2IT])
fill{Board.N,[P1,P2, [Mark|P3]IT],[P1,P2,P2]IT])
fill{Board,¥,[P1,P2,P3, [Mark|P4]|IT],[P1,P2,P3,P4IT])

p321(Mark,N,Board) .
p431(Mark,N,Board) .
p331(Mark ,N,Board) .
r421 (Mark N, Board) .

£ piece templates:

h pl = 4x2xi: 4 orientations

pizl{.”1 I 5{!{. E 4_2_1
s{M,
s(M,
s(M,_,
siM,_,_,_1,
-
s(M,_._,_J,
_}i
s(M,_._._1,
3y
M, _,_ ),
P
pE2L(M, &, siM, _, hor-4-2

=M, _,

=1



s(M,_,
s(M,_,

e(M,_,_,_)},
s(M,_,_,.01,
s(M,_._._0),
s(M,_,_._}2).

pa421(M, c, s(N,
s(M,_,_.,_}.
s(M,
s(M,_._.,_J.
s(M,
S‘(-H!-l--!--:l ¥
s(M,
5{H?—l— l—}l'
—)I
-1,
)
23

pa21(M, d, s(M,
a(M,
s M,

s(M._,_, ),
s(M,_,_ .0,

s(M,_,.,.002.

4 p331 = 3x3x1: 3 orientations
p33i(¥, e, (N,

s(M,
s(M,_,
siM,_,a(M,_,_,_3._),
-}:
(M, _,8(M,_,_,_1,_),
-
SI:H,_JSEH._,_J__} l..:!:l
3.
p331iM, £, sM,
s(M,
s(M,.,

S(M, (M, . )Y,

-
s(M,_,_,8(M,_,_,. 001},

s(M,_,_,s{M,_,_, 00},

ho2=4=1

i 4-1-2

%o3-3-1

% 3-1-3



s(M,_,_.5(M,_,_,))),
s(M,_,_,s{M,_,_,_00),
cM,_ . alh._ . 33

4 p321 = 3x2x1: 6 orientations
p321(M, h, s(M, ho3-2-1

s(M,

s{M,_,
s(M,_,_._0,
_}I
s{M,_._._),

sl:Hl—.l—l.—-}l
PR

p321{M, i, s(M, % 2-1-3
S{H!-!-J-}T
(¥,
FlI:.HI—J—I—-}!

(M,
s(M,_.,_._),

.
p321(M, 4, s(M, _, % o1-3-2

s(M,_,
s(M,_,

SM,_,_,)),
s{M,_._..}J,
(M, .03

pa321(M, k, =M, ho2-3-1
s(M,_._._},
(M,

p321(M, 1, =M, % 3-1-2
s{M,
s{M,

s(M,_,_,_2),

p321(M, m, s{M, _, Y 1-2-3
elM._,_,_7,
s(M,_,
siM,_,_,_),
s(M,_,



s(M,_,_._},

DR
Y% pé431 = 4x3x1: 4 orientations
p431(M, n, s(M, % 4-3-1
s(M,
s(K,
sik,_,
a:M'-lE{H'-T-l-)l-}'
b
BiM,_.s(M._,_,_},_),
b

s(M,_,s(M,_,_,_)..),

a(M,_.8M,_ . )],

3
pa31{M, o, s(M, _, ¥ 1-4-3
s(M,_,
S{H:-:
s(M,_,
s(M,_,_,s(M, M),
={M

F-}-IS(HF-i-F:iii:
E(H?hl—lstnlwbwfrjj}l
s, _,_,s(M,_,_ 317

p431(M, p, s(M, ¥ E-a-1
siM,s(M,_,_._),_,_).
s(M,
s(M,s(M, _,_,_}._._},
=M,
s(M,s(M,_,_._0._..},
(M,
s{M.s(M,_,_,_),_._1,

i

.,
-
b
p431(M, g, =(M, %o4-1-3
sk,
s{M,
s(M,_,

s, _,_,s(M,_,_,0)),

SCM,_,_.5(M,_,_,. 1)),

s(M,_,_,s(M,_,_, 01},
SM._,_,s(M,_,_, 3000,

make _board(Levell) :-
make_level (Levell-Levell,Levali-_J,
make_level(Levell-LevelZ,LevelZ-_),
make_level(Level2-[],[z,z,z.z,z, z,2,2,2,2,
z,2.2,2,2, z,2,2,2.2]-00").

make_level (C-Link,Z-L} :-
c= [C00,C10,020,C30,040,



C01,C11,C21,631,041,
©02,C12,022,032,042,
C03,013,023,033,043 | Link],

Z= [200,210,720,230,740,
01,811,821 ,231, 741,
202,812 222 832 242,
Z03,213,723,233,243|L],

node{C10,001,200, N1, N2,C000,
node{C20,C11,210, N2, N3,Ci0),
node{C30,C21,220, N3, N4, C20),
node {040,031, 230, N4, N5,C30),
node{ =z,041,240, N5, N&,040),

node{C11,002,201, N6, NT,CO01),
node (021,012,211, NV, N8,C11),
node(C31,C22 721, NE, N9,C2%),
node(C41,052,231, N9, N10,C31),
node{ =,042,Z241,N10,N11,C41),

nede(C12,C03,202 ,N11,N12,C02),
noede({C22,013,212 ,N12,N13,C12),
node(C32,023,222,M132,N14,C22),
nede(C42,033,232,N14,N15,C32),
noda{ z,043,Z42 Ni5,N16,C42),

node{C13, =z,203,N16,N17,C03),
node(C23, =,Z13,K17,N18,013),
nede(C33, =,Z23,K18,N15,C23),
node (843, =,233 K18 ,N30,C033),
nodal =, =,243 K20, _,C043).

node(X, Y, Z, N, 0,8(_,X,Y,2}).
time(T) :- statistics{runtime,|_,T]).
count (L N} :- count(L,0,N}.

count{ [K|Xs] M,N) = M1 d5 M+1, count{Xs M1 . K).
count (L], W, N},



A.3 Pascal

Program: Fascal's Triangle
Author: E. Tick with BIGNUM package written by R. 0'Keefe
Date: August 17 1988

HNotes:
1. Te run:
- Eo':ﬂlnrr}-
where N is the input row number and the output R is a list of coefficients
and T is the exacution time.

2. example: for N = 20:

R o= [[1,0],{20,00,0190,0],[1140,0], [4a845,0], [15804,0] , [38760,0], [77820,0],
[28870,1], [67960,1], [84756 , 1], [67960,1], [28970,1] , [7T7520,0) , [38760,0],
[15504,0],[4845,07,[1140,0], (190,01 . [20,00.01.01]

3. This version uses assert/retract te perform its own GC because Aurcra does
not suppert GO, This is necessary because the algorithm uses up heap space
2t a fast Tate.

4. How this version works: there is a maximum granularity {(chosen to be six).
The row of Pascal’s triangle to be calculated is divided into chunks eqgual
to the maximum granularity. Each chunk is spawned in AND-parallel with
the remaining portion of the row to be processed. The end of the row is
sequentialized because GC must be implemented at the scurce-level with a
fail. Main facters limiting execution speed:
1. home-brew GC, implemented by a fail, is invoked for each
row calculation, and therefore parallelism cannot overlap
row calculations.

©. This version uses new AND-in-OR parallel scheme optimizad for this
specific case of two-way determinate parallelism. In this version,

the merge of solutions from the left and right children is done efficiently
witheut mamber.

1~ parallel gather_sols/3,

golN, R, T} -

Timel 7,
N s 0,
assert(row([[1,07.01.00]):, Y seed row
pascalil, N, R},
timelT}.
time(T) - statistics(runtime,[_,TI}.
pascal(l, N, R) :-= ', retract{row(R}). % clean up after...

pascallkK, W, R) :=
make_pascal (K},
K1 im K 4 1,
pascal(Kl, N, R).

make_pascal(f) :-
rerract(row( [F|Datalld,
W= f, % € is max granularity fer now
fdd is K meod 2,
H is (K+13//2,
Tter is H f/ W,
Frnd iz H mod W,
make_vowlIter End, [F|Datal ,Result,[F],044",
assert{rowl [F|Result] )],

=L



fail. ¥ homebrew GC
make_pascal(_ ).

make_row(0,End,In,0ut Rev, Odd} -= !, % final padding
granulelEnd, In,Out  Rev,Udd) .
make_row{N,End,In,0ut,Rev,0dd) - % ostraight-away
N1 is W=-1,
big_granule(N1,End, In,Cut Rev,0dd).
finish_row(0, Hewv, Rev) = F. % even row end case
finish_row(l, Hev,[_|Rav]}. % odd row end case
granule{0,In,Out ,Rev,0dd) - ',

finish_rew{0dd, Out, Rewv).
granule(1, [A,B|Rest], [ABIR],T,0dd) :- 1!,
big_plus{iB,&,B),
finish_rew(Ddd, R, [ABITI).
granule(2, [A,B,CiRest], [AB,BCIR],T,0dd) :- 1,
big_plus(4&E, 4 ,B),
big_plus(BC,B,C),
finish_row{0dd, R, [BC,ABIT]).
granule(3,[4,B,C,DiRest], [AB,BC,CDIR],T,0dd) :- 1,
big_plus{4B,A,B),
big_plus{EC,B,C),
big_plus(CD,C,DJ,
finish_rew(Ddd, R, [CD,BC,ARBIT]).
granule(4,[A,B,C,D EfRest], [4R,BC,CD,DE|R],T,0dd} :- 1!,
big plus(AB,&,B),
big_plus(BC,B,C},
big_plus{CD,C,D),
big_plus(DE,D,E},
finish_rowi0dd, R, [DE.CD,BC,ABIT]).
granule(S, [4,B,C,D0,E,F|Rest], [AB,BC,CD,DE,EFIR],T,0dd) :-
big_plus{iB.A,B),
big_pius{BC,B,C)
big_plue{cDd,C,D)
big_plus{(DE,D,E)
big_plus(EF,E,F)
finish_rew(0dd, R, [EF,DE,CD,BC,ARIT]).

L)
B
]
¥

big_granule(N,End, [4,B,C,0,E,F,G|Rest], [AB,BC,CD,DE EF ,FGIR),T,0dd) :-
and (make_row(N,End, [G|Rest] R, [FG,EF,DE,CD,BC,AB|T],0dd),
work(s B ,C,D,E F,G,AE,BC,CD,DE,EF,FG)).

work{A,B,C,D ,E,F G,AB BC,CD,DE,EF,FG) -
big_plus(4B,4.,B},
big_plus{BC,E,C},
big_plus{CD,C D),
big_plus{DE,D,E},
big_plus{EF.E.F),

big plus(FG,F.,G).
f B o e e e e e e e e
Program: AND-in-OR parallelism for tue determinate goals
Auther: E. Tick (based on original from M. Carlsson)
Noteas

1. gets about same speedup 25 standard versiocn, but iz mere efficient.
Speedup is a function of the granularity of the goals, but the overhead
of jeining them determines the absclute speed.

2. schemes tc improve efficiency of merge unification have failed. It
appears that simply unifying Geoall and Goall directly is mest efficient,

A



aven though these structures may be complex

=/

and(Goall,Geoalz) :-
findall(5¢l, gather_sols(Scl,Geall,Geal2), Sols),
{Sols = [s1(Goall),s2(Goal2)] ; Sols = [52{Goal2),s1(Goall)]),!.

gather_sols(s1(Goall),Goall,_):- call(Goall}.
Ea.t,her_au]u{s?{ﬁﬁal?) s aoald) - call{Goal2).

Frogram: BIGNUM package
tuther: R. D'Keefe
L

% this interface 1s meant to save storage. ..
big_plus(X,¥,2) :- eval{real(+,X,[1]) is real(+,Y, [1]) + real(+,Z,[1])),!.
big_gre(X,¥Y) :- evallreal(+,X,[1]} > reall+,Y, [1])),!

eval(compare(X,Y,5)) :- eval(X, A}, eval{Y, B}, com?(h, B, 100000, R), ', R=3.
» 55

eval(l < Y) 1= eval{compare(X,Y,5)), ! <J.

eval(X » Y) 1= eval{compare(X,Y,5)), !, 5=(>).

eval(B is Y} := evallY, B).

eval (X+Y, C} c= 0, ewal(X, A), eval(Y, B), addqi{4, B, 100000, CJ.
eval(X X},

AE comg
comgCA,A,_,=} = 1.
comg{real (+ Na,Da), real{+,Nb,Db}, R, 8) :-
muln{Na, Dbk, R, Xal,
mulni{Nb, Da, R, %b}, ',
comn{ia, Xb, =, ).
comgireal (+,Na,Da), real{-,Nb,Db), K, >} := 1.
comg{real{-,Ka,Da), real(+,Nb.Db). R, <) := !'.
comq{real(- ,Ka,Da), real(-,Nb,Db), B, 2} :-
mulnila, Db, R, Xa},
muln(Hb, Da, R, Xu), "
comn({Xb, Xa, =, 3).
comg(Ma, real(+,Nb,Db), R, 8} :- Na »= ¢,
muln([Na], Db, R, Xa), !,
comniXa, Ko, =, 3).
comg{Na, real{- Nb.,Do}, H, »} :- Na »= 0O, .
comg(Ma, real{+ ,Nb Db}, K, <} := L.
comg(Na, real{-,Nb,Db}, R, 3} :- Nz iz - Na,
muln([Nz], Db, R, Xal,
comn(lb, %a, =. 3).
comgl{real{+,Na,Da), Nb, R, 5} .- Nb »= O,

mulni [Nel, Da, R, Xbo), 1,
comn{Na, Xb, =, 5).
comglireal{+ Na,Dal, Nb, R, »} :- !

cemalreal{-,Na,Da), Nb, R, <) := Nb >= 0, !,

cemglireal{-,Na,Da)}, Nb, R, 3} :- Nz is - Nb,
muln{ [Nzl, Da, R, Xb), b,
comni¥b, Na, =, 50,

cemalNa, Wb, R, ») - Na » Nb, !.

comaiHa, Nb, R, <} :- ',

WL addg

aiig(h, B, R, 8) :-
real(h, R, Sa, Na, Da),
realiB, B, Sb, Nb, Db},



mulniNa, Db, R, Xal},

muln(NE, Da, R, Eb),

addz(5a,Xa, 5b,Xb, R, Sc,Xc),
gedn(Xe, Da, R, _, Nx, Yal,
gcdn{fx, Db, R, _, Kc, Yb),
muin{Ya, Yb, R, Dec), Mc/Dch\==00/0],
standardise(raal (5c, Nc, Dc) ,5), V.

muln{{], B, R, []) :- *.
maln{t, [J. R, []3 = 1.
muln{A, B, R, C} := ¥V, muln{k, B, [1, R, C).

muln{ [D1]T1]), K2, 4, R, [D3|Pr]} :-
muli(K2, D1, R, P2},
addn{Ac, P2, 0O, R, 3m),
CQm{Dap Arn, Em}r ',
muln{T1, N2, 4n R, Pr).

muln( (7, NZ, he, R, hz) -k,

mull(h, ©O, B, [1) - !.
mull(ik, ¥, R, Pr) - !,
mull(A, M, O, R, Pr).

muli([J, M, 0, R, [0} - 1.
mult{[}, M, ¢, R, [C]} = 1.
mul1{[D11T13, M, ¢, R, [D2IT2]) :-
D2 is (D1*M+C} med R,
Co is {D1sM+C) J/ R,
meli{T1, M, Co, R, T2).

LY addz

addz{+,A, +,B, R, *+,C) := !, addn(&, B, 0, R, C).
addz{+ 4, -,B, R, 5,0} := ', subn{4, B, R, S, CJ.
addz{- 4, #,BE, R, 5,C) := ', subn{E, A, R, 5, CJ.
addgz(-,4, -,B, R, =,C) := ', addn{E, &, 0, K, ©€).

addn{ [D11T1], [D2]T2]. Cin, R, [D3[T31} :-

Sum is D1+02+Cin,

¥ ie Sum mod 2682144,

{ I »= H, Cout 1, D3 13 X-K

; ¥ < H, Cout O, D3 = Sum

:I: '.J

addn{Ti, T2, Cout, R, T3).
addn{[J, L, &, R, Ly := 1,
addn([], L, 1, B, M) := !, addi{L, R, M).
addnilL, [J, 0, R, L} :- I,
addn(lL, [J, 1, R, M} := ', addi1{L, R, M).

o

add1([MIT), R, [NIT)) :- N is M+1, N <R, !,
addt ([MIT}. B, [018]) :- R is M+1, ', addi{T, R, 5}.
addi([], R, [1]).

AN gedn
gedn[J, [1, R, (1, undefined, undefined} ;- !.
gednt (], B, R, B, [1, [13} :- 1.
gedn( A, [1, R, &, [11, [J) :- 1.
gcan([1), B, R, [1]. [i11, B) :- 1. % common case
gednd A, [:], R, 1), &, [11) - . Y common case
gednl A, E, B, D, M, N} :- L A, B>»1

=4



gecdnih, B, R, D},
divn(h, D, R, M, _},
divn{B, O, R, K, _}.

gednl{A, B, R, D) :- o A, Boae= 1 N
comn(h, B, =, 5), ',
gedni3, &, B, R, D).

gedn(<,[1, B, R, B) = !.
gedn(<, A, B, R, D} :-
estg(B, &, R, E},
mzln{E, &, R, P},
subn(B, P, R, _, M), !,
gcdn(A, M, R, D).
gedn(>, A, [0, R, A) := L.
gedni{», A, B, R, D) :-
estg(4, B, R, E},
meln(E, B, R, P},
subnif, P, R, _, M}, ',
gcdn(M, B, R, D).
Ef.d.'l'.l.{-, a, E: H‘l j‘-}'

estg( n, [Bl, R, E) :- !,
divi(A, B, R, 0, X),
{ %*2 =< B, E=1
j addl{q:. R, E)
]

estg([-lﬂj, [_IB), R, E) :- !,
estg(h, B, R, E).

AY divn

divn(a, [J. R, _, _) :—- !, fail. % division by O is undefined

divn(a,[1], R, A, 0]} == ®. % a2 very common special case

divo(i,[B], R, G, X} :- t, % nearly as common a case
divi(a, B, R, 0, ¥),

conn(Y, (], i).
divn(A, B, R, Q, X} :-

divn(A, B, R, 0, X} :- 1,
divm(A, B, R, Q, XJ.

conn(Q, [J1, O3 = 1.
conm(D, T, [DIT]).

divi([D1IT1], B1, R, Q1, X1 := 1,
div1{T1, EB1, R, @2, X2,
Dz is (X2+R+D1} S/ B1,
X1 is (X2+RE+D1) mod H1,
conn{DZ, 0z, 01J.

divi([], Bi, R, 0. o).

%odivmia, B, BE. §. X 15 called with & » B > H

divm{[Dt|T1], B, R, 01, X1} := 1,
divm(T1, B, K, 02, K&,
conn{D1, Xz, TZ2),
div2{T2, B, K, Dz, X1},
conn{D2, Q2, 01).

e



Hh¥ subn

diwm([], B, R, [I, OV

div2{A, B, R, Q, X} .-
estd{4, B, R, E}, ¢,
chkd{A, B, R, £, 0, g, P}, 1,
subn(a, P, B, 5, 1), Y% S=s+
diva{A, B, R, _, _} . ¥ long_ error{divg, A/R).

estd( [A0,A1,42], [BO,.B1], R, E) :-
Bt »= RS2, ',
E is (A2«R+A1)/Bi1.

estd{ [AD,A1,A2), [BO,B1], R, E) := 1,
L is (A2=R+a1)/(B1+1),
meli{ [BO,B1], L, R, F},
subn{[AC,A1,A2], P, R, 5, NJ, 1, %g=+
estd(N, [BO,BL], R, M), ',
£ is L+M.

astd( [AD,A1], [B0,B1], B, E} = 1,
E iz (A1*R+A0+1)/(H1+R=+BO) .

estd({[AD], . R, 0) := 1,

estd{[A0|Ar], [BOIBL], R, E) :- 1,
estd{Ar, Br, R, E).

estd([], - R, 0} == 1.

chkdi{a, B, R, E, 3, _, _)} := 1,

% long_error{divq, A/B).
chkd(4, B, R, E, K. E, P} :-

mull{B, E, R, PJ,

comn(P, A, €, €3, !,
chkdf{A, B, R, E, K. Q, P) :-

L is K+1, F is E-1, ',

chkd(A, B, R, F, L, Q, P).

subn(4, B, R, 3, <} .-

comn(A, B, =, 0}, !, % Oh for Ordering
gubn(0, A, B, R, 5, C).
subnl<, A, B, R, -, ©) = ', subp(B, &, O, &, D), prune(l, C).
subni>, A, B, R, +, C} :- !, subp(4, B, O, R, D), prune(D, C).
gubni{=, A, B, R, +,[]} -- !

prune{ [OIL], M 3 - 1,

prune(l, T},

(T = {1, x=1[1; M= [olT]).
prune([DIL], [DIM]) :- 1,

prune(l, M}.
prune{[], Iy = v,

subp((D1|T1], [D2IT2], Bin, R, [D31T3]) :-
% is D1-D2-Bin,
{ S»>=0,Bout =0, 03= %5
; S < 0, Bout = 1, D3 i= 5+R
J.oh,
gubp(7l, T2, Bout, R, T3}.

subp{L, ], ¢, R, L} := 1,

subp(L, [, 1, R, ®) :- 1, subi{L, R, M}.

subl{[Q|T], R, [KIS]) :- !, K is R-1, subi(T, R, S).
subl {[NIT], R, TMIT]) :- M is N-1.

]



WAk comn

comn([D1lT1], [p2IT2], D, 5} :-
coml(Dl, DZ, D, N}, !,
comn(Tl, T2, N, S).

comn{[], 0. b, 5 :- !, 5=10,
comni [}, L, 0, <) = 1,
comnil, (3. D, ») = 1,

coml1(X, %, D, D} .- 1,
coml{X, ¥, D, <) := X < ¥, I,
coml(X, Y, D, ») := X

W
-

UL realjd

real{undefined, R, +, [J, [13 := 1

real{real(5, N, I}, K, 8, W, D} := t.

real(N, R, +, L, [1]) :- integer{(N), N >
N

o, ', binrad(N, R, L),
real(N, R, -, L, [1]) :- integer(N), 0,

!, M is -N, binrad(M, R, L).

binrad(0, R, [1) e
binradi{¥, R, [MIT]} := K is N//R, M is N mod R, !, binrad(¥, R, T).

LAY standardise
standardise(real (S,[N], (1]}, Ans) .- !,

{ S= "+', Ans = N

: 3= "'-", Anag is -N

Y, L.
standardise(real (S, N, [1}, undefined) :- !,
standardise(real{_, [1,[11), O ) := 1+,
standardise(Number, Kumber) .



A.4 Semigroup

Program: Semigroup (all-sclutions OR-Parallel}
Author: B. Overbeak
Modified: E. Tick

Date: August 20 1988
Notas:
1. Te rum:

7- gol(T.N),

vhere T is time and N should be output 313.

2, this version is reputed to be fastest so far, but still uses 23 treas.

3. this version includes the generators in the answer (KL1 version doesn’t)
4. this version has tuple length hardwired: BE CAREFUL!

5. this version is NON-DETERMINANT: it gets very slightly different numbers
of reductions and instructions executed on Aurora for 1--8 PEs! I don’t know

thée reason for this. ..

6. This program gets poor speedup because the granularity of the parallelism
la findall of newtup/4) is limited.

------------------------------------------------- B Tttt TP —
'= parallel member/Z, umember/2.
gol{T,N) --
init_sos=(Ses,Subl,
timef_),
gen_products{Ses,Sub,ibe,Ses),
time(T),
count(Hbg, N).
init_sos{Scsz,5ub) :-
sos(Sos),
extend_tree(Sos,nil,Suk).
L state(Scs, Sub, Hbg)
A Sos = list of tuples that need to be processad
A Sub = tree corresponding to these tuples
% Hbg = semigroup tuples (initially [])
A

gen_preducts(Ses,Sub,Hbg,Kernel) :-
gen,all(statnESns,Sub,[}),stata{h._,Hbg},Hernalj.

gen_all(state([],Sub Hbg) ,state([],5ub,Hbg), ) = .
gen_2l1(8, F, Kernel} :-

gen_ene(5, 51, Kernel),

gen_all(31, F, Kernel).

ger_one{state([K,I|T], Sub, Hbg),
state( Sos1, Subl, [M,IlHbg]), Kernel) :- !,
findall(Tuple, newtup{[H,I], Kernel, Sub, Tuple), L),
proc_newil, Sub, Subl, T, Zcsil.
gen_cne(state([H|T], Sub, Hbg),
stata{ Sosl, Subl, [HIHbgl), Kernei) :-
findall (Tuple, newtup({H], Kernel, Sub, Tuple), L).
proc_newii., Sub, Subl, T, Sosi).

% proc_new(l, Sub, Subil, Sps, Scsl):
W L = list of candidate tuples to be possibly added to gueue

3



Sub = tree describing current queue

Subkl = new tree after all L tuples have been processed

Sos = current quaue

Ses1 = new queue after all L tuplcu have been pruceased

? if L is empty, then tree and gueue remaln the same.

proc_new( [], Sub, Sub, Sos, 5Sos).

% process non-empty L: declaratively, if processing T = tail(l) results

% in new tree 5Sub2 and new queue 3082, then we conslder two cases of trying
% to add first tuple H to Subl:

FrEre s

* if H can be added (doesn’t exist already), then

A Subl = new tree

A Sesl = new queus

A otherwise {H cannot be added because it exists already), then
s Subl = Sub2

A Sosl = Sos2
proc_new{[HIT], Sub, Subl, Ses, Sesl) :-
proc_new(T, Sub, 5ub2, Sos, Sos2),
(add23(Sub2 K,Subl} ->»
Sesl = [HlSos2]

{Subi = Sub2, Sosi = Sos2)).

newtup(E,L,Sub New) :-
member(E1,E),
umember (E2 L},
paired(E1,E2 New,Sub).

paired{E1,E2, New,Sub} :~
bigm(E2Z,E1, New),
N+ ace23(New,Subl,

bigm(W1,W2,P) :-
functor(P,tuple, 40),
mtab(Table),
bigm(1,Wl,W2 P, Table).

bigm(dt,_,_,_,.) = 1.
bigm(I,W0,Wi,P,Table) :- I < 41,
arg{l WO, XD,
arg{IrHI,Yii
m{X,¥,Z,Tablel,
arg(I,P,ZJ,
Jis (I + 1},
bigm(J,WO0,W1,P,Table) .

miX,Y,Z,M) :- arg(¥X,M,Row}, arg(Y.Row,Z).

mtebitable(row(l,1,
rowi(i,2,

;ﬂEﬂﬁﬁﬁﬁﬁxﬂiﬂﬁﬂﬁﬂﬂﬁxﬁﬂﬁEEHiﬁﬁﬁﬂﬂﬁﬂﬁﬂﬂﬁﬁﬂﬁﬁﬁﬁﬁﬁﬂﬁxi“ﬂﬁﬂﬂxiﬁﬂﬁﬁi
[ utilities. ..

member (H, [HI_X).

memzer(H, [_IT]} :- member(H,T}.

umember (K, [H]_].
umembar(H, [_,HIT]).
umember (H, [_,_ HIT]).
umember(H, [_,_._ HIT]).

0]



umembeI{le_-r_l_:..IT]} i 'I.'IJ'I'IEI‘FIbEI]’{H,,T}.

extend_tree([],5,5).

extend_tree([EIT],5,51) :-
add23(5,E,52),
axtend_tree(T,52,51).

count(L,N) :- count{L,0Q,N).
count([X|Xs] ,M,N} :- M1 is M+i, count(Xs,Mi,N).
count{[] ,N,N}.

time(T} :- statistics{runtime,[_,T]}.

% 2-3 Trees: code from I. Bratko, "Prolog Programming for AI"
acc23(X,1{X)).

acc23(X,n2(T1 .M, )) - M & X, ', ace23(X,T1).
acc23(X,n@(_,_,T2)) :- acc23(X,T2).

acc23(X,n3(T1,M2,_,_,_)) :- M2 @> X, ', acc23(X.T1).

acc23 (X ,n3{_,_,T2,K3,_0) = M3 @3 X, ', acc23CX,T2).

acc23 (X, n3{_,_,_,_,T3)) :- acc23{X,T3).

add23{Tree X ,Treel) :-
ing(Tree,X,Treel).

add23(Tree X, n2(T1,M2,T2)) .-
ins{Tres,X,T1 ,M2,T2}.

ina{nil,E. 1{X)).
ins{(n2(T1,M,T2),X,n2(NT1,M,T2)) :-

Ma» X,

ins(T1.X,KT1).
ins(n2(T1,M,T2) X, n3(NT1a Mo NT1b, M, T23) ==

Mad» K,

ins{T1,X ,NTla,Mb, NTib).
ins(n2{(T1 ,M,T2) %, n2(T1 M NT2)) :=

X @>» M,

ins(T2,X,NT2).
ins(n2(T1,M,T2),%,n3(T1,M NT2a M, NT2b}) -

i og» M,

ins(T2,X,HT2a Mb NT2h) .
ius(nS{Tl,H?,TE,HS,TEJ,I.nS(MTl.HQ.TE,HB,TE}J L=

M2 & X,

ins{T1,X NT1).
ins(n3(T1,H2,T2,H3,T3).K.nE{T:*HQ,HTE,HG,TEJ} =

X ar Mz,

M3 € ¥,

ine(T2,X,NT2).
ins(n3(TL,M2,T2 M3, T4),% . n3(T1, M2, T2, M3 NT3}) :=

i o@» M3,

ins{T3,X KT3).

ins{10A) X, 1080 5,005 «-
X oax 4.
ine{1{A) X, 1{X}. A, 104} -
I
ins(n3{T1,M2,T2,M2,73),X,n2(NT1a,M6,NT1b) M2 ,n2(T2,K2,T3)) :-
M2 oB» X,
ine{T1,% NTla.Mc, NT1B) .
ins(n3(T1,M2, 72,43, T3),%,02(T1 M2, KT2a) ,Mb ,n2(NT2b,M3,T3}) ;-
X @y mu,
M3 e» %,
ins (T2 ,X,NT2a,Mb NTZb].
ins(n3(T1,M2,T2,42,72),%,0n2(T1,M2, T2} M3, n2(NT3a,Mb NT3b)} :-

U5



ins(T3 ,X,NT3a,Mb NT3b).

Lo M3,
¥ 30%+4 sclutions:
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A.5 Queens
A.5.1 HKkqueen

Program: 10-Queens {all-sclutions, OR-parallel)
Author: H. Kondo
Data: May 18 1988

Notaes:
1. Te rum:
7= go(N,T).
where output N is 724 (number of sclutions) and T is execution time.

r= parallel gen/3.

golN, T) :-
tima{_ ),
bagof{f, P"(pattern(P),main(P, [1,2,3,4,5,6,7,8,9,10], [, 01}, S),
count{5,N),
tima(T).

gen{0, [I) :- !.
gen{N, [NIX])} := M is N-1, geniM, X}.

count(L,N) := count(L,O,N),
count{ [J,N,H).
count{ [X1¥=s] M N := M1 iz M+1, count{Xs,M1,N).

time{T} :- statistics{runtime,[_,T]3.

main( [K|T],L,Y,Z):~ gen(L1,E,L}, arg(E,H,a(E,E)), main(T,L1,[EI¥],Z).
mainf[], LYLY)

gen(L, E,[EIL]).
gen([FIL].E,[FIP]):- gan(L,E,P}.

pattern([ % 10-Queens board...
b(a{la,Yj},a{Ib,Yi}.a{Kc,YhJJaEId,TgJ,a{le,?f},
a{ﬁi.TE}.a{lgbfd}fath,Yc},a{li,?h),a{Kj,Ya}},
p{a(d9,Yi),a(Xa,Yh),a(Xb,¥g),a(Xc, Y1) ,a(Xd, Ye),
a(Xe,¥d),a(Xf,¥e),a(Xg,Vb),a(Xh,¥a) ,a(Xi, ¥e)),
bla(X8,Yh), a(X9 Yel,a{Xa,YT),aiXb,Ye) a(ke,¥d),
alXd,Yc},alle,¥Yo),alXf Ya),a(Xg,¥Y9) ,a(Xh,Y8) ),
b{a(X7,¥g),a(X8,Y¥F),a(X9,Ye)  alXa,¥d) ,a(kb, e,
alXc,¥Yb},a(Xd,Ya),a(Xe,¥9) , a(Xf,¥Y8) ,a(Xg,Y7)),
blalX6,Yf),a(X7,Ye),a(Xe,¥Yd) ,a(X9,¥c),aiXa. Yb),
alkb,Ya),a(Xec,¥2),a(Xd,¥8) ,alXe,¥7),allf Y61,
blalX5.Ye),al(Xe,¥d) ,alXT,Yel) ,alX8, Yb) ,2{88,Ya),
alXa. ¥9),a(Xb,YE),al(Xc,¥7),a(Xd, Y60 ,a(Xe, Y5},
blalfd,¥d),a(Xs,¥e),a(Xs,¥b),alk7,Ya) , a(X8, vo),
(X8, YE) 2 {Xa YT, a(Xb,¥8),a{Xe, Y50 alkd, Y4},
blalX3,Yc),a{kd,Yb),alEs ,Ya) ,a(X6,Y9) , a(X7, V8],
(X8, YT),a(X5,Y6),a(Xa,¥5) ,a(Xb,¥4) .a(Ke,¥3) 2,
Blal(X2,Yb),2(X3,Ya),alX4,Y8Y 2 (X5, Y8) alla, vV,
B(KT,Y6),2(X8,¥5),a(X2,Y4) ,a(¥a, Y30 ,a(Xb, Y20},
bla(dl,Yal,a(X2,Y9),a(X3,Y8),a(X4 Y73, a(de,Ya),
alX8,Y5) ,alX7,v4) ,a(X8 Y3y al¥e,v2) . alka, Y1070,

a7y



A.5.2 DMBgueen

Program: N-fQueens {all solutions, OR-parallel)
Author: M. Bruynocoghe
Dazea: June 14 19288

Notes:
1. To run:
?"' Eﬂ[:ﬂq.:ﬁ rT}-
for example, for input M=8, ocutput N=9%2 {(pumber of solutions) and T is
execution time.

- parallel del/3.
golM, N, T} :- gen(M,L), time{_), bagof(X,queen(L,[],X),A), time{T}, count{d ,N).

queen{ (] ,R,P) :- rev(R,[],F).
queen([HIT], R, P) :- del([H|T],A,L),safe(R,A,1),queen(L,[AIR] ,P)}.

rev([],Y.Y).
rev([&1X],Y,2) :- rev{X,[AI¥],2).

del ([XIT], X, T).
del ([HIT], X, [HIRIY - deX{T, X, R}.

safel([],_,_0.
safel [H|T],U,N) := H+N=\=U, H=N=\=U, M is N+1, safe(T, U, M).

time(T} :- statietice(runtime,[_,T]}.
count{L N} :- count(L,0,N}.

count{[] ,N,N).

count{[X]Xsl M,N} := M1 is M+1, count(¥s,Mi,N).

genl(o, I = 1.
gen(N, [MIX1) - M i= N-1, geni{M. X].



Program: N-Queens (all-sclutions, DR-parallel)
Auther: 1. Bratke
Date: June 14 13288

Kotes:
1. To run:
= gol(M, N, T,
for example, when input M=8, should return output N=92 (number of sclutions)
and T ig eXecution time.

= parallel del/3.
go(M,N,T) - time(_), bagof(X, queen(M,X), &), time(T), count(A N).

gqueen{l 3} :-
gen(1, N, Dxy),
Nul is 1-N, NuZ is K-1,
gen(Nul, NuZ, Du},
KvZ is N+N,
genl2, Nvz, Dv),
sol{S, Dxy, Dxy, Du, Dv).

time(T} :- statistics{runtime, [_,T1}.
count(L,N} :- ceunt(L,0,N).
count( [7, N, N).

count ([X|Xs] ,M,N} := M1 iz M+1, count(Xs,M1i,K).

gol{[1,[],Dy,0u,Dv]).
2ol {[YI¥list], [XIDx1],Dy,Du,Dv) :-
del{Dy.,¥,Dy17,
T is X-Y,
sdel{Du,U,Dul),
V iz X=+Y7,
sdel{Dwv,V,Dvi},
s0l{¥list ,Dx1,Dv1,Dul , Dv1).

% identical te del/3, but SEQUENTIAL
sdel ([XIT], X, T).
sdel([KIT], ¥, [HIR]} :- sdeliT, X%, R).

del ([XIT], %, T).
del([HIT], %, [HIR]) :- del{(T, X, ).

gen(N,N, [N
gen(Ni,N2, [N1IL]} :- W1 < K2, M is N1+1, gen{M,N2,L).
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B Appendix: FGHC Benchmarks
B.1 Triangle

Erogram: Triangle (all-solutions AND-parallel)
tuthor: A. Okumura (after E. Tick’s Proleg version)
Date: August B 1988

Notes:
1. To run:
Te goll),
cutput N should be 133.

2. This program has been automatically translated from Prelog, and then
cptimized by hand using unfolding rules.

goiN} :- true |
'sweeperfplays’(’L1°(’L0O") ,3,b(1,1,1,1,1, ©0,1,0,0,1, 1,1,1,0,1),4.,00),
count (4, N).

count{L,N} :- true | count(L,J,N).
count([] ,M,N) :- true | M = N.
count([X[Xs] ,M,N} :- M1 := M+1 | count(¥s,M1i,N).

‘sweeper$play5'(A,B,C,0,E) :- true |
‘playS/3#1'(A,B,C,D,F), 'playS/3#2'(4,B,C,F,E).

‘'plays/3#1'(A,B,C,D,E) :- Bc13 |
‘eweeperfsmove’ ("L2° (4 ,B) ,C,D.E}.

othervise.

'play5/3#1'(A,B,C,0,E} - true | D=E.

‘plays/3s#2°(A,13,B,C,D) :- true |
‘cont§plays/3°(a,[],C,D).

othervise,

‘plays/3#2'(A,E,C,D,E) := true | D=E,

‘cont¥plays/37('L37(A4,B),C,D.E) '~ true |
‘contplays/3* (A, [BIC] D, E}.
‘cont$playSf3 ('L1°{'L0O"),B,C,D} := true | C = [B|D].

‘sweeperfsmove ' (A,B.C,D} :- true |
‘smove/3#1'(ALB.C.E}, ‘'smove/3#%2° (A,B.E,F), ‘smove/3#3°(4.B,F.G),
tsmove/3#84' (A ,B,G .4}, ‘'smove/3#5°(4,B,H,I), ‘smove/3#6°(A,B,I.I1),
‘smove 387 (A,B.J. K}, ‘smove/3#8°'(4.B.K.L), ‘'smove/38#9°(4,B,L M),
‘smove/3810° (4 B M. N), 'smove/3#11'(4&,B,N,0), 'smove/3#12°(4,B,0,P),
‘smove/3813'(A,B,P,0), 'smove/3#14°{A,B,G.R), 'smove/3#15°'(A,B,R,5},
‘emove/3N16 (4 ,B,5,T), ‘smove/3IRIT'(AL,B,T,U), 'smove/3#%#18°(4,B, UV},
foocbar(a,B,V,D).

foobar(d,B.V,0) - truse |

Tsmove /38197 (A B,V W), smove/3#20° (A B,W,X), ‘omove/3#21'(A.B.X,Y),
‘smove/3822° (A,B,Y,Z), ‘smove/3823'(A.BE.Z,Al), ‘smove/3#24°(A.B,A1,B1),
‘smove/3#25' (A ,B,BL,C1), 'smove/3#28 (A,B,01,D1), 'emove/ 34277 (A,B D1 ,EL],
‘semove /3828 {A,B,EL,F1),'smova/3#29 (4, B,71,61), "emove /34307 (&, 8,61 ,H1),
‘smove/3#31' (A B EL,IL), '"smove/3#32 ' (4,B,I1,J1), "smove/38#33" (A, 8,31 ,K1},
‘zmove/3#34' (A ,B,KL,L1), smove/3#35°{4,B,L1,M1) , *smove,/ 38367 (A, B, M1,1),

‘smoves3#1'(A,b(1,1,B,0,C,D,E,F.G
‘contfsmove/32°(4,1,000,0,B,1,C

ctherwise.

UL MILNL 0 o= true |
JGLELTLILEL,LL ML NL 0.

| ()



*smove/3#1°(A, BB N,0)

"smove/3#2'(A,b(B,1,C,
‘cont$smove/37 (4,2,

cthervise.
*emove/382'(4,BB,N,0]

famove /383 (4, b(E,C.D,
‘cont¥smove/3" (4,3,

gthervise.

"smove/3#3° (A,BE,N,0)

‘gmove/384°(4,b(B,C,1,
‘contismove/3 (4.4,

cthervise.

‘emove /384 (A,BB,N.O)

"smove/3#5*(4,b(B,C,D,
‘contSsmove/37 (4,5,

othervise.

*amove/3#5'(A,BB,N,0)

*smove/3#5'(A,b(B,C,D
‘contismove/2’ (A &

otherwise.

'smove/385'(A,BR,N,0)

*smove/3#7'(4,b(1,8,1,C,D,0,E,F,G,H,I,J,K,L M), N, 0] :- true
‘eont$smove/3' (4,7,0(0,8,0,C,0,1,E,F,G,H,I,J,KE,L, M) N,0)

otherviee.

‘smove/3#7T*(A,BE,N,0) :- true | N=0.

‘smove/3#8' (A b(B,C,1,D,E,1,F,G,H,0,I,J,K,L, M) N0} = true
‘cont$smove/3° (A,8,b(E,C,0,D,E,0,F,G,H,1,I,J,K,L M) ,N, O}

cthervise.

‘smove/3#8° (A, BR,N,0) :- true | N=0.

*smove/3#2°(A,b(B,C,D,E,F,1,G,H,1,1,5,K,L, 8,00 8,0} :- trus
'cont$smove/3’ (A,9,b(E,C,D,E,F,0,G,H,T,0,],K,L,M,1),N,0)

cthervise.

‘smove/3#9°(A,BE,N,0) :- true | N=0.

‘smove/3#10° (A,b(B,1,C,D,t,E,F,G,0,4,1,1,K,L M),H,0) - true
‘cont$smove/3* (4,10 ,6(B,0,0,0,0,8,F,G,1,H,1,3,%,L,M},N,0

gtherwise.

"smove/3#10° (A,BB,N,0) = true | N=0.

‘amove/3%11' (A, b{(E,C,D,E,1,F,G,H,1,1,2,K,L,O,M},N,0) :- true
'cont$smove/3’ (4,11,b(B,C,D,E,0,F,G,H4,0,1,J,K,L,1,M),N,0).

nthervies .

"smove/3#11° (4 ,BB . N,0} = true | N=0.

‘smove/3f12° (A ,b(E,C,D,1,E,F,G,1,H, I, , K, 0,L ¥} N 0] = true
‘cont$smove/3'(4,12.0{B,C.D,0,E,F,G.0,H,1,],K,1,L M), N,0)}.

ctherwise.

‘amove/3812° (4,BB K, 0} - true | N=0.

"smove/3#13° (A,b(B,C,D,E.F,G,H,I,].K,1,1,0,L,M).N,0) :- true
‘cont$smove/3' (4,13,b(B,C,D,E,F,C,H,I,J,K,0,0,1,L,M),N,0)

othervise.

"smove/3#13° (4,BB.K,0) = true | N=0.

:- true | N=0.
1,D,E,0,F,G,B,I,J,KE, LM, R, 0} :- true
v(B,0.¢,0,D,E,1,F,G,H,I,T,K,L M), N,O)
;- true | KN=0.
{,E,F,1,8,H,1,0,1,K,L,M),N,0) :- true
b(B,C,D,0,E,F,0,G,H,T,1,J,K,L,M} N, 0)
:= true | N=0.
0,1,E.F,0,6,B,I,J,K,L,M),N,0} := true
b(R,C,0,0,0,E,F,1,G,H,T,1,K,L,M),N,0)
= true | N=0.
E,1,F,G,1,H,1,3,0,K,L. M) ,N,0) := true
b(B,C,D,E,0,F,G,0,H,1,],1,K.L,M).N,0)
:= true | N=0.

¥

JE,F,1,G,H,1,1,
,b(B,C,D,E,F,0,

[ S

:- true | N=0.

L



*smove/3#14' (A, b(B,C,0.E,F,G,H.I,J.K,L,1,1,0,H),0,0) :- true
‘cont$smove/3’' (4,14 ,b{B,C,D,E,F,G,H,I,J,K,L,0,0,1,M),N,0).
otherwise,

‘smove/3814° (A, BB,N,0) :- true | N=0.

temove/3#15' (4, b(B,C,D,E,F.G,H.T

’cuntismnvef3 {h 15 LB(B,C,D.E
otherwvise.

‘smove/3#15° (4 ,BB,N,0) :- true | N=0O.

JO¥N, UJ (= true
L

‘smove /3816 (4, b(R,C,0,E,F,G,1,1,0,B, 7. J.KE,L,M),N.0) :- trus
‘contdsmove/3' (A,16,b{E,C.D E.F,G,0.,0,1 H,I.J,K,L. M), N, D)
otharvise.
‘smove/3816° (4,BE,N.0) :- true | N=O.
‘smove/38#17'(A,v(B,C,D,E,F,G,H,1,1,0,1,7,K,L . M},N,0) :- true
"contdemove /3 (4, 1? &(B,C,D,E,F,G,H,0,0,1,T,7,K,L.M},N,0)
athervise.
'smove/3#17° (4,BB,N,0) :- true | N=0.
‘smove/3#18° (4,v(B,C,D,1,1,0,E,F,G,H,I,],K.L,M),N,0) :=- true
EnntﬁsmG?EFB*{ﬂ 18,b(B,C,D,0,0,1,E,F,G,H,I,TKE,L,M),K,0)

otherwise.
‘smove/3#18°' (4,BB.N,0) :- true | N=0.

‘smove/3819' (4,0(0,1,B,1,
‘cont¥smove/3 (A,19,b(
octherwise.

c,D.E,F,G

1 C

temove/3#19° (A,BB,N,0) - true | N=
[

D

B,

=]

MY H,0) :- true
I.J K,L,M),N,00.

*smove/3820° (4,b(E,0,C,1
cont$smovef3 {A ZG b

otherwise.

‘emove /34207 (4 ,BB,N,D} - true | N=0O.

L,M).K,0) :- trus
H,I,J,K,L ,M),N,0).

ufb

‘smove,/3#21° (4,b(B,C.D,0.E,F
'eontfamove /3 (4,21 ,0(E,C

otharvise.

‘emove /3821 {4, ,BE,N,0) ;- tTue | N=0.

sG:- L,Hj,ﬂ,ﬂ.‘] T True
o1 1,0,J,

K,L,M), N0},

il
1

"smove/3822' (4 ,0(B.C,0,D,1,E,F,1,G,H

"cont$smove/3° (4,22 ,b(B,C,1,0,0.E
otherwviss,

"emove /3422 (A BB N,D} - true | N=0.

. =
la
{:}l_-

‘smove/3#23° (A,b(B,C,D,E,0,F,G,1,4,1,J,1,K,L M) ,N,0) := true
‘contdsmove/3 (4,23 b(E,C,D,E,1,F,G,0,H,I,7,0,K,L,M),N,0).

octherwise.

‘smove/3823°' (4 BB, N,0) :- true | N=0O.

‘smove/3#24' (& 2{(B,C,0,E,F,0,6,H,1,T,J,K,1,L, K} N0 :- true
‘cont¥smove/3° (4,24 b(B,C,D,E,F,1,5,H,0,1,7,K,0,L M)},N,0)0.

otherwlse,

‘smove/ 38240 (A BB, K. 0} :- true | N=0.

‘smove/3®25° (A, 0(0,E,1,C,
"cont§smoeve/3Y (A, 25,b(

ctherwisa.

‘emove/3R25° (4 ,BE,H,0) - true | Ne=D.

D.1, NL,0) - true
1.8, \ J,K,L M), K, 0).

*emove /38287 {4 B{E,C

.0 K.,L,M}) N,0} :- trus
"eontfemove/37 (4,28 H,0,I



otherwvise,
‘smove /38267 (4,BE,N,0) :- true | N=0.

‘smove/3#2T' (4 b(B,C,0,E,F, 0, G, H,1,1,]. K. L, ¥, 10,%,0) - true |
"contfsmove/3’ {h 2? b{B,c,0,E,F,1,G,H,I.0, J,K L (M0 N,00 .
otharwvise.
'emove/3827 (A,BB,N,0) :- true | N=0.
‘emove/3#28° (A,b(B,0,C,D,1,E,F,G,1,H,1,],K,L M) ,N,0) :- true |
‘cont$smove/3 (A, 28 b{B 1,¢,0,0,E,F,G,0,H,1,3,K,L 4}, 0.0)
otherwise.
‘smove,/3¥28° (L ,BE,N,0) :- true | K=0O.
'smove/3#29' (A,b(B,C,D,E,0,F,G,H,1,T,J,K,L,1,M),N.0) :- tTue |
‘contfsmove/3? {h 29 v(B,C,D,E,1,F,G,H,0,1,J,K,L,0,M),N,0)
otherwise.
‘emove/3#29° (4 ,BE,N,0) :- true | N=0.
‘smove/3#30° (A,b(B,C,D,0,E,F,G,1,H,T,J,K,1,L.M},K,0) :- true |
’cnntEsmovafa’EA 30 h{ c,0,1,E,F,G,0,H,1,],K,0,L,¥),K,00.
cthervise.
‘smove/3#30° (A,BB,N,0) :- true | N=0O.
‘smove/3#31'(A,b(B,C,D,E,F,G,H.1,],K,0,1,1,L,M),N,0) :- true |
'contismove/3T (4, 3] Jb(E, c.,b.E,F,G,H,T,J,K,1,0,0,L,M),N,0).
ctherwiee.
‘emove/3831° (4,BB,N,0) - truws | N=D.
famove/34#32' (4, 8(B,C,D,E,F, G,E, L, KL, 0,1,1,M},N,0) :- true |
'contfamava/3’ EA 32 b{B,C,D,E,F,G,H,1,J,K,L,1,0,0,1},N,0}
othervise.
‘smove[3R32 (A BB, N,0) - true | N=0.
‘smove/3#33° (A ,b(R,C,D,E,F G, H,I,J,K,L,M,0,1, 13,M,0) - true |
'cont§smove /3 (4,33 ,p(E, c,0,EF,G,H,T,J,K,LM,1,0,0),8,0).
othervise.

‘emove /38337 (4 ,BE,N.0) - trua | HN=0.
'smove/J#34'{4,0{8,C,0,E,F,G,0,1,1,H,1,7,K,L,4),%,0) :- true |
'cant$smaue!? {h 34 ,b(B,C,D,E,F,G6,1,0,0,H,T,7,K,L 1) 5,0}

othervise.

‘emove//3834° (4 BE N,0) :- true | W=D,

‘emove/3#357 (4, b(B,C,D,E,F,G,H,0,1,1,T,7,E,L ¥} .N,0) :- true |
"cont§smove/3° (4,35 ,0(B,C,D,E,F,G,H,1,0,0,1,1,K,L M}.0,00

othervise.

‘smove/3R35° (4 BE N,0) :- true | N=0.

‘smove/3#36° (4,0(B,C,0,0,1,1,E,F,G,H,1,],K.L.M).N,0) :- true |
'cont$emove/3’ (A,36.b(B ¢,0,1,0,0,E,F,G,H,1,J,K,L,M),N,0)

cthervisa.

"smove/3#36° (A, BB,N,0) :- true | RW=D.

‘cont$smeves3 (112 (4,E),C,D, E Fih = 0 := B+1 |
‘evesperfplays’ (’LE‘ER C} :.0L,EF).

IS



B.2 Puzzle

JE e e e e m s e s E e m——— s smmmmE————=——————=-
Program: Puzzle (all solutions, AND-parallel)
Author: E. Tick

Date: March 9 1288
Notes:
1. To run:

7- goll).

where output N = 65 (number of sclutions).
2. This is S5x4x3 puzzle with chip in corner. The program collects all
solutions in the form of a list of lists. A sclution list contains SEVEN
cons=-cells corresponding to the pieces:

f[blEEE,EqIZD].[jllﬁf.fjlil]_ 1151, 0£14),[al1]]
The car represents the shape and crientation. The cdr represents the
location it was placed inside the sclid.

go(M) = true |
initial(Slist Plist),
select(Plist, Slist, (1. 4,01, [1),
count(A, NJ.

% in this case, chocse last instance of this shape...
select([ocrient(M,L)IYs], Empty, NenC, I.D, PL):- M=:=1 |
append(¥s, NonC, Unused),
check(L, Unused, Empty, I.Ii, PL],
gelect(¥e, Empty, [orient(M,L)|NenC], 11,0, PL).
% more than one instance of this shape exists...
select([orient(M,L)IY¥=], Empty, Nonl, I,0, BL):= M=\=1, M1 := M-1 |
append( [orient(M1,L}|¥s], HonC, Unused),
check(L, Unused, Empty, I.I1, FL),
select(Ys, Empty, [oriemt(M,L)|NonC], 11,0, PL).
select([d, _, [_I.Y, I,0, _% :- true | I=D.
selects (], ., O, 1,0, FLY := true | I=[PL|O].

% The check routine is split into three parts for readability.

% NWote however that this split does NOT slow it down: I ran a

% fused version with approximately the same executien speed (2} faster).

% This fact seems to imply that the speed-bump in this program is remove/S.

% spawn checker process for each orientation in Piece
check({[D|Ds], Unused, Empty, I.0, PL)} :- true |

Empty = [E|RestEmpty],

translate(D, E, Piece, Status),

checkl(Status, DIs, Piece, Unused, Empty, I,0, PL, [DIE], RestEmpty).
check{[], ., ., I,0, _J:- true | I=0.

% translated piece falls outside of golid boundary...

checkl{no, Os, _, Unused, Empty, I,0, PL, _, _) :- true |
check{ Os, Unused, Empty, I,0, PL}.

% translated piece falls completely inside of solid...

checki(yes, Os, Piece, Unused, Empty, I,0, PL, Move, RestEmpty) :- true |
remove(yes, Piece, RestEmpty, NewEmpty, Status),
checkZ(3tatus, 0Os, Unused, Empry, NewEmpty, 1.0, FL, Move).

% translated pisce falls inside a previcusly chosen piece...
checkZ(no, Os, Unused, Empty, _, I,0, PL, _} := true |
check({ 0=, Unused, Empty, 1.0, FL).
4 translated piece falls cutside all previously chosen pieces...
check2(yes, 0Us, Unused, Empty, NewEmpty, I0,I2, PL, [Dla(X,¥,2}])} :-
M o= X+ [Y=5)+({Z=20]) | ¥ caleculate index of piece for ansver...

[0



select( Unused, NewEmpty, [J, 10,11, [IDIMIIPLID,
check( Us, Unused, Empty, 11,12, PL).

% remove{yes, Vector, Empty, NewEmpty, Status)
% remove all elements in Vector from Empty
% return Status of removal:

A "yas" if Vector was a subset of Empty
A "no” if Vector contained elements not in Empty
remove{ no, _, _, _, Status} :- true | Status = no.

remove(yes, [J, Empty, T1, Status} :- true | Status = yes, Tl = Empty.

remove(yes, [HIT]}, Empty, T1, Status) :- true |
removeZ(Empty, H, T1, T2, NextEmpty, SubStatus),
remcve(SubStatus, T, NextEmpty, T2, Status).

remove2{[], _, _, _, ., Status) :- true | Status = no.
remove2([E|Es], H, TL, T2, Empty, Status) :- E=H |
Status = yes,
Empty = E=s,
Ti1 = T2.
otherwise.
remove2([E|Es], H, T1, T3, Empty, Status) :- true |
T1 = [E|T2],
remove2(Es, H, TZ, T3, Empty, Status).

%1EﬁiiﬂﬂtﬁiﬁﬁiiiﬁiiﬁiﬂﬂIﬂﬁiiﬁﬁﬂﬁﬂiiﬁﬂﬂﬁﬂﬁﬁﬁﬂiﬁiﬁiii!ﬁﬂﬂﬂ!ﬁiﬂﬁiﬁﬁﬂiﬁﬁ1111

¥ 2x2x1 (B erientations)
translate(a, o(X,Y,Z), List, Status) :- X<3, Y<3,
K1 = X+1, X2 := K42, Y1 := ¥+1 | Status = yes,
List = | atX1,Y, Z),alX2.Y, Z},
elX,¥1,Z),6(X1,¥1,2) ,00X2,¥1.2)] .
translatel(b, o(X.Y,2}), List, Status} := X<3, Z<2,
Rl = X+1, X2 = X+2, Z1 := Z+1 | Status = yes,
List = [ olX1,¥,2), olX2,Y,2),
ofX, Y, E1),0(X1,Y,21) ,0(X2,Y,21)].
translate(c, o(X,Y,Z), List, Status) :- Y<2, Z<2,
Y1 := ¥+1, ¥2 = ¥Y+2, Z1 := Z+1 | Status = yes,

List = [ al{X,¥1.2}, o(X.¥2.2).
ol Y, 210 ,0(X,Y1,21) ,0l{X,¥2,21)].
translate(d, o(K,¥,Z), List, Status) :- E<4, ¥<2,
Y1 := ¥+1, ¥2 := Y+2, K1 := ¥+1 | Status = yas,
List = [ ofX, Y1.,2),e(X, ¥2,2),
clX1,Y,2) ,0(%1,¥1,2) ,00RL,¥2,2)].
translatele, ofX,Y,Z), List, Status) :- X<4, Z<l,
Z1 = Z41, I2 := 7+2, K1 := X+1 | Status = yes,
List = [ ofX, Y,Z1),0(X, ¥,22),
o{X1,Y,Z),0(X1,Y,21) ,0(X1,Y,22)].
translate{f, of{X.Y,Z), List, Status) :- ¥<3, Z<1,
Z1 = Z#+1, Z2 := I+2, Y1 := Y+1 | Status = yes,
List = [ elX,Y, Z1),e(X,Y, 227,

a(X,¥1,2) ,0(X,¥1,21},0(X,¥1,22)].

% 4x3x1 (4 crientations)
translate(g, o(X,Y,2), List, Status) :- %<2, ¥<2

X1 := X+1, X2 := K42, X3 := X+3, Y1 := Y41, Y2 := Y42 | Status

olX.¥1,2),0(X1,Y2,2) ,0(%2,Y1,2) ,0{%3,¥1,2),
o(X,¥2,2),0(X1,¥2,2) ,0(%2,Y2,2),0(X3,Y2,2)].
translate{h, of{X,Y,Z), List, Status) :- Y<1, Z«<1,

List = [ ol(X1,Y, Z),0(X2.Y, Z),c{X3,Y, ZJ,

Y1 o= ¥+1, Y2 := Y+2, Y3 := Y43, 21 := 241, 22 = 7+2 | Status

List = [ olX,¥Y1,2}, o(X ¥2,2), ofX,¥3,2),
olX,¥Y,210,00X,¥1,21),0(X8,Y2,21) 00X, ¥3, 21},

5]
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alX,Y,Z2), 00X ,¥1,22) ,0(X,Y2,22) ,06(% ¥3,22)].
translate(i, ofX,¥,2), List, Status) := X<3, ¥<i,

Y1 o= Y+1, Y2 := Y42, ¥3 := ¥+3, X1 := X+1, X2 := X+2 | Status = yes,
List = [ o(X, ¥1,2),0(X, ¥2,2),0(X, ¥3,2),
e(X1,Y,Z),0(X1,Y1,2) ,00(%X1,Y2,2) ,0(X%1,Y3,2),
o(X2,Y,2),0(X2,¥1,2) ,0(X2,Y2,2) ,0(X2,Y3,7)].
translate(j, o(X,¥,Z), List, Status) :- X«2, Z<«i,
X1 = X+1, X2 = X432, X3 := X¥+3, 21 := Z+1, Z2 := 7+2 | Status = yes,

List = [ o(X1,Y,Z), o(X2,Y,Z), ol¥3,Y,2),
ofX,Y,21),0(X1,Y,21) ,0(X2,Y,21) ,0(X3,Y,21),
olX, Y, 22}, 0(X1,Y,22) ,0(X2,Y.22) ,0(%3.¥.22)].

% 3x3x1 (3 orientations)
translate(k, ofX,Y,Z), List, Status) :- X<3, ¥<2,
Il := X+1, X2 := X422, Y1 := Y41, ¥2 := Y42 | Status = yes,
List = [ alX1.Y, Z),0(X2.Y, Z),
ofX,Y1,2),0(X1,¥1,2) ,0(X2,Y1,2),
ofX,Y2,2),0(R1,Y2,2) ,0(X2,¥2,2)].
translatea(l, o(X,Y,Z), List, Status) := Y<2, Z<1,
Y1 = ¥+1, ¥2 := ¥+2, Z1 := Z+1, Z2 := Z+42 | Status = yes,
List = [ olX,¥1,2), olX,¥2,2),
old, Y, 21) ,0(X,¥Y1,21) ,0(X,Y2,21),
olX.Y,22),00X,¥1,22) ,0(K,Y2,2231.

translatelm, o(X,Y,Z}, List, Status) :- X<3, Z<1,
k1 o= X41, X2 := X+2, ZI1 := Z+1, Z2 := I+2 | Status = yes,
List = [ ofX1,Y,2), o(X2,Y,2),

ol®,Y,Z1),0(X1,Y,21) ,0(%2,Y,21),
o(X,Y,22),0(X1,Y,22),0(X2,Y,22)].

% 4x2x1 (4 orientations)

translateln, o(X,¥,2), List, Status) :- %<2, Y<3,
L1 := X+1, X2 := X+2, X3 := X+3, Y1 := Y+1 | Status = yes,
List = [ olX1,Y, Z),0(X2.Y, Z).o0(X3,Y, 27,

olX,Y1,2) ,0(X1,Y1,2) ,0{X2,¥L 20 ,0(X3,Y1,2)].
translatels, o(¥,¥,2), List, Status) :- Y«<1, Z<2,
Y1 := ¥+1, ¥2 := ¥42, Y3 := Y+3, Z1 := Z+1 |} Status = yes,

List = [ olX,¥1,Z), olX,Y2,2), oflX,¥3,2),
olX,Y,21),0(X,¥1,21) ,0(X,¥Y2,21),0(X,¥Y3,2127.
translate{p, o(X,Y,Z), List, Status) :- ¥<1, X<4,
Y1 = Y1, Y2 = Y42, Y3 := Y43, X1 := X+1 | Statue = yes,
List = [ ofX, Y1,2),0(X, ¥Y2,2),0(X, Y2.,27,
o{X1,Y¥,Z},0(X1,¥1,2) ,0(X1,Y2,2) ,0(X1,Y3,2)].
translate(q, o(X,Y,2), List, Status) :- X<2, 2¢2,
K1 = X+1, X2 := K42, X3 := X+3, 1 := Z+1 | Status = yes,
List = I: :1{}".1.?'.2:'. DDEE,YJ). 0{:{391{!2}!
olX,Y,Z1),0(X1,Y,21),0(X2,Y,21),0(X3,Y,21)].
othervise.
translate(_, _, _, Status) :- true | Status = no.

¥ﬂﬂ13EﬂxﬂﬁiﬂﬂxiﬁﬁiﬂﬂﬁﬁﬂﬂxiiﬂiiiﬁﬂiﬁﬁﬁﬂﬂEﬂiﬁﬂﬁiﬁxiiﬁiﬁﬁﬁﬁﬂmﬁﬂﬁﬂﬁﬁﬂﬂﬂﬁ
% utilities. ..

append([A1X],Y,Z):- true | Z=[&121], append(¥.¥,Z1).
append([], Y,Z):- true | Z=V,

count (LK} := true | count(L,0,NJ.
count([],M,H} - true | M = N,
count { (X1Xs] ,M N} :- M1 := M+1 | countz(Xs,Mi,N).

initial(Slist Plist) :- true | squares(Slist), piece_list(Plist).
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% NOTE: 4x3x1 and 4x2x1 have four orientations because z-dim. of puzzle

% is
plece
L

squar
L
[

only three, so that these shapes capnet stand up in the z-directien.
_list{List) :- true | % shape # orientation
ist = [orient{ 3,[a.b,c,d,e,f]), ¥ 3x2x1 (3)x(6)

crient{ 2,[g.h,1,3]), ¥ oax3dxl (2)x{a)

orient{ 1,[k.1.m]l}, % 3x3x1 (1)x(3)

orient{ 1,[n,c,p,ql)]. %odx2xl (1ix(4)
es(List) - true |
iat =

o(l,0,0),0(2,0,0),00(3,0,0),0(4,0,0),

of{0,1,0),0(1,1,00,0(2,1,0),003,1,0),0(4,1,0),
el0,2,00,0(1,2,0),002,2,0),0(3,2,0) ,a(4,2,0),
o{0,3,0),00(1,3,0),0(2,3,0),0(3,3,0),0{4,3,0),

0f(0,0,1),0(1,0,1),0(2,0,1),0(2,0,1),0{4,0,1),
el0,1,1),e{1,1,1),0(2,1,1),0(3,1,1) ,0{4,1,1),
ol0,2,1},0(1,2,1),0(2,2,1),0(3,2,1) ,0{4,2,1),
e(0,3,1},0(1,3,1),0(2,3,1),0(3,3,1) ,0{4,3,1},

¢{0,0,2),0(1,0,2),0(2,0,2),0(3,0,2) ,0(4,0,2),
o(0,1,2),0(1,1,2),0(2,1,2),0(3,1,2) ,0(4,1,2),
ol0,2,2),00(1,2,2),0(2,2,2),0(3,2,2) ,0(4,2,2),
0(0,3,2),001,3,2),0(2,3,2) ,0(3,3,2),0(4,3,21] .
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B.3 Pascal

fﬂ ------- T
Program: Pascal's Triangle
Author: E. Sugino
Modified: E. Tick
Date: July 27 1988
Kotes:
1. Te run:
?_ ED{H ’H} a

where input N is the number of rows to calculate and cutput R is the Nth row.

2. example: for N = 20:

E = [[1,0],[20,0],[190,0],[1140,0],[4B45,0]), [15504,0], [38760,0), [T7520,0],
[28970,1], [67960,1], (84786 ,1], [67960C,1], [28970,1], [77520,0] , [387Te0,0],
[15504,0], [4845,0] ,[1140,0], [1%0,0],[20,0],[1,01]

2. This is a much simplified version of the original program, and only
calculates the Nth row from scratch. MNote that without bignums, we can
calculate as large as the 33rd row, with a maximum coefficient of
1,166,803,110. This is equivalent to [3110,11668]. )
e e e B e e e e T R W R M -
go(N) (=N >0 |

pascal data([data(N,_3].1,[[1,0].[1,0]7,1).

golN, Result) :- N > O |
pascal data([data(W Result)],1,[[1,0],[1,01],1).

pascal _data([data(N,D}|5],N,Data,Max) :- true |
b = Data,
pascal _data(s,N,Date,Max).
pascal data([data(N,D)IS],M,Data,Max) - N =\= M,N =< Max |
pascal _data(5,M,Data,Max) .
pascal _data([data(N,D) 5] ,Max,Data,Max) :- Max < N M1 := Max + 1 |
new_pascal(M1,N,Data,D,5),
pascal _data(5,Max,Data,N).

rascal_datal [data(N,D)|5) .M, ,Data Max) :- Max < N, M < Max |
pascal_data(5 M,Data,N}.

pascal _data([],_,_,.} :- true | true.

new_pascal (N,N,Data,D,5tream) :- true |

make_pascal_data(Data,D},
pascal _data{Stream,N.D,N}.

new_pascal (N,M,Data,D,Stream) = N < M, N1 := N+1 |
make_pascal_data{Data, Datall,
pascal_data(Stream,N,Datal M},
nev_pascal (N1,M,Datal,D,Stream).

/* bignum version... */

make_pascal _datal[F1,F2|Datal New) - true |
big_plus(Nf2,F1,F2),
New = [F1,Nf2{New1],
make_pascal _data{ [F2|Data] ,New1, [N£2,F1]}.

make_pascal_data([N] MNew El :- true | New = [N].
make_pascal_datal{[A,4|C] New B} - tzue |
big_.plus(B,h,A),
New = [R|E].
ctherwviza,
make_pascal_data([A.BIC] New ,E) - true |
blg_grifd B Status),
make_pascal _data! (Status,A,B,C . Hew E).

Tih



make_pascal datall{yes,_,_,_,New,E) :- true | New = E.
make_pascal_datall no,4,B,C New E} :- true |
big_plusiD,A.B),
New = [DINewil],
make_pascal_data([B|C],Newi, [D|E]).

J* normal version. ..
make_pascal _datal[Fi,F2|Data) ,New) :- Nf2 :
WNew = [F1,Nf2|Newi1],
make_pascal_data{[F2|Data) ,Newl, [Nf2,Fi]).
make_pascal _data([N] ,New,E) :- true | New = [N].
make_pascal_data([A,AIC] New,E} :- B := &+4 | New = [BIE].
make_pascal_data([4,BIC] ,Hew,E) A>»B | New = E.
make_pascal _data([A BIC] ,New,E} = & < B, D := &+B |
Hew = [D|Newi],.
make_pascal_data({[BI|C] ,Newl ,[DIE])}.

F1+F2 |

Frogram: Eignum feor Pascal Benchmark

Ahuthor: HR. O'Keefe (translated to FGHC by E. Tick, revised by A. Dkumura)
Date: July 26 1988

f

% this interface is meant tc save storage...
big_plusiX,Y,Z) :- trus |
eval('+' (real(+,Y,[1]),real(+,2,[1])),real(+,%, [1])).

big.grt(X,Y,Status) :- true |
eval (real(+, X, [1]) 4},
eval(real(+,Y,[1]},B),
comglA, B, 100000, R},
getstatus(R, '»", Btatus).

getatatus (X, X, 5tatus) - true | Status = yes,
othervise.
getstatus(_,_,Status) :- trues | Status = no.

eval{*+*{X,¥), C} - true |
aval (X, A},
eval(Y, B},
addgq(A, B, 100000, C).

cthervise.

eval(X,¥Y) = true | X = Y.
U
comgih,A,_,2) - true | § = '=°

athervise.

comy(real {*+* Na,Dal, real{*+' Kb, Db}, R, 5} :- true |
mulniNa, Db, R, Xa),
mulniNo, Da, R, IkJ,
comn(Xa, Xb, '=', 5).

comg{real{’+’ Na,Da), real{'-' ,Nb,Db}, R, S) :- true | S = '3,
comg(real(’~" Na,Da), real('+’ ,Nb,Db}, R, 5) :- true | 5 = '<*,
comg{real(’-*,Na,Da), real('-’ Nb,Db}, R, ) :- true |

meln(ha, Db, H, Xal,
muln(NEe, Da, B, Xbl,
comn(Xb, Xa, *=', E).
comg(Na, real{'+' Nb,Dbt}, R, 2} :~ Ha »= 0 |
muln{[Na], Db, R, Xa),

Jim



comn{fa, Nb, =, S},
coma(Na, real('-'" Nb,Db), R, S) := Ha >= 0 | S = *>',
comg(Na, real(’'+" ,Nb,Db}, R, 3) - Na < 0 | 3 = "¢,
comg{Na, real(’'-* Nb,Db}, R, 8) :- Na < 0, Nz := {0-Na) |
muln{[Nz], Db, R, Xa),
comn(Nb, Xa, '=*, 5}.
camq{real{’+',ﬁa,ﬂa], Ne, R, 5) = Nb »>= 0 |
mulni[Ke], La, R, Xb),
comniMa, Xb, '=', 5).
comgireal{’+’ Na,Da), Kb, R
comgi{real{’-* ,Na,Da), Nb, R
comg({real(’~* Na,Da), Nb, R
mulni[Nz]. Da, R, Xb),
comn(Xk, Na, '=', 3).
cemgiNa, N&, R, S) :- Na > b | 5 Tat,
comg(Na, Nb, B, §) - Nb >= §Na | & = '¢*,

. 5} =B <D | 5= >,
y 5} = Nb 2=0 | 5= "¢,
. S} - Nb < 0, Nz := (0-Mb) |

addq(a, B, K, 5) := true |
real{A, R, Sa, Na, Da),
real(B, R, Sb, Nb, Db),
muln{Na, Db, R, Xa),
mulni{Nb, Da, R, Eh),
add=(5a,Xa, 3b,Xb, R, Sc, Xc),
gedniXe, Da, R, _, Nx, Ya),
gedn(Nx, Db, R, _, Nc, Yb),
mulni¥a, Yo, R, Do),
standardise(real{Sc, Nc, Dc),5).

B o e e e e e e e e e e e e et
muln([], _, _, 8) :- true | S = [].

maln{_, [J, ., 3) :~ true | 8 = [J.

othervise,

muln(k, B, #, C)} :- true | muln{&, B, [J, R, CJ.

muln([], _, Ac, _, Out) :- true | Out = Ac.
muln( [D1ITL]), N2, Ac, R, Out) :- true |
Out = [D3|Pr],
mull{N2, Di, R, P2},
addn{ic, P2, O, R, Sm),
connl (D3, An, Sm),
mulniT1l, K2, An.dA, Frl.

mull{_, O, _, Pr) :- true | Pr = [].
otherwvise.
muli{h, M, R, Pr) :- true |
muliik, M, O, R, Pr).
mull{[C1IT1], ¥, C, R, ODut) :-
D2 == {(Di*M+C) mod R,
Co := {(D1#M+2) /B |
Out = [D21T2],
muli{Ti, M, Co, R, T2).
mullf i, -, 0, ., Out) := true | Qus = [7.
octherwise.
mull( 0. .. C, _, Cut) :- true | Out = [C].
'||I; ____________________________________________________________________________

L1



addsgi{"+" ,A,'-" ,B,H.5,C) :- true | subn{h, B, B, S, C}.
addz('-",A,'+" ,B,R,5,C) :- true | subn(B, &, B, S, C}.
addz(’=",A,"-" B,R,5,C) = true | 5 = '='_ addn(B, A, 0, R, T)}.

addn([D1tT1], [D2iT2), Cin, R, Ouz) :-
Sum := D1+D2+Cin,
% := Sum mod 262144 |
add2(T1, T2, R, Out, Sum, X).

addn([], L, ¢, _, Out) :- true | OutsL,

addn(L, [}, 0, _, Out) :- true | Dut=L.

addn({], L, 1, R, M} := true | addi(L, H, M).

addn(L, [J, 1, R, M} :- true | addi(L, K, M.

add1({MITI, R, Dut} := N := M+1 | add3(N,T,R,0ut).

add1(1], _, Dut) - true | Out = [1].

add3(N,T,R,0ut) := K < R | Dut = [N|T].

octherwise

% Prolog is funny: it checks that H =:= N, but it should oot fail!

add3(N,T,.R,0ut) :- true | addi{T,R,3}, Out = [O]5].

add2(Tt, T2, R, Dut, Sws, X) :- % »= R, D3 := X-R |
Dut = [D3|T3],
addn(T1, T2, 1, R, T3).
otherwise.
add2{Ti, T2, KR, Qut, Sum, X) :- true |
Out = [Sum|T3],
addn(T1, T2, 0, R, T3}.

R, 01, 02, 03} :- zrue | O1 = [J, 02 = undefined, 03 = undefined.

gedn{[], L =
R, 01, D2, 03) :- 8 \=[] | 01=8, 02 = [], 03 = [1].
R =

],
gedn{[], ?.

gcdl'l.{ -n'p [ ¥ Gll UE, US} il .I!l .l||.= [] I D1=A, DE [1], 03 = [].
othervise.
gedn{[1), B, _, 01, 02, 03} :- true | 01 = [1], 02 = [i1], 03 = B.
gedn{A, [1], _, 01, 02, 03} :- true | 01 = [1], 02 = h, 03 = [1]
otherwise.
gedn{A, B, R, D, M, N} :- true | oL, B >1

gedn{A, B, R, D},

diwn{A, D, R, M, _J,

divn(B, I, R, N, _).
gednih, B, R, D) :- true | oL, B »=1

comnid, B, =7, 37,
gedn(S, 4, B, R, D).

gedn(t=" &, _, ., D) := true | I = 4.
gedn('<’ [, B, _, D} := true | I = B,
gedn(*<’, &, B, R, D) - &4 \= [] |
estglB, 4, R, EJ,
muln(E, A, R, FJ,
subn(B, ¥, &, _, M},
gednlh, M, R, D).
gednd*>", A, [0, _, I} :- true o= &

|
codni*>', A, B, R, I} - B \= [T |
estgld, B, R, E),
muln{E, E, R, PJ,
subn{i, F, R, _, MJ,
gedn(M, B, R, DJ.

estgl4, [B], ®, E] :- true |

It



divi{a, B, R, 0O, X},
estgllX, B, 4. R, E).
othervise.
estg([_IA), [_IB], R, E} :- true |
estglA, B, R, EJ.

estgl(X, B, @, R, E}) :- F := X+«2, F=<E | E= Q.

otherwise.
estgi(X, B, @, R, E) := true | addi(q, R, EJ.
?. ______________________________________________________________________________
% we know that this failure {(division by =erc) never occurs in benchmark.
%odiwni(a, [0, R, _, .3 = ', fail. §| divisien by 0 ie undefined
divon(a,{1], R, &, X) ;= true | X = [1. % a very common special case
divon(A,[B], R, Q, X) - true | % nearly as common a case

divi{A, B, R, G, Y),

conn{Y, [1., X).
otherwise.

divniA, B, R, Q, %) :-
comnih, B, '=', 35},
divni{s, &, B, R, Q, X).

divnl{'<*, &, _, _, @, X) - true | B =[], X = &.
divni{’=*, _, _, _, @, X) = true | § = [1]., X = [I.
divni{’>*, &4, B, K, §Q, XJ :- true | divmia, B, R, 0, X).

b mode(+,+,-)

conni(Q, [1, Out) :- true | Out = [].
otherwize.

conn(D, T, Out) :- true | Out = {DIT].

% omedel-,-,+])
connl{D, T, (1% := true | D
connl{D, T, [X1¥]}) := =rue | D

i n

a, T
X, T

divi((], _, _, G1, X173 := tyue | Q1 = [, X1 = 0.
dgivi([D1|T1], Bi, R, 91, X1} - true |
divi(Ti, B1, R, QZ, X271,
divit{%2,8,01,B1,02,.01).

divi1(X2,R,D1,B1.02,01) :=
D2 = (X2+R+D1) / B1,
X1 = (X2+R+D1) mod Bi |
conniD2, G2, Q1)

% divm{A, B, R, @, %) is called with & > 8 > R
divm{[D1|T1], E, R, O, Xt} :- true |
divm(T1, B, R, 02, X2,
conni{Dl, X2, T2),
div2{T2, B, R, D2, X1},
connil2, 02, Q1).
divm([], B, R, 0!, 02} :- true | 01 = [1, 02

T
O

div2{s, B, R, @, X} :- true |
estdl(4&, B, H., EJ.
chkd(4, B, R, E, 0, Q, F},
subn(h, P, R, 5, X).

estd([AD,A1,A2], [BO,.B13, R, E} :-
F := Rf2, B1 »= F, G := (A2=R+41)/B1 |



o= G

otherwise.

estd{[A0,A1,42], [BO,B1]), R, E) :-
L o= [AZ#R+41)/(B1+1} |
mull{[BO,B1], L, R, P},
subn{[ADO,A1,A2], P, R, &, N},
astd(N, [BO,Bil, R, M),
estdl(L,M,E}.

estd([A0,A1], [BO,B1], R, E) :-
F o= (A1«R+A0+1)/{B1+R+R0) |

E=F.
estd(la0l, _, _, E} - true | E = 0.
othervisze.
estd([AClar], [BOIBr], K, E) := true |
estd{dr, Br, B, El.
estd([], _, ., E} - true | E = 0.

estd1(L ,M,E) := F := L+M | E=F.

chkd{h, B, B, E, 3, _, _) :- true | true.
othervise.
chkd{h, B, R, E, K, E, P} - true |
muli{B, E, R, B},
comn(P, A, '<', 31,
chkd1{5, &, E, R, E, K. 0, B}.

chikdi{’<*, &4, E, R, E, K, U, P} :- true | true.
othervise.
chkdi{_, &, B, R, E, K, @, F} --

L := K+1, F := E-1 |

chkd(4, B, R, F, L, Q, ©).

subn(4, B, B, 5, €} :- true |
commni4, B, "=, 0),
subn(D, A, B, R, 5, C).

subn{'<', A, B, R, F, C} :- true |
Fo=o-r,
subp(B, A, O, R, D),
prunell, C).

subn{’>', A, B, R, F, €} :- true |
F = et
subp{&, B, O, K, D),
pruns(D, ).

subn('=', A, B, R, F, C) :- true |
F=tar (=[],

prune([], Dut) :- true | Dut = [].
prune( [0[L], ¥ ) :- true |

prune{l, T,
prunel{T, MJ.
stherwvise.
prune [ [DIL], Out} := true |
Our = [DIM],
prune{l, M}.
prunel{{], M} :- true | M = [J.
sthervise.

1

crunei{T, M} :- truc § M = [O]7].



subp([DilTij, [p21T2}, Bin, R, M) :- 5 := D1-D2-Bin |
subpl(S, Ti, T2, R, M}.

subp(L, [0, 0, _, M) :- true | M = L.

subp(L, [J, 1, R, M) :- true | subi{L, R, M).

subpl{s, T1, T2, R, M} := 5 >= 0 |

M= [5IT3],
subp(T1, T2, ©, R, Ta).
othervise.

subpi(S, T1, T2, R, M} :- D3 := 5+R |
M = [D3|T3],
subp(T1, TZ, 1, R, T3).

subl1({[0IT], R, Out} :- K :
octhervise.
subi{[NIT], _, Dut} :- M := N-1 | Out = [M|T].

R-1 | Out = [K|5], subi(T, R, 5).

comnC[D11T1], [D2IT2], O, 5} :- true |
coml (D1, D2, I, N},
comn{T1, T2, N, S).
comn{[], [0, D, 8) :- true | 5 = D.
comn([], L, D, 3} :=LA=[] 1] 8
comm(L, [J, D, 3y :-LA=1[] 1| 8
.

LU
w

comi(X, %, D, E} :- true | E =

comi(X, ¥, _, E} (=X <Y | E= ‘te¢r,

comi(X, ¥, _, E} (=X *Y | E= "»*,

‘J‘{. ..............................................................................

reall undefined, R, 01, 02, D3} :- true |
D1 = "+, 02 =[], 03 = [].

real(real{s, N, D), R, 01, 02, 03) :- true |
0L =5, 02 =N, 03 = D.

real(N, B, 01, L, 03) :- W 2= 0 |

01 = !41' 03 = []_:, bihrad[]ﬂ. R‘l L:I'
real(N, R, 01, L, 03) :- N < O, M := (CG-K} |
01 = '-', 03 = [1], binrad(M, R, L).

binrad{0, R, Out) := true | Out = [].
othervise.
binrad(N, K, Cut] = K := N/E, M := N mod R |
Gut = [(M|T],
binrad(¥, R, T).

etandardise(real {*+*,[N],[1]), Ans)} := true | 4ns = N.
standardise(real{'-*,[N],[1]), Ans) := F := (0=~N) | Ans = F.
standardiselreal{ S, ¥, []), Ans) :- truse | Ans = undefined.
standardise(reall _, [1.,[1]1), Ans) := true | 4ns = 0.
othervisae,

standardise{Number, &ns) :- true | Ans = Number.



B.4 Semigroup
f‘ ---------------------------- E e T -

Frogram: Semigroup
Author: N. Ichiyeshi

Date: July 28 1988
Hotes:
1. Te run:

T- golll.

the cutput N should be 308,
2. this version does NOT include generators in final count {c.f. Prolns}

____________________________________________________________________ ""‘"""'-""-*j'l
gell) :- true |
generators (Gens),
gol(Gens, Dut),
count (Jut, W).
gol(Gens, Out) :- true |
gen_g({Gens, Gin, Fin, Gout, Fout),
gen_gen{Gens, Gin, NGin},
connect{Gout, Fin),
ends(Fout, _, _. NGin, Gens, Out-[]).
count(L,N} :- true | count(L,0,N}.
count([],M,N) := true | ¥ = N.
count {[X[X=] M N} := M1 := M+l | count{Xs,M1,N}.
L L o e o ol
% g(+#Gin, +Fin, =-Gout, =-Fout, +E)
A
! Gin i input generator stream
% Fin : input filter stream
! Gout ! QUTpUL generator Etream
A Fout : gutput filter stream
¥ E : element (self)
g({gen(X,P,P0}|Gint], Fim, Gout, Fout, E} :- true |
mult{E, X, EX},
PO = [EXIP1],
Gout = [gen(X,P,P1)|Gouti],
glGinl, Fin, Goutl, Fout, EJ.
gilbegin|Gin1l, Fin, Geut, Fout, E} :- true |
Cout = [beginlGouti],
ELGinl, Fin, Goutl, Fout, EJ.
g{lend|Gin1], Fin, Gout, Fout, E) :- true |
Gout = [end|Ginil,
f(Fin, Fout, E).
¥ f{+Fin,-Fout, +E)
3 filters cut E from stveam Fin to give Fout as result
) Fin ¢ input stream of elements to be filterad
h Fout : output stream of elements filtered
¥ E : element (self)
f{[EIFin1], Fout, E) :- ¥ = F | £(Fini1,Foutr, E}.
£([1, Fout, E} :- true | Fout = [7.
othervise.
f{IXIFini], Fout, E) :- true | Fout = [¥|Foutil, f(Finl, Foutl, E).

L ogen_gl+Xs, -G0, -FO, +G, +F)



creates N31.

Xs : list of elements

input EBII erator stream
Fo : ipput filter stream
G ! output generator stream
F : output filter stream

i
(]
o

gen_g([XIXs], GO,FO,G,F) :- true |
£(G0,F0,61,F1, X),
gen_g(Xs, G1,F1,G,F).
gen_g(ll, GO,FO,G,F} :- true |
G

0=4a,

FO = F.
¥ ends(+Fout,+Gout,-Gin,-0Gin, +Gen, -Dut)
!
% Fout : output filter stream ... (NSn*G)\Sn
! Gout © output generator stream ... NSn=G
W Gin : input generator stream
A 0Gin © old lnput generator stream
i Gen : list of original genmerators ... G
! Out : output D-list stream
%
ends([begin.endl_], _, Gin, 0Gin, _, 01-02) :- true | Gin=[], DGin=[], 01=02.
ends([begin, X |Fout2], _, _, 0Gin, Gens, Out) :- X \= end |

gen_gen(Gens,NGind ,NGin},
ends{ [X|Fout2] ,NCin0 ,NGin,00in, Gens, Out).
ends([end|Foutl), Gout, Gin, DGin, Gens, Out) :- true |
connect(Gout, 0Gin),
ends(Foutl, _, _, Gin, Gens, Out).
ends([X|Fouti], Goutr, Gin, DGin, Gens, 01-03) :- X \= begin, X \= end |
D1 = [Xl1023. % ET 3-8-883: output...
g{Gout, Foutl, NewGout, NewFout, X),
ends (NewFout, NewGout, Gin, 06in, Gens, 02-03).

% pen_gen(+Gens, +G0,7G)
h

A creates d-1isT representation of {}#*G (see Notes on Representation).
kA

E Gens : set of generators gi, ..., gk.

% GO-G © d-list to represent the list

% [gen{g1,G10,61), ..., gen(gk,GKO,GK), end]

kA

gen_gen{Gens, 60,8} :- true |

GO = [begin|G1],
gen_genl{Gens, G1,G).

gen_genl([XIXsl, GO,G) :- true |
G0 = [geni¥ ¥, FllG1],
gen_genii{¥s, G1,G).
gen_geni([], GO,G) :- true |
GO = [end|G].

% connect(+G, -F} : connects gen-stiream io filter siream

b

A (see Notes on Hepresentation (3) )

i

3

A G : stream of d-lists representing generated elaments
% 3 : stream of generated elements To be Filtered
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connect{{gen(_,PO,P)IG1], F) := true |

F = PO,
connect(Gi, P}.
connect([begin|Gi]l, F} :- true |

F = [begin|Fi],
connect(G1, F1).

connact([end|G1], F) :- true |
F = [end|G1].
fomult{+X, +¥, -2}
b X S¥ o= [X1, X2, ...]
y Y Y o= [Yi, Y2, ...]
vl z I o= XY = [X1sY1, X2eY2, ...]
%

mult([%|Xs], [¥Y1¥s], Out) :- true |
Out = [Z|Z=],
mik, ¥, Z),
multi{X=s, Y=, Z=).

mule{[D, [0, 2% = true | Z=[1.

i m
! Multiplication Rule for the Direct Product of

I the S-element Bradt Semigroup B2

Y e e
A Bradt semigroup B2 = { 0, e, f, a, b }.

%

% Mulziplication table for B2 :

e

ﬂ o e £ a b

i e e T

e olo o o 0o 0

A e | 0 = O a O

% -3 I S + I S

% aldo G & 0 e

4 10O B O f 0

miQ,_,Z):- true |
mie,0,2):- true |
mif,0,Z2):~ true |
mia,0,2):- true |
mik,0,Z):- true |
mie,e,Z}:= trus |
mif,e,2}:- true |
mia,e,Z):- True |
mib,e,Z}:= true |
mie,f,2):- true | Z=0.
mif,f,2):- true |
mia,f,Z):= true |
mib,f,Z2):- true |
mie,a,2):- trua |
m{f,a,Z):- trus |
mia,z,%):- trua |
mib,a.2):- true |
mie,b,Z):- true |
mif,b,Z):~ true |
mia,b,2):- true |
mib,b,Z}:- tTue |

[ I I I S I S K S T S
[ ) N e S o O R I T Y

o f o i on

% 30%9+4 scluticns. ..
generators (ILY - true |

IL = [



, 0,e,f,b,a, 0,e,f,b,a, 0,e,f,b,a, 0,e,f,a,b,
I 1=

E' frflflf!f: ﬁ,a,ﬂ..a,t. b!b|b|blhp f.f;f.f,fl
, T.7,f,7.f, b,b,b,b,b, a,a,a,a,2a, e,e,8,e,8,

!!!!!!!!



B.5 Queens
B.5.1 AOqueen

Program: N-Queens using Jlaysred-streams
futhor: A. Okumura
Date: June 17 1988

1. To run: 7= ga(M,N).
for example, when input M=8, ocusput N=82 (number of sclutions).
2. This version uses [X|Y] representation of layered-stream.

:= module gueen.
i= public gofZ.

go(M,N} := true | queen(1,M,begin,A), count(A,N).

count{L N} := true | count(L,0,N).
count {[X1%s] ,M,K) :~ M1 := M+l | count(Xs,M1,N).
count{[], M.} :- true | M = N.

gueen(I,N,In,0ut) :- I < N,
I1 := I+1 |
qii,N,In, Mid},
queen(Il, N, Mid, Out).
gqueen(N,N,In,0ut) :- true | lastQ{1,4,In,0ut}.

qtIN,In,0ut) := I =< N,
T1 = I+1 |
filter(In,I,1,0utl),
gqfI1,N,In, Outs),
Out=[[I{0ut1] |Outs].
q({I¥,_,0uz} := I > W | Out = [1.

lastQ(I,N,In,0ut) = I =< N,
I1 = I+1 |
lagtFilter([T],In,I,1,.0ut,0utl},
lastQ(T1,0,In,0utl).
lastQ{I,N,_,0ut} := I » N | Qut = [].

filter(begin,_,..0ut) :- true | Out = begin.

filter{[],_,_,0ut) :=- true | out = [].

filter {[{I1.]|Ins],I.0,0ut) :- true | filter(Ins,I,D,0ut).
filter([[JI_]11Ins],I,D,0ut) :- D =:= I-J | filter{Ins,I,D,0ut).
filter([[JI_]1Ins].I.D,Out) := D =:= J-T | filter(Ine,I.D Out).

othervise.

filter([[J11n1]|Ins]},I1.D,0ut) - D1 := D+1 |
filter(Ini,1.D1,0uti),
filter(Ins,I,D, Duts),
Out = [[J|0uti]louts].

laztFilter{Stack.begin,_,_,5.T) :- true | & = [Stack|T].
lastFilver{Stack,1,_,_,5,T} :- true | 5 = T.
lastFilteriStack,[[I1_]1Ins],I.0,3,T) - tTue | tastFilter{Stack,ins,I1.D,5,T}.

lastFilter(Stack,[[J]_1iIns],I.D,5,T) i= D =:= I-71 |
lastFilter(Stack,Ins,I1.D,5.T).
lastFilter(Stack,[[J1_]|Ins},1,0.5,T) ;= D =:= 3-7 |

lastFilter{Stack,Ins,1,0,5,T).

othervise.

lastFilter{Ztack, ([J|In] |Ins) ,I,0,5.T% - 01 = [+1 |
lastFilter([J|%tack] ,In,I,01,5,53),
lastFilter(Stack,In=s,I.D,55.7).



B.5.2 KEKqueen

Frogram: N-Queens (all-sclutiens AND-parallel)
#duthor: K. Kumon
Date: May 18 1988

Notes:
1. To run:
7= gol(N M) .
for example, when input N=9, output M=352 (number of solutions).

gen{N,L]},
queen(L,[J,01.X.00J.
count (X, M).

queen([PIVU], C, L, 10, I2}:- true |
append(U, C, NJ,
check(L, P, 1, N, L, 10, I1),
queen(lJ, [PIC], L, Ii, 12},
queen([], (I, L, I, 0):- true | I=[L|O].
gqueen([], [_I_], _, I, 0):- true | I=0.

check([], T, D, N, B, I, 0}:- true |
queen(N, [1, [TIB], I, 0).

check([PF{.], T, D, N, B, I, O):- T=:=P+D | I=0.

check([PI_]J, T, D, N, B, I, 0):- T=:=P=D | I=0.

octhervise.
check{[PIR], T, D, W, B, I, 0):= D1:=D+1 |
check(R, T, D1, N, B, I, 0.

gen(N, X :- N»0, M := | % = [NlXs], gen(M, Xs}.
gen(k, %) := N=:=0 | ¥

append ([AIX],Y,Z):= true | Z=[A1Z1], append(X,Y.Z1).
append([J, Y,Z):- true | Z=Y.

count (L N} = true | count(L,0, N}

count (1, M,N} = true | ¥ = K.
count{[X|%s] ,M N} := M1 := K+l | count{Xs.M1,H).

]



H.5.3 KUgueen

‘I!. ————————— R e
Frogram: N-Queens {translated from Prolog MBgqueen)

Author: K. Ueda

Date: May 18 1988

Notes:
1. Te run:

7= golN,M).
for example, when input N=8, cutput is M=%2 (number of solutions).
--------------------------------------------------------- e mmmm s s cacaaaay
go(l,M) - true |

gen(N,L},

gqueen(L,[],'L1" X, [,

count (X, MJ.

gen{N, X} :- N>0, M := N-1 | X = [NIXs]l, gen(M,X=}.
geni{N, X} = N=:=0 | ¥ = [].

eount(L,N) :- true | count{l,Q,N}.
count{[] ,M,N} := true | M = N.
count{[X1Xs] M, N} = M1 := M+1 | count(Xs, M1.K).

queen{[HIT] ,R,Cont ,Rs0,Rs1) - true |
select ([HIT], L2’ (Cont R),’L2’' ,Rs0,Rsl).
aqueen([],R,Cont,Rs0,Rs1) :- true | Hs0 = [R|Rs1].

select (HT,Cont,Conts ,AsC,R=2) :- true |
d1{HT,Cent ,Conte R0, RaL},
d2{HT,Cont ,Conts,Rsl ,R=2).

di{[A|L],’L2'{Cont,R),Conts,R=0,Rsl) :- true |
check(R,A,1,'L2b" {Cont R, 4,L,Conts) el fsll,
d41([7, Cont,Conts,Rs0,Rs1) :- true | RsO=Rsl.

d2([H{T],Cont ,Conte, a0, Rel) :- true |
select(T,Zont, 'L8' (Conts, H) ,Rs0,Rel).
d20[, Cont ,Conts H=0 H={i) :- true | Rs(=R=s1l.

check([], U,N,'L2b’(Cont,R,4,L,Conte) Rs0,Rs1) :- true |
biConts,'L3'{Cont,R,A),L ,Rsd,Rsl).

cheek([H|T],U,N,Cont ,Red, Rel) - H =:= U+l | R=0O=Rs1.

check([HITI,U.N,Cont,Rs0,Rs1) - Il =:= U-N | RsO=Rs1.

cthervise.

check(THIT],U,N,Cont ,Rel Rel) - N1:=N+1 |
check(T,U,N1,Cent As0,Rsl).

bf'LE (Conts, &), Cont ,T,Re0, a1} - true |
biConts.Cent,[AIT] ,Rs0 . Re1).

b{*L2Y L3 (Cont ,R,4),L.Rs0,Rel) - true |
queen{L,[AIR],Cont ,Rs0 Bsi].

11



C Appendix: Sample Cache Simulator Output

In this section listings are given of the cache simulator output Tor the five major beselimarks,
See Section 5.3.3 for an explanation of how to Dterpret this raw data. A single 1400 Tk word
cache (256 colutuns) simulation is shown for each program. The parameters of all simulationsz
are identical and shown ouly for the first benciark., Note that the KL svstem does ot

count META and ETC {miscellaneons) references. If there are no bus collisions, the table is not

ke,
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