TR-421

Performance of Parallel Logic Programming Architectures

E. Tick

September, 1988

€ 1988. ICOT

Mita Kokusai Bldg. 21F 4-28 Mita 1-Chome Minato-ku Tokyo 108 Japan

n63 456-3191 - 5 Tolex ICOT 132964

Institute for New Generation Computer Technology

Performance of Parallel Logic Programming Architectures

E. Tick*
Stanford University
Institute for New Generation Computer Technology
September 25, 1988

Abstract

This report details the research conducted by the author at the Institute of New Generation Computer Technology (ICOT) for the one-year period beginning September 1987. A comparison between committed and non-committed logic programming language architectures was conducted. KL1, a byte-code architecture for Flat Guarded Horn Clauses (FGHC) and Aurora, a byte-code architecture for Or-parallel Prolog were respectively chosen for this comparison. Three types of parallel emulators were used to measure each of these architectures on a Sequent Symmetry host multiprocessor. The measurements were made on a set of benchmarks developed by the author. Timing emulators were used to measure raw speed of the benchmarks to determine relative performances and speedups. Instrumented (high-level) emulators were used to measure gross characteristics of the benchmarks, such as number of procedures calls and number of instructions executed. Instrumented (low-level) emulators were used to measure detailed characteristics of memory referencing and coherent cache performance, such as miss and traffic ratios, The results of this study indicate that many problems are well-suited to Prolog's powerful unification and backtracking mechanism: however, Aurora is limited at the algorithm level by the primary weakness of OR-parallel search: that processes cannot communicate. On the other hand, most problems can exploit dependent AND-parallelism more easily than OR-parallelism, but the inefficiencies of the KL1 model (no backtracking, excessive use of memory) overshadows the benefits of parallelism. There are a class of problems that perform equally well on both architectures and classes of problems that favor one or the other of the architectures. These results indicate that a high-performance system should have backtracking and full unification as well as dependent AND-parallelism.

[&]quot;Supported by NSF Grant No. 1RI-8704576

Contents

1	Intr	roduction	6											
2	Lan	nguages 8												
	2.1	OR-Parallel Prolog	8											
	2.2	AND-Parallel FGHC	10											
3	Arc	hitectures	12											
	3.1	Overview	12											
	3.2	Engine Architecture	12											
	3.3	Binding Mechanism	13											
	3.4	Scheduler	14											
	3.5	Storage Model	16											
	3.6	Garbage Collection	18											
4	Lite	Literature Review 19												
	4.1	KL1 Research Papers	19											
	4.2	Aurora Research Papers	21											
	4.3	•	24											
5	Met	thodology	24											
	5.1	Timing	26											
	5.2	High-Level Instrumentation												
	5.3	Low-Level Instrumentation												
		5.3.1 Cache Protocol												
		5.3.2 Shared Memory Models												
		5.3.3 Sample Cache Simulator Output												
	5.4	Benchmarks												
6	Arc	hitecture Models	43											
•	6.1	Kld												
		6.1.1 State Space												
		6.1.2 Meta-Control												
		6.1.3 Unification and Suspension Stacks												
		6.1.4 Spatial Locality												
		6.1.5 Timing												
		6.1.6 Direct Write to Goal and Communication Areas												

	6.2	Aurora	47
		6.2.1 State Space	17
		6.2.2 Warm Start	17
		6.2.3 Argonne Scheduler Sleep Time	47
		6.2.4 Direct Write to Control Stack	49
7	Tin	nings and High-Level Characteristics	49
8	Me	mory Referencing Characteristics	56
	8.1	Memory References	57
	8.2	Bus Traffic	63
9	Cac	che Performance	66
	9.1	Calibration	67
	9.2	Results	67
10	Cor	nclusions	70
11	Fut	ure Work	76
12	Ack	cnowledgements	77
A	App	pendix: Prolog Benchmarks	78
	A.1	Triangle	78
	A.2	D = 1	81
		D1	86
	A.4	Semigroup	93
		Queens	
		A.5.1 HKqueen	97
		A.5.2 MBqueen	98
		A.5.3 IBqueen	99
В	Арр	pendix: FGHC Benchmarks	00
	B.1	Triangle	
	B.2	Puzzle	
	В.з	Pascal	
	B.4	Semigroup	
	B.5	Queens	
		B.5.1 AOqueen	10

		B.5.2 KKqueen	
		B.5.3 KUqueen	121
С	App	pendix: Sample Cache Simulator Output	122
L	ist	of Figures	
	1	Examples of Prolog Procedures	10
	2	Examples of FGHC Procedures	11
	3	Parallel Logic Programming Architecture Study Methodology	25
	4	Timing Diagram of Low-level Instrumented System on Eight PEs	28
	5	Special Lock Macros for Cache Instrumentation	30
	6	Raw Speed of Benchmarks on One PE	53
	7	Raw Speed of Benchmarks on Eight PEs	53
	8	Relative Speedup of Benchmarks on Eight PEs	54
	9	Absolute and Relative Speedups on 1 8 PEs	54
	10	Memory Referencing Characteristics (by Area) of KL1 and Aurora	61
	11	Memory Referencing Characteristics (by Operation) of KL1 and Aurora	62
	12	Comparison of Bus Traffic for Different System Models	69
	13	Aurora Cache Performance: Miss and Bus Traffic Ratios	71
	14	KL1 Cache Performance: Miss and Bus Traffic Ratios	72
	15	Aurora Scheduling Overheads: Two and Eight PE Comparison	73
	16	10-Queens Comparison: Miss Ratio	74
L	ist	of Tables	
	1	Shared Memory Multiprocessor Bus Models (units in bus cycles)	32
	2	Cache Sizes Simulated (in bits)	38
	3	Short Summary of Benchmarks	41
	4	Short Sleep Time Sensitivity Analysis	50
	5	Speedups of FGHC and Prolog Benchmarks	51
	6	High-level Characteristics of Benchmarks	55
	7	Memory Referencing Characteristics of KLI: Raw Data	58
	8	Memory Referencing Characteristics of Aurora: Raw Data	59
	9	KL1 % Memory References by Area and Operation	60
	10	Aurora % Memory References by Area and Operation	60

11	KL1 % Bus Traffic by Area	1
	Aurora % Bus Traffic by Area (* = 2 PEs)	
	Bus Traffic Characteristics (by Area) of KL1 and Aurora	
14	Calibration of KL1 Simulators Using BUP	8

1 Introduction

With the commercial success within the past four years of shared-memory multiprocessors (to the extent of making the front page of the NY Times[42]), the time has finally come to implement high-level parallel programming languages. Several parallel Lisp and Prolog efforts, by far the most popular targets, have been underway in various universities and research organizations for some time. The need for high-level languages cannot be stressed enough. Even with a sophisticated tool set, such as the monitor-based tools described in Lusk[32], procedural programming (e.g., in C) is difficult and error-prone. The family of parallel logic programming languages derived from Prolog, and Prolog itself, offer much higher-level programming, protecting the programmer from the machine and reallocating the job of extracting parallelism and synchronizing parallel processes from the programmer to the system.

Note that although the above goals of high-level parallel language programming are often touted, the realities of implementation may cause the designers to mislay their initial goals. Of course there is no point to designing a parallel system that cannot achieve speedup. However, more strongly, as Lusk et. al. [33] claim:

"The bottom line for evaluating a parallel system is whether it is truly competitive with the best sequential systems. To achieve competitiveness, it is necessary to make a parallel logic programming system with a single processor execution speed as close as possible to state-of-the-art sequential ... systems, while allowing multiple processors to exploit parallelism with the minimum of overhead."

Of the various sources of parallelism present in logic programs [17] AND- and OR-parallelism (or their combination) offer special promise and are currently being considered in several proposed parallel logic programming systems (e.g., [48, 3, 16, 66, 33, 20, 28]). Efficient techniques for implementing OR-parallelism have been proposed and are currently under development by various groups. AND-parallelism, although offering advantages such as being able to exploit parallelism in determinate programs and inherent efficiency, has until recently been difficult to implement due to the overhead involved in handling shared variable bindings and because of its interaction with "don't know" non-determinism. Consequently, many proposed parallel logic programming systems that exploit this type of parallelism do not implement the conventional "don't know" non-deterministic semantics of logic programs [31] and implement committed-choice (i.e., "don't care") non-determinism instead [48].

This study compares the design and execution performance of two parallel logic programming architectures, both of which have been implemented by independent groups [45, 33] on Sequent shared-memory multiprocessors[47]. Aurora is an OR-parallel Prolog system retaining the full semantics of Horn Clause logic (i.e., backtracking non-determinism). KL1 is an AND- parallel FGHC system that is a committed-choice architecture (i.e., no backtracking). Although the performance measurements presented here do not compare favorably with C—our feeling is that in their current forms, these systems execute at least 10–50 times slower than equivalent programs written in C—we doubt very much that large parallel programs can be written in C with the same ease. Compiler technology is expected to bridge some of this gap, i.e., current logic programming compilers still lag behind procedural language compilers.

A high-performance programming system enables the development of powerful (parallel, memory efficient, declarative, fast) algorithms, as well as the efficient execution of the architecture. The former without the latter results in a top-heavy system, e.g., GHC as compared to FGHC. In this case, the language is too complex to implement efficiently. The latter without the former results in the opposite; a language easily implemented, but inherently weak, e.g., FGHC as compared to Prolog. Note that the examples of GHC, FGHC and Prolog given above are opinions not just of the author, but of the designers of the languages themselves. It has been said that committed-choice languages are just "machine languages" with which to build more complex languages. A potential pitfall of this approach is the loss of efficiency due to levels of meta-interpretation and/or translation. This is an old argument about "semantic gap" [36], i.e., that the user language and quachine architecture should be as "close" as possible for efficient execution. Within the past ten years however, research in reduced instruction set computers (RISCs) has shown that semantic gap can be closed quite effectively by optimizing compilers, instead of powerful architectures. It remains an open question as to whether highlevel languages can be efficiently implemented on top of committed-choice languages in any manner. On the other hand, it should be noted that Prolog may fall prey to the "top-heavy" problem stated above. The Aurora system measured here is the initial stage of a more general AND-OR-parallel system called Andorra [4]. The overheads of exploiting both types of parallelism may negate much of the gain. It is relatively clear, however, from the results of this study, that full unification, backtracking and dependent AND-parallel (stream communication) synchronization are all necessary in a high performance logic programming system.

Architectures are compared in this study at various levels of abstraction, in an effort to give successively refined models of performance. At the top level, raw execution timings of parallel emulators running on a host multiprocessor are presented. Speedups measured on various benchmarks are compared and analyzed. At the next level, dynamic architecture execution characteristics are presented, such as memory references made and procedure calls executed. These measurements give more insight into the algorithm differences of the benchmarks and power of the languages and architectures. At the third level, cache referencing characteristics are presented, such as miss ratio and traffic ratio. These measurements, collected on instrumented versions of the emulators, help understand the strengths and weaknesses of the storage models

of the architectures. From all three levels of analysis combined, a picture emerges of how ORand AND-parallel systems, as well as noncommitted-choice and committed-choice languages compare in terms of of program performance.

The paper is organized as follows. The Prolog and FGHC languages are briefly reviewed in Section 2. The corresponding Aurora and KL1 architectures are described in Section 3. In Section 4, a review of the relevant published literature is given. In Section 5, the methodology of this study is outlined, including detailed descriptions of the parallel cache simulator and the benchmarks measured. In Section 6 the Aurora and KL1 architectures are discussed once again, this time with respect to the measurement tools previously described. Whereas Section 4 describes the architectures as they were designed, Section 6 describes the architectures as they were modeled. Sections 7–9 present the main body of this study: the statistical measurements of memory performance. Finally, in Sections 10–11, conclusions are given and future research plans are outlined.

2 Languages

In this section, two parallel logic programming languages are introduced at a fairly elementary level. The languages, Prolog and FGHC, can be viewed as representing a far larger family of languages based on their paradigms. Prolog is the language base of the Aurora [33], ANDORRA [4]. PEPsys [66, 11], and RAP [28] systems, to name a few. FGHC is closely related to Flat Parlog [13, 14] and (somewhat less related to) Flat Concurrent Prolog [48].

For a good introductory book about Prolog please refer to Sterling and Shapiro [50], Bratko [5], and Clocksin and Mellish [15]. Maier and Warren [34] is a good introduction to the implementation architecture of Prolog. Gregory [27] gives a coherent introduction to committed-choice languages, specifically Parlog.

2.1 OR-Parallel Prolog

The OR-parallel Prolog language discussed in this paper is essentially SICStus Prolog [9] with user annotations to denote procedures that are permitted to be executed in OR-parallel search. Prolog is a logic programming language based on Horn clauses of the form:

$$H : -B_1, B_2, ..., B_n$$
.

where H is the head of the clause and the goals B_i comprise the body of the clause. The head and goals may each contain zero or more arguments. Arguments are terms, for example variables, integers, atoms, or complex terms such as lists and structures (which may be nested). A variable is an unbound value cell which is defined within the scope of the clause only (c.f., there are no free variables as in Lisp, there are no global or non-local variables as in Pascal). Note that head arguments correspond to formal parameters in a procedural language, and body goal arguments correspond to passed parameters.

Procedures are composed of sets of one or more clauses with the same name and argument number (arity). A procedure is non-determinate if more than one clause can successfully execute for a given set of arguments. A Prolog procedure call involves unifying the goal (the caller) with a clause head (the callee). If no clause head can unify, the call fails. Failure returns control not necessarily to the caller, but to the last choice point, i.e., non-determinate procedure with alternative clauses (this is called backtracking). Prolog is applicative in that a variable can be bound at most once within scope with determinate goals, but if the scope contains non-determinate goals, backtracking can reset the binding of a variable.

SICStus OR-parallel Prolog allows the user to annotate any procedure with a parallel declaration. If the procedure is non-determinate, such annotation permits the system to fork independent processes for each alternative clause at the procedure's choice point—this is called a branch point. One can envision the creation of a "process tree" consisting of nodes and arcs. A node with more than one branch is a branch point. Nodes with only one branch may or may not be branch points—the scheduler may decide to execute potentially parallel code sequentially because of scheduling heuristics. Note that solutions to the program are found at the leaves of the tree. A description of this abstract model is given by Warren[64] and reviewed in Section 4.2.

As a trivial example of Prolog programming, two procedures are shown in Figure 1. The important point of this example is that gen is determinate. generating a list of integers from 0 to N. whereas del is nondeterminate, generating multiple solutions. For example,

produces the answers;

X=1, T=[2,3]

X=2, T=[1,3]

X=3, T=[1,2]

The unroll procedure is an unrolled version of del that can spawn four children per branch point. The benchmarks presented in this study typically use procedures like del and unroll to exploit all OR-parallelism in the program.

¹The special builtin predicate 1/0 (called cut) is used to remove all alternatives up to and including the procedure in which it lexically appears. In other words, any and all choice points, including the choice point (possibly) created for the procedure containing the cut, are removed. Cut is primarily used, in a somewhat unclean programming style, to obviate the need for checks (guards) in alternative cases. Cut also causes immediate removal of choice points, thus increasing the efficiency of storage management.

```
gen(0, []) :- !.
gen(N, [N|X]) :- M is N-1, gen(M,X).
:- parallel del/3, unroll/3.
del([X|T], X, T).
del([H|T], X, [H|R]) :- del(T, X, R).
unroll([X|T], X, T).
unroll([A,X|T], X, [A|T]).
unroll([A,B,X|T], X, [A,B|T]).
unroll([H|T], X, [H|R]) :- unroll(T, X, R).
```

Figure 1: Examples of Prolog Procedures

2.2 AND-Parallel FGHC

Flat Guarded Horn Clauses (FGHC) [58] is also a language based on Horn clauses. An FGHC clause is of the form:

$$H: -G_1, ..., G_m | B_1, B_2, ..., B_n$$
.

where H is the head of the clause, G_i are guards, "|" is the commit, and B_j are the body goals. In FGHC, as in Prolog, procedures are composed of sets of clauses with the same name and arity. Unlike Prolog, there are no non-determinate procedures. Execution proceeds, like Prolog, by attempting unification between a goal (the caller) and a clause head (the callee). If unification succeeds, execution of the guard goals are attempted. In FGHC, these goals can only be system-defined builtin procedures, e.g., arithmetic comparison. If the guard succeeds, the procedure call "commits" to that clause, i.e., any other possibly good candidate clauses are dismissed. If the head or guard fails, another candidate clause in the procedure is attempted (if all clauses fail, the program fails). In FGHC there is a third possibility however: that the call suspends. This is described in detail below.

FGHC restricts unification in the head and guard (the "passive part" of the clause) to be input unification only, i.e., bindings are not exported. Output unification can be performed only in the body part (the "active part"). These restrictions allow AND-parallel execution of body goals and even OR-parallel execution of passive parts during a procedure call (the implementation discussed herein executes passive parts sequentially and executes body goals in a depth-first manner). Synchronization between processes is inherently performed by the requirement that no output bindings can be made in the passive part. If a binding is attempted, the call potentially suspends. If none of the clauses succeeds, and one or more potentially suspend, then the procedure call suspends (possibly on multiple variables).²

²In the dialect of FGHC used in this study, there is a special clause called **otherwise**. Any number of otherwise clauses may appear in a procedure, each appearing as if a unit clause, but actually belonging to the

```
gen(N, X) :- N=:=0 | X = [].
gen(N, X) :- N>0 | X = [N|Xs], M := N-1, gen(M,Xs).

append([A|X],Y,Z):- true | Z=[A|Z1], append(X,Y,Z1).
append([],Y,Z):- true | Z = [X|Zs], merge(Xs, Ys, Zs).
merge([X|Xs], Ys, Z) :- true | Z = [Y|Zs], merge(Xs, Ys, Zs).
merge([], Y, Z) :- true | Y=Z.
merge(X, [], Z) :- true | X=Z.
```

Figure 2: Examples of FGHC Procedures

When any of the variables to which an export binding was attempted are in fact bound (by another process), the suspended call is resumed. These semantics permit stream AND-parallel execution of the program, i.e., incomplete lists of data can be streamed from one parallel process to another in a producer/consumer relationship. For example, when a stream runs dry, the consumer receives the unbound tail of a list and suspends. When the producer generates more data, the consumer is resumed and continues processing the transmitted data. In the implementation discussed herein, these data structures all reside in shared memory.

The FGHC abstract execution model is a reduction mechanism wherein the initial user query (a set of goals) is reduced to the empty set. A single goal is reduced by unifying it successfully with a clause and then replacing the goal with the body goals of the matching clause. Reductions of goals can proceed in any order. Superimposed on this model is a suspension mechanism that causes goals to suspend and resume. A "process tree" model could be developed for FGHC as in OR-parallel Prolog, but has not been because it is less useful (the main backbone of the Prolog tree are branch points, of which there are none in FGHC). Such a model might be useful however for scheduling, to help determine the granularity of goals. The FGHC architecture studied here uses a simplistic "pool of goals" model [44].

As a trivial example of FGHC programming, three procedures are shown in Figure 2 that are used later in this paper. gen corresponds to the Prolog procedure in Figure 1. append is determinate list concatenation, merge nondeterminately joins two streams (the first two arguments) into one (the last argument), merge shorts itself when it receives a [] from either input stream. This procedure is useful for routing messages in an object-oriented programming style.

procedure where they lexically appear. If none of the clauses proceeding an otherwise succeed, and one or more clauses can potentially suspend, then the procedure call suspends. Only if all the clauses proceeding an otherwise fail, will the remainder of the clauses (up to the next otherwise) be checked, otherwise is primarily used, in a somewhat nuclean programming style, to obviate the need for guards, thus speeding-up the program. Its effect can be significant.

3 Architectures

An architecture is an instruction set, storage model, and execution mechanism implementing a language. The OR-Parallel Prolog architecture (Aurora[64, 33]) and the FGHC architecture (KL1[25]) are called "high-level" architectures because their instruction sets are more abstract than those of conventional computers. Both of these architectures have been implemented on the same general-purpose host (the Sequent Balance and Symmetry multiprocessors[47]) via emulation. Although these implementations of both systems are preliminary and not of commercial quality, they represent two of a very recent group of true-parallel, high-level language implementations.

The architectures of these two systems are summarized in this section. Concentration is placed on those parts of the architecture that radically effect performance. Not all of these aspects come into play in the benchmarks studied here. For instance, although garbage collection (GC) is extremely important in both systems when running large applications, GC is not a significant performance factor here. Other aspects, such as compiler optimizations, are also extremely important, and unfortunately unequal between the two systems. A group of such differences affect system performance in unison. Thus separation of individual effects and system calibration are difficult. The complexity of these systems must be kept in mind when interpreting the results presented in later sections.

3.1 Overview

3.2 Engine Architecture

The instruction set design of an architecture determines the instruction execution times, the memory bandwidth required, and the compiler optimizations allowed. The Aurora system uses Carlsson's (SICStus) version of the Warren Abstract Machine (WAM)[61] instruction set. Modifications were made to implement binding, dereferencing, and trailing with respect to binding arrays (see Section 3.3). The KL1 system uses Kimura's version of the WAM, called KL1-B[30]. KL1-B is both simpler than the WAM because backtracking has been removed, but also more complex than the WAM because both suspension and locking mechanisms have been integrated. Both systems use the compilation technique of clause indexing.

The compilers of the two systems differ in sophistication. The Aurora compiler generates optimized code for shallow backtracking, i.e., backtracking among the clauses of a procedure. The KL1 compiler generates somewhat round-about code with redundancies in order to reduce the locking interval on a variable being bound (c.f., Foster's compiler for Flat Parlog[21]). Maybe the greatest difference is in the instruction formats: Aurora uses a large set of "fused" WAM Warren. The KL1 compiler used in this study has few fused instructions (indexing instructions may be considered fused, since they are more sophisticated than those in the WAM). Thus KL1 programs tend to execute many more instructions than Aurora programs (interestingly, KL1 code locality is much higher than Aurora code locality, as discussed in Section 8.2).

3.3 Binding Mechanism

In parallel systems, bindings are the means by which processes communicate among themselves and with the outside world. In Aurora, parallel processes executing a non-determinate procedure produce independent solutions, i.e., they can potentially produce conflicting, but valid, bindings. To implement multiple bindings, the Aurora system uses a binding array per processor wherein bindings to variables shared among branches reside (i.e., bindings to variables that may potentially differ among the processors). In fact, Aurora implements two types of binding arrays: local and global. The local array is used for variables on the environment stack, and the global array is used for variables on the heap. Both areas are local to the PE, i.e., are not shared by other PEs. As discussed in Warren [64], binding arrays keep dereferencing and (un)binding operations constant time operations. However, binding arrays impact task-switching time because the overhead of "spawning a process" is the work required changing the values in the binding array to reflect the new process's location (in the process tree).

The binding array is a stack of values, the growth of which follows the movement of a worker around the OR-tree. An unconditional binding, i.e., a binding to a non-shared variable, need not use the binding array mechanism and is performed directly on the variable cell itself. If the binding is conditional, i.e., "if there is a branchpoint at or below the point the variable is created and above the point at which it is bound" [64], it is trailed (both variable cell address and value) and the bound value is written to the binding array cell, not to the variable cell itself. Initially, a variable cell points into the binding array with an "unbound" tag. During conditional binding, the variable cell remains pointing to the array, and only the array cell is modified. Dereferencing in Aurora is therefore straightforward: if the tag is "unbound," then the corresponding binding array cell is dereferenced. Of course, each worker has its own array and all array's have a one-to-one correspondence for each variable encountered.

During failure (upon backtracking), the trail is popped in order to unbind all spurious bindings. The trail address entry points to the variable, which if conditional, points to the binding array. The trail entry also holds the value of the binding. This is used during task-

³The terms worker, process, processor, and PE are used interchangeably and informally in this paper. Both the Aurora and KL1 systems studied here allocate a single process per processor. In the Aurora literature, this is called a worker.

switching as follows. When an idle worker moves up the OR-tree, it de-installs bindings from the trail in the same manner as if it failed back to destination node. When an idle worker moves down the OR-tree, it installs bindings from the trail. The portion of the trail delimited by the start node and the destination node is read. For each trail entry read, the value must be installed in the worker's binding array. Note that OR-tree operations such as these must be protected by locks. In Aurora, workers move incrementally up and down the tree, locking and (de)installing binding for each node separately. Note that locking is not necessary for (un)binding or dereferencing variables.

In KL1, AND-parallel execution implies that all processes have equal authority to bind any variable at any time. Thus the binding problem becomes a locking problem. The binding (in the active part of a clause) of variables (passed from the passive part of the clause) must be locked. This is related to code generation because to reduce the locking penalty, somewhat roundabout code is generated to minimize locking times (as mentioned in Section 3.2).

Dereferencing in KL1 involves following a pointer chain to a value, possibly an "unbound" or "hooked" value cell. In some cases, safe dereferencing is necessary, i.e., the pointer chain must be locked as it is traversed in order to prevent another PE from racing toward binding it. This is implemented in a straightforward way by locking and then unlocking each pointer as it is traversed.

In all cases of KL1 dereferencing, the initial variable cell may be overwritten with its dereferenced value. Overwriting speeds-up subsequent dereferencing, but more importantly, reduces sharing of data among PEs. This optimization cannot always be performed in Prolog because of backtracking constraints. In both Prolog and KL1, dereferencing chains are very short, almost always immediate or single referenced data [56, 43]. In the case of sequential Prolog, the overwriting optimization does not pay off; however, in KL1 it reduces bus traffic by decreasing reads to shared data on the heap.

Binding a KL1 variable must always be protected by a lock to prevent another PE from also binding it. Variables are never trailed however because there is no backtracking.

3.4 Scheduler

The process scheduler must be efficient in two major respects. First, the work must be evenly distributed among the processors (good load balancing). Second, the overhead of process spawning/suspending/resuming must be low. If only large-granularity goals are spawned on different processors, both of these criteria will be met. Whereas goals are stored in a tree structure in Aurora, in KL1 all goals are treated equally, and stored in goal-lists local to each process. Both the Aurora and KL1 research groups have explored various scheduling mechanisms[49, 7, 8, 53]; however, the measurements presented in this paper were made on the

following fixed systems.

Aurora scheduling is performed locally by the process with a distributed "tree-walking" algorithm (the "Argonne scheduler" [7, 64]). An idle worker (one that succeeded or failed, and therefore has no further work) traverses the OR-tree, constrained by several heuristics, searching for work. This traversal is in the public section of the tree, above all the private sections where the busy workers are executing in their WAM engines. The separation of public and private sections is necessary to keep efficiency high by obviating the need for locking in the private section. Since idle workers cannot travel down into private branches, no locking is necessary and the WAM engines are as efficient as in sequential Prolog. In certain cases however, an idle worker communicates with a busy worker by raising a (soft) interrupt flag that is checked once per reduction in the engine.

The idle workers traverse the tree incrementally, i.e., locking one node at and time and (de)installing bindings for that node to regain consistency. Note that locking the node prevents other workers from walking by in either direction. Traversal must be kept to a minimum because although an idle worker has free CPU cycles, traversal causes cache interference and increases the bus bandwidth requirement. Therefore, the top-most node of a private section is periodically released to the public section. This implies that new work is created closest to where the idle workers are positioned.

An idle worker positioned at a public node must make a decision about what to do. All the information necessary to this decision is given in the current node and the nodes surrounding the current node. If the node has as yet unexecuted alternatives, the idle worker creates a branch for one and begins execution. If the node has no further alternatives, but one of its children does, the idle worker moves down to that child. If the node and its children have no further alternatives then the idle worker moves up, etc. There are several possibilities specified in this "move to work" logic, and completeness is guaranteed. Unexecuted alternatives may appear, however, at any time in the private section. Thus the default action of an idle worker, when all other options look pointless, is to sleep for a bit (see Section 6.2.3) and then try to make a decision again.

The Argonne scheduler performs quite well for programs with an abundance of OR-parallelism, as reported by Butler et. al. [7] and in this report also. However, as shown here, when parallelism is scarce, the scheduler tends to eat up many bus cycles in the "move to work" loop described above. The fundamental problem is how to automatically regulate the number of active workers, e.g., running on two PEs in one portion of a program, and then eight PEs in another. Shen and Warren also point this out from higher-level simulations[49]. The problem appears to be much worse than they anticipated however, affecting even small numbers of PEs.

In KL1,⁴ scheduling is performed in a semi-distributed manner. An idle process (one with an empty goal-list) requests work from a busy process, via a (soft) interrupt. The interrupt flag is checked once per reduction. A pointer to a goal available to be executed is passed back to the idle PE. Thus the goal-lists are virtually independent, but in actuality, become intertwined as execution proceeds.

Scheduling an idle KL1 worker has none of Aurora's overheads of (de)installing bindings, locking nodes, making private nodes into public nodes, etc. Any worker can execute any goal at any time. The problem in KL1 is one of granularity: it is not efficient to give an idle worker a trivial goal to execute because the goal will be quickly completed and then the idle worker must issue another interrupt.

An idea of compile-time granularity analysis was developed for KL1 wherein weights are calculated as estimators of the relative granularity of procedures in an FGHC program[57]. The idea is based on the scheduling heuristics used in the Argonne scheduler. Preliminary experiments show that the method does not benefit FGHC as much as Prolog because FGHC often has critical timing dependencies that can incur large synchronization overheads if tampered with. In fact, it appears that for committed-choice languages on shared memory multiprocessors, reducing suspension overheads is more important for performance than improving scheduling.

3.5 Storage Model

The critical issue however, is the ability of WAM's parallel offspring (Aurora and KL1) to retain an efficient storage model. All parallel computer architectures execute on some organization of processors coupled with memories through an interconnection network. Because the memories necessary to hold the working set of large application programs are not large enough to be integrated with the processors, and because processors need to communicate (to varying degrees) to execute a program in unison, memory/network bandwidth inevitably becomes a bottleneck to performance. Thus the exploitation of locality, both spatial and temporal, becomes critical to the architecture.

Memory management is important to retain the spatial locality needed to make efficient use of local caches. In addition, efficient memory management creates less garbage and therefore garbage collection is incurred less often. In Aurora, a group of intertwined stacks (called a stack-group) is assigned to each PE. An Aurora stack-group is similar to that of the WAM, containing a control stack (choice-points), local stack (environments), global stack (heap), trail, and binding array(s). The stacks are the physical storage areas comprising the virtual OR-tree. Consider branch-points (nodes) as the most obvious case. The nodes of the OR-tree

⁴Again, this description applies to the system measured in this study—other KLI systems may differ.

are "flattened" into a set of control stacks, one per PE. In other words these "cactus" stacks logically form the OR-tree. The other stack types in the group are related to the control stack in the same manner as in the sequential WAM.

One difference between Aurora and WAM is the potential creation of holes or ghost nodes [64, 28]. Holes may form in the stacks when a parent stack spawns a child stack, and the child then spawns a grandchild on the parent's stack. The frequency of this type of garbage is not currently known. Aurora can recover this garbage when/if natural backtracking reclaims stack space around the hole. Another difference is the size of stack frames in Aurora and the WAM. Aurora branch-points are larger than WAM choice-points (contain six additional entries), containing information necessary to manage OR-parallel branches. As previously mentioned, the trail is also bigger with double word entries.

The Aurora local and global stacks are accessed in much the same way as WAM. During execution in the private part of the OR-tree, these stacks and the trail are accessed in a WAM-like manner, offering high locality. In addition, the binding arrays are also accessed, most likely in a more random manner. Note however that the binding arrays are purely local to the PE and are not shared. The local and global stacks and trail, although used locally, may be read from other PEs (e.g., during dereferencing). During a task switch, the top of the local and global stacks are allocated to a different branch of execution in the OR-tree. Thus locality is somewhat lessened.

The Aurora control stack is accessed in a more random fashion because when a worker becomes idie, it must search the control stacks for work. This occurs in the public portion of the OR-tree, and involves complex scheduling benristics to determine where the idle worker should search. In general, control stack referencing is expected to have little locality and a high degree of sharing among PEs. In addition, as the worker traverses the tree, the trail is used in an equally disjoint manner to (de)install bindings in the binding array(s).

In KL1, each processor has a storage group consisting of a heap, goal record list, suspension record list, and communication area. The lists are allocated from a larger group of free-lists, split among the processors to avoid contention. The heap is used to store all values, atomic and structures. A goal record corresponds to an environment in the WAM; however, all bindings are made to the heap to facilitate deallocation of the goal record. A suspension record is a far simpler (two word) structure necessary to manage synchronization. When output unification is attempted in the head of a clause, the variable in question is pushed onto a suspension stack and the next clause is attempted. If none of the clauses of the procedure succeed, then the procedure call is officially suspended. The suspension stack is popped and each variable is made to point ("hooked") to a newly created suspension record. The suspension record points to the suspended goal (procedure call). When/if the variable is bound, the hooked goal is resumed.

The suspension stack is not considered a major storage area in the architecture because it rarely grows large (just a few entries—it is similar in status to the unification stack or PDL of the WAM). Finally, the communication area is used to pass messages from an idle PE to a working PE, requesting work.

Goal records are accessed for the most part in a single-write, single-read manner. This corresponds to Warren's "goal-stacking model" for Prolog [62]. A goal is reduced to a clause body which replaces it in the goal list. Thus each goal is actually written and read just once, and not kept for future reference like a Prolog environment. The goal list is accessed in a first-in-last-out (FILO) manner. Locality is thus high and sharing low except if spawning is frequent.

When a goal is spawned, the goal is simply rewired from one PE's goal list to another PE's goal list. This saves copying, and on a shared memory organization is the lowest cost method of task switching. However, this method implies that if goal spawning is frequent, spatial locality is destroyed. This is similar to the problem in Aurora: if task spawning is frequent, i.e., OR-parallel goals have too fine granularity, then many child nodes must be created at great cost with almost no computational benefit. Thus Shen suggested a threshold heuristic (see Section 4.2). In the KL1 architecture such a heuristic is not used (although related ideas have been examined by the author [57]). In any case, Aurora is different in that spawning a task involves creating a new branch, and that branch physically resides in the stack-group of the worker. In KL1, the spawned goal physically resides wherever the goal record was allocated from a free-list.

The KL1 heap is accessed as in Prolog; however, there is no backtracking to automatically reclaim heap space. Thus the heap referencing marches monotonically through the allocated area until garbage collection occurs. The suspension area is randomly accessed, but frequency of access should be low in most programs. The communication area is accessed in a single-write, single-read manner. The messages are sent mainly when seeking work and when resuming a goal on another PE.

In general, KL1 storage management is simpler than Aurora's, but the KL1 model creates garbage at a significantly faster rate, as discussed below.

3.6 Garbage Collection

All languages that dynamically create structures require some form of garbage collection (GC). In Aurora, the WAM automatically recovers memory upon backtracking, i.e., when searching for all solutions to a non-determinate problem, memory used to explore bad paths is easily recovered. However, the determinate portions of programs can still produce garbage (in the form of temporary data structures needed to get from one intermediate point to another.

and then discarded). There is no explicit GC for determinate garbage in the Aurora system measured in this study.

FGHC generates more garbage than does Prolog because OR-parallel search is unwittingly simulated by the architecture[59] which therefore cannot automatically recover memory upon backtracking. Taking another view, because there is no backtracking, logical unification is incomplete, i.e., it cannot be undone (via the trail). Thus the construction of a solution to a problem in FGHC must frequently copy data structures. Prolog, on the other hand, can avoid copying by rebinding the same logical variable many times. With shared logical variables, certain algorithms are extremely efficient in memory usage and execute time (e.g., register allocation or resolving labels in compiled code [60, 41] and constraint problems—see **HKqueens** and **Puzzle** in this study).

Various methods of GC are currently being explored by ICOT[37, 26, 12]. These methods are beyond the scope of this paper and will not be discussed. The KL1 system described in this paper uses sequential "stop and copy" GC only. However, for the benchmarks studied, GC is not a significant factor.

4 Literature Review

In this section, the published literature related to this study is examined. These papers fall into two approximate categories: the work done at ICOT on performance measurement of stream AND-parallel architectures, and the work done at Manchester University and Argonne National Laboratories on performance measurement of OR-parallel architectures.

There are many other papers available related to committed-choice architectures (e.g., FCP and Flat Parlog abstract machines) and non-committed-choice architectures (e.g., RAP and PEPsys abstract machines). However, the two architectures chosen for this study, KL1 and Aurora, alone are reviewed. Many of the research results concerning these two architectures can be directly related to the other models.

4.1 KL1 Research Papers

Matsumoto [35] characterizes the behavior of a coherent cache design specialized for KL1 execution. He measured one benchmark, **BUP** (Bottom-Up Parser) executing unrealistic and
small input data. He used a "psuedo-parallel" KL1 emulator to produce an address-trace file
for later input to a cache simulator. The emulator round-robin scheduled processes, switching each reduction. Thus the measurements do not accurately reflect real locking behavior.
Matsumoto's primary result is that the cache optimization of a "direct write" operation (that
avoids fetching a block from memory, for example to be used when creating a structure on

the top of the heap), saves 31% of the total required bus bandwidth of the program. Similar optimizations (read-purge and read-buffer cache operations) for the goal and communication areas saved an additional 6% of the bus cycles. Thus using direct write for the heap alone offered 84% of all savings, and therefore in this study, for KL1, direct write is used only for the heap. As is discussed in Section 9.1, the real parallel simulator used for this study gives more accurate timing and shows lower suspensions for **BUP** than measured by Matsumoto. The primary effect of this reduction is to increase the relative weight of goal and communication traffic, and the relative importance of the read-purge and read-buffer optimizations.

Matsumoto's paper is a good introduction to the cache protocol measured in this study also. He discusses tradeoffs in cache organization, such as number of sets and line size. These issues are not investigated in this study, rather we defer to Matsumoto's suggestions of four sets and four word lines.

Nishida [38] presents measurements and analysis of the multiple reference bit (MRB) incremental garbage collection method [12]. He measured the BUP benchmark previously mentioned⁵ executing on another "psuedo-parallel" emulator developed specifically for MRB studies. MRB garbage collection (MRB-GC) concerns the heap only (the goal and communication areas can be incrementally reclaimed as noted by Matsumoto[35]). Nishida's main result is that MRB-GC reduces heap bus traffic significantly for a few PEs, and then loses its ability with increasing numbers of PEs. The reason given is that MRB-GC causes cache blocks to be shared, thereby increasing the frequency of cache-to-cache invalidations with increasing PEs. On eight PEs, Nishida's data indicates that MRB-GC reduces heap bus traffic by about 60%. Scaling this savings by the expected percentage the heap contributes to bus traffic in BUP. 26–44% (see Section 9.1), we get a savings of 15–26%. On 12 PEs, the effect of invalidations becomes pronounced, and the savings decreases to about 7–12%. In all these cases, the traffic savings is significant. Unfortunately, MRB was not implemented in the parallel emulator used in this study, and therefore comparisons with Nishida's work cannot be undertaken.

Taki [53] presents measurements of two 8-Queens (FGHC) programs running on the Multi-PSI V1 multiprocessor. The purpose of his study is to analyze inter-PE communication costs on a distributed KL1 multiprocessor. The benchmarks incorporate user-defined pragma to allocate the goals to specific PEs (varied from 1-6). The paper is an interesting introduction to the problems involved in the communicating clusters of the PIM [25]. However, no results are given estimating the performance or communication costs of real application programs.

Sato [44, 45] describes the parallel KL1 cmulator (also used in this study) and presents measurements of its execution of a set of benchmarks. The papers present a good overview of

⁵The **BUP** program measured by Matsumoto finds all solutions for parsing a single complex sentence. The **BUP** program measured by Nishida was modified to parse ten independent sentences concurrently.

the KL1 architecture, its instruction set and storage model. In [44], two distribution methods are compared: random (upon procedure call, the called goal will automatically be thrown to a random PE) and on-demand (an idle PE will ask for a goal to execute). Both schemes use pragma, although defined differently than Taki (above). Sato's main result is that on-demand distribution is better than random distribution for two benchmarks: 8-Queens and BUP. Maybe more interesting is the difference between the two benchmarks given on-demand distribution. More realistic in modeling real applications than Queens, BUP's percentage idle time is 17 times larger than Queens'. BUP's distribution ratio (percentage goals thrown to other PEs) is 31 times Queens'. These differences indicate that any parallel performance measurements of Queens will be misleading at best.

Sato [45] extends his measurements to include Quick-sort. Prime, and Maxflow[52]. These additional benchmarks have little speedup (using the Sequent Balance multiprocessor, a speedup of 8 on 16 PEs). Sato's main result is that the most important factor degrading system performance is idle time, followed by number of suspensions. Locking and inter-PE communication have minimal effect.⁶ The result that idle time is most critical to program performance implies that the KL1 system has low overhead in exploiting parallelism. This also restates two tautologies. Programs with little parallelism get poor speedup. Programs with sufficient parallelism require a fair and efficient load distribution method. Within the benchmark suite Sato measured, the distribution ratio varied from 1.7% to 6.7%, a factor of four. The suspension ratio (suspensions per reduction) varied from 0.0 to 0.4. Thus the expected ratios of real application programs are unknown. In addition, the program with the least speedup, Maxflow, had one of the highest distribution and suspension ratios. This implies that the on-demand distribution is not efficient for Maxflow, and as Sato points out, more efficient scheduling mechanisms must be studied. In the the study presented here, suspension ratios vary from 0.0 to 0.09.

A collection of FGHC programs is given in Takagi [52]. Of the 16 programs, limited evaluation measurements are give for three of them. None of the evaluation was done on a parallel system. One of the programs, **Pascal**, is used in a modified form as a benchmark in this study.

4.2 Aurora Research Papers

An introduction to OR-parallel computation and the Aurora system in particular are given by Warren [63, 64] and Lusk et. al.[33]. Warren [63] discusses alternative designs for OR-parallel execution of Prolog. He analyzes several schemes: the "Argonne model" [6, 40] utilizing a "favored binding" optimization and hash binding tables, the "SRI model" utilizing binding

⁶Note that Sato [45] measured inter-cluster communication, in contrast to Taki's measurements [53] of intracluster communication.

arrays, and various other models. The conclusion reached is that perhaps an "SRI-Argonne model" is best; however, no hard data is presented. Since that time, Shen and Warren [49] and Disz et. al. [19] did extensive measurements and found that the "favored binding" optimization was not particularly effective. Therefore, later designs [64, 33], are based on simple binding arrays only.

Shen and Warren[49] present measurements and analysis of the Argonne model. They simulated the execution of 20 benchmarks, all small except for CHAT [65]. A psuedo-parallel simulator was used, where the time step was one reduction. The maximum size benchmark studied was 3662 reductions (c.f., the minimum size OR-parallel Prolog benchmark studied here is 33,595 reductions). Shen draws many interesting conclusions about OR-parallel execution, that have since steered the design of Aurora. There was limited OR-parallelism in the benchmarks studied, suggesting that limiting the number of PEs was most cost-effective. The "favored binding" optimization was found to be inefficient and therefore Aurora did not adopt the idea. Work distribution strategies were briefly examined and the scheme of spawning the highest choice point" in the OR-tree was found to match a simple method of spawning the first choice point created (FIFO). Aurora chose a variation of the former strategy. Shen also suggests placing a constraint on spawning choice points whereby a threshold number of reductions must first be made before the choice in enabled to spawn. The threshold attempts to discriminate between long and short branches eminating from the choice point. Aurora adopted this idea.

Disz et. al.[19] present timing and high-level measurements of OR-parallel Prolog benchmarks, measured on a real-parallel implementation of the Argonne model. Two of benchmarks studied are too small to use for cache studies. Another, **Semigroup**, is large enough and is analyzed here. Disz discusses the "favored binding" optimization in detail and analyzes its performance. In addition, the paper concludes that neither OR-parallelism or independent AND-parallelism [18], by itself, is sufficient for high performance systems. This conclusion is reenforced by a conclusion here that neither OR-parallelism or dependent AND-parallelism, by itself, is sufficient.

Warren [64] gives a more abstract view of OR-parallel computation in terms of an OR-tree. The nodes of the tree correspond to a task (a set of goals, clauses and bindings) that needs to be reduced. A node is reduced ("extended") into a new node below it where one of the goals is replaced by the body of a clause which it matches. If multiple matching clauses exist, a node may have multiple children. This type of node is called a branch-point and corresponds to sequential Prolog's choice-point. The execution of an OR-parallel program consists of extending the root task (the user query) until all branches in the tree are generated. Branches with a leaf

⁷By "spawning a choice point" we mean allowing an idle worker to execute an alternative branch from the choice point.

node containing an empty goal list represent solutions. Of course, multiple solution branches may exist.

Warren describes optimized operations on the abstract tree to manage its size. These operations, "dieback," "contraction," and "straightening," have correspondences with sequential Prolog's backtracking, WAM's trust, and cut, respectively. In any case, the key point about the tree is that descendant nodes of an ancestor can share (in a read-only fashion) all variables (and structures) inherited from above. This is the basic idea behind binding arrays (see Section 3.3 of this paper). Warren's paper [64] can be considered a blueprint for the Aurora system.

Lusk et. al. [33] present a summary of the Aurora OR parallel Prolog system. This paper is basically an updated version of [64] including some preliminary timing and high-level measurements. Five benchmarks (Queens, Salt & Mustard, CHAT, and Tina) were measured. Speedups of up to 14 on 16 PEs (Encore Multimax) are shown. It is noted that Aurora is 25% slower than SICStus Prolog from which it is derived, which is in turn twice as slow as Quintus Prolog[1]. These factors, in addition to the difficulty multiprocessors are having keeping pace with sequential microprocessors, are stated as the reasons that "truly competitive bottom-line performance" is not yet in sight. If however these results are compared to the published KL1 results. Aurora better achieves this goal. One of the purposes of this study is determine why Aurora is better achieving this goal. Is it because of more advanced implementation technology, fundamentally lower parallel overheads, or greater "semantic potency" than KL1?

Butler et. al. [7] present a summary of the "Argonne scheduler" used in the Aurora system (this is one of two alternatives currently implemented. The other is the "Manchester scheduler" written by A. Calderwood). Butler's paper is primarily concerned with the ramifications of implementing full Prolog in OR-parallel—specifically how to finesse side-effects by scheduling around them (note that benchmarks with side-effects are not studied here). The Argonne scheduler works in conjunction with a WAM engine for each worker (PE) in the system. At any point in time the worker is either busy (in the engine) or idle (searching for work or resting in the scheduler). The details of the scheduler algorithm are given by Butler and reviewed in Section 3.4. Butler shows relative speedups of 7.1, 6.6, and 7.8 on a Sequent Balance for the Salt & Mustard. Zebra and Turtles benchmarks respectively. However, also given is an example of a degenerate program that gets little speedup because of incompatible scheduling protocols. That example and two examples given in this study indicate that the Argonne scheduler is more sensitive to programs that do not suit it, than is the simple KL1 scheduler.

In as yet unpublished works, Calderwood [8] and Szeredi[51] present a great wealth of high-level data measured from a large group of Aurora benchmarks. Calderwood analyzes the performance of his own Manchester scheduler, in comparison to the Argonne scheduler.

⁵The Aurora system measured in this study performs dieback and contraction but not straightening.

4.3 Summary

The various papers reviewed in this section are at the very edge of a new field of research in parallel logic programming. It is therefore not surprising that the papers show little rigor in the performance analysis given. Relative speedup may be used to illuminate an architecture in a friendly light. Inefficient, but highly parallel, benchmark programs may be used to illustrate efficient scheduling. Few papers make any realistic comparisons between systems (Foster and Taylor [21] is one exception).

The purpose of the research study presented here is to correct some of these deficits. A multilevel performance analysis is given of both dependent-AND and (independent) OR parallel logic programming systems. The architectures are compared empirically at both high (e.g., number of reductions) and very low (e.g., bus traffic ratio) levels, for the same benchmark programs. Although this study fails in several respects—most notably in that large application programs could not be measured—it is hoped that this paper encourages members of the logic programming community to fairly, quantitatively, and accurately access the value of their systems.

5 Methodology

The Aurora and KL1 system architectures were measured and analyzed empirically by studying the results of executing a set of benchmark programs. The benchmark programs were collected and written to solve a given set of problems in both Prolog and FGHC. In most cases, a group of programs were written for a given problem, and compared for their speed. Through this process of refinement, the benchmark programs presented represent well-written relatively efficient programs.

The benchmarks were translated by compilers for their respective languages, and the resulting object files were executed by abstract machine emulators. These emulators run on a Sequent Symmetry multiprocessor and are truly parallel. These tools are illustrated in Figure 3. The basic Or-parallel Prolog emulator is the Aurora system written by various researchers at the Swedish Institute of Computer Science (SICS), Manchester University and Argonne National Laboratories (ANL). The Aurora compiler [9] was written by M. Carlsson of SICS. The basic FGHC emulator is the KL1 system written by M. Sato of ICOT. The KL1 compiler was written by Y. Kimura of ICOT. In Section 7 it is shown how the compilers compare in terms of quality of code produced, and how the emulators compare in terms of execution efficiency. Overall the two systems are closely calibrated and therefore allow a fair comparison of both raw timings and instrumented simulations.

Each architecture is emulated at three different levels of abstraction:

Figure 3: Parallel Logic Programming Architecture Study Methodology

- Timing—measure the raw execution time of the architecture, e.g., to determine speedups.
- 2. **Instrumented** (high-level)—measure the high-level execution characteristics of the architecture, e.g., number of procedure calls.
- Instrumented (low-level)—measure the low-level memory and cache referencing characteristics, e.g., traffic ratio of a shared-memory multiprocessor model.

These three levels, each a successive refinement of the previous, are now described in more detail.

5.1 Timing

Measuring raw execution time of an emulator for a given architecture on a host machine permits a gross comparison of systems performance. In one sense, raw timings are the absolute measure of an architecture. However, the high-level logic programming architectures discussed in this paper are not well-mapped onto current shared memory multiprocessor hosts. For example, the host used in this study—the Sequent Symmetry—uses a write-through cache to ensure cache coherency. Other types of broadcast copyback caches would reduce bus traffic and perform more efficiency. Such a handicap affects different architectures to varying degrees. Other mismatches involve optimizations beneficial to the specialized architectures that are absent from the general-purpose host. For example, Aurora Prolog architecture, based closely on the Warren Abstract Machine (WAM), can benefit greatly from a small set of shadow registers for implementing shallow backtracking[56]. Likewise, KL1 can benefit greatly from hardware assisted incremental garbage collection based on the MRB method [12], hardware assisted metacontrol, etc. Both architectures can greatly benefit from an increased word size, so that a tag can be included. In addition, KL1 requires a lock bit and possibly MRB within each word.

These differences between the host and the emulated architecture lessen the importance of raw timing measurements. However, for gross comparison the raw timings are valuable. Often timings are used to prove the ability of the architecture to exploit parallelism efficiently. The Holy Grail in this game is "linear speedup," i.e., the ability to execute twice as fast on two PEs, four times as fast on four PEs, etc. Speedup however is a deceptively complex statistic. A common definition, referred to in this study as relative speedup is the ratio of the execution time of the program/architecture running on multiple PEs to the execution time of the same program/architecture running on a single PE. In this definition, all the overheads of parallel execution remain in the single PE timing, so that good speedups are somewhat easier to achieve.

Another definition of speedup, referred to in this study as absolute speedup is the ratio of the execution time of the program/architecture running on multiple PEs to the execution time of the fastest sequential program/architecture running on a single PE. In this case, the single PE measurement does not contain the overhead of parallel management, nor does the algorithm necessarily even support parallelism. Using this definition, good speedups are difficult to achieve.

In this study, measurements are presented for both relative and absolute speedups for Aurora and KL1. For Aurora, the SICStus V0.6 Prolog system is used as a baseline with which to measure absolute speedup. For KL1 no related sequential architecture exists. Therefore an artificial architecture was created, from the parallel KL1 system, wherein most overheads of parallel management were removed. These overheads include locking/unlocking and complex dereferencing.

5.2 High-Level Instrumentation

The Aurora and KL1 systems have been instrumented for high-level statistics by P. Szeredi of Manchester University[51] and M. Sato of ICOT. The instrumentation in both cases consists of software counters inserted throughout the system to collect event tallies. These counters do not greatly disturb parallel execution and therefore present a fairly accurate picture of program characteristics. The dynamic statistics (of interest to this study) collected in these systems are listed below.

- reductions: number of procedure calls executed.
- · instructions; number of abstract machine instructions executed.
- backtracks: (Prolog only) number of clause failures causing execution of an alternative clause.
- suspensions: (FGHC only) number of procedure calls forced to suspend (due to synchronization).

5.3 Low-Level Instrumentation

The coherent cache simulator used in this study was written by A. Matsumoto of ICOT. The coherent cache protocol used in this study is documented in [35]. In that study however, a psuedo-parallel cache simulator was used. Here, the simulator has been extended to run in parallel, i.e., when integrated into a system such as Aurora or KL1, there is one cache process (simulating a local cache) for each system process (emulating a worker). When running on Symmetry, each worker/cache pair executes on a dedicated host processor. The caches communicate via shared memory. To perform the coherency protocol, caches must synchronize

Figure 4: Timing Diagram of Low-level Instrumented System on Eight PEs

when making a simulated bus request. This is to ensure that requests for shared blocks are properly detected by snooping caches. This synchronization is implemented on Symmetry by an m_sync() library call (barrier synchronization). The effect of this call is to force all PEs to wait inside the cache simulator, just before the code which simulates a bus request, for all PEs to arrive. When the last PE arrives at this location, they may proceed.

Figure 4 illustrates the execution of the cache simulator interacting with an abstract emulator on eight PEs. Time proceeds vertically. A bar is shown for each PE representing the type of work it is executing: waiting at the m_sync() for barrier synchronization, waiting for a bus lock (necessary to avoid races when processing the bus requests), executing the bus request, and executing inside the emulator. The top of the diagram illustrates the most common case when there is no bus collision. A bus collision occurs when two or more PEs make a bus

request for the same address. After each m_sync(), each PE checks a common bus request vector and determines independently if a bus collision has occurred. If there is no collision, the cache simulators proceed in parallel as illustrated. If there is a collision, all cache simulators attempt to lock the simulated bus. This action sequentializes the bus operations; however, as each completes, the corresponding condator is reentered and continues executing (see the lower portion of Figure 4). Because bus collisions are very infrequent, the condation proceeds efficiently.

The barrier synchronization inside the cache simulator has many implications. First, it artificially forces the program to execute in a manner that retains the timing of the non-instrumented system. In other words, one PE is not allowed to execute a series of reductions while other PEs are slowed down due to instrumentation. In previous simulations of KL1, psuedo-parallel simulators where used, wherein a process switch was taken at each reduction. Such simulations retained only a coarse-grain approximation to the original parallelism in the program. In addition, such round-robin task switching disallows the accurate measurement of locking and other time critical events. Ideally the ultimate in accuracy is a system that synchronizes at each simulated machine cycle. This was not implemented because the overhead of such frequent synchronization is excessive. Instead, we chose a synchronization granularity between a reduction and a machine cycle: a bus request. This choice also fits nicely into the requirements of the cache simulator. Even this compromise has a high overhead in terms of simulation time. The fully instrumented systems measured in this study executed at about 50 100 times slower than corresponding non-instrumented systems.

Another important implication of barrier synchronization is the potential is creates for deadlock and livelock. The instrumented systems do locking in order to synchronize parallel processes within their architecture model. For Aurora, this locking is coarse-grain, at the level of locking a node in the OR-tree representing the problem space. The node is usually locked for a significant period of time while a worker process accesses and/or updates the status of the node in an effort to begin executing that branch of the tree. For KL1, locking is fine-grain, at the level of locking a single variable. The variable is usually locked only long enough to check its tag and then possibly bind it.

In both cases, the abstract-level locking and the cache-level barrier synchronization can interfere with each other to cause deadlock and livelock. If an abstract-level lock is set by a PE, which subsequently does a simulated cache reference that causes a simulated bus request, that PE will hang, waiting for synchronization. However, another PE, at the abstract emulation level, may require the abstract-level lock previously set. The second PE will hang waiting for the lock to be freed. Thus deadlock cusues, Livelock can occur when one PE is waiting in the cache simulator when another PE becomes idle and enters the scheduler looking for work to do.

```
typedef struct {
    int
            data:
    short
            tag;
    char
             safe:
    slock_t lock;
    } abstract_word;
                             \{(x)->safe=0; m_sync();\}
#define MY_UNLOCK(x)
#define MY_LOCK(x)
                      for(;;){
                         if ((x)->safe == 1) {
                             m_sync();
                             continue;
                              } else {
                             S_LOCK(&((x)->lock));
                             if ((x)->safe == 0) (x)->safe = 1;
                                  else {
                                  S_UNLOCK(&((x)->lock));
                                  continue;
                             S_UNLOCK(&((x)->lock));
                             break;
                      }
```

Figure 5: Special Lock Macros for Cache Instrumentation

In general, the schedulers of these systems are quite complex, and make scheduling decisions is based on many factors. It can occur that because one or more PEs are hung at a level lower (the cache simulator) than that understood by the scheduler, a confused decision is made to essentially do nothing. Thus some PEs are hung in the cache simulator and others are looping aimlessly in the scheduler—livelock.

In general, deadlock can be prevented by never placing a call to the cache simulator inside a lock interval in the emulator. Livelock can be prevented by carefully placing m_sync()s inside the scheduler idle loops. This method of deadlock prevention is not difficult for a system like KL1 with short lock intervals that are easy to spot inside the system code. However, for systems like Aurora, this method is almost impossible to implement.

In both systems, a different deadlock prevention method is used here. A new set of lock/unlock macros has been defined in C that is used to "protect" the lower-level Symmetry lock/unlock library functions. These macros force a PE waiting for an abstract-level lock to issue m_sync()s. These m_sync()s will kick other PEs out of their calls to the cache simulator, and keep the emulation progressing. The macros used for KL1 are defined in Figure 5 (Aurora macros are similar, but used only for nodes in the OR-tree). The abstract machine word is defined first. It consists of a data and tag field, followed by two lock bytes. The lock byte is the official Symmetry lock. The safe byte is a soft-lock permitting control over the busy-wait.

5.3.1 Cache Protocol

The cache modeled in this study is a copyback broadcast cache with write allocation (if a write request misses in the cache, the target line is fetched from memory and allocated in the cache). The broadcast protocol, described in detail in Matsumoto [35], involves a five state automata: EM (exclusive modified), EC (exclusive clean), SM (shared modified), S (shared), I (invalid). In addition, a lock directory is assumed, separate from the cache directory. The lock directory is managed in three-states: L (locked), LW (waiting for lock), E (not locked). The cache protocol is based most closely to Bitar's model [2], i.e., modifications to shared data cause invalidations to be broadcast to other caches. In addition, when transferring a dirty line from one cache to another, shared memory is not updated.

Matsumoto argues why the invalidation protocol is best for the KL1 architecture. KL1 sharing of data is very fine-grained, usually the communication of a logical variable between a single producer process and a single consumer process. Thus broadcast of updated values is not necessary, i.e., shared data is rarely reused over and over. In Aurora, data sharing has vastly different characteristics. The node tree is shared by all processes, who make frequent accesses. Thus a update broadcast protocol seems to be a better choice for Aurora than an invalidation protocol. Unfortunately, the cache simulator available for this study does not implement update broadcast, and so invalidate broadcast was used for all simulations, including Aurora.

The memory operations simulated in this study are a subset of the operations offered by the cache simulator. These are referred to as: R,W,DW,LR,UW,U. Read (R) and write (W) have obvious meanings. For locking, LR is lock and read and UW is write and unlock. In addition, simple unlock is used (U). The KL1 system makes extensive use the optimized UW operation. This is necessary because locking is very fine-grained. The Aurora system uses only the standard unlock (U) operation. The UW optimization is not necessary because locking is coarse-grained.

The final operation used in this study is DW, the direct write operation. Direct write is effectively a memory write; however, if the write misses in the cache, the cache will not fetch the target line from memory. Instead, the line is allocated in the cache without initialization. Direct write is used when creating new data objects on the top of a memory stack of some sort. Since the architecture knows a priori that the memory will be overwritten, fetching of lines from memory can be avoided, and the cache allocated directly. This optimization is used in both the KL1 and Aurora systems.

It should be noted that the cache simulator offers other optimized operations that are not used in this study. These operators were designed specifically for KLL and are not especially useful for Aurora. Matsumoto claims that all optimizations combined, excluding DW afford only a 6% reduction in bus traffic. Furthermore, his measurements indicate that DW alone offers a 31% reduction in bus traffic. These characteristics are specific to KLL, where most bus cycles

BUS-WIDTH	1	1	1	1	1	2	2	2	2	2
MEM-ACC-TIME	8	7	6	5	0	8	7	6	5	0
FROM-GM-SOUT	13	12	11	10	10	11	10	9	8	6
FROM-GM-ONLY	13	12	11	10	5	11	10	9	8	3
MCTOC-SOUT	10	10	10	10	10	6	6	6	6	6
MCTOC-ONLY	7	7	7	7	7	5	5	5	5	5
CCTOC-SOUT	10	10	10	10	10	6	6	6	6	6
CCTOC-ONLY	7	7	7	7	7	5	5	5	5	5
SOUT-ONLY	5	5	5.	5	5	3	3	3	3	3
INV-ONLY	2	2	2	2	2	2	2	2	2	2

Table 1: Shared Memory Multiprocessor Bus Models (units in bus cycles)

are due to heap referencing, a result of a free-list style of memory management. Characteristics of Aurora are different—the major contributer to bus traffic is the code area and the control stack. Because Aurora memory management is based on stacks (c.g., free-lists in KL1), the DW operation can be used without the help of other special operations to reduce the memory bandwidth requirement.

5.3.2 Shared Memory Models

The cache simulator utilizes an internal model of a shared memory multiprocessor to calculate the bus traffic generated by the benchmark program. For each of various bus operations, a certain number of bus cycles is required. The requirement is based on the assumed bus width, the main memory access time, and the sophistication of the bus manager. In Table 1, ten alternative models are presented, differing in these parameters. At the top of the table, bus widths of one and two words are listed, as well as main memory access times of zero and 5-8 cycles. The 5-8 memory access time models use a simple bus model wherein bus operations cannot be overlapped in any way. The zero memory access time models are special in that they estimate the performance of a sophisticated bus that can overlap operations (thus the effect of waiting to access memory disappears). Listed in Table 1 are the number of cycles required for each bus action. FROM-GM-SOUT is fetching a block from global memory while swapping out a block from cache. FROM-GM-ONLY is fetching a block from global memory only without swap-out. Similarly, MCTOC is a cache-to-cache transfer of a modified block. CCTOT is a cache-to-cache transfer of a clean block. SOUT-ONLY is a swap-out of a block from cache to global memory. INV-ONLY is an invalidation of one cache by another.

A major point to note is that as memory access time is decreased, the bus operation cycles do not decrease proportionally. This is because only FROM-GM operations access the memory, and even those operations have overheads that overshadow the access time. As will be seen in the measurements of KLI where cache-to-cache transfers are heavy, faster global memories do not significantly decrease bus traffic. In contrast, by increasing bus width, the bus operation cycle times in Table I decrease significantly. This observation is also supported by measurements presented in later sections.

5.3.3 Sample Cache Simulator Output

A discussion is now given explaining the output of the cache simulator. For this discussion, a sample of the output is presented, broken down into its constituent parts and annotated. This is the output of a test program running on the Aurora OR-Parallel Prolog emulator. The header below gives this information, including additional cache parameters: eight processing elements (PEs), 64 columns, four sets per column, four words per block (line), one sub-blocks per block. In the simulations analyzed in this paper, only number of columns was varied from this organization.

```
Aurora OR-parallel Prolog

8 PE -- c64,s4,w4,t1

GVNPTCL 00000001, GVNGMOD 00000003, BYTOWD 00000002, AURORAM 00000001

GVNPE 00000008, GVNSET 00000004, GVNCOL 00000040, GVNBLK 00000004

GVNSECT 00000001, BUSWIDT 00000001, MACCTIM 00000008, CTCXTIM 00000001

INVTIME 00000002, GOALRPS 000000068, GOALCYC 00000032
```

The next table shows the breakdown of memory references to different areas in the abstract machine. Note that for Aurora, UW is not used.

		COMMAND (A)		NODE	LBA	GBA	TRAIL	TOTAL
GVNCMD	HEAP	INST	ENV				1138577	7492277
R	1908656	2184800	163550	1461802	33103	601789		
W	13010	0	12746	910418	30806	586681	1127825	2681486
DW	153204	0	0	0	0	0	0	153204
LR	0	0	0	3545	0	0	0	3545
UW	0	0	0	0	0	0	0	0
U	0	0	0	3545	0	0	0	3545
TOTAL	2074870	2184800	176296	2379310	63909	1188470	2266402	10334057

The next table shows the breakdown of bus operations to different areas in the abstract machine. The three bus operations are: fetch (F), fetch and invalidate (FI), and invalidate (IV). Fetch is used for instance on a read (R) miss. Fetch and invalidate is used for lock and read (LR) operations and write (W) misses. Invalidate is used for a write (W) or lock and read (LR) cache hit on shared data.

In the data below, we see that trail referencing has excellent spatial locality, missing less than 1% in the cache. In contrast, instructions appear to have the least locality, missing over 5% of its references. We also see that references to nodes favor write misses whereas references to the heap and to environments favor read misses. Note that the control stack (nodes) exhibits a high invalidation (IV) count, indicating (as one would expect) that sharing of the OR-tree is common among the PEs. In contrast, the heap and environment stacks show almost no sharing.

TABLE ISSUED-BUS-COMMAND(AREA)											
BUSCMD	HEAP	INST	ENV	NODE	LBA	GBA	TRAIL	TOTAL			
F	63630	121159	5543	11392	1055	7978	11196	221953			
FI	183	0	29	17709	296	6826	8738	33781			
IV	33	0	5	1490	0	0	267	1795			
TOTAL	63846	121159	5577	30591	1351	14804	20201	257529			

The previous three bus commands are decomposed into bus operations dependent on the state of the data (if in the cache). The following table gives the breakdown of the bus operations across the abstract memory areas. Thus we see for instance that cache-to-cache copy without swap-out (CCTOC-ONLY) for instruction references is the most frequent operation. Some of the operations have no counts because their corresponding cache commands are not used (these are the optimizations mentioned earlier). For this program, we see that the instructions generate the most bus operations.

TABLE BUS-USE-TYPE(OPERATION)									
CYCLE: PATTERN	HEAP	INST	ENV	NODE	LBA	GBA	TRAIL	LATOT	
13:FROM-GM-SOUT	844	1786	452	3541	149	2546	3293	12611	
13:FROM-GM-ONLY	4034	5018	4958	18933	1202	12258	15552	61955	
10:MCTOC-SOUT	96	0	5	139	0	0	34	274	
O7:MCTOC-ONLY	395	0	61	2746	0	0	284	3486	
10:CCTOC-SOUT	14234	30950	13	139	0	Q	122	45458	
07:CCTDC-ONLY	44210	83405	83	3603	0	0	649	131950	
05:SOUT-ONLY	814	0	0	0	0	0	0	814	
O5:SOUT-EXTRA	0	0	0	0	0	0	0	0	
O2:INV-ONLY	33	0	5	1490	0	0	267	1795	
O5:FLUSH-BACK	0	0	0	0	0	0	0	0	
05:FLUSH-EXTRA	0	0	0	0	0	0	0	0	
TOTAL	64660	121159	5577	30591	1351	14804	20201	258343	

The following table multiplies the previous bus operation counts by cycle times. The cycles times, listed at the left-hand-side of the table, are derived from a simple model of shared memory. The model shown below assumes an eight cycle shared memory access time and a one word wide bus. Although this specific model may not be the most realistic, this table gives insight into the trouble spots of the architecture. For example, instructions and heap are far and away the biggest burners of bus bandwidth. In addition, the cache-to cache transfers are by far the most frequent operations.

TABLE BUS-USE-TYPE(CYCLE)										
CYCLE: PATTERN	HEAP	INST	ENV	NODE	LBA	GBA	TRAIL	TOTAL		
13:FROM-GM-SOUT	10972	23218	5876	46033	1937	33098	42809	163943		
13:FROM-GM-ONLY	52442	65234	64454	246129	15626	159354	202176	805415		
10:MCTOC-SOUT	960	0	50	1390	0	0	340	2740		
07:MCTOC-ONLY	2765	0	427	19222	0	0	1988	24402		
10:CCTOC-SOUT	142340	309500	130	1390	0	0	1220	454580		
07:CCTOC-ONLY	309470	583835	581	25221	0	0	4543	923650		

OS:SOUT-ONLY	4070	0	0	0	0	0	0	4070
05:SOUT-EXTRA	0	0	0	0	0	0	0	0
O2: INV-ONLY	66	0	10	2980	0	0	534	3590
O5:FLUSH-BACK	0	Ö	0	O	0	0	0	0
O5:FLUSH-EXTRA	ő	0	0	0	0	0	0	0
TOTAL	523085	981787	71528	342365	17563	192452	253610	2382390

The following table displays the total number of cache operations (right hand column), broken down into hits and misses. The first four columns of the table further break down the cache hits by the state of the hit data: exclusive (clean EC, and modified EM) and shared (clean SC, and modified SM). Note that unlocks (U) rarely miss, as we expect. Note that DW rarely misses, i.e., the line is already allocated in the cache. Therefore direct write has little beneficial effect in this program.

TABLE PREVIOUS-STATE(AREA) ALL.: ALL-AREA										
CPUCMD	EC	EM	SC	SM	T-HIT	T-MISS	TOTAL			
R	233619	3484591	3538973	13141	7270324	221953	7492277			
W	23618	2739897	638	497	2764650	31733	2796383			
DW	164	34094	4	13	34275	4015	38290			
LR	164	673	510	150	1497	2048	3545			
UW	0	0	0	0	0	0	0			
U	310	2380	1	853	3544	1	3545			
TOTAL	257875	6261635	3540126	14654	10074290	259750	10334040			

The following table breaks down all cache misses (right-hand column) into where the data is retrieved from. Recall the protocol is a write allocate policy. The areas of retrieval are from another cache (FRCACHE) and from shared memory (FROM-GM). Cache retrieval is further broken down (first two columns) into FRMC (from modified cache) and FRCC (from clean cache).

We observe for this benchmark that most missed lines are retrieved from another cache instead of shared memory, by a ratio of over 2:1. In addition, almost all cache-to-cache transfers are clean. Therefore organizations should concentrate on making clean cache-to-cache transfers fast, possibly at the expense of memory-to-cache transfers.

TABLE MISS-ANALYSIS(AREA) ALL.: ALL-AREA										
CPUCMD	FRMC	FRCC	FRCACHE	FROM-GM	T-MISS					
R	3760	175467	179227	42726	221953					
ER	0	0	0	0	0					
RP	0	0	0	0	0					
W	0	57	57	31676	31733					
D₩	0	0	0	4015	4015					
LR	0	1884	1884	164	2048					
UW	0	0	0	0	0					
U	0	0	0	1	1					
TOTAL	3760	177408	181168	78582	259750					

The following table gives a summary of the effectiveness of the DW operation. The GIVEN count is the number of direct writes requested by the PEs. The ISSUED count is the number of DW operations with a line address, i.e., an address that is a multiple of a cache line. The ISSUED

count is the actual number of cache line allocations saved by the DW optimization. Other DW requests are simply treated as normal write (W) requests. The final two rows in this table give the number of ISSUED DW operations that did (not) require swap-out. These statistics show that direct write is saving about 4000 line transfers from shared memory. Given the total number of misses (about 260,000), direct write reduces memory bandwidth requirement very little.

```
TABLE DW(DIRECT-WRITE)-ANALYSIS(AREA) ALL.: ALL-AREA
GIVEN 153204
ISSUED 38291
WITHOUT-SWAP-OUT 3201
WITH-SWAP-OUT 814
```

The following table calculates the miss ratio of the simulation. The definition of miss ratio is somewhat complicated by the direct write operation. The definition described here is due to Matsumoto. Direct writes that miss in the cache do not require fetching the target line from memory. The allocation of the target line may require however the swap-out of a resident line. For the calculation of miss ratio, direct write misses without swap-out (DW-WITHOUT-SOUT) are considered as hits. Other direct write misses (with swap-out) are considered as misses. This is a somewhat conservative definition of miss ratio. The second row gives the total number of hits and the third row gives the total number of misses. Hit and miss ratios are then calculated by dividing these totals by the total number of memory references. We observe again that for this program, direct write has almost no effect on reducing miss ratio.

```
TABLE CACHE-HIT-RATIO(AREA) ALL.: ALL-AREA
3201 DW-WITHOUT-SOUT
10077491 T-HIT + DW-WITHOUT-SOUT
256549 T-MISS - DW-WITHOUT-SOUT
97.52 [%] HIT-RATIO
2.48 [%] MISS-RATIO
```

The following three tables give low-level characteristics of cache operation. The first shows a snapshot of the cache directory (what states) at the end of program execution. The second shows a snapshot of the cache directory (what memory areas) at the end of program execution. The third table shows the occurrence of bus collisions in the cache simulator. Recall that the cache simulator synchronizes PEs before every simulated bus operation. A bus collision is a simulation cycle wherein two or more PEs perform an operation on the same address. To cope with this situation, some of the PE requested operations must be transformed to retain consistency. For example, if two PEs both issue a write request to the same address, the PE that is serviced first by the simulator will issue an IV (invalidate) bus command, invalidating the other PE. The second PE also issued an IV command, but this is no longer correct. The IV command is transformed by the simulator into an FI (fetch and invalidate) command. We observe no collisions in this benchmark, indicative of little sharing.

TABLE CACHE EC 190	-DIRECTOM EM 455	RY-STATE SC 1202	Snapshot SM 72	-after C O	-execut: 1 129	ion UNUSED O	TOTAL 2048	
TABLE CACHE HEAP 427	-DIRECTO INST 417		napshot+ NODE 468	after- LBA 29	executio GBA 180	on TRAIL 368	INVALID 129	TOTAL 2048
TABLE BUSCM HEAP O	D-IS-CHA INST O	NGED-BECA ENV O	USE-OF-B NODE O		LISION LBA O	GBA O	TRAIL	TOTAL O

The following portion of the cache output is devoted to the bus traffic vatio (BTR). BTR is defined as the total number of bus cycles (BC) divided by the total number of memory references (MR):

$$BTR = BC/MR$$

Thus BTR has the units cycles/reference and is not rigorously a "traffic ratio". This definition is useful to compare different systems. Unfortunately, in itself, BTR does not indicate the reduction in bandwidth requirement afforded by a cache. The reader may wish to use the following statistic:

$$BTR' = \frac{BC}{T_a \cdot MR}$$

where T_a is the memory access time. Alternatively, the reader may wish to use Matsumoto's bus usage ratio (BUR) statistic [35]:

$$BUR = \frac{BC \cdot T_{bus}}{I/P}$$

where I is the total number of executed instructions and P is the gross execution rate in units of instructions per second. These three statistics give differing views of the same thing. In this study, we use BTR only because our main objective is to compare two systems. We informally refer to the BTR as a "traffic ratio."

Below, several BTRs are calculated for alternative organization models. The results for this program show that bus width is the most important factor in determining traffic ratio. Memory access time is rather unimportant because as shown in earlier statistics, most traffic is cache-to-cache. This shows that relatively slow shared memories can be used without detrimental effect, but that high bus bandwidth is required. In addition, the sophisticated (overlapped operation) bus model (MEM-ACC-TIME = 0) offers a significant reduction of traffic with respect to the non-overlapped model. This gap is most significant for wider bus models. All the benchmarks studied follow these trends.

TABLE BUS-TRAFFI	C-RATIO			
BUS-WIDTH[W] MEN	M-ACC-TIME	MEM-REF	BUS-CYCLE	TRAFFIC-RATIO
1	8	10334057	2382390	0.231
1	7	10334057	2307824	0.223

c	size(dir)	size(data)	size(total)
32	3648	20K	24128
64	7040	40K	48000
128	13568	80K	95488
256	26112	160K	189952
512	50176	320K	377856

Table 2: Cache Sizes Simulated (in bits)

1	6	10334057	2233258	0.216
1	5	10334057	2158692	0.209
1	0	10334057	1848917	0.179
2	8	10334057	1777830	0.172
2	7	10334057	1703264	0.165
2	6	10334057	1628698	0.158
2	5	10334057	1554132	0.150
2	0	10334057	1219135	0.118

The cache sizes measured in this study range from 512 words to 8K words. The abstract architecture word size need not be specified. It suffices to assume that both the Aurora and KL1 architectures have approximately the same size word. Abstract machine logical addresses are assumed to be four bytes. For the purpose of presenting cache statistics as functions of cache size, the abstract machine word is assumed to be 5 bytes. Cache size is calculated as the sum of the cache directory size, cache data area size, status bits and least-recently-used (LRU) bits. The model of cache size shown below is due to A. Goto[24]. For all simulations, we assume 40 bits per word (b = 40), four words per block (w = 4), four blocks per set (s = 4), one sub-block per block, three status bits per block (n = 3), and two LRU bits per column (l = 2). The number of columns (c) is varied. Table 2 shows the cache sizes measured in this study.

$$\begin{array}{rcl} x &=& ((32-log(w)-log(c))+n)\times s+1\\ y &=& c\\ size(data) &=& x\cdot y\\ size(dir) &=& b\cdot c\cdot w\cdot s\\ size(total) &=& size(data)+size(dir)=xy+bews. \end{array}$$

5.4 Benchmarks

The benchmarks studied here are parallel solutions of small symbolic manipulation problems. This is by no means a complete cross-section of the types of problems that can be solved with logic programming systems; however, the problems do represent a subset of these applications.

The benchmarks were necessarily kept small to facilitate their construction, debugging and execution on the unstable systems used. In addition, program solutions in both languages were required for each problem, and therefore small problems were chosen.

Descriptions of the benchmarks are listed below. See the Appendix for a complete source listing of each program.

- Triangle—finds all (133) winning solutions to a triangular peg game. This problem is the same as R. Gabriel's Lisp benchmark [23], except that here, three initial moves are taken on the triangular board. This initialization is necessary to reduce the problem space to a reasonable size. See Tick [54] for the sequential Prolog version of this program. The FGHC program was translated from the Prolog by an automatic "continuation" based method as described by Ueda [59]. Post translation optimizations were then performed by hand [22].
- Puzzle—finds all (65) solutions to a puzzle packing problem. This problem is based on R. Gabriel's Lisp benchmark, but modified to drastically reduce the problem space, allowing search for all solutions. Here we pack a 5x4x3 solid (with corner missing) with seven pieces: (3) 3x2x1. (2) 4x3x1. (1) 3x3x1. (1) 4x2x1. See Tick [54] for the sequential Prolog version of the original form of this problem. The FGHC version was written by the author.
- Pascal—generates the 100th row of Pascal's Triangle, using integer bignums to represent the coefficients. The maximum coefficient of the 100th row is represented as [97256, 48124, 19333, 45564, 13445, 10089]. The Prolog version of this program was written by the author, using the bignum library from DEC 10 Prolog, written by R. O'Keefe of Quintus Computer Inc. The Prolog program uses a optimized form of M. Carlsson's back for implementing AND-in-OR parallelism [10]. See Takagi [52] for the original version of the FGHC program, written by E. Sugino. The version measured here includes an FGHC translation of the (integer addition) bignum library.
- Semigroup—generates all (313) members of a Bradt Semigroup B2, given a set of four generators. The elements of the semigroup are lists of length 40. The Prolog version of this program is a modified version of the original written by R. Overbeek of ANL [19]. The FGHC version was written by N. Ichiyoshi of ICOT.
- Queens—finds all (721) solutions to the 10-Queens problem. There are several queens algorithms measured, distinguished by the initials of the names of their authors. HKqueen, written by H. Kondo of NTT, uses constraints implemented via logical variables in Prolog.

IBqueen, written by I. Bratko [5], uses constraints implemented with lists of diagonal offsets (in Prolog). **MBqueen**, written by M. Bruynooghe, uses a fused generate and test algorithm (in Prolog—this is the "classic" Queens program). **KKqueen**, written by K. Kumon of Fujitsu, is a stream-based FGHC program. **AOqueen**, written by A. Okumura of ICOT, is a layered-stream-based FGHC program [39]. **KUqueen**, developed by K. Ueda of ICOT, is a continuation-based translation of **MBqueen** [59].

Note that these benchmarks are not "as is" programs taken from an authentic user base. Instead the benchmarks were carefully rewritten to perform efficiently. A structure-based version of **Triangle** was determined to be inferior to the list-based version given here. The KL1 version of **Triangle** was hand-optimized after its translation from Prolog. A list-based version of **Puzzle**, due to L. Sterling, was determined to be inferior to the structure-based version given here. The KL1 version was rewritten countless times to increase its efficiency. Initially, a Prolog version of **Pascal** written by Sugino was used, but this did not permit exploitation of OR-parallelism. The refined version presented here uses unrolling to increase the coarseness of AND-parallel goals to allow AND-in-OR parallel techniques. **Semigroup** was optimized several times by Overbeek and Ichiyoshi, in both languages.

Several versions of **Queens** were also developed—in this case, some of the programs are included here to give further insight into how changes in algorithm can radically effect the interpretation of cache simulation results. **HKqueen** and **AOqueen** are most often compared because they represent the fastest algorithms in Prolog and FGHC respectively. The lesson taught by this simple benchmark is that parallel algorithms for the same application vary greatly in performance (more so than sequential algorithms), and thus analysis of a large set of algorithms for a set of given applications is necessary to fully understand parallel architecture tradeoffs.⁹

The various solutions to these problems, in both Prolog and FGHC, are summarized in Table 3. The table gives the number of static procedures, source lines, and clauses. Dynamic measures are given for the execution time on eight PEs (in seconds) on a Sequent Symmetry, the speed-up on eight PEs (relative to the same program on a single PE), and the number of procedure entries executed. For Prolog, a procedure entry is either a reduction (procedure call) or backtrack. For FGHC, a procedure entry is either a reduction or suspension. As can be seen, the programs are small—this is a major limitation of this study. Although the amount of computation of the programs is sufficient to exercise the cache simulators, the benchmarks do not have large working sets as do big applications like CAD, natural language, compilers, etc.

[&]quot;IBqueen is not included in many measurements presented here because it takes too long to execute, given its serious inefficiencies. Whereas **HKqueen** required 11.623.125 data references to execute 10-queens, **IBqueen** required 92.296.280.

benchmark	procs	lines	clauses	seconds	speedup	entries
			Prolog			
Triangle	5	86	43	12.0	7.7	587037
Semigroup	21	126	47	18.6	3.2	153555
Puzzle	13	233	33	6.3	7.6	145106
Pascal	42	286	74	41.7	2.0	267276
HKqueen	7	37	12	14.3	5.6	334782
MBqueen	8	16	15	21.5	6.6	772779
IBqueen	8	27	14	82.1	. 7.3	4996096
			FGHC			
Triangle	45	182	87	49.3	5.8	320114
Semigroup	12	104	63	87.5	4.8	292307
Puzzle	13	151	51	55.3	6.5	852608
Pascal	51	310	153	16.6	6.1	320113
AOqueen	7	43	22	27.3	6.8	361894
KKqueen	- 6	26	15	11.5	7.3	873419
KUqueen	9	34	19	45.6	7.3	1026142

Table 3: Short Summary of Benchmarks

The programs all have significant parallelism and most can exploit that parallelism efficiently (with the exception of **Semigroup** and **Pascal** in Prolog). In general, the OR-parallel Prolog programs display less parallelism than the FGHC programs. Looking at procedure entries and raw execution time, in general, the Prolog programs do less work than the corresponding FGHC programs.

When FGHC performs more procedure entries it is characteristic of the lower semantic power of the language as compared to Prolog. Prolog can exploit full unification coupled with backtracking to solve many of these problems quite efficiently. FGHC is limited to one-way unification and must "emulate" backtracking at the source language level. Note that although Triangle performs more Prolog procedure entries, the Prolog executes about four times faster than FGHC. In Puzzle, the difference is more pronounced. In both programs, Prolog can use unification of logical variables to avoid the structure copying necessary in FGHC. Comparing the two fastest Queens algorithms, HKqueen and AOqueen, we find that Prolog's ability to backtrack over unification gives it a 2:1 speed advantage, whereas procedure entries are almost equal.

The remaining two benchmarks, **Semigroup** and **Pascal**, solve single-solution problems. Prolog **Semigroup** uses a 2-3 tree [5] to store the elements of the semigroup. This sequentializes the search for an element, but the search is quite efficient. KL1 uses a pipeline of filters to store the elements of the semigroup. This parallelizes the search for an element (different searches can be pipelined), at the cost of an inefficient (linear) search for each element. **Pascal** has no OR-parallelism, so that Aurora must simulate AND-parallelism via meta-interpretation (this is called AND-in-OR parallelism [10]), at great overhead. The overhead of exploiting AND-in-OR parallelism (FGHC is over twice as fast as Prolog on eight PEs) comes from the bookkeeping needed to execute many fine-grained processes. It should be noted that Carlsson et. al. [10] measured a maximum speedup of 2.2 for an AND-in-OR parallel compiler running on Aurora. Although the compiler had coarse-grain parallelism, 30% of the computation was sequential, thus limiting speedup. In general, FGHC can manage fine-grained processes much more efficiently than can Prolog, whereas Prolog can manage coarse-grained processes more efficiently than FGHC. The amount of such parallelism in real applications is a yet unanswered question.

Interesting results of this study are the comparison of the algorithms forced upon the programmer by the language definition. If FGHC encourages object-oriented programming style by the nature of stream communication, then the performance object-oriented programs is important to study. Likewise the various uses of logical variables and backtracking that Prolog encourages are important to measure.

The algorithms chosen are sometimes different in each language, often in definition of data

structures. In Semigroup, Prolog's use of 2-3 trees gives it a definite advantage over KL1. The KL1 pipeline process structure can conceivably be rewritten into a tree structure that will speedup up the search. In Puzzle, Prolog's use of logic variables obviates the need for copying large data structures, as is necessary in KL1. Because Puzzle is an all-solutions search, KL1 destructive arrays cannot be used to represent the data structures. This is also true for Triangle. IBqueen in Prolog is naturally suited for arrays, but arrays are not implemented in Aurora, so inefficient lists are used instead.

Most of the benchmarks chosen in this study perform an "all-solutions search". This means that the problem space contains multiple, independent solutions that must all be found by the program. Pascal is a completely determinate program, finding a single solution (calculating a row in Pascal's triangle). Given a problem space containing multiple solutions, all-solutions search is used in a benchmark to avoid unreliable measurements. If for instance only one solution is required from a multiple solution space, a different solution may be found when the same program is run on different numbers of PEs. This may result in either sublinear or superlinear speedups. This problem is one of determinacy—a good benchmark is a determinate benchmark. Nondeterminacy can cause high variance in performance measurements that is not attributable to the architecture or system, but rather to luck.

Unfortunately, choosing all-solutions search problems give OR-parallel Prolog an advantage over FGHC. Prolog can collect all solutions with builtin functions (such as findall and bagof) that backtrack over solutions more efficiently than can be simulated in FGHC. An all-solutions search problem guarantee OR-parallel Prolog a source of easily exploitable parallelism. However, OR-parallelism in single-solution problems is not so easily uncovered by Prolog. Two single-solution problems. Semigroup and Pascal, were chosen to illustrate this contrast. As seen in Table 3, the Prolog solutions to these problems have the lowest speedup of all the benchmarks. It is shown in later sections that the overheads of exploiting even that small amount of parallelism is great in terms of absolute speed and program readability (declarativity).

6 Architecture Models

Instrumentation and analysis of an emulated architecture is an empirical and inexact science. In addition to the mechanical problems (Section 5.3) of simulating the precise timing of the anticipated target host, there is additionally the imprecise nature of the instrumentation. These errors include lack of complete instrumentation, inaccurate order of instrumentation, mismatches between the emulator and target host with respect to storage models, instruction formats, and system overheads (e.g., garbage collection). The inaccuracies present in the systems studied here are outlined in this section, with a discussion about their relative importance.

6.1 KL1

6.1.1 State Space

Modeling a real architecture on a target host, with an emulated architecture on a partially mapped host, requires creating a correspondence between emulator variables and target machine registers and memory. For example, in his study of the Prolog WAM, Tick [55] assumes that the WAM state registers and argument registers are implemented in hardware (on the target host), even though they are actually implemented as C variables in the emulator. An extended model assumes the top choice point of the local stack is also stored in a register file (similar to the Pegasus microprocessor [46]). Such correspondences allow the system designer to evaluate the effect that buffering hardware has on reducing the bandwidth requirement.

In the KL1 measurements presented here, we assume a very liberal correspondence of architecture state to registers. The reason for this is two-fold. Firstly, the emulator code is complex, not documented, written by a different person than the instrumentor, and lacks data abstraction. Thus the ability to determine a minimum necessary architecture state space was difficult. Secondly, even when certain particulars of the emulator were understood, it was often not clear if they were to be considered a fundamentally necessary part of the architecture (for example, see the next section about meta-counts).

For these reasons, most emulator variables were considered either not necessary for the target architecture, or able to be allocated to temporary registers. In addition, the KL1 state variables, as defined by Kimura [30] and defined internally to the emulator, and goal arguments were also mapped onto registers. Note that the number of KL1 state variables defined internally is much larger than described by Kimura, comprising all goal queue pointers, processor status, communication buffer pointers, interrupt status, suspension stack pointers, meta-counts, garbage collection pointers, etc. Assuming these can all be placed in registers is a best case assumption for KL1. Of course, memory references to the major storage areas (heap, goal, instruction, suspension, and communication) were instrumented as target architecture memory references.

6.1.2 Meta-Control

Recall (from Section 2.2) that execution of an FGHC procedure can result in one of three states: success, failure, and suspension. *Meta-control* is a generic name for architecture extensions allowing stronger control of one process (the caller) over another (the callee). For example, an operating system needs to call a user program and have the program status returned: success, failure or deadlock. One such mechanism for FGHC is described by Ichiyoshi [29]. Essentially the difficulty in determining deadlock, or even termination, is that suspended goals "float"

around the storage space, hooked only to the variables they were suspended on. There must be a synchronous method of determining when all the goal queues are empty and if there are no floating suspended goals.

The details of the actual proposed schemes do not concern us here; however, the overheads of these systems do. The benchmarks measured in this study are all single programs with no meta-control. In the KLI emulator used here, a single program is executed and returns its status to the emulator. A meta-count is a special counter (one per PE) in the emulator used to keep track of called processes. It is from the meta-counts that the program's completion status can be determined. Each reduction, the meta-counts are manipulated to keep track of things. Matsumoto measured this overhead (for single program execution, assuming a given meta-count scheme), and reported that 4% memory references and 15% bus cycles are devoted to this type of bookkeeping.

It is felt that 15% is far too large a penalty for a real system running a single, correct user program with no meta-control. In a real system, compiler optimization and hardware assist would reduce this overhead. In this study, no assumptions are made about meta-control complexity and overheads. We assume that the meta-counts are implemented with hardware registers, and further that simple, single program execution (like the benchmarks discussed here) requires no meta-control memory references. This benefits KL1 as a best case assumption.

6.1.3 Unification and Suspension Stacks

The KL1 architecture uses two small runtime stacks for managing recursive (general) unification and the suspension mechanism. The former is similar to the Prolog unification stack, called the PDL (push-down-list) by Warren [61]. In the case of KL1, each PE has its own PDL, used for (general) active unification, passive unification, and anti-unification. Each PE also has its own suspension stack, used for temporarily storing variables that require output bindings during head unification. References to these stacks are not instrumented as abstract machine memory references in this study. The unification stack is expected to display characteristics similar to Prolog, where less than 2% of all data references were to the PDL [56], and spatial locality is extremely high. The suspension stack is expected to also display high spatial locality and small maximum growth.

6.1.4 Spatial Locality

The KL1 and Aurora emulators were instrumented assuming that the abstract machine shared-memory addresses are the same as the Sequent shared-memory addresses. In other words, when

issuing an abstract machine memory request, the Sequent virtual address is issued.¹⁰ This method avoids the necessity to translate each Symmetry address into a KL1 machine address, thus saving simulation time. The method has the disadvantage that locality is somewhat lessened (from what it would be on the target host). There are several places in the emulator where locality is lessened:

- instruction size: the emulator uses large indexing instructions consisting of many words.
 These instructions waste space, thus the instrumented architecture sees a code space with lower locality than an architecture with an optimized set of formats. This effect is minor.
- goals size: the emulator allocates fixed-size areas for goal records, even though goals have
 differing numbers of arguments. This causes the memory to be allocated more rapidly
 than on the target host. However, the unused portion of the goal records are never
 referenced, and thus cache performance is not significantly affected.
- heap overloading: the emulator allocates goal records and suspension records on the heap, instead of allocating them on independent goal and suspension areas. Thus spatial locality is somewhat lessened. The effect is minor however because these records are multiples of the cache block size and are always allocated on a block boundary. The normal heap data may be interrupted by the inclusion of this extraneous data.

6.1.5 Timing

The lock (LR) operation is issued after the Symmetry lock is obtained instead of before. This ensures that the abstract machine lock state does not change prematurely, i.e., before the corresponding Symmetry lock is captured. This increases the accuracy of the simulations.

6.1.6 Direct Write to Goal and Communication Areas

The read buffer and read purge operations of the KL1-specialized coherent cache model[35] were not used in this study. Therefore direct writes could not be instrumented to the goal and communication areas. It is anticipated that these optimizations will help reduce the required KL1 bus bandwidth by a significant amount. Because these operations are specific to KL1 and cannot be used in Aurora, it is felt that including them would complicate the comparison, and lessen the fairness, of the cache statistics.

The KL1 emulator manipulates 8 byte abstract words, the expected word size of the ICOT designed PIM [25]. The Aurora emulator manipulates 4 byte abstract words. The Symmetry is byte addressable, so in order to make a fair comparison, the cache simulator shifts KL1 addresses by 3 bits and Aurora addresses by 2 bits. This means that both systems are simulated as if the basic word size of their architectures were equal (whatever size that may be). The cache statistics presented here assume that size is 40 bits.

6.2 Aurora

6.2.1 State Space

Many of the comments in Section 6.1.1 concerning mapping the KL1 state space apply to Aurora also. The Aurora system however has fairly good data abstraction, facilitating this mapping. Still, neither Aurora nor KL1 was implemented with instrumentation in mind, and as a result, hidden pieces of the state space have remained hidden. The Aurora system is split into two major pieces: the worker (essentially a WAM engine) and the scheduler (in this case, the Argonne version). The worker is modeled as is a sequential WAM, assuming that the WAM stack-group state (e.g., B. E. etc.) are implemented in registers. In addition, all temporary variables used in the worker functions, and the complex data structure defining a worker are also (liberally) assumed to be mapped onto registers. Assuming these can all be placed in registers is a best case assumption for Aurora. Or course, memory references to the major storage areas (heap, control stack, local and global stacks, trail and binding arrays) were instrumented as target architecture memory references.

6.2.2 Warm Start

The Aurora system is a complete Prolog system that is bootstrapped with a top-level read-eval loop written in Prolog, running on all PEs. This is in stark contrast with the KL1 system where the top-level read-eval loop is implemented inside the emulator, in C, running on one PE before slave PEs are forked. Thus when starting the Aurora system, the system boots itself, requiring the execution of several hundred lines of Prolog code. After the boot, the benchmark object image is loaded and then the benchmark is executed. The entire startup generates about 200,000 memory references, distributed in an unknown fashion across the PEs. This is most significant for Puzzle, where it represents 2% of all memory requests. A facility to re-initialize the cache simulator from Prolog was not implemented, and so the Aurora measurements presented in this paper include the effects of this ("warm") start. KL1 measurements are a pure "cold" start. This difference is minor.

6.2.3 Argonne Scheduler Sleep Time

After instrumenting the scheduler, we noticed a drastic, unbelievable increase in control stack (NODE) reads on multiple PEs with respect to single PEs, for the **Semigroup** and **Pascal** benchmarks (where all other reference areas counts remained the same). These benchmarks cannot exploit OR-parallelism efficiently and therefore on multiple PEs, the workers are spending a great deal of time in the scheduler, looking for work.

The Aurora system instrumented for this study uses the Argonne scheduler[7]. The scheduler

has a main loop in which an idle worker attempts to find an OR-goal to execute. If the worker fails, it sleeps for a short period, awakens and retries. If it takes too many short sleeps, it is put into a deep sleep of a much longer period (although it is believed that deep sleep does not occur for the benchmarks studied). The sleeping mechanism was installed in the original Argonne scheduler no doubt to prevent precisely the type of excessive control stack referencing that was observed here. Thus the question remained as to why the sleeping mechanism did not do its job.

The problem (as noticed by A. Ciepielewski) was that the instrumented emulator runs many times slower than the released system, but the short sleep period was set constant (a tight loop of 80 iterations). In the instrumented system, 80 iterations is proportionally too short, and must be scaled by the slowdown in emulation speed.

In addition, if the short sleep loop is lengthened, then it must issue m_sync()s to continue synchronizing cache simulators in other PEs (see Section 5.3). The modified short sleep code is in fact a nested loop wherein the inner loop of 80 iterations finishes with a single m_sync(). The outer loop is used to scale the sleep.

The short sleep modification reduced the control stack read count significantly. Still, tuning the outer-loop of the short sleep to give optimal performance, or even fair performance on
all benchmarks, is difficult. Even for the non-instrumented system, short sleep time can be
tuned to increase the performance of a given benchmark. We hypothesize that system performance increases with increasing short sleep time, and then decreases. To determine how
sharp the performance peak is and how it varies for various benchmarks, sensitivity analysis
was performed.

Table 4 lists the results of a group of 26 sensitivity experiments. Two benchmarks were measured: **Pascal** and **MBqueen**. These programs represent the extremes in availability of easy-to-exploit parallelism. Benchmark input data size, number of PEs, and short sleep time were all altered in the experiments.

By increasing the short-sleep time, idling workers disturb the system less often and make less memory requests, checking for work. Of course if the sleep time becomes too great, the program runs slower because workers are lethargic about finding new work. We see this occurring in **Pascal**. Note however that even if real-time execution increases after a certain point, the number of NODE references continues to decrease (because the workers are checking up less often). Thus it is difficult to determine exactly what is the most realistic sleep-time, i.e., where the maximum speedup is attained.

One way to do this is to compare the real-time execution of the cache instrumented system. When this execution time is minimal, one can assume that speedup (in a corresponding non-instrumented system) is maximal. Thus the memory statistics at that point are accurate. As mentioned early, note however that even in the non-instrumented Aurora system, sleep time is not optimal for all programs. In other words, for benchmarks will little parallelism, sleep-time is probably not optimally adjusted to attain maximum speedup.

Pascal(50) running on four PEs does not obey the characteristics previously seen for 1-2 PEs. MBqueen on eight PEs also shows intolerance of a large sleep time. In general, MBqueen, and all programs with sufficient parallelism, are not significantly affected by the sleep time. Also, programs running on eight PEs appear to be little affected by large sleep times. In the measurements presented in later sections of this paper, a sleep time of one (80 iterations) was used for all benchmarks with sufficient parallelism and/or running on eight PEs. For benchmarks with insufficient parallelism (Pascal and Semigroup), a sleep time of 100 was used in conjunction with two PEs. This combination represents the best conditions under which to run these two troublesome programs.

6.2.4 Direct Write to Control Stack

The current instrumented Aurora system does not implement direct write references to the control stack. Currently, the cache simulator implements direct write only for stacks that grow with increasing addresses ("positive stacks"). Unfortunately, the Aurora control stack is a "negative stack." One possible scheme, due to A. Matsumoto, to fool the simulator into correctly treating direct writes to the control stack, is to pass the ones-complement of the stack address. This has not yet been attempted. It is anticipated that direct write will help reduce the control stack bandwidth requirement significantly.

7 Timings and High-Level Characteristics

In this section real-parallel execution timings and speedups are presented for both the Aurora and KL1 systems. In addition, a brief summary of high level statistics is given. The Aurora and KL1 systems were calibrated for timing tests with the **KKqueen** program (see Appendix B.5.2). This program was chosen because it can be translated *directly* into Prolog. The program is also superior to the usual calibration programs, **append** or **nrev**, because it is (slightly) more complex. Single processor execution on the Sequent Symmetry ¹¹ gave 13.16 seconds for Aurora and 13.00 seconds for KL1. This is less than a 2% difference. It can safely be assumed therefore that both systems are performing simple indexing and simple determinate computation equally well.

Table 5 gives the raw timings, relative and absolute speedups of the benchmarks. 12 Note

 $^{^{14}\}mathrm{A}$ 12 processor Symmetry utilizing Intel 80386 CPUs. Each CPU has a 64 Kbyte write-through cache.

benchmark	PE	sleep	sec	R	R/R(1)	LR	LR/LR(1)
Pascal(30)	1	1	94	107932	1.00	413	1.00
Pascal(30)	2	1	309	2137064	19.80	39466	95.56
Pascal(30)	2	10	120	363940	3.37	8857	21.45
Pascal(30)	2	40	95	215203	1.99	6245	15.12
Pascal(30)	2	80	92	188391	1.74	5493	13.30
Pascal(30)	2	160	92	175648	1.63	5217	12.63
Pascal(30)	2	240	91	171594	1.60	5155	12.48
Pascal(50)	1]	317	239912	1.00	833	1.00
Pascal(50)	2	1	1648	12155127	50.66	117397	140.93
Pascal(50)	2	10	400	1464906	6.11	13603	16.33
Pascal(50)	2	160	305	399601	1.67	6890	8.27
Pascal(50)	2	200	295	380469	1.59	6771	8.13
Pascal(50)	2	240	290	369551	1.54	6674	8.01
Pascal(50)	2	320	296	358663	1.49	6520	7.83
Pascal(50)	4	10	1414	6542753	27.27	105196	126.29
Pascal(50)	4	80	1512	6127034	25.54	102222	122.72
Pascal(50)	4	160	1003	6704762	27.95	112704	135.30
Pascal(50)	4	240	981	7011234	29.22	118461	142.21
Pascal(50)	4	500	1193	8651592	36.06	145455	174.62
MBqueen(8)	1	1	116	116741	1.00	77	1.00
MBqueen(8)	2	1	119	238139	2.04	7623	99.00
MBqueen(8)	2	100	111	166020	1.42	4754	61.74
MBqueen(8)	2	200	113	168473	1.44	4974	64.60
MBqueen(8)	8	1	93	219218	1.88	9963	129.39
MBqueen(8)	8	40	98	243806	2.09	12199	158.43
MBqueen(8)	8	100	98	250144	2.14	12082	156.91

Table 4: Short Sleep Time Sensitivity Analysis

В	-		۵	ш	-	0	Ξ	-		¥	_	×	N N	0	۵
BAW SEC		SEC	SECONDS						က	- 1.		A P	2000	SPEEDS.	
benchmark sequential 1 PE 2	PE 2	2	PE	4 PE	B PE		- PE	2 PE	4 PE	8		~!	7		ł
244.0 286.6 14	6 14	147	7	81.5	49.3		1.00	1.94	3.52	'n			-	2.99	-
Semiaroup 395.2 416.7 222.	2	222.	0	140.9	87.5		1,00	1.88	2.98				-	2.80	4.05
322.6 359.6 181	359.6. 181	_	2	94.0	55.3		00.	1.98	3.8	v.		0.90		3.43	200
101.6 51	101.6 51	-	4	27.8	16.6		1.00	1.98	e.			*1		9	9.28
185.0 94	185.0 94	4	6	49.5	27.3		1.00	1.96	3.74	6.78		0.92		9	6.22
302.2 152	302.2 152	152	6	77.9	41.5		1.00	1.98	3.88	7.28		0.92	1.8	3.5	9
332.8 168	168	168	m	86.2	45.6		1.00	1.98	3.86	7.30		0.93		S.	6.7
			-				1.00	1.95	3.54	5.99		0.90	1.74	3.16	5.36
			-												
			_												
RAW SECONDS	PAW SECOND	SECOND	၂ဟ					RELATIVE	S			PB	힔	S	.
Sicstas 1 PE 2 PE	1 PE 2 PE	2 PE		4 PE	9 PE		1 PE	2 PE	4 PE	8		1 PE	2 P		- 1
58.3 91.8 4	91.8	7		23.2	12.0		1.00	2.02	E,	7.65		띠		2.51	4
59.6 31	59.6			24.1			1.00	1.89	2.47			ᅇ	1.3	_	- 1
30.1 47.7	47.7			12.1	6.3		1.00	2.01	3.94	7		0.63	1.2	~	4
84.5	84.5			47.2	41.7		1.00	1.49	1.79	٥i		<u>~</u>]		1	
	80.3			23.3	14.3		1.00	1.91	3.45	'n		~		2.56	
142.4	142.4			38.6	21.5		1.00	1.95	3.6				1		
598.	598.9 302.	305.	_	155.1	82.1		1,00	6.	3,8	7		ဖ၂	7.5	2	4.4
			\rightarrow				1.00	1.86	3.12	5.21		0.69	1.5	2	0.0
KL1	KL1	고	~	KL1/Prolog											1
2.5 benchmark 1 PE 2 PE	2	2		4 PE	8 PE										
3.12	.12 3.	3	10	3.51	4.11										
Semigroup 6.99 7.05	7 99	7	100	5.82	4.70									1	
7.54 7	54. 7.	7	100	7.77	8.78		-								1
1.20 0.91	20 0.	0	=	0.59	0.40										
AOM-IKqueen 2.30 2.25	30 2.	2	50		-				-	1			1	1	1
4.23 4.	23 4.	4	22	3.97	3.98										

Table 5: Speedups of FGHC and Prolog Benchmarks

that by averages. FGHC has greater parallelism than Prolog because the poor relative speedup of **Semigroup** and **Pascal** lowers the Prolog average. Prolog also has lower absolute speedup than FGHC because SICStus (V0.6), used as the baseline for Aurora, has a more efficient compiler than Aurora. The KL1 baseline (labeled "sequential" in Table 5) uses the same compiler as does the parallel KL1 system. The KL1 baseline is essentially the same as the parallel system except that locking is removed.

At the bottom of Table 5, the ratios of KL1 to Aurora raw execution times are given. On a single PE, Aurora outperforms KL1 by a factor of 1.2-7.5. This advantage is reduced on multiple PEs. Most notable is **Pascal** in which KL1 gains an advantage via parallelism. **Semigroup** and **Queens** also illustrate the superior parallelism of KL1, but the underlying weaknesses cannot overtake Aurora. Note that the KL1 system measured here has subsequently been improved to execute about 10% faster (via compilation optimizations of fusing common instruction pairs) [43]. It is obvious from the measurements however that an improvement of 2-9 times is necessary to become on par with Aurora. It is wrong to assume that differential is a result purely of Aurora's mature (and KL1's immature) system implementation.

Figure 6 compares the speed of the benchmarks on a single Symmetry processor. Four systems are shown: the baseline sequential systems (seq) and the parallel systems (par) running on one PE. Figure 7 compares the speed on the benchmarks on eight Symmetry processors. Figure 8 compares the relative speedups of the benchmarks on eight Symmetry processors. Figure 9 compares the absolute and relative speedups of the benchmarks on 1–8 PEs. Note again that the wide gap between absolute speedup curves of KL1 and Aurora is because of two reasons. First, the sequential baseline for Aurora (SICStus Prolog) has a far superior compiler than Aurora. Second, the sequential baseline for KL1 is the exact same KL1 system modulo locking. Thus realistically, KL1 absolute speedup should be lower and Aurora absolute speedup should be higher. Note further that in terms of relative speedup, the different between the systems is less than their distance from ideal speedup on eight PEs.

Table 6 presents some results from the high-level instrumented emulators. Some of the data presented in Table 3 is repeated here. In addition, references are broken down into instruction and data. Statistics calculated are instructions per reduction, instructions per procedure entry, suspensions per reduction, instruction references per instruction, and data references per instruction.

For KL1, even in moderately suspending programs, suspensions compose less than 10% of all procedure entries. Thus instructions per reduction and instructions per entry are the same.

¹²In this and all other summary data, the means (E()) and standard deviations (sd()) are calculated from the five main benchmarks of this study: Triangle. Semigroup. Puzzle, Pascal, and HKqueen (for KLI, AOqueen). Each benchmark is given equal weight in the summary calculations. Other benchmarks are not included in the summary statistics.

Figure 6: Raw Speed of Benchmarks on One PE

Figure 7: Raw Speed of Benchmarks on Eight PEs

Figure 8: Relative Speedup of Benchmarks on Eight PEs

Figure 9: Absolute and Relative Speedups on 1-8 PEs

	V	8	2	٩	3	_	g	Ξ	-	7	¥	,	3
-													
2													
6	KLI												
Т	benchmark	Instructions	reductions	suspensions	ontries	total ref	Instr rel	data ref	instr/red	instrired instrientry suspired	pes/dens	1-rel/lns1r	D-ret/Instr
	Telanole	13021727	666233	-	656234	28153917	13371797	14782120	19.55	19.55	0.00	1.03	7.
	Semicrono	4778418	258820	23487	292307	25069935	4793933	20276002	17.78	16.35	0.09	1.00	
Т	Puzzie	15606324	849539		852608	29245653	16039562	13155991	18,37	18.30	ı	-	
-	Pasca	5018087	302432	-	320113	9992747	5170218		16,59	15.69	0.06		
Т	Accuson	10031255		28865	361894	17302016	10438425	6853591	30.12	27.72	0.09	1.04	
le	KKoneon	17008266	673	7.7	873419	25977292	17509190	8468102	19.47	19.47	00.0		
=	Kilosoon	17064995	1026		1026142	29398840	17386121	12012519	16.63	16.63	00.00	1.02	0.70
1.2	mean								20.47	19.50	0.05	1.03	1.45
3	3 std dev								4,92	4.33	0.04	0.01	1.41
1.5	1 5 Prolog											_ 1	
9	1 6 benchmark	Instructions	reductions	backtracks	entries	lotal ref	instr red		Instr/red	nstr/	200		-101
17	1.7 Triangle	5497442	33	553442	587037	20927273	5837437	_	163.64		-		2.78
	Somlarous	1928042	126	27404	153555	11401973	3641310	7760663	15.28				4,03
-	Purrie	1926154	618		145106	10302154	2184800	8117354	31.17	13.27	1.35		
9	Pacca	2387952	ľ	i		27739181	3493929	24245252	12.11	8.83	١		10.15
2.1	HKoueen	2303660	189	144850	334782	14843223	3029128	11814095	12.13				
2 2		8421586	662	110031	772779	21898187	12967787	8930400		06.01		-	
2 3									46.87	10.20			
2.4	2 4 std dev								58.81	2.38	0	0.30	

Table 6: High-level Characteristics of Benchmarks

The average instructions per reduction of 20 has little variance among the benchmarks.

For Prolog, many programs have a significant amount of backtracking. Compared to KL1, the instructions per entry is lower because clause selection in KL1 counts as only one procedure entry, whereas in Prolog, shallow backtracking may count as many procedure entries. Prolog instructions per reduction is higher only for two programs: **Triangle** and **Puzzle**. For each of these programs, the KL1 code executes many more (smaller) procedures to simulate all-solutions search. The **Queens** programs also perform all-solutions search, but the overhead is not so great because the search tree is very simple.

WAM has 0.70 instruction references per instruction and 2.32 data references per instruction as reported by Tick [56]. KL1 has 1.03 instruction references per instruction and 1.41 data references per instruction. Aurora has 1.37 instruction references per instruction and 5.26 data references per instruction. The high instruction references per instruction is mainly because the WAM measured by Tick used real byte-code formats, whereas the systems discussed here have all instructions on word boundaries. Data referencing characteristics are more interesting.

Both KL1 and Aurora have high variances for data reference counts due to Semigroup and Puzzle respectively. Nonetheless, in general we can say that the KL1 instruction set has weaker potency than the WAM because it does not implement backtracking. Suspension referencing of course increases this statistic with respect to Prolog: however, as previously shown, the benchmarks studied do little synchronization. One exception is Semigroup, with 0.09 suspensions per reduction, and 4.24 data references per instruction. This is significantly higher than any of the other benchmarks measured. AOqueen also has a high suspension ratio, but still retains low data references per instruction.

On the other hand, Aurora displays significantly higher data references per instruction than the standard WAM. This however is not due to increased potency because both languages are Prolog. The benchmarks studied here do a significant amount of complex pattern matching and backtracking, thus increasing data referencing above that of the more "realistic" programs studied by Tick (two compilers, CHAT, and a theorem prover). Puzzle is the most intensive program of the group in this respect, with 10.15 data references per instruction. In addition, the overheads of scheduling also increase data referencing.

8 Memory Referencing Characteristics

In this section, the memory and bus usage characteristics of Aurora and KL1 are described.

8.1 Memory References

Tables 7 and 8 give the raw simulation memory referencing profiles of the benchmarks measured in this study. For each benchmark, the memory reference count is broken down by reference type and area. For each row and column, percentages are displayed. Note that for **Semigroup** and **Pascal** in Aurora, two PE emulation statistics were used throughout. This is because these benchmarks display excessive scheduler behavior on eight PEs that prevents viewing a "normal" execution profile.

The raw data is summarized in a series of tables and figures. Tables 9 and 10 give the means and standard deviations of the memory references broken down by storage area and memory operation. Figures 10 and 11 summarize this data in the form of pie charts. Each figure shows summary statistics for all references, and for data references only.

The KLI and Aurora referencing characteristics are primarily skewed by the large percentage of KLI instruction references. 47% of all references compared to Aurora's 27%. Aurora has on average 2.76 data references per instruction reference. KLI has on average 1.14 data references per instruction reference. Prolog was measured even higher at 3.46 data references per instruction reference [56]. The differences are due in part to the instruction formats, parallel overheads, and language potency. Aurora is the most efficiently encoded instruction set (more efficiently than the Prolog system measured by Tick). In addition, Prolog is more semantically powerful (potent) than FGHC, and its corresponding architecture is also more powerful (i.e., more work is performed by each individual instruction, on average). However, Aurora has overheads of parallel execution: scheduler work is counted as data references with no instruction fetches made. Overall, Aurora therefore falls inbetween Prolog and KL1 in data references per instruction reference.

The over 2:1 ratio between Aurora and KL1 for this statistic is also felt in the skewed read reference counts. Even given this bias however, KL1 and Aurora have almost the same percentage of reads. When instruction references are removed from the statistics, Aurora has 70% reads to KL1's 61%. In both cases, the read:write ratio is higher than Prolog (53% read data references [56]). The reason for this is not because the architectures are more efficient than Prolog, but because each has scheduling and synchronization overheads that require many reads. In Aurora, the tree-walker generates control stack read traffic. In KL1, we measure 8.5% read data references to lock variables (during dereferencing and/or binding).

The direct write optimization was utilized in 9.5% of KLI data references and 4.6% of Aurora data rereferences. This statistic is biased unfairly towards KLI because the Aurora control stack was not instrumented with direct write operations, although it could have been (see Section 6.2.4). The statistics presented show no percentages for optimizations used to implemented one-time write-read buffers (see Section 6.4.6). KLI can utilize these optimizations quite effectively

1 Transpir NSTR		,		D 1						J		
2 N	Tringala	B	C		9 60	F	CONN	H	DATA		X (ALL)	
2 W												
6 CN												
S UP												
S UN		0	1691285	0	0	0	206066	0	1897351	1897351	6.74	
S TOTAL		0	575707	0	. 0	0	206066	0	781773	781773	2.78	5.29
T	7 U	0	1151284							1151284		
Total Semigroup	8 TOTAL										100.00	100.00
Total Tota	9	47.50	19.09	28.84	0.00	0.00	4.57	0.00	52.50	100.00		
12 R											45555	
13 W												
18 DW												
T S W												
To U												
17 U												
18 TOTAL											=	-
21 PutZie INSTR PEAP COX. S.S.P META COMM ETC DATA TUTAL % (ALL) % (CATA 22 R 16099652 2795179 2047966 8504 0 53086 0 4918038 21006497 71.83 37.37 23 W 0 0 11171 2025186 8502 0 55144 0 2110103 2110103 77.22 15.64 0 2100497 71.83 37.37 22 L 10.04 2724446 0 0 0 0 0 0 2724446 0 2100103 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 77.22 15.64 0 210004 210		4793933					128342					
12 Puzzi INSTR MEAP CCN SLEP META COMM ETC DATA TOTAL % (DATA 2.0 1.	19	19.12	77.71	2.60	0.05	0.00	0.51	0.00	80.88	99.99		
12 R	20											
13 W												
2											-	
1								=	1 1 2 2 2 2 2 2 2			
Tell Dec Dec												
17 U												
1												
29	The state of the s	The second secon										
10 Pascal INSTR HEAP COM, S.EP META COMM ETC DATA TOTAL % (ALL) % (CATA)				THE RESERVE THE PARTY OF THE PA							100.01	100.00
31 Pascal INSTR HEAP COM, SUSP META COMM ETC DATA TOTAL % (ALL) % (CATA)		33.02	30,34	13.93	0.06	0.00	0.00	0.00		100.01		$\overline{}$
12 R		INSTR	HEAD	904	81.50	META	COMM	FIC	DATA	TOTAL	% (ALL)	% (DATA)
32 W												
36 LPM 0 446313 0 4948 0 49462 0 500723 500723 50.0 10.38 36 LVW 0 318233 0 4948 0 49462 0 372843 372843 3.73 7.73 37 U 0 191729 0 0 0 0 1 0 191730 191730 1.92 3.98 38 TOTAL 5170218 1919076 2455549 131300 0 224705 0 4822530 9992748 100.01 100.00 39 51,74 19.12 24.57 1.31 0.00 3.25 0.00 48.26 99.99 4.0 4.1 ACqueen INSTR HEAP COAL 6LSP METAL COMM ETC OXTAL TOTAL \$.(ALL) \$.(CATAL 4.2 R. 10438425 201848 1452231 146625 0 243715 0 159958 159958 9.07 22.87 4.4 DW 0 4826 119237 128746 0 243715 0 159958 159958 9.07 22.87 4.5 UW 0 304488 0 0 0 0 0 0 0 546048 546048 3.17 7.98 4.8 UW 0 304488 0 0 0 0 0 0 95467 0 3854371 14292796 8.21 56.16 4.8 UW 0 304488 0 0 0 0 0 0 0 75367 0 340423 141233 2.39 9.04 4.8 UW 0 304488 0 0 0 0 0 0 0 75367 0 340433 14123 2.39 9.04 4.8 UW 0 304488 0 0 0 0 0 0 0 75367 0 340433 14123 2.39 9.04 4.8 UW 0 304488 0 0 0 0 0 0 0 75467 0 39993 39993 2.31 5.83 4.7 U 0 0 77328 0 0 0 0 0 75467 0 39993 39993 2.31 5.83 4.8 TOTAL 10438425 3265300 2644504 275371 0 678316 0 686351 17302016 100.00 100.01 4.9 60.33 18.87 15.28 1,59 0,00 3.92 0.00 39.87 99.99 5.1 KKqueen NNSTR HEAP COAL SLEP METAL COMM ETC DATA TOTAL \$.(ALL) \$.(CATAL 5.0) 5.0 LR 17509190 202221 1994179 15.09 0 91333 0 414931 2165550 28.9.37 199.04 5.1 KKqueen NNSTR HEAP COAL SLEP METAL COMM ETC DATA TOTAL \$.(ALL) \$.(CATAL 5.0) 5.1 KKqueen NNSTR HEAP COAL SLEP METAL COMM ETC DATA TOTAL \$.(ALL) \$.(CATAL 5.0) 5.2 R 17509190 4206701 388623 2.991 0 0 0 44571 0 421143 421143 1.62 4.97 5.7 U 0 36677 0 0 0 0 44571 0 421143 421143 1.62 4.97 5.7 U 0 36677 0 0 0 0 0 44571 0 67851 617651 2.38 7.30 5.8 UW 0 0 376572 0 0 0 0 44571 0 67851 617651 2.38 7.30 5.8 UW 0 0 376572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
3 0 UW 0 318233 0 4946 0 4946 0 372643 372643 3.73 7.73 3.7 U 0 191729 0 0 0 0 1 1 0 191730 191730 1.92 3.98 3.98 3.8 ITUTAL 5170218 1910976 2455549 131300 0 324705 0 4822530 992748 100.01 100.00 3.9	3 4 OW	0			٥			0	474474	474474		
3 R TOTAL 5170218 1910976 2455549 131300 0 34705 0 4822530 9992748 100.01 100.00 3.9 5 51.74 19.12 24.57 1.31 0.00 3.25 0.00 48.26 99.99	3 6 LA	0	446313	0	4948	0	49462	0	500723	500723	5.01	
3 B TOTAL 5170218 1910976 2455549 131300 0 324705 0 4822530 9992748 100.01 100.00 3 B 51.74 19.12 24.57 1.31 0.00 3.25 0.00 48.26 99.99 1	3 6 UW	0	318233	0	4948	0	49462	0	372643	372643	3.73	7.73
38	37 U	0	191729	0	0	0	1	0	191730	191730	1.92	3.98
## 1			1910976				324705		4822530		100.01	100.00
41 A Oqueen INSTR PEAP CON SLEP META COMM ETC ONTA TOTAL % (ALL) % (CATA) 42 R 10438425 2011848 145223 146625 0 243667 0 3354371 14292796 82.61 56.16 4.3 W 0 A826 1192371 128748 0 243715 0 158958 159958 9.07 22.87 4.4 DW 0 548048 0 0 0 0 0 0 548048 548048 3.17 7.98 4.5 UR 0 318786 0 0 0 0 95467 0 414253 414253 2.39 6.04 4.6 UW 0 304468 0 0 0 0 0 95467 0 399925 399935 2.31 5.83 4.7 U 0 0 77326 0 0 0 0 0 0 77326 77326 0 4.5 1.13 4.8 TOTAL 10428425 3265300 2644804 275371 0 678316 0 663391 17302016 100.00 100.01 4.9 DECEMBER		51.74	19.12	24.57	1.31	0.00	3.25	0.00	48.26	99.99		
4 2 R												
4 3 W 0 4826 1192371 128746 0 242715 0 1569658 1369658 9.07 22.87 4 4 DW 0 548048 0 0 0 0 0 0 548048 548048 3.17 7.98 4 5 UR 0 318786 0 0 0 0 95467 0 414253 414253 2.39 6.04 4 6 UW 0 304468 0 0 0 0 95467 0 39935 39935 2.31 5.83 4 7 U 0 77326 0 0 0 0 0 0 77326 77326 0.45 1.13 4 8 TOTAL 10438425 3285300 2644604 275377) 0 67316 0 6863591 17302018 100.00 100.01 4 9 60.33 18.87 15.28 1.59 0.00 3.92 0.00 39.67 99.99 5 0 60.33 18.87 15.28 1.59 0.00 3.92 0.00 39.67 99.99 5 1 KKqueen NSTR HEAP COAL SLSP META COMM ETC DATA TOTAL %(ALL) %(DATA) 5 2 R 17509190 2062291 1994179 1509 0 91333 0 4149312 21658502 83.27 49.00 5 3 W 0 11397 1992444 1422 0 91372 0 2096635 2096635 8.07 24.76 5 4 DW 0 817084 0 0 0 0 0 0 817084 31508 3.15 9.65 5 5 UR 0 573280 0 0 0 44571 0 617851 617851 2.38 7.30 5 6 UW 0 376572 0 0 0 44571 0 617851 617851 2.38 7.30 5 8 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100.00 100.00 5 1 KUqueen NSTR HEAP COAL SLSP META COMM ETC DATA TOTAL %(ALL) %(DATA) 5 8 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100.00 100.00 5 6 C UW 0 366077 0 0 0 0 44571 0 8468102 25977292 100.00 100.00 5 1 KUqueen NSTR HEAP COAL SLSP META COMM ETC DATA TOTAL %(ALL) %(DATA) 5 2 R 17386121 669415 1166883 582 0 58852 0 792073 25306853 86.08 65.94 5 4 DW 0 1923983 0 0 0 0 0 0 1233144 1233144 4.19 10.27 5 4 DW 0 1923983 0 0 0 0 0 0 1233144 1233144 4.19 10.27 5 4 DW 0 1923983 0 0 0 0 0 0 1923983 1923983 9.54 16.02 5 5 UW 0 0 1923983 0 0 0 0 0 0 1923983 1923983 9.54 16.02 5 6 UW 0 0 1923983 0 0 0 0 0 0 1923983 1923983 9.54 16.02 5 6 UW 0 0 155048 0 0 0 0 0 28918 0 183964 183964 0.63 1.53 6 UW 0 0 152048 0 0 0 0 0 0 0 0 22373 322373 1.10 2.68 6 UW 0 0 152048 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
4 6 DW												
4 5 LR												
4 6 UW 0 304468 0 0 0 0 95467 0 39935 39935 2.31 5.83 47 U 0 0 77326 0 0 0 0 0 0 77326 77326 0 45 1.13 6 1 0 0 0 77326 77326 0 45 1.13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
4 7 U 0 0 77326 0 0 0 0 0 0 77326 77328 0 45 1.13 4 8 TOTAL 10438425 3265300 2644804 275373 0 678316 0 6863591 17302016 100.00 100.01 4 9 60.33 18.87 15.28 1.59 0.00 3.92 0.00 39.67 99.99 5 0												
4 6 TOTAL 10438425 3265300 2644504 275371 0 678316 0 6863591 17302016 100.00 100.01 49 60.33 18.87 15.28 1.59 0.00 3.92 0.00 39.67 99.99 5 50 50 50 50 50 50 50 50 50 50 50 50 5												
4 9												
S												
5 2 R 17509190 2062291 1994179 1509 0 91333 0 4149312 21658502 83.37 49.00 5 3 W 0 11397 1992444 1422 0 91372 0 2096635 2096635 8.07 24.76 5 4 DW 0 817084 0 0 0 0 0 0 817084 817084 3.15 9.65 5 5 LR 0 573260 0 0 0 0 44571 0 617851 617851 2.38 7.30 6 8 UW 0 376572 0 0 0 44571 0 421142 421143 1.62 4.97 5 7 U 0 366077 0 0 0 0 44571 0 421142 421143 1.62 4.97 5 7 U 0 366077 0 0 0 0 0 366077 366077 1.41 4.32 6 8 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100,00 100.00 6 0 6 7.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 6 0 6 7.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 6 1 KUqueen INSTR H€AP QOAL SUSP META COMM ETC DATA TUTAL % (ALL) % (DATA) 6 2 R 17386121 6694415 1166883 582 0 58852 0 7920732 2506853 86.08 65.94 6 4 DW 0 1923983 0 0 0 0 0 0 1923983 1923983 6.54 16.02 6 5 LR 0 399407 0 0 0 0 0 0 1923983 1923983 6.54 16.02 6 5 LR 0 399407 0 0 0 0 28916 0 428323 428323 1.46 3.57 6 5 UW 0 1523983 0 0 0 0 0 0 0 322373 32373 1.10 2.68 6 TOTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 6 9 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00	50	1										
5 2 R 17509190 2062291 1994179 1509 0 91333 0 4149312 21658502 83.27 49.00 5 3 W 0 11397 1992444 1422 0 91372 0 2096635 2096625 8.07 24.76 5 4 DW 0 817084 0 0 0 0 817084 3.15 9.65 5 5 LR 0 573280 0 0 0 44571 0 617851 617851 2.38 7.30 6 6 UW 0 356077 0 0 0 44571 0 421143 421143 1.62 4.97 5 7 U 0 356077 0 0 0 0 3468102 25977292 100.00 100.00 5 8 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100.00 100.00 6 0 87.40 16.19 15.35 <td< td=""><td></td><td>INSTR</td><td>HEAP</td><td>COAL</td><td>5J.52</td><td>META</td><td>COMM</td><td>ETC</td><td>DATA</td><td>TOTAL</td><td>* (ALL)</td><td></td></td<>		INSTR	HEAP	COAL	5J.52	META	COMM	ETC	DATA	TOTAL	* (ALL)	
54 DW 0 817084 0 0 0 0 0 0 0 817084 817084 3.15 9.65 55 LR 0 573280 0 0 0 0 44571 0 617851 617851 2.38 7.30 58 UW 0 376572 0 0 0 44571 0 421143 421143 1.62 4.97 57 U 0 366077 0 0 0 0 0 368077 366077 1.41 4.32 58 TUTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100,00 100.00 59 67.40 16.18 15.35 0.01 0.00 1.05 0.00 32.60 100.00 60 61 KUqueen INSTR HEAP COM SUSP META COMM ETC DATA TUTAL % (ALL) % (DATA) 62 R 17386121 6694415 1166883 582 0 58852 0 7920732 2530653 86.08 65.94 53 W 0 7381 1166297 582 0 58852 0 7920732 2530653 86.08 65.94 54 DW 0 1923983 0 0 0 0 0 0 1233144 1233144 4.19 10.27 56 UW 0 1923983 0 0 0 0 0 0 1923983 1923983 9.54 16.02 57 U 0 322173 0 0 0 0 28916 0 428323 428323 1.46 3.57 68 UW 0 155048 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322173 0 0 0 0 0 28916 0 183964 183964 0.63 1.53 68 UTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29385640 100.00	5 2 R	17509190	2062291	1994179	1509	0	91333	0	4149312			
5 5 LR 0 573280 0 0 0 0 44571 0 67851 617851 2.38 7.30 6 8 UW 0 378572 0 0 0 0 44571 0 421143 421143 1.62 4.97 5 7 U 0 366077 0 0 0 0 0 36807 366077 1.41 4.32 6 8 TOTAL 17509190 4206701 398623 2931 0 271847 0 8468102 25977292 100,00 100.00 6 9 6 0 67.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 6 1 KUgueen INSTR HEAP GOAL SUSP META COMM ETC DATA TOTAL % (ALL) % (DATA) 6 2 R 17386121 6694415 1166883 582 0 58852 0 7920732 25306853 86.08 65.94 6 5 3 W 0 7381 1166297 582 0 58884 0 1233144 1233144 4.19 10.27 6 4 DW 0 1923983 0 0 0 0 0 0 1923983 9.54 16.02 6 5 LR 0 399407 0 0 0 28916 0 428323 428323 1.46 3.57 6 6 UW 0 155048 0 0 0 28916 0 183964 183964 0.32373 32273 1.10 2.68 6 8 UTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 6 9 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.88 100.00					1422		91372					
6 8 UW 0 376572 0 0 0 44571 0 421143 421143 1,62 4 97 5 7 U 0 366077 0 0 0 0 366077 366077 1,41 4,32 5 8 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 2597729 100,00 100.00 5 9 67.40 16.19 15.35 0.01 0.00 1.05 0,00 32.60 100.00 0 6 0 87.40 16.19 15.35 0.01 0.00 1.05 0,00 32.60 100.00 0 6 1 KUqueen INSTR H€AP QOAL SUSP META COMM ETC DATA TUTAL % (ALL) % (DATA) 6 2 R 17386121 6694415 1166883 582 0 58852 0 7920732 25306853 86.08 65.94 5 3 W												
57 U 0 366077 0 0 0 0 0 0 366077 366077 1.41 4.32 58 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100,00 100.00 59 67.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 60 60 60 60 60 60 60 60 60 60 60 60 6		-										
\$8 TOTAL 17509190 4206701 3986623 2931 0 271847 0 8468102 25977292 100,00 100.00 59 67.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 60 60 67.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 60 60 60 60 60 60 60 60 60 60 60 60 6												
59 67.40 16.19 15.35 0.01 0.00 1.05 0.00 32.60 100.00 60 60 60 60 60 60 60 60 60 60 60 60 6												
6 0 KUqueen INSTR HEAP GOAL SUSP META COMM ETC DATA TUTAL % (ALL) % (DATA) 6 2 R 17386121 6694415 1166883 582 0 58852 0 7920732 25306853 85.08 65.94 65.3 W 0 7381 1166297 582 0 58884 0 1233144 1233144 4.19 10.27 64 DW 0 1923983 0 0 0 0 0 0 1923983 9.54 16.02 65 LR 0 399407 0 0 0 28916 0 428323 428323 1.46 3.57 66 UW 0 155048 0 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 322373 322373 1.10 2.68 UTAL 17386121 9502607 2333180 1164 0 175568 0 1201519 29398640 100.00 69 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00											100,00	100.00
61 KUgusen INSTR HEAP OON SUSP META COMM ETC DATA TUTAL % (ALL) % (DATA) 62 R 17386121 6694415 1166883 582 0 58852 0 7920732 25306853 86.08 65.94 63 W 0 7381 1166297 582 0 58884 0 1233144 1233144 4.19 10.27 84 DW 0 1923983 0 0 0 0 0 0 1923983 9.54 16.02 65 LR 0 399407 0 0 0 0 28916 0 428323 428323 1.46 3.57 66 UW 0 155048 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 322373 0 155048 0 175568 0 183964 183964 0.63 1.53 68 TOTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00		67,40	16.19	15,35	0.01	0.00	1.05	0,00	32.60	100.00		
62 R 17386121 6694415 1166883 582 0 58852 0 7920732 25306853 86.08 65.94 53 W 0 7381 1168297 582 0 58884 0 1233144 1233144 4.19 10.27 64 DW 0 1923983 0 0 0 0 0 0 1923983 1923983 8.54 16.02 65 LR 0 399407 0 0 0 28916 0 428323 428323 1.46 3.57 68 UW 0 155048 0 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 0 28916 0 322373 322373 1.10 2.68 68 TUTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 100.01 69 59.14 32.32 7.94 0.90 0.00 0.60 0.00 40.86 100.00		INSTO	LEAD			News !	50341	577	- CATA	77778	% (ALL)	TA (DATA)
53 W 0 738 1166297 582 0 58884 0 123144 1233144 4.19 10.27 84 DW 0 1923983 0 0 0 0 0 0 1923983 1923983 0.54 16.02 65 UR 0 399407 0 0 0 28916 0 428323 428323 1.46 3.57 68 UW 0 155048 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 0 28916 0 183964 0.63 1.53 68 TOTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29385640 100.00 100.01 69 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00												65.94
84 DW 0 1923983 0 0 0 0 0 0 1923983 9.54 16.02 65 LR 0 399407 0 0 0 0 28916 0 428323 428323 1.46 3.57 66 UW 0 155048 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 0 322373 0 0 0 0 0 0 322373 322373 1.10 2.68 0 0 0 0 0 0 0 322373 322373 1.10 2.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
65 LR 0 399407 0 0 0 28916 0 428323 428323 1.46 3.57 68 UW 0 155048 0 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 0 322373 322373 1.10 2.68 68 TUTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 100.01 69 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00												
6 8 UW 0 155048 0 0 0 28916 0 183964 183964 0.63 1.53 67 U 0 322373 0 0 0 0 0 0 322373 322373 1.10 2.68 10TAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 100.01 69 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00												
67 U 0 322373 0 0 0 0 0 322373 322373 1.10 2.68 68 TOTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 100.01 69 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00								The second second second second				
6.8 TUTAL 17386121 9502607 2333180 1164 0 175568 0 12012519 29398640 100.00 100.01 6.9 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00											1.10	
59 59.14 32.32 7.94 0.00 0.00 0.60 0.00 40.86 100.00											100.00	100.01
701		59.14	32.32	7.94	0.00		0.60	0,00		100.00		
	70									- 1		1

Table 7: Memory Referencing Characteristics of KL1: Raw Data

_						F	G	н	1 1	1	K	F
	_ A	В	C _	0	E NCCE	LBA	- GBA	TRAILETC	DATA	TOTAL	% (ALL)	% (DATA)
	Triangle	INSTR	HEAP	225489	5724748	41878	41016	1186599	11797751	17435188	83.31	77.16
	Я	5637437	4578021	17326	761148	38123	1138899	1182083	3154237	3154237	15.07	20.63
3	w	0	334092		/61140	0	0	0	334092	334092	1.60	2.19
4	DW	. 0		- 0	1878		0	0	1878	1878	0.01	0.01
	UA	0	0		0			0	0	C.	0.00	0,00
6	UW	0	0		1878	0	0	0	1878	1878	0.01	0.01
7	U	5637437	4928771	242815	6489652	80001	1179915	2368682	15289836	20927273	100.00	100.00
9	TOTAL	26.94	23.55	1.16	31.01	0.38	5.64	11.32	73.06	100.00		
_	(2 PE)	20.34	20.00	7,10	31,01							
	Semigroup	INSTR	HEAP	ENV	NODE	LBA	GBA	TRAILÆTC	DATA	TOTAL	% (ALL)	% (DATA)
12		3638548	1740864	1064540	805858	69219	329961	66278	4076720	7715268	88.41	80.12
13		0	207161	107552	259968	10878	12005	55673	653237	653237	7.49	12,84
14		0	340570	01	0	0	0	0	340570	340570	3.90	6.69
15		0	0	0	8755	0	0	0	8755	8755	0.10	0.17
16		0	0	0	0	0	0	0	0	01	0.00	0.00
17		0	Q.	0	8755	01	0	0	8755	8755	0.10	0.17
18		3638548	2288595	1172092	1083336	80097	341966	121951	5088037	8726585	100.00	100.00
19		41,69	26.23	13.43	12.41	0.92	3.92	1.40	58.31	100.00		
20												
	Puzzie	INSTR	HEAP	EW	NCDE	LBA	GBA	TRAILETC	DATA	TOTAL		% (DATA)
22		2184800	1908806	163577	1442251	33099	601789	1133626	5283148	7467948	72.49	65.08
23		0	13025	12758	906573	30666	585867	1128133	2677022	2677022	25.99	32.98
2 4		0	153204	0	9	0	0		153204	153204	1.49	0.02
25	LA	0	0	0	1990	. 0	0	0	1990	1990	0.02	0.00
2 8		O	0	0	0	0	٥	0	DI	0	0.00	0.02
27	Ü	0	0	0	1990	0	0	0	1990	1990	100.00	100.00
28	TOTAL	2184800	2075035	176335	2352804	63765		2261759	8117354	10302154	100.00	100.00
29		21.21	20,14	1.71	22.84	0.62	11.53	21.95	78.79	100.00		
30	(2 PE)								DATA	TOTAL	% (ALL)	% (DATA)
31	Pascal	INSTR	HEAP	EW	NCCE	LBA	G8A	TRAILIETC	76704171	11162968	72.45	64.31
32		3492551	2526195	1457701	2024894	217774	247806	1196047	3513091	3513091	22.80	29.49
33		0	108290	174153	1839243	99402	The Parks	1188081	716908	716908	4.65	6.0
	DW	0	716908		0	0		0	6951	6951	0.05	0.0
3.5		0	0	0	6951	0		0	0	O	0.00	0.0
	UW	0	0	0		0		0	6951	6951	0.05	0.0
37		0	0	0	3878039	317176		2384128	11914318	15406869	100.00	100.00
	TOTAL	3492551	3351393	1631854	25.17	2.06		15.47	77.33	100.00		
39		22.67	21.75	10.59	25.17	2.00	2.20	72.41	77.00			
40		INSTR	HEAP	ENV	NCCE	ÜBA	GBA	TRAILÆTC	DATA	TOTAL	% (ALL)	% (DATA
41	HKqueen	3029128	1922845	1321129	2375784	534172	593511	764161	7451602	10480730	70.61	63.0
43		3029120	221328	108180	1923317	299285		678309	3586490	3586490	24,16	30.36
	ipw	- 0	756659	0	0	0		0	756659	756659	5.10	
45			, , , , , ,	- 0	9672	0			9672	9672	0.07	0.0
	UW	0	0		0	0			_ 0(0	0.00	0.00
47		Ö	0	ō	9672	0		0	9672	9672	0.07	0.0
	TOTAL	3029128	2900832		4318445	833457	949582	1382470	11814095	14843223	100.00	100.00
49		20.41	19,54	9.63	29.09	5.62	6.40	9.31	79 59	100.00		
5 0												AL POST
5 1	MBqueen	INSTR	HEAP	ENV	NCDE.	LBA	GBA		DATA	TOTAL	% (ALL)	
5 2	R	12967787	2286109	1101150	1821667	349711	249020	494167	6301824	19269611	85.97	66.7
5 3	w	0	76448	108194	1578456	299106		474119	2690196	2690196	12.00	28.4
5 4	OW	0	440738	0	0	0		01	440738	440738	1.97	0.0
5 5	LA.	0	0	0	7414	0			7414	7414	0.03	0.0
5 6		0		0	7414	0		0	7414	7414	0.03	0.00
57		O.	0	0	0	0		0	0	0	0.00	
5 8	TUTAL	12967787	2803295	1209344	3414951	648817		968286	9447586	22415373	100.00	100.00
7.5	1	57.85	12.51	5.40	15,23	2.89	1.80	4.32	42.15	100.00		
59	1											

Table 8: Memory Referencing Characteristics of Aurora: Raw Data

area	E(all)	$\sigma(all)$	E(data)	$\sigma(data)$
INSTR	46.74	14.43		
DATA	53.26	14.43		
HEAP	33.03	22.77	62.02	
GOAL	17.04	9.13	31.99	
SUSP	0.60	0.70	1.13	
COMM	2.58	1.68	4.84	
operation	E(all)	$\sigma(all)$	E(data)	$\sigma(data)$
operation R	E(all) 77.21	$\sigma(all)$ 9.90	E(data) 52.49	σ(data) 21.29
R	77.21	9.90	52.49	21.29
R W	77.21 9.54	9.90 5.14	52.49 20.01	21.29 10.41
R W DW	77.21 9.54 4.53	9.90 5.14 2.56	52.49 20.01 9.50	21.29 10.41 6.11

Table 9: KL1 % Memory References by Area and Operation

area	E(all)	$\sigma(all)$	E(data)	$\sigma(data)$
INSTR	26.58	7.88		
DATA	73.42	7.88		
HEAP	22.24	2.43	30.30	
ENV	7.30	4.96	9.95	
NODE	24.11	6.51	32.83	
LBA	1.92	1.94	2.61	
GBA	5.95	3.13	8.11	
TRAIL/ETC	11.89	6.80	16.20	
operation	E(all)	$\sigma(all)$	E(data)	$\sigma(data)$
R	77.46	7.08	69.96	7.18
<i>M.</i>	19.10	6.90	25.26	7.47
DW	3,35	1.52	1.64	2.14
LR	0.05	0.03	0.07	0.06
T.	0.05	0.03	0.07	0.06

Table 10: Aurora ¼ Memory References by Area and Operation

Percent Data Memory References by Area

Figure 10: Memory Referencing Characteristics (by Area) of KL1 and Aurora

Percentage Memory References by Operation

Percentage Data Memory References by Operation

Figure 11: Memory Referencing Characteristics (by Operation) of KL1 and Aurora

for the goal and communication areas. However, Aurora cannot use such optimizations,

The data referencing characteristics of each architecture are now discussed in more detail. Note that these statistics are deceptive because bus traffic, the critical concern in a shared memory multiprocessor, is only indirectly related to the raw reference counts. Locality and sharing in the areas radically effects the bus traffic generated, as shown later in this section.

KL1 data referencing characteristics measured in this study differ significantly from those measured by Matsumoto for the **BUP** benchmark. Yet as shown in Section 9.1, the **BUP** statistics calibrate on both simulators. This shows that FGHC programs have vastly different characteristics and that many benchmarks need to be studied to get a fair and accurate picture of processor performance. In this study, the heap is referenced 62% on average, goals 32%, and communication 5%. Suspensions do not effect reference counts significantly.

Aurora is more complex, with a balanced mix of references to heap, environment, control (node), trail, and binding array areas. This profile is radically different than that measured for Prolog (53% control, 23% environment, 20% heap, 3% trail). The differences are explained as follows. 11% of Aurora references are devoted to the binding arrays, so these references must be factored out when compared to Prolog. In addition, trailing in Aurora requires saving both an address and value, twice the storage requirements of the Prolog trail. In addition, the Aurora compiler generates efficient code that can reduce node referencing during shallow backtracking. The Prolog statistics were gathered on a system without such optimizations. These considerations help to calibrate the two variations of the WAM: however, the rather low environment data reference count in Aurora has not yet been explained. This is again possibly due to the sophistication of the Aurora compiler.

8.2 Bus Traffic

Tables 11 and 12 give the raw simulation bus traffic profiles of the benchmarks measured in this study. For each benchmark, the percentage bus traffic is broken down by area. This raw data is redisplayed in graphic form in Figure 13. The model used to generate these measurements is a shared instruction data (I+D) cache coupled with a one word bus and eight cycle memory. This data is presented with the intention of delineating the trouble spots in each architecture. However, note that a split instruction and data cache and/or a different bus and memory model will produce different profiles for the same benchmarks. Note also that the summary statistics are calculated with Aurora Semigroup and Pascal running on two PEs.

Aurora's bus traffic characteristics vary greatly with each benchmark. Instruction bus traffic varies from 15-77%. Within data traffic, heap bus traffic varies from 1-39% and node bus traffic varies from 9-58%. The other areas are more stable across the benchmarks. KLT's bus traffic characteristics also vary with each benchmark. Instruction bus traffic varies from 0.1-4.9%.

benchmark	INSTR	DATA	HEAP	GOAL	SUSP	COMM
Triangle	2.1	97.9	27.8	33.8	0.0	36.4
Semigroup	2.0	98.0	52.3	10.4	2.0	33.4
Puzzle	4.9	95.1	74.3	10.5	0.5	9.7
Pascal	0.7	99.3	32.4	15.5	6.1	45.3
AOqueen	0.1	99.9	27.2	6.7	10.0	56.0
KKqueen	0.1	99.9	45.3	25.5	0.2	29.0
KUqueen	0.1	99.9	72.0	13.3	0.1	14.6
E(all)	2.0	98.0	42.8	15.4	3.7	36.2
$\sigma(all)$	1.7	1.7	18.2	9.6	3.8	15.4
E(data)			43.6	15.7	3.8	36.9

Table 11: KL1 % Bus Traffic by Area

benchmark	INSTR	DATA	HEAP	ENV	NODE	LBA	GBA	TRAIL
Triangle	47.9	52.1	1.5	3.8	38.4	0.7	2.2	5.6
Puzzle	34.2	65.8	6.9	2.9	42.9	0.6	5.0	7.5
Semigroup	4.9	95.2	10.7	1.8	75.0	0.6	4.0	3.0
Semigroup*	15.4	84.6	39.4	4.7	27.5	1.0	7.4	4.5
Pascal	14.6	85.4	2.9	1.2	78.6	0.3	1.3	1.0
Pascal*	76.6	23.5	5.2	2.1	9.4	0.6	4.1	2.0
HKqueen	25.6	74.4	1.4	1.4	58.3	0.3	2.3	2.1
MBqueen	29.1	70.9	9.4	1.3	57.2	0.4	1.5	1.2
E(all)	60.1	39.9	12.6	3.0	35.3	0.7	4.2	4.4
$\sigma(all)$	21.2	21.2	13.7	1.2	16.3	0.2	2.0	2.1
E(data)			21.0	5.0	58.8	1.1	7.0	7.3

Table 12: Aurora % Bus Traffic by Area (* = 2 PEs)

Percentage Bus Cycles by Area

Percentage Bus Cycles by Data Area

Table 13: Bus Traffic Characteristics (by Area) of KL1 and Aurora

Within data traffic, suspension bus traffic varies from 0–10% and communication bus traffic varies from 10–56%.

The most significant difference between the architectures is the instruction bus traffic. Aurora generates a great deal of instruction bus traffic, whereas KL1 has almost none. It would
therefore appear than KL1 has superior code locality. This may be due to the fact that KL1
does not backtrack, and in these benchmarks, does little synchronization. Thus execution is
determinate and jumps are infrequent. With few jumps, the prefetch effect of four word cache
blocks gives KL1 a very low instruction miss ratio. On the other hand, the Prolog programs
are heavily backtracking. This however cannot explain why Pascal instruction traffic differs
by a factor of 67, whereas Aurora makes only 68% of KL1's instruction requests!

Another interesting statistic is that Aurora heap bus traffic is on average 21% of all data bus traffic, compared to 44% for KL1. Similarly, Aurora environment bus traffic is on average 5% of all data bus traffic, compared to 16% for KL1. These results indicates in part that Prolog's stack-group storage management has superior spatial locality to KL1's heap-based storage management. The results also derive from Aurora's high scheduling overhead: the control stack alone generates 59% of all data bus traffic. The binding arrays and trail account for 15% more. One can roughly compare this to KL1's suspension and communication traffic of 41%. Thus the statistics reenforce the hypotheses that committed-choice languages require simpler management than do non-committed-choice languages (because there is no backtracking, nor multiple bindings of the same variable), but that committed-choice languages have less data locality because of the necessity for heap-based management. Specifically, OR-parallel Prolog requires high control-stack bus bandwidth because the individual PEs are walking around the OR-tree, executing the program. AND-parallel FGHC requires heap-based storage management because procedure environments cannot be stored effectively on a true stack.

Looking at Aurora, **Semigroup** and **Pascal** have different characteristics for two and eight PEs. **Semigroup** is data intensive in either case. Although node bus traffic decreases to 27.5% of all data bus traffic on two PEs. 84.6% of all bus cycles are spent on data transfers. **Pascal** is not data intensive, as is shown by the decrease of node bus traffic to only 9.4% of all data bus traffic on two PEs. As a result, instruction traffic becomes significant on two PEs: 76.6% of all bus cycles. These characteristics can be seen in the benchmark code. **Semigroup** manipulates lists of 40 integers whereas **Pascal** manipulates varying size lists of at most six integers.

9 Cache Performance

In this section, cache simulation results for the Aurora and KLI systems are presented. First, the (in)accuracies of the cache model used are described. In the case of KLI, the simulator is calibrated against an earlier simulator measured by Matsumoto [35]. Second, the cache measurements, in terms of miss and bus traffic ratios are presented and analyzed.

9.1 Calibration

In this section, calibration with Matsumoto's results using a pseudo-parallel simulator [35] are presented. Calibration of the Aurora system is not possible because there have been no previous studies of Aurora's cache behavior.

Table 14 shows the percentages of the memory references and bus cycles for each area in the KL1 abstract machine, for both the new and old (pseudo-parallel) simulators. The benchmark measured is **BUP**. All measurements presented are for a no-indexing version of **BUP** (because the old compiler did not have indexing). In addition, the old statistics are calibrated by removing all references to meta-counts (the new simulator does not count meta-control).

Table 14 shows that the new and old simulators are closely calibrated. There are a few significant differences however. The new simulator performs fewer suspensions than the old simulator—this is no doubt due to timing differences. The lower suspension count of the new simulator is felt to be more accurate than the old simulator. The decrease in suspension count affects the other statistics, for instance the decrease in heap references.

The old simulator uses direct write (DW) commands for the goal and communication areas. The new simulator does not implement this optimization. Note that although the old simulator made 32% more goal references, it used 63% fewer bus cycles. Similarly, the old simulator made 10% more communication references, but used 37% fewer bus cycles. In the case of communication, the old simulator is inaccurate because it does not lock and unlock the communication area before sending a message, as is necessary in a real-parallel system. Matsumoto [35] reported that cache optimizations to allow direct writes to the goal and communication areas reduced total bus traffic by 6%. We see here that since suspensions are actually lower than measured by Matsumoto, and assuming that meta-control can be implemented at low cost, the relative savings afforded by direct write to the goal and communication areas is far greater than 6%. Note that whereas in the old simulation, heap referencing accounted for the most bus traffic, in the new simulation, communication referencing is the culprit.

9.2 Results

The majority of the plots presented in this section have increasing cache size on the X-axis, and increasing miss (or bus traffic) ratio on the Y-axis. Unless otherwise stated, all simulations were run with eight PEs, a cache block size of four words, four-way set associativity, and write allocation (i.e., if a write request misses in the cache, the target line is allocated in the cache).

area	re	eferences		bus cycles			
	old:new	% new	% old	old:new	% new	% old	
INST	1.21	52.8	51.4	1.75	13.9	16.8	
DATA	1.38	47.2	48.6	1.71	86.1	83.2	
HEAP	1.09	17.6	15.5	2.46	25.8	43.6	
GOAL	1.32	27.0	28.9	0.37	21.4	5.4	
SUSP	4.68	0.6	2.2	5.74	4.9	19.5	
СОММ	1.10	2.0	2.1	0.63	33.9	14.6	

Table 14: Calibration of KL1 Simulators Using BUP

Simulations marked with an asterisk (*) were run with two PEs.

The cache sizes simulated are 32, 64, 128, 256, and 512 columns, corresponding to data areas of 512, 1024, 2048, 4096 and 8192 words. In the plots however, the plotted cache sizes are as calculated in Section 5.3.3. This calculation assumes a 5 byte data word and accounts for directory size. Through this discussion, cache sizes are distinguished by their word size, e.g., "a 2048 word cache."

The bus traffic ratio (BTR) plots presented all assume a two word bus and eight cycle memory access time. Figure 12 shows the effect of these parameters on the BTR. The X-axis coordinates represent the ten models considered. For example the third coordinate is 2.6 representing a two word bus and a six cycle memory access. Recall from Section 5.3.3 that zero access time models imply that bus operations can be overlapped. Two typical benchmarks are given in Figure 12. For each, bus traffic increases as the models degrade. With the standard non-overlapped bus model, bus traffic is only weakly dependent on memory access time. The introduction of an overlapped bus offers the most reduction of traffic. However, it is clearly more beneficial to double the bus width than speedup the memory or implement a complex overlap manager.

The main plots illustrate the following experimental space: two architectures (Aurora and KL1), five benchmarks, five cache sizes, two cache types (data-only and instruction+data), two statistics (miss ratio and bus traffic ratio). In addition, plots are given illustrating a subset of the following extensions to this space: other benchmarks, two processor configurations (two and eight PEs), ten system models (varying bus width and memory access time).

The cache simulations performed for this study are "empirical" in a stronger sense of the word than standard uniprocessor cache simulations, or even psuedo-parallel multiprocessor cache simulations. Here a real-parallel emulator and cache simulator were run, and so the statistics include the probabilistic effects of timing. Therefore occasionally the data appears "to go in the wrong direction"—this should indicate the variances involved. In other words, if

Figure 12: Comparison of Bus Traffic for Different System Models

a large cache performs worse than a smaller cache for some experiment, it may well be that the timing of the two simulations was such that the smaller cache accidentally made better scheduling decisions. This problem is especially severe for timing critical FGHC programs, such as AOqueen. AOqueen is a drastic example where the cache simulation interfered with the timing to the extent of significantly altering the number of suspensions, affecting both high-level and low-level statistics.

Examining I+D caches first (Tables 13 and 14), we find Aurora achieving lower miss and bus traffic ratios than KL1 as cache size increases. The KL1 curves (except for **Triangle**) flatten out almost precisely at 10⁵ bits (2048 word cache), whereas Aurora continues to improve. Note that different benchmarks have drastically different behavior on the two systems, as we would expect from the high-level results in previous sections. For example, **Semigroup** and **Pascal** display higher bus traffic for a 2048 word cache in Aurora (even on two PEs) than in KL1. However, at 8192 words, Aurora can achieve lower bus traffic on two PEs, but still not on eight PEs (due to scheduling bandwidth). For **Triangle**, the roles are reversed, and Aurora has consistently lower bus traffic. **Puzzle** and **Queens** show almost equal performance for both systems on 512 word caches, but Aurora improves more rapidly with increasing cache size.

In general, KL1 performance is "flat," indicative of an architecture with a ever changing working set. KL1 monotonically walks through memory, referencing fresh areas on the way (until GC is incurred). Still, reasonable cache performance is achieved because the execution mechanism rereferences the same area frequently, as the walk through memory proceeds. Aurora performance is more "classical," i.e., bus traffic and miss ratio continue to decrease gracefully with cache size. Most of the benchmarks have their entire working sets captured in caches of 2048 words and larger.

Comparing the D-cache to the I+D-cache statistics, we find that Aurora and KL1 have opposite results. Aurora D-cache performance is better for all the benchmarks except **Semi-group**, than its I+D cache performance. KL1 performance is exactly opposite. This confirms the results seen in Section 8.2 that Aurora instruction referencing has lower locality than KL1 instruction referencing, and visa-versa for data referencing. Again, these characteristics can be explained by Aurora's more efficient stack-based storage model and its more "jumpy" code style.

Table 15 shows the two and eight PE versions of Semigroup and Pascal. These graphs don't say much, simply that overall, the extra traffic induced by the scheduler has a constant effect for all cache sizes. Table 16 shows an in-depth look at the miss ratios for the Queens benchmarks running on eight PEs (bus traffic ratios are similar). The relative performance gap between algorithms is easily viewed. For KL1, the beneficial effect of adding instructions to the cache is seen. For Aurora, both data-only and I+D caches have the same performance. AOqueen displays unstable behavior because of timing sensitivity, but in general, all the KL1 programs get no improvement with increasing cache size. This is because the KL1 working sets are constantly changing. The Aurora curves show the behavior of larger caches capturing the working set.

10 Conclusions

This study attempts to quantify the performance differences between committed-choice and non-committed-choice parallel logic programming language architectures. Specifically, the Aurora OR-parallel Prolog system is compared to the KL1 AND-parallel FGHC system for equivalent benchmark programs. Because the systems differ in both the type of parallelism exploited and the facility for non-determinate execution, separation of effects is difficult to analyze. Added are the differences of scheduling methods, garbage collection, and various other system support. This study claims not to convincingly analyze each effect in separation, but does present data that can help designers understand architecture tradeoffs. The field of parallel architectures is not so very young, but the field of parallel high-level language architectures (e.g., Lisp and Prolog-based languages) is almost infantile. Therefore experience with these types of architectures is limited, and accurate measurements of these experiences is even more limited. This paper presents the first detailed performance characteristics of parallel logic programming

Figure 13: Aurora Cache Performance: Miss and Bus Traffic Ratios

Figure 14: KL1 Cache Performance: Miss and Bus Traffic Ratios

Figure 15: Aurora Scheduling Overheads: Two and Eight PE Comparison

Figure 16: 10-Queens Comparison: Miss Ratio

architectures.

The most important result of this study was a confirmation that indeed (independent) OR-parallel architectures have better memory performance than (dependent) AND-parallel architectures. The reasons are that OR-parallel architectures can exploit an efficient stack-based storage model whereas dependent AND-parallel architectures must resort to a less efficient heap-based model. For all-solutions search problems, a further result is that non-committed-choice architectures have better memory performance than committed-choice architectures. This is because backtracking architectures can efficiently reclaim storage during all-solutions search, thereby reducing working-set size. Committed-choice architectures, like functional language architectures, consume memory at a rapid rate. Incremental GC can alleviate some of penalty for this memory appetite, but incremental GC also incurs its own overheads. Thirdly, for single-solution problems, OR-parallel architectures cannot exploit parallelism as efficiently as dependent AND-parallel architectures can. Although OR-parallel goals may exist, they are often too fine-grained for the excessive overheads necessary to execute them in parallel. In this respect, dependent AND-parallel architectures can execute fine-grain parallelism more efficiently than can OR-parallel architectures.

From the raw timings we saw that even with the anticipated 10% improvement in KL1 speed due to compiler optimization [43], 2–9 times improvement is needed to equal Aurora's speed. Pascal is the single exception where KL1 outperformed Aurora because the Argonne scheduler went crazy trying to find parallelism that did not exist. In any case, both systems calibrated on a simple determinate benchmark. There is no doubt however that the benchmarks favor Prolog. Triangle was translated from Prolog to FGHC, thereby incurring overheads. Puzzle in KL1 involves excessive structure copying. Semigroup in KL1 does not use a 2-3 tree as does Prolog. AOqueens uses layered-streams, thereby incurring suspensions. On the other hand, is there a more natural or more efficient way to write these programs in FGHC? Prolog-to-FGHC continuation-based translation, layered-streams, object-oriented programming, pipelined parallelism, etc. are all publicized methods of parallel FGHC programming. If there are better versions of these programs, it would be very enlightening to measure them.

A "bottom-heavy" system, such as KL1, makes a tradeoff between the ease of exploiting parallelism and the power of language constructs. Backtracking and full logical unification have been traded for stream-AND parallelism. There is a loose analogy in the tradeoff made by Prolog with respect to Lisp. Prolog makes a tradeoff between declarative semantics and the power of language constructs. We also see the about the same performance ratio between Prolog and Lisp [54] and Prolog and FGHC. On the other hand, Aurora makes a tradeoff between the power of language constructs and the availability of parallelism. This leads to dismal results for programs with no OR-parallelism like Pascal or the compiler studied by Carlsson [10]. There

is a large class of problems, not represented here, requiring intelligent search strategies, e.g., Maxflow and Bestpath. These problems cannot be solved efficiently by Aurora.

11 Future Work

The benchmarks in this study are too small and in the future should be replaced by more realistic application programs. Benchmark development is a troublesome problem in a young field such as this where language and architecture definitions are constantly changing, and where system implementations are immature. Additional algorithms should be developed for the problems already analyzed. For example, the FGHC version of **Semigroup** should be rewritten to use a data/process structure equivalent to the 2-3 tree.

The Aurora OR-parallel Prolog architecture exhibits data sharing characteristics that are highly centralized. All processes frequently access the same shared node tree (control stack). This study presents measurements of invalidation broadcast caches only; however, for Aurora, update broadcast appears to be more matched to centralized sharing. In the future an update broadcast protocol should be measured.

The KL1 AND-parallel FGHC architecture displays a high bandwidth requirement, similar to that of functional programming language architectures. Thus these architectures require garbage collection (GC) subsystems. In the KL1 system measured in this study, a naive stop-and-copy GC was implemented. This has the advantage of allowing large benchmarks to be tested, but because it is not incremental, it does not significantly reduce the bandwidth requirement. Incremental GC schemes such as MRB[12] provide this ability. Nishida[38] claims MRB can reduce KL1 bus traffic (on a shared memory multiprocessor model) by 15–26% on eight PEs. The measurements presented in this paper should be extended to include optional incremental GC for comparison.

Empirical studies such as this one make many assumptions and approximations to facilitate making measurements. The mapping of the emulator state onto the target architecture state is especially difficult and error prone. To obtain more accurate measurements, i.e., measurements that more closely model the real system that is being designed, this mapping must be made more exact. For example, in the Aurora and KL1 systems, various global data structures are used to represent information about each PE. In this study, references to such data structures are not regarded as abstract memory references. In more accurate models, perhaps these structures will be accessed from memory.

Read-purge and read-buffer cache operations should be instrumented in the KL1 real-parallel system. Comparison with Matsumoto's earlier results indicate that these operations may reduce bus traffic by more than expected.

12 Acknowledgements

This research was supported in full by NSF Grant No. IRI-8704576. The project was conducted at the Institute for New Generation Computer Technology (ICOT). The author thanks the Director of ICOT, Dr. Kazuhiro Fuchi, and Dr. Shun-ichi Uchida for supporting his stay at ICOT in terms of resources, work environment, and general day-to-day life.

I thank Professor Michael Flynn and Susan Gere of Stanford University for their understanding and support, difficult at best from such a great distance.

I thank my co-workers at ICOT for helping with this research. Most notable are M. Sato, who wrote the parallel KL1 emulator, and A. Matsumoto, who wrote the parallel cache simulator. They both helped me modify, debug and analyze these systems. I owe a great deal to A. Okumura who helped develop **Triangle**, **Pascal**, and many other KL1 benchmarks. I also had informative discussions with A. Goto, N. Ichiyoshi, Y. Kimura, K. Ueda, and others.

I thank S. Haridi of the Swedish Institute of Computer Science (SICS), and R. Lusk and R. Overbeek of Argonne National Laboratories (ANL) for supplying me with the Aurora OR-Parallel Prolog system. Discussions and assistance from R. Overbeek and R. Stevens from ANL were helpful in understanding this system. I also thank A. Ciepielewski of SICS whose help instrumenting and analyzing Aurora during his three month visit at ICOT was invaluable.

I thank I. Foster of Imperial College and M. Hermenegildo of Microelectronics Computer Technology Corporation (MCC) for informative discussions about "the big picture."

A Appendix: Prolog Benchmarks

A.1 Triangle

______ Program: Triangle (all solutions, OR-parallel) Author: E. Tick August 7 1988 Date: Notes: 1. To run: ?- go(T,N). where output T is the execution time and output N should be 133. 2. The initial board: 1 1 0 1 1 1 1 1 1 1 1 1 which is represented by the structure: b(1,1,1,1,0, 1,1,1,1,1, 1,1,1,1,1) is simplified by making the first three moves, to reduce the solution space: 0 1 1 1 0 1 1 1 which is represented by the structure: b(1,1,1,1,1, 1,1,0,1,1, 1,0,1,1,1) 1 1 0 1 1 1 1 0 0 1 which is represented by the structure: b(1,1,1,1,1, 1,1,0,1,1, 1,1,0,0,1) 1 1 1 0 0 1 1 1 1 0 which is represented by the structure: b(1,1,1,1,1, 0,1,0,0,1, 1,1,1,0,1) The goal of this game is to remove all the pegs (1's) from the board. Any peg can jump over any other peg along a straight line and land in an open hole. peg is removed. This translates into 36 possible moves. The goal of the triangle benchmark is to calculate all winning sequences of moves (there are 133 given these first three moves). Winning sequences are collected with a bagof -the solutions are then counted. The program can be greatly lengthened by removing the initial forced moves.

```
:- parallel move/3.
go(T,N) :-
    time(_),
    bagof(X,play(3,b(1,1,1,1,1, 0,1,0,0,1, 1,1,1,0,1),X),L),
    time(T),
    count(L,N).
time(T) :- statistics(runtime,[_,T]).
count(L,N) :- count(L,O,N).
count([X|Xs],M,N) :- M1 is M+1, count(Xs,M1,N).
count([],N,N).
play(13,_,[]) :- !.
play(M, Board, [PIX]) :-
    move(P,Board,NewBoard),
    M1 is M+1,
    play(M1,NewBoard,X).
move(1,b( 1, 1,X3, 0,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15),
    b( 0, 0, X3, 1, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15))
move(2,b(X1, 1,X3, 1,X5,X6, 0,X8,X9,X10,X11,X12,X13,X14,X15),
    b(X1, 0,X3, 0,X5,X6, 1,X8,X9,X10,X11,X12,X13,X14,X15))
move(3,b(X1,X2,X3, 1,X5,X6, 1,X8,X9,X10, 0,X12,X13,X14,X15),
    b(X1, X2, X3, 0, X5, X6, 0, X8, X9, X10, 1, X12, X13, X14, X15)).
move(4,b(X1,X2, 1,X4, 1,X6,X7, 0,X9,X10,X11,X12,X13,X14,X15),
    b(X1,X2, 0,X4, 0,X6,X7, 1,X9,X10,X11,X12,X13,X14,X15)).
move(5,b(X1,X2,X3,X4, 1,X6,X7, 1,X9,X10,X11, 0,X13,X14,X15),
    b(X1,X2,X3,X4, 0,X6,X7, 0,X9,X10,X11, 1,X13,X14,X15))
move(6,b(X1,X2,X3,X4,X5, 1,X7,X8, 1,X10,X11,X12, 0,X14,X15),
    b(X1,X2,X3,X4,X5, 0,X7,X8, 0,X10,X11,X12,
                                                1,X14,X15)).
move(7,b( 1,X2, 1,X4,X5, 0,X7,X8,X9,X10,X11,X12,X13,X14,X15),
    b( 0, X2, 0, X4, X5, 1, X7, X8, X9, X10, X11, X12, X13, X14, X15)).
move(8,b(X1,X2, 1,X4,X5, 1,X7,X8,X9,
                                       0,X11,X12,X13,X14,X15),
    b(X1,X2, 0,X4,X5, 0,X7,X8,X9, 1,X11,X12,X13,X14,X15))
move(9,b(X1,X2,X3,X4,X5, 1,X7,X8,X9, 1,X11,X12,X13,X14,
    b(X1,X2,X3,X4,X5, 0,X7,X8,X9, 0,X11,X12,X13,X14, 1)).
move(10,b(X1, 1,X3,X4, 1,X6,X7,X8, 0,X10,X11,X12,X13,X14,X15),
     b(X1, 0,X3,X4, 0,X6,X7,X8, 1,X10,X11,X12,X13,X14,X15)).
move(11,b(X1,X2,X3,X4, 1,X6,X7,X8, 1,X10,X11,X12,X13, 0,X15),
     b(X1,X2,X3,X4, 0,X6,X7,X8, 0,X10,X11,X12,X13, 1,X15)).
move(12,b(X1,X2,X3, 1,X5,X6,X7, 1,X9,X10,X11,X12,
                                                    0,X14,X15),
     b(X1,X2,X3, 0,X5,X6,X7, 0,X9,X10,X11,X12, 1,X14,X15))
move(13,b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10, 1, 1, 0,X14,X15),
b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10, 0, 0, 1,X14,X15)).
move(14,b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11, 1, 1, 0,X15)
     b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11, 0, 0, 1,X15)).
move(15,b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12, 1, 1,
     b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12, 0, 0, 1)).
move(16,b(X1,X2,X3,X4,X5,X6, 1, 1, 0,X10,X11,X12,X13,X14,X15),
     b(X1,X2,X3,X4,X5,X6, 0, 0, 1,X10,X11,X12,X13,X14,X15))
move(17,b(X1,X2,X3,X4,X5,X6,X7, 1, 1, 0,X11,X12,X13,X14,X15),
     b(X1,X2,X3,X4,X5,X6,X7, 0, 0,
                                    1,X11,X12,X13,X14,X15))
move(18,b(X1,X2,X3, 1, 1, 0,X7,X8,X9,X10,X11,X12,X13,X14,X15)
     b(X1,X2,X3, 0, 0, 1,X7,X8,X9,X10,X11,X12,X13,X14,X15))
move(19,b( 0, 1,X3, 1,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15),
     b( 1, 0, X3, 0, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15))
move(20,b(X1, 0,X3, 1,X5,X6, 1,X8,X9,X10,X11,X12,X13,X14,X15),
     b(X1, 1,X3, 0,X5,X6, 0,X8,X9,X10,X11,X12,X13,X14,X15)).
move(21,b(X1,X2,X3, 0,X5,X6, 1,X8,X9,X10, 1,X12,X13,X14,X15),
     b(X1,X2,X3, 1,X5,X6, 0,X8,X9,X10, 0,X12,X13,X14,X15)).
```

```
move(22,b(X1,X2, 0,X4, 1,X6,X7, 1,X9,X10,X11,X12,X13,X14,X15),
     b(X1,X2, 1,X4, 0,X6,X7, 0,X9,X10,X11,X12,X13,X14,X15))
move(23,b(X1,X2,X3,X4, 0,X6,X7, 1,X9,X10,X11, 1,X13,X14,X15),
     b(X1,X2,X3,X4, 1,X6,X7, 0,X9,X10,X11, 0,X13,X14,X15)).
move(24,b(X1,X2,X3,X4,X5, 0,X7,X8, 1,X10,X11,X12, 1,X14,X15),
     b(X1,X2,X3,X4,X5, 1,X7,X8, 0,X10,X11,X12, 0,X14,X15)).
move(25,b( 0,X2, 1,X4,X5, 1,X7,X8,X9,X10,X11,X12,X13,X14,X15),
     b( 1,X2, 0,X4,X5, 0,X7,X8,X9,X10,X11,X12,X13,X14,X15))
move(26,b(X1,X2, 0,X4,X5, 1,X7,X8,X9, 1,X11,X12,X13,X14,X15),
     b(X1,X2, 1,X4,X5, 0,X7,X8,X9, 0,X11,X12,X13,X14,X15)).
move(27,b(X1,X2,X3,X4,X5, 0,X7,X8,X9, 1,X11,X12,X13,X14,
     b(X1,X2,X3,X4,X5, 1,X7,X8,X9, 0,X11,X12,X13,X14, 0)).
move(28,b(X1, 0,X3,X4, 1,X6,X7,X8, 1,X10,X11,X12,X13,X14,X15),
     b(X1, 1,X3,X4, 0,X6,X7,X8, 0,X10,X11,X12,X13,X14,X15)).
move(29,b(X1,X2,X3,X4, 0,X6,X7,X8, 1,X10,X11,X12,X13, 1,X15)
     b(X1,X2,X3,X4, 1,X6,X7,X8, 0,X10,X11,X12,X13, 0,X15)).
move(30,b(X1,X2,X3, 0,X5,X6,X7, 1,X9,X10,X11,X12, 1,X14,X15),
     b(X1,X2,X3, 1,X5,X6,X7, 0,X9,X10,X11,X12, 0,X14,X15)).
move(31,b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10, 0, 1, 1,X14,X15),
b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10, 1, 0, 0,X14,X15)).
move(32,b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11, 0, 1, 1,X15),
     b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11, 1, 0, 0,X15)).
move(33,b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12, 0, 1,
     b(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12, 1, 0, 0)).
move(34,b(X1,X2,X3,X4,X5,X6, 0, 1, 1,X10,X11,X12,X13,X14,X15),
b(X1,X2,X3,X4,X5,X6, 1, 0, 0,X10,X11,X12,X13,X14,X15)).

move(35,b(X1,X2,X3,X4,X5,X6,X7, 0, 1, 1,X11,X12,X13,X14,X15),
     b(X1,X2,X3,X4,X5,X6,X7, 1, 0, 0,X11,X12,X13,X14,X15)).
move(36,b(X1,X2,X3, 0, 1, 1,X7,X8,X9,X10,X11,X12,X13,X14,X15),
     b(X1,X2,X3, 1, 0, 0,X7,X8,X9,X10,X11,X12,X13,X14,X15)).
```

A.2 Puzzle

```
Program: Puzzle (all solutions, OR-parallel)
Author: E. Tick
Date: July 4 1988
Notes:
1. To run:
   ?- go(T,N).
where output T = time and N = 65 (number of solutions).
This is 5x4x3 puzzle with chip in corner.
3. This version collects answers in a list. Each answer is a list of seven
pieces indicating the origin at which they were placed.
:- parallel fill/4,p321/3,p431/3,p331/3,p421/3.
go(T,N) :-
   time(_),
   make_board(Board),
   initialize(Board, Pieces),
findall(Game, play(Board, Pieces, Game,0), L),
    count(L,N),
   time(T).
% chip-off corner to remove symmetry...
initialize([s(z,_,_,)|_],[[a,b,c], [d,e], [f], [g]]).
M1 is M+1,
   play(Rest, Pieces, Ns, M1)
play([Spot|Rest], Pieces, [[N|M]|Ns], M) :-
                                   % spot empty - try to fill
   fill(Spot, N, Pieces, NewPieces),
   M1 is M+1,
   play(Rest, NewPieces, Ns, M1).
% piece templates:
% p1 = 4x2x1: 4 orientations
p421(M, a, s(M,
                                           % 4-2-1
           s(M,
              s(M,
                  s(M,_,
                     s(M,_,_,_),
                     _),
                  s(M,_,_,_),
                  _),
              s(M,_,_,_),
              _),
           s(M,_,_,_),
           _)).
p421(M, b, s(M, _,
                                          % 1-4-2
          s(M,_,
```

```
s(M,_,
s(M,_,
             s(M,_,_,)),
s(M,_,_,)),
s(M,_,,_)),
p421(M, c, s(M,
s(M,_,_,_),
s(M,
                                                % 2-4-1
                  s(M,_,_,_),
                  s(M,
                      s(M,_,_,_),
                      s(M,
s(M,_,_,),
                           _j,
             _)). __),
p421(M, d, s(M,
                                                % 4-1-2
             s(M,
s(M,
s(M,
s(M,_,
                           s(M,_,_,)),
                      s(M,_,_,)),
                  s(M,_,_,_)),
             s(M,_,_,))).
% p331 = 3x3x1: 3 orientations p331(M, e, s(M,
                                                     % 3-3-1
             s(M,
                  s(M,_,
s(M,_,s(M,_,_,),_),
                  s(M,_,s(M,_,_,),_),
             s(M,_,s(M,_,_,),_),
              _)).
p331(M, f, s(M,
                                                     % 3-1-3
             s(M,
s(M,_,
                      -,
s(M,_,_,s(M,_,_,_))),
                  -,
s(M,_,_,s(M,_,_,_))),
             ε(M,_,_,s(M,_,_,_)))).
p331(M, g, s(M,
                                                     % 1-3-3
             s(M.
                  s(M,_,
```

```
s(M,_,_,s(M,_,_,))),
s(M,_,_,s(M,_,,_,))),
s(M,_,_,s(M,_,,_,))).
% p321 = 3x2x1: 6 orientations
p321(M, h, s(M,
                                                       % 3-2-1
                         s(M,
                               s(M,_,
                                      s(M,_,_,_),
                                     _),
                               s(M,_,_,_),
                        s(M,_,_,_),
                         _)).
p321(M, i, s(M,
                                                       % 2-1-3
                        s(M,_,_,_),
                        -,
s(M,
                               s(M,_,_,_),
                               s(M,
                                      s(M,_,_,_),
                                      _;
_;;;;.
p321(M, j, s(M, _,
                                                     % 1-3-2
           s(M,_,
           s(M,_,_,)),
s(M,_,_,)),
s(M,_,_,))).
p321(M, k, s(M,
                                                  % 2-3-1
              s(M,_,_,_),
              s(M,
                  s(M,_,_,_),
                  s(M,
                       s(M,_,_,_),
             p321(M, 1, s(M,
                                                  % 3-1-2
              s(M,
                  s(M,
                       s(M,_,_,_)),
                  s(M,_,_,_)),
             s(M,_,_,_))).
p321(M, m, s(M, _, s(M, _, _, _, _),
                                                   % 1-2-3
             s(M,_,
s(M,_,_,),
```

```
s(M,_,_,_),
_)))).
% p431 = 4x3x1: 4 orientations
                                                      % 4-3-1
p431(M, n, s(M,
           s(M,
s(M,
                     s(M,_,
s(M,_,s(M,_,_,),_),
                    _),
s(M,_,s(M,_,_,_),_),
                    _),
                s(M,_,s(M,_,_,),_),
           _),
s(M,_,s(M,_,_,_),_),
           _)).
p431(M, o, s(M, _,
                                                    % 1-4-3
             s(M,_,
                  s(M,_,
s(M,_,
             s(M,_,_,s(M,_,_,))),
s(M,_,_,s(M,_,_,))),
s(M,_,_,s(M,_,_,))),
s(M,_,,s(M,_,_,))).
p431(M, p, s(M,
                                                 % 3-4-1
             s(M, s(M, __, __), __),
                  s(M,s(M,_,_,),_,),
                       s(M,s(M,_,_,_),_,_),
                       s(M,
                           s(M,s(M,_,_,),,_,),
             _)). _), _), _;, _;,
p431(M, q, s(M,
                                                 % 4-1-3
             s(M,
                  s(M,
                       s(M,_,
                           s(M,_,_,s(M,_,_,_))),
                       -,
s(M,_,_,s(M,_,_,))),
                  s(M,_,_,s(M,_,_,_))),
             s(M,_,_,s(M,_,_,_)))).
make_board(Level0) :-
    make_level(LevelO-Level1,Level1-_),
    make_level(Level1-Level2,Level2-_),
    make_level(Level2-[],[z,z,z,z,z, z,z,z,z,z,z,
                             z,z,z,z,z, z,z,z,z,z]-[]).
make_level(C-Link,Z-L) :-
    C= [C00,C10,C20,C30,C40,
```

```
C01,C11,C21,C31,C41,
            C02,C12,C22,C32,C42,
           CO3,C13,C23,C33,C43|Link],
     Z= [Z00,Z10,Z20,Z30,Z40,
           Z01,Z11,Z21,Z31,Z41,
            Z02,Z12,Z22,Z32,Z42,
           Z03,Z13,Z23,Z33,Z43[L],
     node(C10,C01,Z00, N1, N2,C00),
node(C20,C11,Z10, N2, N3,C10),
     node(C30,C21,Z20, N3, N4,C20),
     node(C40,C31,Z30, N4, N5,C30),
     node( z,C41,Z40, N5, N6,C40),
     node(C11,C02,Z01, N6, N7,C01),
node(C21,C12,Z11, N7, N8,C11),
     node(C31,C22,Z21, N8, N9,C21),
     node(C41,C32,Z31, N9,N10,C31),
     node( z,C42,Z41,N10,N11,C41),
     node(C12,C03,Z02,N11,N12,C02),
     node(C22,C13,Z12,N12,N13,C12),
     node(C32,C23,Z22,N13,N14,C22),
     node(C42,C33,Z32,N14,N15,C32),
     node( z,C43,Z42,N15,N16,C42),
     node(C13, z,Z03,N16,N17,C03),
node(C23, z,Z13,N17,N18,C13),
     node(C33, z,Z23,N18,N19,C23),
     node(C43, z,Z33,N19,N20,C33),
     node( z, z,Z43,N20, _,C43).
node(X,Y,Z,N,N,s(_,X,Y,Z)).
time(T) :- statistics(runtime,[_,T]).
\begin{split} & \text{count}(L, \mathbb{N}) \ := \ \text{count}(L, \mathbb{O}, \mathbb{N}) \, , \\ & \text{count}([\mathbb{X} | \mathbb{X} \mathbf{s}], \mathbb{M}, \mathbb{N}) \ := \ \mathbb{M} \mathbf{1} \ \text{is} \ \mathbb{M} \! + \! \mathbf{1}, \ \text{count}(\mathbb{X} \mathbf{s}, \mathbb{M} \mathbf{1}, \mathbb{N}) \, . \end{split}
count([],N,N).
```

A.3 Pascal

```
/*-----
Program: Pascal's Triangle
Author: E. Tick with BIGNUM package written by R. O'Keefe
Date: August 17 1988
Notes:
1. To run:
   ?- go(N,R,T).
where N is the input row number and the output R is a list of coefficients
and T is the execution time.
example: for N = 20:
3. This version uses assert/retract to perform its own GC because Aurora does
not support GC. This is necessary because the algorithm uses up heap space
at a fast rate.
4. How this version works: there is a maximum granularity (chosen to be six).
The row of Pascal's triangle to be calculated is divided into chunks equal
to the maximum granularity. Each chunk is spawned in AND-parallel with
the remaining portion of the row to be processed. The end of the row is
sequentialized because GC must be implemented at the source-level with a
fail. Main factors limiting execution speed:
       1. home-brew GC, implemented by a fail, is invoked for each
          row calculation, and therefore parallelism cannot overlap
          row calculations.
5. This version uses new AND-in-OR parallel scheme optimized for this
specific case of two-way determinate parallelism. In this version,
the merge of solutions from the left and right children is done efficiently
without member.
     */----*/
:- parallel gather_sols/3.
go(N, R, T) :-
   time(_),
   N > 0.
   assert(row([[1,0],[1,0]])),
                                             % seed row
   pascal(1, N, R),
   time(T).
time(T) :- statistics(runtime,[_,T]).
pascal(N, N, R) :- !, retract(row(R)).
pascal(K, N, R) :-
                                            % clean up after...
   make_pascal(K),
   K1 is K + 1,
   pascal(K1, N, R).
make_pascal(K) :-
   retract(row([F|Data])),
   W = 6,
                                     % 6 is max granularity for now
   Odd is K mod 2,
   H is (K+1)//2,
   Iter is H // W.
   End is H mod W,
   make_row(Iter,End,[F|Data],Result,[F].Odd).
   assert(row([F|Result])),
```

```
fail.
                                           % homebrew GC
make_pascal(_).
make_row(0,End,In,Out,Rev,Odd) :~ !,
                                          % final padding
     granule(End, In, Out, Rev, Odd).
make_row(N,End,In,Out,Rev,Odd) :-
                                          % straight-away
     N1 is N-1,
     big_granule(N1,End,In,Out,Rev,Odd).
finish_row(0, Rev.
                      Rev) :- !.
                                          % even row end case
finish_row(1, Rev,[_|Rev]).
                                          % odd row end case
granule(0, In, Out, Rev, Odd) :- !.
    finish_row(Odd, Out, Rev).
granule(1,[A,B|Rest],[AB|R],T,Odd) :- !,
    big_plus(AB,A,B),
    finish_row(Odd, R, [AB|T]).
granule(2, [A,B,C|Rest], [AB,BC|R],T,Odd) :- !,
    big_plus(AB,A,B),
    big_plus(BC,B,C),
    finish_row(Odd, R, [BC,AB|T]).
granule(3,[A,B,C,D|Rest],[AB,BC,CD|R],T,Odd) :- !,
    big_plus(AB,A,B),
    big_plus(BC,B,C),
    big_plus(CD,C,D),
    finish_row(Odd, R, [CD,BC,AB|T]).
granule(4,[A,B,C,D,E|Rest],[AB,BC,CD,DE|R],T,Odd) :- !,
    big_plus(AB,A,B),
    big_plus(BC,B,C),
    big_plus(CD,C,D),
    big_plus(DE,D,E),
    finish_row(Odd, R, [DE,CD,BC,AB|T]).
granule(5,[A,B,C,D,E,F|Rest],[AB,BC,CD,DE,EF|R],T,Odd) :-
    big_plus(AB,A,B),
    big_plus(BC,B,C),
    big_plus(CD,C,D),
    big_plus(DE,D,E),
    big_plus(EF,E,F),
    finish_row(Odd, R, [EF,DE,CD,BC,AB|T]).
big_granule(N,End,[A,B,C,D,E,F,G|Rest],[AB,BC,CD,DE,EF,FG|R],T,Odd) :-
    and(make_row(N,End,[G|Rest],R,[FG,EF,DE,CD,BC,AB|T],Odd),
        work(A,B,C,D,E,F,G,AB,BC,CD,DE,EF,FG)).
work(A,B,C,D,E,F,G,AB,BC,CD,DE,EF,FG) :-
        big_plus(AB,A,B),
        big_plus(BC,B,C).
        big_plus(CD,C,D),
        big_plus(DE,D,E),
        big_plus(EF,E,F).
        big_plus(FG,F,G).
Program: AND-in-OR parallelism for two determinate goals
Author: E. Tick (based on original from M. Carlsson)
Notes:

    gets about same speedup as standard version, but is more efficient.

Speedup is a function of the granularity of the goals, but the overhead
of joining them determines the absolute speed.
schemes to improve efficiency of merge unification have failed. It
appears that simply unifying Goal1 and Goal2 directly is most efficient,
```

```
even though these structures may be complex.
and(Goal1,Goal2) :-
    findall(Sol, gather_sols(Sol,Goal1,Goal2), Sols),
    (Sols = [s1(Goal1), s2(Goal2)]; Sols = [s2(Goal2), s1(Goal1)]),!
gather_sols(s1(Goal1),Goal1,_):- call(Goal1).
gather_sols(s2(Goal2),_,Goal2):- call(Goal2).
                       ......
Program: BIGNUM package
Author: R. D'Keefe
*/
% this interface is meant to save storage...
big_plus(X,Y,Z) :- eval(real(+,X,[1]) is real(+,Y,[1]) + real(+,Z,[1])),!.
big_grt(X,Y) :- eval(real(+,X,[1]) > real(+,Y,[1])),!.
:- eval(compare(X,Y,S)), !, S=(>).
eval(X > Y)
                     :- eval(Y, B).
eval(B is Y)
eval(X+Y, C)
               :-!, eval(X, A), eval(Y, B), addq(A, B, 100000, C).
eval(X,X).
%%% comq
comq(A,A,_,=) :- !.
comq(real(+,Na,Da), real(+,Nb,Db), R, S) :-
        muln(Na, Db, R, Xa),
muln(Nb, Da, R, Xb),
        comn(Xa, Xb, =, S)
comq(real(+,Na,Da), real(-,Nb,Db), R, >) :- !.
comq(real(-,Na,Da), real(+,Nb,Db), R, <) :- !.
comq(real(-,Na,Da), real(-,Nb,Db), R, S) :-
        muln(Na, Db, R, Xa),
muln(Nb, Da, R, Xb),
        comm(Xb, Xa, =, S).
comq(Na, real(+,Nb,Db), R, S) :- Na >= 0,
        muln([Na], Db, R, Xa), !,
       comn(Xa, Nb, =, S).
comq(Na, real(-,Nb,Db), R, >) :- Na >= 0, !. comq(Na, real(+,Nb,Db), R, <) :- !.
comq(Na, real(-,Nb,Db), R, S) :- Nz is - Na,
        muln([Nz], Db, R, Xa),
        comn(Nb, Xa, =, S).
comq(real(+,Na,Da), Nb, R, S) :- Nb >= 0,
        muln([Nb], Da, R, Xb),
        comn(Na, Xb, =, S).
comq(real(+,Na,Da), Nb, R, >) :- !.
comq(real(-,Na,Da), Nb, R, <) :- Nb >= 0, !.
comq(real(-,Na,Da), Nb, R, S) :- Nz is - Nb,
        muln([Nz], Da, R, Xb),
comn(Xb, Na, =, S).

comq(Na, Nb, R, >) :- Na > Nb, !.
como(Na, Nb, R, <) :- !.
%%% addq
addq(A, B, R, S) :-
        real(A, R, Sa, Na, Da), real(B, R, Sb, Nb, Db),
```

```
muln(Na, Db, R, Xa),
            muln(Nb, Da, R, Xb),
            addz(Sa, Xa, Sb, Xb, R, Sc, Xc),
           gcdn(Xc, Da, R, _, Nx, Ya),
gcdn(Nx, Db, R, _, Nc, Yb),
muln(Ya, Yb, R, Dc), Nc/Dc\==[]/[],
            standardise(real(Sc, Nc, Dc),S), !.
           muln([], B, R, []) :- !.
muln(A, [], R, []) :- !.
muln(A, B, R, C) :- !, muln(A, B, [], R, C).
            muln([D1|T1], N2, Ac, R, [D3|Pr]) :-
                       mul1(N2, D1, R, P2),
addn(Ac, P2, O, R, Sm),
conn(D3, An, Sm), !,
muln(T1, N2, An,R, Pr).
            muln([],
                                N2, Ac, R, Ac) :- !.
                       mul1(A, O, R, []) :- !.
mul1(A, M, R, Pr) :- !,
                                   mul1(A, M, O, R, Pr).
                                   mul1([], M, O, R, []) :- !.
                                  mul1([], M, C, R, [C]) :- !.

mul1([D1|T1], M, C, R, [D2|T2]) :-

D2 is (D1*M+C) mod R,
                                               Co is (D1*M+C) // R
                                               mul1(T1, M, Co, R, T2).
%%% addz
addz(+,A, +,B, R, +,C) :- !, addn(A, B, O, R, C).
addz(+,A, -,B, R, S,C) :- !, subn(A, B, R, S, C).
addz(-,A, +,B, R, S,C) :- !, subn(B, A, R, S, C).
addz(-,A, -,B, R, -,C) :- !, addn(B, A, O, R, C).
            addn([D1|T1], [D2|T2], Cin, R, [D3|T3]) :-
                       Sum is D1+D2+Cin,
                       X is Sum mod 262144.
                       ( X >= R, Cout = 1, D3 is X-R
                         X < R, Cout = 0, D3 = Sum
           addn(T1, T2, Cout, R, T3).
addn([], L, O, R, L) :- !.
            addn([], L, 1, R, M) :- !, add1(L, R, M).
           addn(L, [], 0, R, L) :- !.
addn(L, [], 1, R, M) :- !, add1(L, R, M).
                       add1([M|T], R, [N|T]) := N is M+1, N < R, !.
                       add1([M|T], R, [O|S]) :- R is M+1, !, add1(T, R, S).
                       add1([], R, [1]).
%%% gcdn
           gcdn([], [], R, [], undefined, undefined):-!.
gcdn([], B, R, B, [], [1]):-!.
gcdn(A, [], R, A, [1], []):-!.
gcdn([1], B, R, [1], [1], B):-!. % common gcdn(A, [1], R, [1], A, [1]):-!. % common gcdn(A, B, R, D, M, N):- % A, B;
                                                                  % common case
% common case
% A, B > 1
```

```
gcdn(A, B, R, D),
divn(A, D, R, M, _),
divn(B, D, R, N, _).
                   gcdn(A, B, R, D) :-
                                                         % A, B >= 1 !!
                            comn(A, B, =, S), !,
                            gcdn(S, A, B, R, D).
                            gcdn(<, [], B, R, B) :- !.
gcdn(<, A, B, R, D) :-
                                      estg(B, A, R, E),
                                      muln(E, A, R, P),
                                      subn(B, P, R, _, M), !, gcdn(A, M, R, D).
                            gcdn(>, A, [], R, A) :- !.
gcdn(>, A, B, R, D) :-
                                      estg(A, B, R, E),
                                      muln(E, B, R, P),
subn(A, P, R, _, M), !,
gcdn(M, B, R, D).
                            gcdn(=, A, B, R, A).
                                               A, [B], R, E):-!,
div1(A, B, R, Q, X),
                                      estg(
                                                ( X*2 = < B, E = Q
                                                    add1(Q, R, E)
                                      estg([_|A], [_|B], R, E) :- !,
                                               estg(A, B, R, E).
%%% divn
         divn(A,[B], R, Q, X) :- !,
                                                 % nearly as common a case
                   div1(A, B, R, Q, Y),
         conn(Y, [], X).

divn(A, B, R, Q, X):-

comn(A, B, =, S),

( S = '<', Q = [], X = A

; S = '=', Q = [1], X = []
                   ), !.
         divn(A, B, R, Q, X) :- !
                   divm(A, B, R, Q, X).
                   conn(0, [], [])
conn(D, T, [D|T]).
                                  []) :- !.
                   X1 is (X2*R+D1) mod B1,
                            conn(D2, Q2, Q1).
                   div1([],
                                   B1, R, [], 0).
% divm(A, B, R, Q, X) is called with A > B > R
                   conn(D1, X2, T2),
div2(T2, B, R, D2, X1),
conn(D2, Q2, Q1).
```

```
divm([],
                                 B, R, [], []).
                               div2(A, B, R, Q, X) :-
                               estd(A, B, R, E), !,
chkd(A, B, R, E, O, Q, P), !,
subn(A, P, R, S, X). % S=+
div2(A, B, R, _, _) . % long_error(divq, A/B).
                                          estd([A0,A1,A2], [B0,B1], R, E) :-
                                                    B1 >= R/2, !,
                                                    E is (A2*R+A1)/B1.
                                          estd([AO,A1,A2], [BO,B1], R, E) :- !,
                                                    L is (A2*R+A1)/(B1+1),
                                                    mul1([BO,B1],
                                                                       L, R, P),
                                                    subn([AO,A1,A2], P, R, S, N), !, %S=+
                                                    estd(N, [BO,B1], R, M),
                                                    E is L+M.
                                          estd([A0,A1], [B0,B1], R, E) :- !,
                                                    E is (A1*R+A0+1)/(B1*R+B0).
                                                             [BO|Br], R, E) :- !,
                                          estd([AO],
                                          estd([AO|Ar],
                                                    estd(Ar, Br, R, E).
                                          estd([],
                                                                           R, 0) :- !.
                                          chkd(A, B, R, E, 3, _, _) :- !.
                                          % long_error(divq, A/B). chkd(A, B, R, E, K, E, P) :-
                                         mul1(B, E, R, P),
comn(P, A, <, <), !.
chkd(A, B, R, E, K, Q, P) :-
L is K+1, F is E-1, !,
                                                    chkd(A, B, R, F, L, Q, P).
%%% subn
          subn(A, B, R, S, C) :-
                    comn(A, B, =, 0), !, % Oh for Ordering
                    subn(0, A, B, R, S, C).
                    subn(<, A, B, R, -, C) :- !, subp(B, A, O, R, D), prune(D, C).
subn(>, A, B, R, +, C) :- !, subp(A, B, O, R, D), prune(D, C).
subn(=, A, B, R, +,[]) :- !.
                              prune([0|L], M ) :- !,
                              prune(L, T),
(T = [], M = []; M = [0!T]).
prune([D!L], [D!M]) :- !,
                              prune(L, M).
prune([], []) :- !.
                    subp([D1|T1], [D2|T2], Bin, R, [D3|T3]) :-
                              S is D1-D2-Bin,
                               ( S >= 0, Bout = 0, D3 = S
; S < 0, Bout = 1, D3 is S+R
                              subp(T1, T2, Bout, R, T3).
                    subp(L, □, 0, R, L) :- !.
subp(L, □, 1, R, M) :- !, sub1(L, R, M).
                              sub1([0|T], R, [K|S]) :- !, K is R-1, sub1(T, R, S).
                              sub1([N|T], R, [M|T]) :- M is N-1.
```

```
%%% comn
```

A.4 Semigroup

```
/*-----
 Program: Semigroup (all-solutions OR-Parallel)
Author: R. Overbeek
Modified: E. Tick
Date:
         August 20 1988
Notes:
 1. To run:
     ?- go(T,N).
 where T is time and N should be output 313.
2. this version is reputed to be fastest so far, but still uses 2-3 trees.
3. this version includes the generators in the answer (KL1 version doesn't)

    this version has tuple length hardwired: BE CAREFUL!

5. this version is NON-DETERMINANT: it gets very slightly different numbers
of reductions and instructions executed on Aurora for 1--8 PEs! I don't know
the reason for this ...
6. This program gets poor speedup because the granularity of the parallelism
(a findall of newtup/4) is limited.
                                 */
:- parallel member/2, umember/2.
go(T,N) :-
    init_sos(Sos,Sub),
    time(_),
    gen_products(Sos,Sub,Hbg,Sos),
    time(T),
    count(Hbg, N).
init_sos(Sos,Sub) :-
    sos(Sos),
    extend_tree(Sos,nil,Sub).
% state(Sos, Sub, Hbg)
%
%
       Sos = list of tuples that need to be processed
       Sub = tree corresponding to these tuples
       Hbg = semigroup tuples (initially [])
gen_products(Sos,Sub,Hbg,Kernel) :-
    gen_all(state(Sos,Sub,[]),state(_,_,Hbg),Kernel).
gen_all(state([],Sub,Hbg),state([],Sub,Hbg),_) :~ !.
gen_all(S, F, Kernel) :-
    gen_one(S, S1, Kernel),
gen_all(S1, F, Kernel).
gen_one(state([H,I]T], Sub, Hbg),
    state( Sos1, Sub1, [H,I]Hbg]), Kernel) :- !,
    findall(Tuple, newtup([H,I], Kernel, Sub, Tuple), L),
    proc_new(L, Sub, Sub1, T, Sos1).
% proc_new(L, Sub, Sub1, Sos, Sos1):
       L = list of candidate tuples to be possibly added to queue
```

```
Sub = tree describing current queue
7.
7.
7.
        Sub1 = new tree after all L tuples have been processed
        Sos = current queue
        Sos1 = new queue after all L tuples have been processed
% if L is empty, then tree and queue remain the same...
proc_new( [], Sub, Sub, Sos, Sos).

% process non-empty L: declaratively, if processing T = tail(L) results
% in new tree Sub2 and new queue Sos2, then we consider two cases of trying
% to add first tuple H to Sub2:
        if H can be added (doesn't exist already), then
              Sub1 = new tree
%
%
%
              Sos1 = new queue
        otherwise (H cannot be added because it exists already), then
              Sub1 = Sub2
              Sos1 = Sos2
proc_new([H|T], Sub, Sub1, Sos, Sos1) :-
    proc_new(T, Sub, Sub2, Sos, Sos2),
    (add23(Sub2,H,Sub1) ->
         Sos1 = [H|Sos2]
         (Sub1 = Sub2, Sos1 = Sos2)).
newtup(E,L,Sub,New) :-
    member(E1,E),
    umember(E2,L)
    paired(E1,E2,New,Sub).
paired(E1,E2,New,Sub) :-
    bigm(E2,E1,New),
    \+ acc23(New,Sub).
bigm(W1, W2, P) :-
    functor(P, tuple, 40),
    mtab(Table),
    bigm(1,W1,W2,P,Table).
bigm(41,_,_,_,) :- !.
bigm(I,WO,W1,P,Table) :- I < 41,
    arg(I,W0,X),
    arg(I,W1,Y),
    m(X,Y,Z,Table),
    arg(I,P,Z),
J is (I + 1),
    bigm(J,WO,W1,P,Table).
m(X,Y,Z,M) := arg(X,M,Row), arg(Y,Row,Z).
mtab(table(row(1,1,1,1,1),
            row(1,2,1,4,1),
            row(1,1,3,1,5),
            row(1,1,4,1,2),
            row(1,5,1,3,1))).
% utilities..
member(H,[H|_]).
member(H,[_|T]) := member(H,T).
umember(H,[H|_])
umember(H,[_,H|T])
umember(H,[_,_,H|T])
umember(H,[_,_,_,H|T]).
```

```
umember(H,[_,_,_,IT]) :- umember(H,T).
 extend_tree([],S,S).
 extend_tree([E|T],S,S1) :-
     add23(S,E,S2),
     extend_tree(T,S2,S1).
count(L,N) :- count(L,O,N).
 count([X|Xs],M,N) :- M1 is M+1, count(Xs,M1,N).
count([],N,N).
time(T) :- statistics(runtime,[_,T]).
% 2-3 Trees: code from I. Bratko, "Prolog Programming for AI"
acc23(X,1(X)).
acc23(X,n2(T1,M,_)) :- M @> X, !, acc23(X,T1).
acc23(X,n2(_,_,T2)) :- acc23(X,T2).
acc23(X,n3(T1,M2,_,_,)) :- M2 @> X, !, acc23(X,T1).
acc23(X,n3(_,_,T2,M3,_)) :- M3 @> X, !, acc23(X,T2).
acc23(X,n3(_,_,T3)) :- acc23(X,T3).
add23(Tree,X,Tree1) :-
     ins(Tree, X, Tree1).
add23(Tree,X,n2(T1,M2,T2)) :-
     ins(Tree, X, T1, M2, T2).
ins(nil,X,l(X)).
ins(n2(T1,M,T2),X,n2(NT1,M,T2)) :-
    M @> X,
     ins(T1,X,NT1).
ins(n2(T1,M,T2),X,n3(NT1a,Mb,NT1b,M,T2)) :-
    M @> X.
    ins(T1,X,NT1a,Mb,NT1b).
ins(n2(T1,M,T2),X,n2(T1,M,NT2)) :=
    X @> M,
    ins(T2,X,NT2)
ins(n2(T1,M,T2),X,n3(T1,M,NT2a,Mb,NT2b)) :-
    X @> M,
    ins(T2,X,NT2a,Mb,NT2b).
ins(n3(T1,M2,T2,M3,T3),X,n3(NT1,M2,T2,M3,T3)) :-
    M2 @> X,
    ins(T1,X,NT1).
ins(n3(T1,M2,T2,M3,T3),X,n3(T1,M2,NT2,M3,T3)) :-
    X @> M2,
    M3 @> X.
    ins(T2, X, NT2).
ins(n3(T1,M2,T2,M3,T3),X,n3(T1,M2,T2,M3,NT3)) :-
    X @> M3.
    ins(T3,X,NT3).
ins(1(A),X,1(A),X,1(X)) :-
    X @> A.
ins(1(A),X,1(X),A,1(A)) :-
    A @> X.
ins(n3(T1,M2,T2,M3,T3),X,n2(NT1a,Mb,NT1b),M2,n2(T2,M3,T3)) :-
    M2 @> X,
    ins(T1,X,NT1a,Mb,NT1b).
ins(n3(T1,M2,T2,M3,T3),X,n2(T1,M2,NT2a),Mb,n2(NT2b,M3,T3)) :=
    X @> M2,
    M3 @> X,
    ins(T2,X,NT2a,Mb,NT2b)
ins(n3(T1,M2,T2,M3,T3),X,n2(T1,M2,T2),M3,n2(NT3a,Mb,NT3b)) :-
```

```
ins(T3,X,NT3a,Mb,NT3b).

% 309+4 solutions:
sos([tuple(1,1,1,1,1, 2,2,2,2,2, 3,3,3,3,3, 4,4,4,4,4,4, 5,5,5,5,5, 3,3,3,3,3, 5,5,5,5,5, 4,4,4,4,4),
tuple(1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5),
tuple(1,1,1,1,1, 2,2,2,2,2, 3,3,3,3,3, 5,5,5,5,5,5,5,4,4,4,4,4, 2,2,2,2,2,2, 4,4,4,4,4, 3,3,3,3,3),
tuple(1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3,5,4, 1,2,3
```

X @> M3,

A.5 Queens

A.5.1 HKqueen

```
Program: 10-Queens (all-solutions, OR-parallel)
Author: H. Kondo
        May 18 1988
Date:
Notes:
1. To run:
    ?- go(N,T).
where output N is 724 (number of solutions) and T is execution time.
:- parallel gen/3.
go(N, T) :-
    time(_),
    bagof(Q, P^(pattern(P),main(P, [1,2,3,4,5,6,7,8,9,10], [], Q)), S),
    count(S,N),
    time(T).
gen(0, []) :- !.
gen(N, [N|X]) :- M is N-1, gen(M,X).
count(L,N) :- count(L,O,N).
count([],N,N).
count([X|Xs],M,N) :- M1 is M+1, count(Xs,M1,N).
time(T) :- statistics(runtime,[_,T]).
main([H|T],L,Y,Z):- gen(L1,E,L), arg(E,H,a(E,E)), main(T,L1,[E|Y],Z).
         _,Y,Y).
main([],
gen(L,
          E,[E|L]).
gen([F|L],E,[F|P]):- gen(L,E,P).
pattern([
                             % 10-Queens board...
b(a(Xa,Yj),a(Xb,Yi),a(Xc,Yh),a(Xd,Yg),a(Xe,Yf)
  a(Xf,Ye),a(Xg,Yd),a(Xh,Yc),a(Xi,Yb),a(Xj,Ya)),
b(a(X9,Yi),a(Xa,Yh),a(Xb,Yg),a(Xc,Yf),a(Xd,Ye)
  a(Xe,Yd),a(Xf,Yc),a(Xg,Yb),a(Xh,Ya),a(Xi,Y9)),
b(a(X8,Yh),a(X9,Yg),a(Xa,Yf),a(Xb,Ye),a(Xc,Yd)
  a(Xd,Yc),a(Xe,Yb),a(Xf,Ya),a(Xg,Y9),a(Xh,Y8)),
b(a(X7,Yg),a(X8,Yf),a(X9,Ye),a(Xa,Yd),a(Xb,Yc),
a(Xc,Yb),a(Xd,Ya),a(Xe,Y9),a(Xf,Y8),a(Xg,Y7)),
b(a(X6,Yf),a(X7,Ye),a(X8,Yd),a(X9,Yc),a(Xa,Yb),
  a(Xb,Ya),a(Xc,Y9),a(Xd,Y8),a(Xe,Y7),a(Xf,Y6)),
b(a(X5,Ye),a(X6,Yd),a(X7,Yc),a(X8,Yb),a(X9,Ya),
a(Xa,Y9),a(Xb,Y8),a(Xc,Y7),a(Xd,Y6),a(Xe,Y5)),
b(a(X4,Yd),a(X5,Yc),a(X6,Yb),a(X7,Ya),a(X8,Y9)
  a(X9,Y8),a(Xa,Y7),a(Xb,Y6),a(Xc,Y5),a(Xd,Y4)),
b(a(X3,Yc),a(X4,Yb),a(X5,Ya),a(X6,Y9),a(X7,Y8),
  a(X8,Y7),a(X9,Y6),a(Xa,Y5),a(Xb,Y4),a(Xc,Y3)),
b(a(X2,Yb),a(X3,Ya),a(X4,Y9),a(X5,Y8),a(X6,Y7),
  a(X7,Y6),a(X8,Y5),a(X9,Y4),a(Xa,Y3),a(Xb,Y2)),
b(a(X1,Ya),a(X2,Y9),a(X3,Y8),a(X4,Y7),a(X5,Y6)
  a(X6,Y5),a(X7,Y4),a(X8,Y3),a(X9,Y2),a(Xa,Y1))]).
```

A.5.2 MBqueen

```
/*-----
Program: N-Queens (all solutions, OR-parallel)
Author: M. Bruynooghe
        June 14 1988
Date:
Notes:
1. To run:
    ?- go(M,N,T).
for example, for input M=8, output N=92 (number of solutions) and T is
execution time.
                  :- parallel del/3.
go(M,N,T) := gen(M,L), time(_), bagof(X,queen(L,[],X),A), time(T), count(A,N).
queen([],R,P) :- rev(R,[],P).
queen([H|T], R, P) :- del([H|T],A,L),safe(R,A,1),queen(L,[A|R],P).
rev([],Y,Y).
rev([A|X],Y,Z) := rev(X,[A|Y],Z).
\begin{array}{lll} \operatorname{del}([\mathtt{X}|\mathtt{T}],\ \mathtt{X},\ \mathtt{T})\,.\\ \operatorname{del}([\mathtt{H}|\mathtt{T}],\ \mathtt{X},\ [\mathtt{H}|\mathtt{R}])\ :-\ \operatorname{del}(\mathtt{T},\ \mathtt{X},\ \mathtt{R})\,. \end{array}
safe([],_,_).
safe([H|T],U,N) := H+N=\=U, H-N=\=U, M is N+1, safe(T,U,M).
time(T) :- statistics(runtime,[_,T]).
count(L,N) :- count(L,O,N).
count([],N,N).
count([X|Xs],M,N) :- M1 is M+1, count(Xs,M1,N).
gen(0, []) :- !.
gen(N, [N|X]) :- M is N-1, gen(M,X).
```

A.5.3 IBqueen

```
/*-----
Program: N-Queens (all-solutions, OR-parallel)
Author: I. Bratko
Date: June 14 1988
Notes:
1. To run:
    :- go(M,N,T).
for example, when input M=8, should return output N=92 (number of solutions)
and T is execution time.
                            :- parallel del/3.
go(M,N,T) := time(_), bagof(X, queen(M,X), A), time(T), count(A,N).
queen(N,S) :-
    gen(1, N, Dxy),
    Nu1 is 1-N, Nu2 is N-1,
    gen(Nu1, Nu2, Du),
    Nv2 is N+N,
    gen(2, Nv2, Dv),
    sol(S, Dxy, Dxy, Du, Dv).
time(T) :- statistics(runtime,[_,T]).
count(L,N) :- count(L,O,N).
count([], N,N).
count([X|Xs],M,N) :- M1 is M+1, count(Xs,M1,N).
sol([],[],Dy,Du,Dv).
sol([Y|Ylist],[X|Dx1],Dy,Du,Dv) :-
    del(Dy,Y,Dy1),
    U is X-Y,
    sdel(Du,U,Du1).
    V is X+Y,
    sdel(Dv,V,Dv1),
    sol(Ylist, Dx1, Dv1, Du1, Dv1).
% identical to del/3, but SEQUENTIAL
sdel([X|T], X, T).
sdel([H|T], X, [H|R]) := sdel(T, X, R).
 \begin{array}{l} \operatorname{del}([X|T],\ X,\ T). \\ \operatorname{del}([H|T],\ X,\ [H|R]) \ :- \ \operatorname{del}(T,\ X,\ R). \end{array} 
gen(N,N,[N])
gen(N1,N2,[N1|L]) :- N1 < N2, M is N1+1, gen(M,N2,L).
```

B Appendix: FGHC Benchmarks

B.1 Triangle

```
Program: Triangle (all-solutions AND-parallel)
Author: A. Okumura (after E. Tick's Prolog version)
           August 8 1988
Date:
Notes:

    To run:

        ?- go(N).
output N should be 133.
2. This program has been automatically translated from Prolog, and then
optimized by hand using unfolding rules.
go(N) :- true |
    'sweeper$playS'('L1'('L0'),3,b(1,1,1,1,1,0,1,0,0,1,1,1,1,0,1),A, ]),
     count(A,N).
count(L,N) :- true | count(L,0,N).
count([],M,N) :- true | M = N.
count([X|Xs],M,N) :- M1 := M+1 | count(Xs,M1,N).
'sweeper$playS'(A,B,C,D,E) :- true !
    'playS/3#1'(A,B,C,D,F), 'playS/3#2'(A,B,C,F,E).
'playS/3#1'(A,B,C,D,E) :- B<13 |
    'sweeper$smove'('L2'(A,B),C,D,E).
otherwise.
'playS/3#1'(A,B,C,D,E) :- true | D=E.
'playS/3#2'(A,13,B,C,D) :- true |
    'cont$playS/3'(A, [],C,D).
otherwise.
'playS/3#2'(A,B,C,D,E) :- true | D=E.
'cont$playS/3'('L3'(A,B),C,D,E) :- true |
   'cont$playS/3'(A,[B|C],D,E).
'cont$playS/3'('L1'('L0'),B,C,D) :- true | C = [B|D].
'sweeper$smove'(A,B,C,D) :- true |
     'smove/3#1'(A,B,C,E), 'smove/3#2'(A,B,E,F), 'smove/3#3'(A,B,F,G),
'smove/3#4'(A,B,G,H), 'smove/3#5'(A,B,H,I), 'smove/3#6'(A,B,I,J),
'smove/3#7'(A,B,J,K), 'smove/3#8'(A,B,K,L), 'smove/3#9'(A,B,L,M),
'smove/3#10'(A,B,M,N), 'smove/3#11'(A,B,N,O), 'smove/3#12'(A,B,O,P),
     'smove/3#13'(A,B,P,Q), 'smove/3#14'(A,B,Q,R), 'smove/3#15'(A,B,R,S), 'smove/3#16'(A,B,S,T), 'smove/3#17'(A,B,T,U), 'smove/3#18'(A,B,U,V),
     foobar(A,B,V,D).
foobar(A,B,V,D) :- true |
     'smove/3#19'(A,B,V,W),
                                      'smove/3#20'(A,B,W,X), 'smove/3#21'(A,B,X,Y),
     'smove/3#22'(A,B,Y,Z),
                                     'smove/3#23'(A,B,Z,A1), 'smove/3#24'(A,B,A1,B1),
     'smove/3#25'(A,B,B1,C1), 'smove/3#26'(A,B,C1,D1), 'smove/3#27'(A,B,D1,E1), 'smove/3#28'(A,B,E1,F1), 'smove/3#29'(A,B,F1,G1), 'smove/3#30'(A,B,G1,H1), 'smove/3#31'(A,B,H1,I1), 'smove/3#32'(A,B,I1,J1), 'smove/3#33'(A,B,J1,K1), 'smove/3#34'(A,B,K1,L1), 'smove/3#35'(A,B,L1,M1), 'smove/3#36'(A,B,M1,D).
'smove/3#1'(A,b(1,1,B,0,C,D,E,F,G,H,I,J,K,L,M),N,0) :- true |
    'cont$smove/3'(A,1,b(0,0,B,1,C,D,E,F,G,H,I,J,K,L,M),N,0).
otherwise.
```

```
'smove/3#1'(A.BB.N.O) :- true | N=O.
```

- 'smove/3#2'(A,b(B,1,C,1,D,E,0,F,G,H,I,J,K,L,M),N,0) :- true {
 'cont\$smove/3'(A,2,b(B,0,C,0,D,E,1,F,G,H,I,J,K,L,M),N,0).
 otherwise.
- 'smove/3#2'(A,BB,N,0) :- true | N=0.
- 'smove/3#3'(A,b(B,C,D,1,E,F,1,G,H,I,0,J,K,L,M),N,0) :- true |
 'cont\$smove/3'(A,3,b(B,C,D,0,E,F,0,G,H,I,1,J,K,L,M),N,0).
- 'smove/3#3'(A.BB.N.O) :- true | N=O.
- 'smove/3#4'(A,b(B,C,1,D,1,E,F,0,G,H,I,J,K,L,M),N,0) :- true †
 'cont\$smove/3'(A,4,b(B,C,0,D,0,E,F,1,G,H,I,J,K,L,M),N,0).
 otherwise.
- 'smove/3#4'(A,BB,N,O) :- true | N=O.
- 'smove/3#5'(A,b(B,C,D,E,1,F,G,1,H,I,J,0,K,L,M),N,0) :- true | 'cont\$smove/3'(A,5,b(B,C,D,E,0,F,G,0,H,I,J,1,K,L,M),N,0).
 otherwise.
- 'smove/3#5'(A,BB,N,0) :- true | N=0.
- 'smove/3#6'(A,b(B,C,D,E,F,1,G,H,1,I,J,K,0,L,M),N,0) :- true | 'cont\$smove/3'(A,6,b(B,C,D,E,F,0,G,H,0,I,J,K,1,L,M),N,0). otherwise.
- 'smove/3#6'(A,BB,N,O) :- true | N=O.
- 'smove/3#7'(A,b(1,B,1,C,D,0,E,F,G,H,I,J,K,L,M),N,O) :- true | 'cont\$smove/3'(A,7,b(0,B,0,C,D,1,E,F,G,H,I,J,K,L,M),N,O). otherwise.
- 'smove/3#7'(A,BB,N,0) :- true | N=0.
- 'smove/3#8'(A,b(B,C,1,D,E,1,F,G,H,0,I,J,K,L,M),N,0) :- true | 'cont\$smove/3'(A,8,b(B,C,0,D,E,0,F,G,H,1,I,J,K,L,M),N,0).
 otherwise.
- 'smove/3#8'(A,BB,N,O) :- true | N=O.
- 'smove/3#9'(A,b(B,C,D,E,F,1,G,H,I,1,J,K,L,M,0),N,0) :- true | 'cont\$smove/3'(A,9,b(B,C,D,E,F,0,G,H,I,0,J,K,L,M,1),N,0).
 otherwise.
- 'smove/3#9'(A,BB,N,0) :- true | N=0.
- 'smove/3#10'(A,b(B,1,C,D,1,E,F,G,O,H,I,J,K,L,M),N,O) :- true |
 'cont\$smove/3'(A,10,b(B,O,C,D,O,E,F,G,1,H,I,J,K,L,M),N,O).
 otherwise.
- 'smove/3#10'(A,BB,N,0) :- true | N=0.
- 'smove/3#11'(A,b(B,C,D,E,1,F,G,H,1,I,J,K,L,0,M),N,0) :- true | 'cont\$smove/3'(A,11,b(B,C,D,E,0,F,G,H,0,I,J,K,L,1,M),N,0).
- 'smove/3#11'(A,BB,N,0) :- true | N=0.
- 'smove/3#12'(A,b(B,C,D,1,E,F,G,1,H,I,J,K,0,L,M),N,0) :- true | 'cont\$smove/3'(A,12,b(B,C,D,0,E,F,G,0,H,I,J,K,1,L,M),N,0).
 otherwise.
- 'smove/3#12'(A,BB,N,0) :- true | N=0.
- 'smove/3#13'(A,b(B,C,D,E,F,G,H,I,J,K,1,1,0,L,M),N,0) :- true |
 'cont\$smove/3'(A,13,b(B,C,D,E,F,G,H,I,J,K,0,0,1,L,M),N,0).
- 'smove/3#13'(A,BB,N,0) :- true | N=0.

```
'smove/3#14'(A,b(B,C,D,E,F,G,H,I,J,K,L,1,1,0,M),N,0) :- true |
    'cont$smove/3'(A,14,b(B,C,D,E,F,G,H,I,J,K,L,0,0,1,M),N,0).
otherwise.
'smove/3#14'(A.BB.N.O) :- true | N=O.
'smove/3#15'(A,b(B,C,D,E,F,G,H,I,J,K,L,M,1,1,0),N,0) :- true |
   'cont$smove/3'(A,15,b(B,C,D,E,F,G,H,I,J,K,L,M,0,0,1),N,0).
otherwise.
'smove/3#15'(A,BB,N,O) :- true | N=O.
'smove/3#16'(A,b(B,C,D,E,F,G,1,1,0,H,I,J,K,L,M),N,O) :- true |
   'cont$smove/3'(A,16,b(B,C,D,E,F,G,O,O,1,H,I,J,K,L,M),N,O).
otherwise.
'smove/3#16'(A,BB,N,O) :- true | N=O.
'smove/3#17'(A,b(B,C,D,E,F,G,H,1,1,0,I,J,K,L,M),N,0) :- true |
   'cont$smove/3'(A,17,b(B,C,D,E,F,G,H,0,0,1,I,J,K,L,M),N,0).
otherwise.
'smove/3#17'(A,BB,N,0) :- true | N=0.
'smove/3#18'(A,b(B,C,D,1,1,0,E,F,G,H,I,J,K,L,M),N,0) :- true |
   'cont$smove/3'(A,18,b(B,C,D,0,0,1,E,F,G,H,I,J,K,L,M),N,0).
otherwise.
'smove/3#18'(A,BB,N,O) :- true | N=O.
'smove/3#19'(A,b(0,1,B,1,C,D,E,F,G,H,I,J,K,L,M),N,0) :- true |
   'cont$smove/3'(A,19,b(1,0,B,0,C,D,E,F,G,H,I,J,K,L,M),N,0).
otherwise.
'smove/3#19'(A,BB,N,O) :- true | N=O.
'smove/3#20'(A,b(B,0,C,1,D,E,1,F,G,H,I,J,K,L,M),N,D) :- true |
   'cont$smove/3'(A,20,b(B,1,C,0,D,E,0,F,G,H,I,J,K,L,M),N,0).
otherwise.
'smove/3#20'(A,BB,N,0) :- true | N=0.
'smove/3#21'(A,b(B,C,D,O,E,F,1,G,H,I,1,J,K,L,M),N,O) :- true |
   'cont$smove/3'(A,21,b(B,C,D,1,E,F,0,G,H,I,0,J,K,L,M),N,0).
otherwise
'smove/3#21'(A.BB.N.O) :- true | N=0.
'smove/3#22'(A,b(B,C,0,D,1,E,F,1,G,H,I,J,K,L,M),N,D) :- true |
   'cont$smove/3'(A,22,b(B,C,1,D,0,E,F,0,G,H,I,J,K,L,M),N,0).
otherwise.
'smove/3#22'(A.BB,N,O) :- true | N=O.
'smove/3#23'(A,b(B,C,D,E,O,F,G,1,H,I,J,1,K,L,M),N,O) :- true |
   'cont$smove/3'(A,23,b(B,C,D,E,1,F,G,0,H,I,J,0,K,L,M),N,0).
otherwise.
'smove/3#23'(A,BB,N,O) :- true | N=O.
'smove/3#24'(A,b(B,C,D,E,F,O,G,H,1,I,J,K,1,L,M),N,0) :- true |
   'cont$smove/3'(A,24,b(B,C,D,E,F,1,G,H,0,I,J,K,0,L,M),N,0).
otherwise.
'smove/3#24'(A.BB.N.O) :- true | N=O.
```

'smove/3#25'(A,b(0,B,1,C,D,1,E,F,G,H,I,J,K,L,M),N,0) :- true | 'cont\$smove/3'(A,25,b(1,B,0,C,D,0,E,F,G,H,I,J,K,L,M),N,0).

'smove/3#26'(A,b(B,C,0,D,E,1,F,G,H,1,I,J,K,L,M),N,0) :- true | 'cont\$smove/3'(A,26,b(B,C,1,D,E,0,F,G,H,0,I,J,K,L,M),N,0).

'smove/3#25'(A,BB,N,D) :- true | N=D.

otherwise

```
'smove/3#26'(A,BB,N,O) :- true | N=O.
'smove/3#27'(A,b(B,C,D,E,F,O,G,H,I,1,J,K,L,M,1),N,O) :- true [
   'cont$smove/3'(A,27,b(B,C,D,E,F,1,G,H,I,O,J,K,L,M,0),N,0).
otherwise.
'smove/3#27'(A,BB,N,0) :- true | N=0.
'smove/3#28'(A,b(B,0,C,D,1,E,F,G,1,H,I,J,K,L,M),N,0) :- true |
   'cont$smove/3'(A,28,b(B,1,C,D,0,E,F,G,0,H,I,J,K,L,M),N,0).
otherwise.
'smove/3#28'(A,BB,N,0) :- true | N=0.
'smove/3#29'(A,b(B,C,D,E,O,F,G,H,1,I,J,K,L,1,M),N,O) :- true |
   'cont$smove/3'(A,29,b(B,C,D,E,1,F,G,H,O,I,J,K,L,O,M),N,O).
otherwise
'smove/3#29'(A,BB,N,O) :- true | N=O.
'smove/3#30'(A,b(B,C,D,0,E,F,G,1,H,I,J,K,1,L,M),N,C) :- true |
   'cont$smove/3'(A,30,b(B,C,D,1,E,F,G,0,H,I,J,K,0,L,M),N,0).
otherwise.
'smove/3#30'(A,BB,N,0) :- true | N=0.
'smove/3#31'(A,b(B,C,D,E,F,G,H,I,J,K,O,1,1,L,M),N,O) :- true |
  'cont$smove/3'(A,31,b(B,C,D,E,F,G,H,I,J,K,1,0,0,L,M),N,0)
otherwise.
'smove/3#31'(A,BB,N,O) :- true | N=O.
'smove/3#32'(A,b(B,C,D,E,F,G,H,I,J,K,L,O,1,1,M),N,O) :- true |
   'cont$smove/3'(A,32,b(B,C,D,E,F,G,H,I,J,K,L,1,0,0,M),N,0).
otherwise.
'smove/3#32'(A,BB,N,0) :- true | N=0.
'smove/3#33'(A,b(B,C,D,E,F,G,H,I,J,K,L,M,O,1,1),N,O) :- true |
   'cont$smove/3'(A,33,b(B,C,D,E,F,G,H,I,J,K,L,M,1,0,0),N,0).
otherwise.
'smove/3#33'(A,BB,N,O) :- true | N=O.
'smove/3#34'(A,b(B,C,D,E,F,G,O,1,1,H,I,J,K,L,M),N,O) :- true |
   'cont$smove/3'(A,34,b(B,C,D,E,F,G,1,0,0,H,I,J,K,L,M),N,D).
otherwise.
'smove/3#34'(A,BB,N,O) :- true | N=O.
'smove/3#35'(A,b(B,C,D,E,F,G,H,O,1,1,I,J,K,L,M),N,O) :- true |
   'cont$smove/3'(A,35,b(B,C,D,E,F,G,H,1,0,0,I,J,K,L,M),N,0).
otherwise.
'smove/3#35'(A,BB,N,O) :- true | N=O.
'smove/3#36'(A,b(B,C,D,0,1,1,E,F,G,H,I,J,K,L,M),N,O) :- true |
   'cont$smove/3'(A,36,b(B,C,D,1,0,0,E,F,G,H,I,J,K,L,M),N,O).
otherwise.
'smove/3#36'(A.BB,N.O) :- true ! N=O.
'cont$smove/3'('L2'(A,B),C,D,E,F) :- G := B+1 |
   'sweeper$playS'('L3'(A,C),G,D,E,F).
```

otherwise.

B.2 Puzzle

```
/*-----
Program: Puzzle (all solutions, AND-parallel)
Author: E. Tick
        March 9 1988
Date:
Notes:
1. To run:
    ?- go(N).
where output N = 65 (number of solutions).
This is 5x4x3 puzzle with chip in corner. The program collects all
solutions in the form of a list of lists. A solution list contains SEVEN
cons-cells corresponding to the pieces:
[[b|26],[q|20],[j|16],[j|11],[1|5],[f|4],[a|1]]
The car represents the shape and orientation. The cdr represents the
location it was placed inside the solid.
go(N) :- true |
    initial(Slist,Plist),
    select(Plist, Slist, [], A,[], []),
    count(A, N).
% in this case, choose last instance of this shape...
select([orient(M,L)|Ys], Empty, NonC, I,O, PL):- M=:=1 |
    append(Ys, NonC, Unused),
check(L, Unused, Empty,
    select(Ys, Empty, [orient(M,L)|NonC], I1,0, PL).
% more than one instance of this shape exists...
select([orient(M,L)|Ys], Empty, NonC, I,O, PL):- M=\=1, M1 := M-1 |
    append([orient(M1,L)|Ys], NonC, Unused),
    check(L, Unused, Empty,
    select(Ys, Empty, [orient(M,L)|NonC], I1,0, PL).
% The check routine is split into three parts for readability.
% Note however that this split does NOT slow it down: I ran a
% fused version with approximately the same execution speed (2% faster).
% This fact seems to imply that the speed-bump in this program is remove/5.
% spawn checker process for each orientation in Piece
check([D|Ds], Unused, Empty, I,0, PL) :- true !
    Empty = [E|RestEmpty],
    translate(D, E, Piece, Status),
    check1(Status, Ds, Piece, Unused, Empty, I,O, PL, [D|E], RestEmpty).
check([], _, _, I,0, _):- true | I=0.
% translated piece falls outside of solid boundary...
check1(no, Os, _, Unused, Empty, I,O, PL, _, _) :- true |
    check( Os, Unused, Empty, I,O, PL).
% translated piece falls completely inside of solid...
check1(yes, Os, Piece, Unused, Empty, I,O, PL, Move, RestEmpty) :- true |
    remove(yes, Piece, RestEmpty, NewEmpty, Status), check2(Status, Os, Unused, Empty, NewEmpty, I,O, PL, Move).
% translated piece falls inside a previously chosen piece...
check2(no, Os, Unused, Empty, _, I,O, PL, _) :- true |
    check( Os, Unused, Empty, I,O, PL).
% translated piece falls outside all previously chosen pieces... check2(yes, Os, Unused, Empty, NewEmpty, IO,I2, PL, [Dlo(X,Y,Z)]) :-
                                  % calculate index of piece for answer...
    M := X + (Y * 5) + (Z * 20)
```

```
select(
                  Unused, NewEmpty, [], [D[M][PL]),
              Os, Unused, Empty,
                                            I1, I2, PL).
% remove(yes, Vector, Empty, NewEmpty, Status)
% remove all elements in Vector from Empty
% return Status of removal:
          "yes" if Vector was a subset of Empty
          "no" if Vector contained elements not in Empty
remove( no,
remove(no, _, _, Status) :- true | Status = no.
remove(yes, [], Empty, T1, Status) :- true | Status = yes, T1 = Empty.
remove(yes, [H|T], Empty, T1, Status) :- true |
    remove2(Empty, H, T1, T2, NextEmpty, SubStatus),
    remove(SubStatus, T, NextEmpty, T2, Status).
remove2([], _, _, _, _, Status) :- true | Status = no.
remove2([E|Es], H, T1, T2, Empty, Status) :- E=H |
    Status = yes.
    Empty = Es,
T1 = T2.
otherwise.
remove2([E|Es], H, T1, T3, Empty, Status) :- true |
    T1 = [E|T2],
    remove2(Es, H, T2, T3, Empty, Status).
% 3x2x1 (6 orientations)
translate(a, o(X,Y,Z), List, Status) :- X<3, Y<3,
    X1 := X+1, X2 := X+2, Y1 := Y+1 | Status = ves.
    List = [
                      o(X1,Y, Z), o(X2,Y, Z),
            o(X,Y1,Z),o(X1,Y1,Z),o(X2,Y1,Z).
translate(b, o(X,Y,Z), List, Status) :- X<3, Z<2, X1 := X+1, X2 := X+2, Z1 := Z+1 | Status = yes,
                      o(X1,Y,Z), o(X2,Y,Z),
            o(X,Y,Z1),o(X1,Y,Z1),o(X2,Y,Z1).
translate(c, o(X,Y,Z), List, Status) :- Y<2, Z<2, Y1 := Y+1, Y2 := Y+2, Z1 := Z+1 | Status = yes,
             \begin{bmatrix} o(X,Y1,Z), o(X,Y2,Z), \\ o(X,Y,Z1), o(X,Y1,Z1), o(X,Y2,Z1) \end{bmatrix}. 
    List = [
translate(d, o(X,Y,Z), List, Status) :- X<4, Y<2,
    Y1 := Y+1, Y2 := Y+2, X1 := X+1 | Status = yes,
             \begin{bmatrix} o(X, Y1,Z), o(X, Y2,Z), \\ o(X1,Y,Z), o(X1,Y1,Z), o(X1,Y2,Z) \end{bmatrix}. 
    List = [
translate(e, o(X,Y,Z), List, Status) :- X<4, Z<1,
    Z1 := Z+1, Z2 := Z+2, X1 := X+1 | Status = yes,
    List = [
                      o(X, Y, Z1), o(X, Y, Z2),
            o(X1,Y,Z),o(X1,Y,Z1),o(X1,Y,Z2)].
o(X,Y1,Z),o(X,Y1,Z1),o(X,Y1,Z2)].
% 4x3x1 (4 orientations)
o(X,Y2,Z),o(X1,Y2,Z),o(X2,Y2,Z),o(X3,Y2,Z)].
translate(h, c(X,Y,Z), List, Status) :- Y<1, Z<1,
```

```
o(X,Y,Z2),o(X,Y1,Z2),o(X,Y2,Z2),o(X,Y3,Z2)].
translate(i, o(X,Y,Z), List, Status) :- X<3, Y<1,
    Y1 := Y+1, Y2 := Y+2, Y3 := Y+3, X1 := X+1, X2 := X+2 | Status = yes,
             o(X, Y1,Z),o(X, Y2,Z),o(X, Y3,Z),
o(X1,Y,Z),o(X1,Y1,Z),o(X1,Y2,Z),o(X1,Y3,Z),
    List = [
             o(X2,Y,Z),o(X2,Y1,Z),o(X2,Y2,Z),o(X2,Y3,Z)].
translate(j, o(X,Y,Z), List, Status) :- X<2, Z<1,
    X1 := X+1, X2 := X+2, X3 := X+3, Z1 := Z+1, Z2 := Z+2 | Status = yes,
    List = [
                       o(X1,Y,Z), o(X2,Y,Z), o(X3,Y,Z),
             o(X,Y,Z1),o(X1,Y,Z1),o(X2,Y,Z1),o(X3,Y,Z1)
             o(X,Y,Z2),o(X1,Y,Z2),o(X2,Y,Z2),o(X3,Y,Z2)].
% 3x3x1 (3 orientations)
translate(k, o(X,Y,Z), List, Status) :- X<3, Y<2,
    X1 := X+1, X2 := X+2, Y1 := Y+1, Y2 := Y+2 | Status = yes,
    List = [
                        o(X1,Y, Z), o(X2,Y, Z),
             o(X,Y1,Z),o(X1,Y1,Z),o(X2,Y1,Z),
o(X,Y2,Z),o(X1,Y2,Z),o(X2,Y2,Z)].
translate(1, o(X,Y,Z), List, Status) :- Y<2, Z<1,
    Y1 := Y+1, Y2 := Y+2, Z1 := Z+1, Z2 := Z+2 | Status = yes,
    List = [
                       o(X,Y1,Z), o(X,Y2,Z),
             o(X,Y,Z1),o(X,Y1,Z1),o(X,Y2,Z1)
             o(X,Y,Z2),o(X,Y1,Z2),o(X,Y2,Z2)].
translate(m, o(X,Y,Z), List, Status) :- X<3, Z<1,
    X1 := X+1, X2 := X+2, Z1 := Z+1, Z2 := Z+2 | Status = yes,
    List = [
                       o(X1,Y,Z), o(X2,Y,Z),
             o(X,Y,Z1),o(X1,Y,Z1),o(X2,Y,Z1)
             o(X,Y,Z2),o(X1,Y,Z2),o(X2,Y,Z2)].
% 4x2x1 (4 orientations)
translate(n, o(X,Y,Z), List, Status) :- X<2, Y<3,
    X1 := X+1, X2 := X+2, X3 := X+3, Y1 := Y+1 | Status = yes,
    List = [
                       o(X1,Y, Z), o(X2,Y, Z), o(X3,Y, Z),
             o(X,Y1,Z),o(X1,Y1,Z),o(X2,Y1,Z),o(X3,Y1,Z)].
translate(o, o(X,Y,Z), List, Status) :- Y<1, Z<2,
    Y1 := Y+1, Y2 := Y+2, Y3 := Y+3, Z1 := Z+1 | Status = yes,
    List = [
                       o(X,Y1,Z), o(X,Y2,Z), o(X,Y3,Z),
             o(X,Y,Z_1),o(X,Y_1,Z_1),o(X,Y_2,Z_1),o(X,Y_3,Z_1)
translate(p, o(X,Y,Z), List, Status) :- Y<1, X<4,
Y1 := Y+1, Y2 := Y+2, Y3 := Y+3, X1 := X+1 | Status = yes,
                       o(X, Y1,Z),o(X, Y2,Z),o(X, Y3,Z)
    List = [
             o(X1,Y,Z),o(X1,Y1,Z),o(X1,Y2,Z),o(X1,Y3,Z)].
translate(q, o(X,Y,Z), List, Status) :- X<2, Z<2,
    X1 := X+1, X2 := X+2, X3 := X+3, Z1 := Z+1 | Status = yes,
             \begin{array}{c} \circ(X1,Y,Z)\,,\,\,\circ(X2,Y,Z)\,,\,\,\circ(X3,Y,Z)\,,\\ \circ(X,Y,Z1)\,,\circ(X1,Y,Z1)\,,\circ(X2,Y,Z1)\,,\circ(X3,Y,Z1)]\,. \end{array}
    List = [
otherwise.
translate(_, _, _, Status) :- true | Status = no.
% utilities...
append([A|X],Y,Z):-true \mid Z=[A|Z1], append(X,Y,Z1).
append([],
            Y,Z):- true | Z=Y.
count(L,N) :- true { count(L,O,N).
count([],M,N) :- true | M = N.
count([X|Xs],M,N) :- M1 := M+1 | count(Xs,M1,N).
initial(Slist,Plist) :- true | squares(Slist), piece_list(Plist).
```

```
% NOTE: 4x3x1 and 4x2x1 have four orientations because z-dim. of puzzle
% is only three, so that these shapes cannot stand up in the z-direction.
piece_list(List) :- true |
                                         % shape # orientation
% 3x2x1 (3)x(6)
   % 4x3x1 (2)x(4)
                                         % 3x3x1 (1)x(3)
                                         % 4x2x1 (1)x(4)
squares(List) :- true |
   List =
             0(1,0,0),0(2,0,0),0(3,0,0),0(4,0,0),
    0(0,1,0),0(1,1,0),0(2,1,0),0(3,1,0),0(4,1,0),
    0(0,2,0),0(1,2,0),0(2,2,0),0(3,2,0),0(4,2,0),
    0(0,3,0),0(1,3,0),0(2,3,0),0(3,3,0),0(4,3,0),
    0(0,0,1),0(1,0,1),0(2,0,1),0(3,0,1),0(4,0,1),
    0(0,1,1),0(1,1,1),0(2,1,1),0(3,1,1),0(4,1,1),
    0(0,2,1),0(1,2,1),0(2,2,1),0(3,2,1),0(4,2,1),
    0(0,3,1),0(1,3,1),0(2,3,1),0(3,3,1),0(4,3,1),
    0(0,0,2),0(1,0,2),0(2,0,2),0(3,0,2),0(4,0,2),
    0(0,1,2),0(1,1,2),0(2,1,2),0(3,1,2),0(4,1,2),
    0(0,2,2),0(1,2,2),0(2,2,2),0(3,2,2),0(4,2,2),
    0(0,3,2),0(1,3,2),0(2,3,2),0(3,3,2),0(4,3,2)].
```

B.3 Pascal

```
_____
Program: Pascal's Triangle
Author: E. Sugino
Modified: E. Tick
Date:
         July 27 1988
Notes:

    To run:

   ?- go(N,R).
where input N is the number of rows to calculate and output R is the Nth row.

    example: for N = 20:

R = [[1,0],[20,0],[190,0],[1140,0],[4845,0],[15504,0],[38760,0],[77520,0]
     [25970,1],[67960,1],[84756,1],[67960,1],[25970,1],[77520,0],[38760,0],
     [15504,0],[4845,0],[1140,0],[190,0],[20,0],[1,0]]
2. This is a much simplified version of the original program, and only
calculates the Nth row from scratch. Note that without bignums, we can
calculate as large as the 33rd row, with a maximum coefficient of
1,166,803,110. This is equivalent to [3110,11668].
                         go(N) :- N > 0 |
   pascal_data([data(N,_)],1,[[1,0],[1,0]],1).
go(N, Result) :- N > 0 |
   pascal_data([data(N,Result)],1,[[1,0],[1,0]],1).
pascal_data([data(N,D)|S],N,Data,Max) :- true |
   D = Data,
   pascal_data(S,N,Data,Max).
pascal_data([data(N,D)|S],M,Data,Max) :- N = N = M,N = < Max |
   pascal_data(S,M,Data,Max).
pascal_data([data(N,D)|S],Max,Data,Max) :- Max < N,M1 := Max + 1 |</pre>
   new_pascal(M1,N,Data,D,S),
   pascal_data(S,Max,Data,N).
pascal_data([data(N,D)|S],M,Data,Max) :- Max < N, M < Max |
   pascal_data(S,M,Data,N).
pascal_data([],_,_,) :- true | true.
new_pascal(N,N,Data,D,Stream) :- true |
   make_pascal_data(Data,D),
   pascal_data(Stream,N,D,N).
new_pascal(N,M,Data,D,Stream) :- N < M, N1 := N+1 |
   make_pascal_data(Data,Data1),
   pascal_data(Stream, N, Data1, M);
   new_pascal(N1,M,Data1,D,Stream).
/* bignum version... */
make_pascal_data([F1,F2|Data],New) :- true |
   big_plus(Nf2,F1,F2),
   New = [F1,Nf2|New1]
   make_pascal_data([F2|Data],New1,[Nf2,F1]).
make_pascal_data([N],New,E) :- true | New = [N].
make_pascal_data([A,A|C],New,E) :- true |
   big_plus(B,A,A),
   New = [B|E].
otherwise.
make_pascal_data([A,B|C],New,E) :- true |
   big_grt(A,B,Status).
   make_pascal_data1(Status, A, B, C, New, E).
```

```
make_pascal_data1(yes,_,_,,New,E) :- true | New = E.
make_pascal_data1(no,A,B,C,New,E) :- true |
     big_plus(D,A,B),
     New = [D|New1],
     make_pascal_data([B|C],New1,[D|E]).
/* normal version...
make_pascal_data([F1,F2|Data],New) :- Nf2 := F1+F2 |
     New = [F1,Nf2|New1],
     make_pascal_data([F2|Data],New1,[Nf2,F1]).
make_pascal_data([N], New, E) :- true | New = [N].
make\_pascal\_data([A,A|C],New,E) :- B := A+A \mid New = [B|E].
New = [D|New1],
     make_pascal_data([B|C],New1,[D|E]).
*/
Program: Bignum for Pascal Benchmark
Author: R. O'Keefe (translated to FGHC by E. Tick, revised by A. Okumura)
          July 26 1988
*/
% this interface is meant to save storage...
big_plus(X,Y,Z) :- true |
     eval('+'(real(+,Y,[1]),real(+,Z,[1])),real(+,X,[1])).
big_grt(X,Y,Status) :- true |
     eval(real(+,X,[1]),A),
eval(real(+,Y,[1]),B),
     comq(A, B, 100000, R),
     getstatus(R, '>', Status).
getstatus(X,X,Status) :- true | Status = yes.
otherwise.
getstatus(_,_,Status) :- true | Status = no.
eval('+'(X,Y), C) :- true |
     eval(X, A),
     eval(Y, B),
     addq(A, B, 100000, C).
otherwise.
eval(X,Y) := true | X = Y.
comq(A,A,_,S) := true \mid S = '='.
otherwise.
comq(real('+',Na,Da), real('+',Nb,Db), R, S) :- true |
    muln(Na, Db, R, Xa),
    muln(Nb, Da, R, Xb),
comn(Xa, Xb, '=', S).
comq(real('+',Na,Da), real('-',Nb,Db), R, S) :- true | S = '>'.
comq(real('-',Na,Da), real('+',Nb,Db), R, S) :- true | S = '<'.
comq(real('-',Na,Da), real('-',Nb,Db), R, S) :- true |</pre>
    muln(Na, Db, R, Xa),
    muln(Nb, Da, R, Xb),
comn(Xb, Xa, '=', S).
comq(Na, real('+',Nb,Db), R, S) :- Na >= 0 |
    muln([Na], Db, R, Xa),
```

```
comm(Xa, Nb, =, S).
comq(Na, real('-',Nb,Db), R, S) :- Na >= 0 | S = '>'.
comq(Na, real('+', Nb, Db), R, S) :- Na < 0 | S = '<'. comq(Na, real('-', Nb, Db), R, S) :- Na < 0, Nz := (0-Na) |
    muln([Nz], Db, R, Xa),
comn(Nb, Xa, '=', S).
comq(real('+', Na, Da), Nb, R, S) :- Nb >= 0
    muln([Nb], Da, R, Xb),
     comn(Na, Xb, '=', S).
comq(real('+',Na,Da), Nb, R, S) :- Nb < 0 | S = '>'.
comq(real('-',Na,Da), Nb, R, S) :- Nb >= 0 | S = '<'.
comq(real('-',Na,Da), Nb, R, S) :- Nb < 0, Nz := (0-Nb) |
muln([Nz], Da, R, Xb),</pre>
    comn(Xb, Na, '=', S).
comq(Na, Nb, R, S) :- Na > Nb | S = '>'.
comq(Na, Nb, R, S) :- Nb >= Na | S = '<'.
7-----
addq(A, B, R, S) :- true |
    real(A, R, Sa, Na, Da), real(B, R, Sb, Nb, Db),
    muln(Na, Db, R, Xa),
muln(Nb, Da, R, Xb),
    addz(Sa, Xa, Sb, Xb, R, Sc, Xc),
    gcdn(Xc, Da, R, _, Nx, Ya),
    gcdn(Nx, Db, R, _, Nc, Yb), muln(Ya, Yb, R, Dc),
    standardise(real(Sc, Nc, Dc),S).
%-----
muln([], _, _, S) :- true | S = [].
muln(_, [], _, S) :- true | S = [].
otherwise.
muln(A, B, R, C) :- true | muln(A, B, [], R, C).
muln([], _, Ac, _, Out) :- true | Out = Ac.
muln([D1|T1], N2, Ac, R, Out) :- true |
    Out = [D3|Pr].
    mul1(N2, D1, R, P2),
    addn(Ac, P2, 0, R, Sm),
    conn1(D3, An, Sm),
    muln(T1, N2, An,R, Pr).
mul1(_, 0, _, Pr) :- true | Pr = [].
otherwise.
mul1(A, M, R, Pr) :- true |
    mul1(A, M, O, R, Pr).
mul1([D1|T1], M, C, R, Out) :-
    D2 := (D1*M+C) \mod R,
    Co := (D1*M+C) / R |
    Out = [D2|T2],
    mul1(T1, M, Co, R, T2).
mul1(
          [], _, 0, _, Out) :- true | Out = [].
otherwise.
           [], _, C, _, Out) :- true | Out = [C].
mul1(
X-----
addz('+',A,'+',B,R,S,C) := true | S = '+', addn(A, B, O, R, C).
```

```
subn(A, B, R, S, C).
addn([D1|T1], [D2|T2], Cin, R, Out) :-
     Sum := D1+D2+Cin,
      X := Sum mod 262144 |
     add2(T1, T2, R, Out, Sum, X).
addn([], L, O, _, Out) :- true | Out=L.
addn(L, [], 0, _, Out) :- true | Out=L.
addn([], L, 1, R, M) :- true | add1(L, R, M).
addn(L, [], 1, R, M)
                         :- true | add1(L, R, M).
add1([M|T], R, Out) :- N := M+1 | add3(N,T,R,Out).
             _, Out) :- true | Out = [1].
add1([],
add3(N,T,R,Out) := N < R \mid Out = [N|T].
otherwise.
% Prolog is funny: it checks that R =:= N, but it should not fail!
add3(N,T,R,0ut) := true \mid add1(T,R,S), Out = [O|S].
add2(T1, T2, R, Out, Sum, X) :- X >= R, D3 := X-R |
     Out = [D3|T3].
     addn(T1, T2, 1, R, T3).
otherwise.
add2(T1, T2, R, Out, Sum, X) :- true |
Out = [Sum|T3],
    addn(T1, T2, 0, R, T3).
X------
gcdn([], [], R, 01, 02, 03) :- true | 01 = [], 02 = undefined, 03 = undefined.
gcdn([], B, R, O1, O2, O3) :- B \= [] | O1=B, O2 = [], O3 = [1].
gcdn(A, [], R, 01, 02, 03) :- A \= [] | 01=A, 02 = [1], 03 = [].
otherwise.
gcdn([1], B, _, 01, 02, 03) := true | 01 = [1], 02 = [1], 03 = B. gcdn(A, [1], _, 01, 02, 03) := true | 01 = [1], 02 = A, 03 = [1].
otherwise.
gcdn(A, B, R, D, M, N) :- true |
                                         % A. B > 1
    gcdn(A, B, R, D),
    divn(A, D, R, M, _),
divn(B, D, R, N, _).
gcdn(A, B, R, D) :- true | % A, B >= 1
    comn(A, B, '=', S),
gcdn(S, A, B, R, D).
gcdn('=', A, _, _, D) :- true | D = A.
gcdn('<',[], B, _, D) :- true | D = B.
gcdn('<', A, B, R, D) :- A \= [] |
    estg(B, A, R, E),
muln(E, A, R, P),

subn(B, P, R, _, M),

gcdn(A, M, R, D).

gcdn('>', A, [], _, D) :- true | D = A.

gcdn('>', A, B, R, D) :- B \= [] |
    estg(A, B, R, E),
    muln(E, B, R, P),
    subn(A, P, R, _, M),
gcdn(M, B, R, D).
estg(A, [B], R, E) :- true i
```

```
div1(A, B, R, Q, X),
     estg1(X, B, Q, R, E).
otherwise.
estg([_|A], [_|B], R, E) :- true |
estg(A, B, R, E).
estg1(X, B, Q, R, E) :- F := X*2, F =< B | E = Q.
otherwise.
estg1(X, B, Q, R, E) :- true | add1(Q, R, E).
7-----
% we know that this failure (division by zero) never occurs in benchmark.
% divn(A, [], R, _, _) :- !, fail. % division by 0 is undefined
% nearly as common a case
     div1(A, B, R, Q, Y),
     conn(Y, [], X).
otherwise.
divn(A, B, R, Q, X) :-
    comn(A, B, '=', S),
    divn1(S, A, B, R, Q, X).
divn1('<', A, \_, \_, Q, X) := true | Q = [], X = A.
divn1('=', _, _, _, Q, X) :- true | Q = [1], X = []. divn1('>', A, B, R, Q, X) :- true | divm(A, B, R, Q, X).
% mode(+,+,-)
conn(0, [], Out) :- true | Out = [].
otherwise.
conn(D, T, Out) :- true | Out = [D|T].
% mode(-,-,+)
conn1(D, T, []) :- true | D = 0, T = [] conn1(D, T, [X|Y]) :- true | D = X, T = Y.
                  []) :- true | D = 0, T = [].
div1([], _, _, Q1, X1) :- true | Q1 = [], X1 = 0.
div1([D1|T1], B1, R, Q1, X1) :- true |
    div1(T1, B1, R, Q2, X2),
    div11(X2,R,D1,B1,Q2,Q1).
div11(X2,R,D1,B1,Q2,Q1) :-
D2 := (X2*R+D1) / B1,
X1 := (X2*R+D1) mod B1 |
     conn(D2, Q2, Q1).
% divm(A, B, R, Q, X) is called with A > B > R
divm([D1|T1], B, R, Q1, X1) :- true |
    divm(T1, B, R, Q2, X2),
conn(D1, X2, T2),
div2(T2, B, R, D2, X1),
     conn(D2, Q2, Q1).
divm([], B, R, O1, O2) :- true | O1 = [], O2 = [].
div2(A, B, R, Q, X) :- true !
    estd(A, B, R, E);
     chkd(A, B, R, E, O, Q, P),
     subn(A, P, R, S, X).
estd([A0,A1,A2], [B0,B1], R, E) :-
F := R/2, B1 >= F, G := (A2*R+A1)/B1 |
```

```
E = G.
otherwise.
estd([AO,A1,A2], [BO,B1], R, E) :-
    L := (A2*R*A1)/(B1*1)
    mul1([B0,B1], L, R, P),
    subn([AO,A1,A2], P, R, S, N),
    estd(N, [BO,B1], R, M),
    estd1(L,M,E).
estd([AO,A1], [BO,B1], R, E) :-
    F := (A1*R+A0+1)/(B1*R+B0)
    E = F.
estd([AO], _, _, E) :- true | E = 0.
otherwise.
estd([A0|Ar], [B0|Br], R, E) :- true |
estd(Ar, Br, R, E).
estd([], _, _, E) :- true | E = 0.
estd1(L,M,E) := F := L+M \mid E=F.
chkd(A, B, R, E, 3, _, _) :- true | true.
otherwise.
chkd(A, B, R, E, K, E, P) :- true [
    mul1(B, E, R, P),
    comn(P, A, '<', S),
chkd1(S, A, B, R, E, K, Q, P).
chkd1('<', A, B, R, E, K, Q, P) :- true | true.
otherwise.
chkd1(_, A, B, R, E, K, Q, P) :-
    L := K+1, F := E-1
    chkd(A, B, R, F, L, Q, P).
subn(A, B, R, S, C) :- true |
    comn(A, B, '=', 0),
subn(0, A, B, R, S, C).
subn('<', A, B, R, F, C) :- true | F = '-',
    subp(B, A, O, R, D),
    prune(D, C).
subn('>', A, B, R, F, C) :- true |
F = '+',
subp(A, B, O, R, D),
prune(D, C).
subn('=', A, B, R, F, C) :- true |
F = '+', C = [].
prune([], Out) :- true | Out = [].
prune([0|L], M ) :- true |
    prune(L, T),
prune1(T, M).
otherwise.
prune([D/L], Out) :- true |
    Out = [DIM],
    prune(L, M).
prune1([], M) :- true | M = [].
otherwise.
prune1(T, M) := true \mid M = [O|T].
```

```
subp([D1|T1], [D2|T2], Bin, R, M) :- S := D1-D2-Bin !
     subp1(S, T1, T2, R, M).
subp(L, [], 0, \_, M) := true | M = L.

subp(L, [], 1, R, M) := true | sub1(L, R, M).
subp1(S, T1, T2, R, M) :- S >= 0 | M = [S|T3],
     subp(T1, T2, 0, R, T3).
otherwise.
subp1(S,_T1, T2, R, M) :- D3 := S+R |
     M = [D3|T3],
     subp(T1, T2, 1, R, T3).
sub1([0|T], R, Out) :- K := R-1 | Out = [K|S], sub1(T, R, S).
otherwise.
sub1([N|T], _, Out) :- M := N-1 | Out = [M|T].
                -----
comn([D1|T1], [D2|T2], D, S) :- true |
     com1(D1, D2, D, N),
     comn(T1, T2, N, S).
comn([], [], D, S) := true | S = D.
comn([], L, D, S) :- L \= [] | S = '<'.
comn(L, [], D, S) :- L \= [] | S = '>'.
com1(X, X, D, E) :- true | E = D.
com1(X, Y, _, E) :- X < Y | E = '<'.
com1(X, Y, _, E) :- X > Y | E = '>'.
Y------
         undefined, R, 01, 02, 03) :- true |
O1 = '+', O2 = [], O3 = [].
real(real(S, N, D), R, O1, O2, O3) :- true |
     01 = S, 02 = N, 03 = D.
real(N, R, 01, L, 03) :- N >= 0 !
    01 = '+', 03 = [1], binrad(N, R, L).
real(N, R, O1, L, O3) :- N < O, M := (O-N) |
O1 = '-', O3 = [1], binrad(M, R, L).
binrad(0, R, Out) :- true | Out = [].
otherwise.
binrad(N, R, Out) :- K := N/R, M := N mod R |
     Out = [M|T],
     binrad(K, R, T).
\begin{split} & \text{standardise}(\text{real}('+',[N],[1]), \text{ Ans}) := \text{true } | \text{ Ans } = N. \\ & \text{standardise}(\text{real}('-',[N],[1]), \text{ Ans}) := F := (0-N) | \text{ Ans } = F. \end{split}
standardise(real( S, N, []), Ans) :- true | Ans = undefined. standardise(real( _, [],[1]), Ans) :- true | Ans = 0.
otherwise.
standardise(Number, Ans) :- true | Ans = Number.
```

B.4 Semigroup

```
/*-----
Program: Semigroup
Author: N. Ichiyoshi
        July 28 1988
Date:
Notes:
1. To run:
       ?- go(N).
the output N should be 309.
2. this version does NOT include generators in final count (c.f. Prolog)
          go(N) :- true |
    generators(Gens),
    go1(Gens, Dut),
    count(Out, N).
go1(Gens, Out) :- true |
    gen_g(Gens, Gin, Fin, Gout, Fout),
    gen_gen(Gens, Gin, NGin),
    connect(Gout, Fin),
    ends(Fout, _, _, NGin, Gens, Out-[]).
count(L,N) :- true | count(L,O,N).
count([],M,N) := true | M = N.
count([X|Xs],M,N) :- M1 := M+1 | count(Xs,M1,N).
% g(+Gin, +Fin, -Gout, -Fout, +E)
7. 7. 7. 7. 7. 7.
         Gin
                   : input generator stream
         Fin
                   : input filter stream
                    : output generator stream : output filter stream
         Gout
         Fout
                 : element (self)
g([gen(X,P,P0)|Gin1], Fin, Gout, Fout, E) :- true |
    mult(E, X, EX),
    PO = [EX|P1]
    Gout = [gen(X,P,P1)|Gout1]
    g(Gin1, Fin, Gout1, Fout, E).
g([begin|Gin1], Fin, Gout, Fout, E) :- true |
    Gout = [begin|Gout1],
g(Gin1, Fin, Gout1, Fout, E).
g([end|Gin1], Fin, Gout, Fout, E) :- true |
Gout = [end|Gin1],
    f(Fin, Fout, E).
% f(+Fin,-Fout, +E)
%
% filters ou
%
% Fin
% Fout
%
E :
        filters out E from stream Fin to give Fout as result
                   : input stream of elements to be filtered
                    : output stream of elements filtered
                 : element (self)
f([X|Fin1], Fout, E) :- X = E | f(Fin1, Fout, E).
f([], Fout, E) :-
                      true
                                     Fout = [].
otherwise.
f([X|Fini], Fout, E) :- true | Fout = [X|Fout1],
                                                f(Fin1, Fout1, E).
% gen_g(+Xs, -GO, -FO, +G, +F)
```

```
***********
          creates NS1.
                    : list of elements
          Хs
                    : input generator stream : input filter stream
          GO
          F0
                   : output generator stream
          G
                   : output filter stream
          F
gen_g([X|Xs], GO,FO,G,F) :- true |
    g(GO,FO,G1,F1, X),
gen_g(Xs, G1,F1,G,F).

gen_g([], G0,F0,G,F):- true | G0 = G,
    FO = F.
: output filter stream
                                                                 ... (NSn*G)\Sn
                       : output generator stream
                                                           ... NSn*G
                      : input generator stream
                      : old input generator stream
                     : list of original generators
                                                              ... G
ends([begin,end]_], _, Gin, OGin, _, O1-O2) :- true | Gin=[], OGin=[], O1=O2.
ends([begin,X|Fout2], _, _, OGin, Gens, Out) :- X \= end |
gen_gen(Gens,NGin0,NGin),
    ends([X|Fout2],NGin0,NGin,OGin, Gens, Out).
ends([end|Fout1], Gout, Gin, OGin, Gens, Out) :- true |
    connect(Gout, OGin),
    ends(Fout1, _, _, Gin, Gens, Out).
g(Gout, Fouti, NewGout, NewFout, X), ends(NewFout, NewGout, Gin, OGin, Gens, 02-03).
creates d-list representation of {}*G (see Notes on Representation).
                       : set of generators g1, ..., gK.
                       : d-list to represent the list
                           [gen(g1,G10,G1), ..., gen(gK,GK0,GK), end]
gen_gen(Gens, GO,G) :- true |
    GO = [begin|G1],
    gen_gen1(Gens, G1,G).
gen_gen1([X|Xs], GO,G) :- true |
GO = [gen(X,P,P)|G1],
gen_gen1(Xs, G1,G).
gen_gen1([], G0,G) :- true |
    GO = [end[G]]
% connect(+G, -F)
%
% (see Note
%
% G
% F
                           : connects gen-stream to filter stream
          (see Notes on Representation (3) )
                   : stream of d-lists representing generated elements
                   : stream of generated elements to be filtered
```

```
connect([gen(_,PO,P)|G1], F) :- true |
     F = PO,
     connect(G1, P).
connect([begin|G1], F) :- true |
     F = [begin|F1],
     connect(G1, F1).
connect([end|G1], F) :- true |
     F = [end[G1]].
% mult(+X, +Y, -Z)
                     : X = [X1, X2, ...]

: Y = [Y1, Y2, ...]
7. 7. 7. 7.
           Х
                      : Z = X*Y = [X1*Y1, X2*Y2, ...]
mult([X|Xs], [Y|Ys], Out) :- true |
     Out = [Z|Zs],
     m(X, Y, Z),
     mult(Xs, Ys, Zs).
mult([], [], Z) :- true | Z=[].
         Multiplication Rule for the Direct Product of
           the 5-element Bradt Semigroup B2
XXXXXXXXXXXXXXX
           Bradt semigroup B2 = \{ 0, e, f, a, b \}.
           Multiplication table for B2 :
                    10
                                 f
                                          b
                            e
                  0 | 0
                            0
                                          0
                                0
                                      0
                  e | 0
                                 0
                                          0
                            е
                                      a
                  f | 0
                            0
                                 f
                                      0
                                          b
                  a | 0
                            0
                                    0
                                 a
                                          е
                  b | 0
                            Ъ
m(0,_,Z):=true \mid Z=0.

m(e,0,Z):=true \mid Z=0.
m(f,0,Z):- true | Z=0.
m(a,0,Z):- true | Z=0.
m(b,0,Z):- true | Z=0.
m(e,e,Z):- true | Z=e.
m(f,e,Z):- true | Z=0.
m(a,e,Z):- true | Z=0.
m(b,e,Z):- true | Z=b.
m(e,f,Z):-true \mid Z=0.
m(f,f,Z):- true | Z=f.
m(a,f,Z):- true | Z=a.
m(b,f,Z):-true \mid Z=0.
m(e,a,Z):- true | Z=a.
m(f,a,Z):- true | Z=0.
m(a,a,Z):=true \mid Z=0.
m(b,a,Z):- true | Z=f.
m(e,b,Z):- true | Z=0.
m(f,b,Z):- true | Z=b.
m(a,b,Z):- true | Z=e.
m(b,b,Z):- true | Z=0.
% 309+4 solutions...
generators(IL) :- true |
    IT = [
```

```
[0,0,0,0,0, e,e,e,e,e, f,f,f,f,f, a,a,a,a,a, b,b,b,b, f,f,f,f,f,f,b,b,b,b,b, a,a,a,a,a],
[0,e,f,a,b, 0,e,f,a,b, 0,e,f,a,b, 0,e,f,a,b, 0,e,f,a,b, 0,e,f,a,b, 0,f,e,a,b, 0,e,f,a,b],
[0,0,0,0,0, e,e,e,e,e, f,f,f,f,f, b,b,b,b,b, a,a,a,a,a, e,e,e,e,e,a,a,a,a,a, f,f,f,f,f],
[0,e,f,b,a, 0,e,f,b,a, 0,e,f,b,a, 0,e,f,b,a, 0,e,f,b,a, 0,e,f,a,b, 0,e,f,b,a, 0,e,f,b,a]].
```

B.5 Queens

B.5.1 AOqueen

```
Program: N-Queens using layered-streams
  Author: A. Okumura
                      June 17 1988

    To run: ?- go(M,N).

 for example, when input M=8, output N=92 (number of solutions).
 This version uses [X|Y] representation of layered-stream.
  :- module queen.
  :- public go/2.
 go(M,N) :- true | queen(1,M,begin,A), count(A,N).
 count(L,N) :- true | count(L,O,N).
 count([X|Xs],M,N) :- M1 := M+1 \mid count(Xs,M1,N).
  count([],M,N) :- true | M = N.
 queen(I,N,In,Out) :- I < N,
           I1 := I+1 |
           q(1,N,In,Mid),
           queen(I1,N,Mid,Out).
 queen(N,N,In,Out) :- true | lastQ(1,N,In,Out).
 q(I,N,In,Out) :- I =< N,
           I1 := I+1 |
           filter(In,I,1,Out1),
           q(I1,N,In,Outs),
           Out=[[I|Out1]|Outs].
 q(I,N,_,Out) :- I > N | Out = [].
 lastQ(I,N,In,Out) :- I =< N,
           I1 := I+1 |
           lastFilter([I],In,I,1,Out,Out1),
          lastQ(I1,N,In,Out1).
 lastQ(I,N,_,0ut) :- I > N \mid Out = [].
filter(begin,_,_,Out) :- true | Out = begin.
otherwise.
filter([[J|In1]|Ins],I,D,Out) :- D1 := D+1 |
          filter(In1.I,D1,Out1),
          filter(Ins,I,D,Outs)
          Out = [[J|Out1]|Outs].
lastFilter(Stack,begin,_,_,S,T) :- true | S = [Stack|T].
\label{eq:lastFilter} $$ \underset{\text{lastFilter}(Stack,[],_,,S,T) := true \mid S = T. $$ lastFilter(Stack,[[I]]|Ins],I,D,S,T) := true \mid lastFilter(Stack,lns,I,D,S,T). $$ lastFilter(Stack,[[J]]|Ins],I,D,S,T) := D =:= I-J \mid $$ lastFilter(Stack,lns,I,D,S,T). $$ lastFilter(Stack,[[J]]|Ins],I,D,S,T) := D =:= I-J \mid $$ lastFilter(Stack,lns,I,D,S,T). $$ lastFilter(Stack,lns,I,D,S,T) := D =:= I-J \mid $$ lastFilter(Stack,lns,I,D,S,T). $$ lastFilter(Stack,lns,I,D,S,
          lastFilter(Stack,Ins,I,D,S,T)
lastFilter(Stack,[[J|_]|Ins],I,D,S,T) :- D =:= J-I |
          lastFilter(Stack, Ins, I, D, S, T).
otherwise.
lastFilter(Stack,[[J|In]|Ins],I,D,S,T) :- D1 := D+1 |
    lastFilter([J|Stack],In,I,D1,S,SS),
         lastFilter(Stack, Ins, I, D, SS, T).
```

B.5.2 KKqueen

```
/*-----
Program: N-Queens (all-solutions AND-parallel)
Author: K. Kumon
Date:
           May 18 1988
Notes:
1. To run:
     ?- go(N,M).
for example, when input N=9, output M=352 (number of solutions).
go(N,M) :- true |
     gen(N,L),
queen(L,[],[],X,[]),
     count(X, M).
queen([P|U], C, L, I0, I2):- true |
   append(U, C, N),
   check(L, P, 1, N, L, I0, I1),
   queen(U, [P|C], L, I1, I2).
queen([], [], L, I, 0):- true | I=[L|0].
queen([], [_i_], _, I, 0):- true | I=0.
check([],    T, D, N, B, I, 0):- true |
    queen(N, [], [T|B], I, 0).
check([P|_], T, D, N, B, I, 0):- T=:=P+D | I=0.
check([P|_], T, D, N, B, I, 0):- T=:=P-D | I=0.
otherwise.
check([P|R], T, D, N, B, I, 0):- D1:=D+1 |
    check(R, T, D1, N, B, I, 0).
gen(N, X) := N>0, M := N-1 \mid X = [N|Xs], gen(M, Xs).
gen(N, X) :- N = := 0 | X = []
append([A|X],Y,Z):=true \mid Z=[A|Z1], append(X,Y,Z1).
append([], Y,Z):- true | Z=Y.
count(L,N) :- true | count(L,O,N).
count([],M,N) := true | M = N.
count([X|Xs],M,N) :- M1 := M+1 | count(Xs,M1,N).
```

B.5.3 KUqueen

```
/*-----
Program: N-Queens (translated from Prolog MBqueen)
Author: K. Ueda
Date: May 18 1988
Notes:
1. To run:
    ?- go(N,M).
for example, when input N=8, output is M=92 (number of solutions).
                             ·---*/
go(N,M) :- true |
    gen(N,L),
    queen(L, [], 'L1', X, []),
    count(X, M).
gen(N, X) :- N>O, M := N-1 | X = [N|Xs], gen(M,Xs).
gen(N, X) :- N=:=0 | X = [].
count(L,N) := true \mid count(L,0,N).
count([],M,N) := true | M = N.
count([X|Xs],M,N) :- M1 := M+1 | count(Xs,M1,N).
queen([H|T],R,Cont,Rs0,Rs1) :- true |
select([H|T],'L2'(Cont,R),'L2',Rs0,Rs1).
queen([],R,Cont,Rs0,Rs1):- true | Rs0 = [R|Rs1].
select(HT,Cont,Conts,RsO,Rs2) :- true !
    d1(HT,Cont,Conts,Rs0,Rs1),
    d2(HT,Cont,Conts,Rs1,Rs2).
d1([A|L],'L2'(Cont,R),Conts,Rs0,Rs1) :- true |
    check(R,A,1,'L2b'(Cont,R,A,L,Conts),Rs0,Rs1).
d1([], Cont,Conts,RsO,Rs1) :- true ! RsO=Rs1.
d2([H|T],Cont,Conts,Rs0,Rs1) :- true |
    select(T,Cont,'L5'(Conts,H),Rs0,Rs1).
d2([], Cont,Conts,Rs0,Rs1) :- true | Rs0=Rs1.
check([], U,N,'L2b'(Cont,R,A,L,Conts),Rs0,Rs1) :- true |
     b(Conts, 'L3'(Cont,R,A),L,Rs0,Rs1).
check([H|T],U,N,Cont,RsO,Rs1) :- H =:= U+N | RsO=Rs1.
check([H|T],U,N,Cont,Rs0,Rs1) :- H = := U-N | Rs0=Rs1.
otherwise.
check([H|T],U,N,Cont,Rs0,Rs1) :- N1:=N+1 |
    check(T,U,N1,Cont,Rs0,Rs1).
b('L5'(Conts, A), Cont, T, RsO, Rs1) :- true |
    b(Conts,Cont,[AIT],RsO,Rs1).
b('L2','L3'(Cont,R,A),L,Rs0,Rs1) :- true |
    queen(L,[A|R],Cont,RsO,Rs1).
```

C Appendix: Sample Cache Simulator Output

In this section listings are given of the cache simulator output for the five major benchmarks. See Section 5.3.3 for an explanation of how to interpret this raw data. A single I+D. 4K word cache (256 columns) simulation is shown for each program. The parameters of all simulations are identical and shown only for the first benchmark. Note that the KL1 system does not count META and ETC (miscellaneous) references. If there are no bus collisions, the table is not included.

1950 0 1950 1950 8192	
2092	
- 2 7 7 7	0.004
2002 NUS NUS 13 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000
762 1950 1950 1950 1950 1186 1186 12057 ALL-AREA ALL-AREA GEGLE I UN 135 135 146 156 166 176 176 176 176 176 176 176 176 17	0288322222
165 106 762 0 0 0 0 1950 0 710 1950 0 710 1950 0 710 1950 0 1069 20917377 0 8996 0 1263 1263 0 188 0 1889 0 0 0 0 0 0 7412 4645 12057 17 HIP + DM-WITHOUT-SOUT 17 HIT + DM-WITHOUT-SOUT 17 HIS - DM-WITHOUT-SOUT 18 HIS - DM-	995281 995191 92519 74377 76737 73391 73391 51007 51007
165 11 0 0 7 0 0 7 0 0 7 10.1 ALL.: ALL-AREA FECACHE FROM- 6219 27 12 6 12 11.88 0 0 12 11.88 0 0 12 0 0 46 0 0 12 11.88 11.8 ALL-AR EASTHOOTS-SOUT THIT + EM-WITH HISS-RATIO ATE Snapshot-afte SM C 11.2 SM C 11.3 SM C 11.3 SM C 11.3 SM C 11.4 SM C 11.5 SM C 11.6 SM C 11.7 SM C 11.8 SM C	20929410 20929410 20929410 20929410 20929410 20929410 20929410 20929410
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 2093 6 2093 6 2093 6 2093 6 2093 6 2093 6 2093 6 2093
0 291 0 0 0 0 1240 0 1240 943 4276 943 4276 0 0 0 0 1986 0 0 0 0 1986 0 1986 0 1986 0 0 0 10 0	2,7-0.0-0.1-0.10
1340 0 0 0 0 0 0 0 0 0	
118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
118 UM U TOTAL U R R R R R R R L L L L L L L L L L L	
TCYAL 1174.17104 3154.104 3154.104 1950 1950 1950 1950 1798 1798 1798 176 176 176 176 176 176 176 176 176 176	819 TAL 376 420 376 420 051 215 0 051 283
114 119 119 119 119 119 119	11. TOTAL 17. 5590 17. 59376 40. 1337 40. 17651 60. 1765 60.
TRAIL 1186713	220 2237 3237 220 220 1540 0 0 0 0 0 0 0 0 174
MINK MINK MINK MINK MINK MINK MINK MINK	258 Try 481 Try 4813 3 3 5 4 6 6 9 6 9 6 6 9 6 6 9 9 6 6 6 9 9 6 6 6 9 9 6 6 9 9 6 6 9 9 6 6 9 9 6 6 9 9 6 6 9 9 6 6 9 9 9 6 6 9 9 9 6 6 9 9 9 6 6 9 9 9 6 6 9 9 9 6 6 9 9 9 6 6 9
000000 000000 000000 000000 000000 00000	1.25 E
PENNADA PENNAD	u z w u u u e zore
(AN) (AN) (AN) (AN) (AN) (AN) (AN) (AN)	6 316 7 218 6 3185 6 3185 0 256 0 256 0 256 0 256 0 379 0 0 0 0 0 0 0 0
P. 00000000 0000000000000000000000000000	A NATA - 1999 10.20 10.2
2.84.2 CONTACTOR OF THE CONTACTOR OF THE	TOTAL TOTAL TOTAL TATALE BUS-USE TYPE(CYCLE) CYCLE-PATTERN HEAD THENDA-CRA-SOUT THENDA-CRA-SOU
Triangle - Attorie Carte parms: c256 CAMPICE, 000000003, SANDE GIVEN CPC-CC TRABLE ISSUED BUS TRABLE BUS-CCC TRABLE BUS-CCCC TRABLE BUS-CCC TRABLE BUS-CCC TR	USE TYPP SERN SOUT OUT NILY OUT TRAA R R R R R R R R R R R R R R R R R
- A 2 La Feb 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25	TOTAL TOTAL HOS-USE T TOTALE HOS-USE T TOTALE HOSTERN TOTALE HOSTERN TO PROTOC-SOUT TO PROTOC TOTALE PREVIOUS TOTALE PROTOC TOTALE PR
Carbo I Carbo I Carbo I Inviting Inviti	TOTALE TOT

Cache patter. C75624, A4, L1 TARILE CIVEN 1-10. CREMARI, (AREA) NYTE. 118A GRA TRAIL I TOTAL OVERATIO FIRST NYTE CIVEN 1-10. CREMARI, (AREA) NYTE. 118A GRA TRAIL I TOTAL OVERATIO FIRST NYTE. 1180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TABLE MISS-ANALYSIS(AREA) ALL: ALL-AREA CPUCMD FRAC FRACK FROM-CM T-MISS R 72468 431933 S04401 53790 558191	M 0 1281 1281 M 0 27158 27158 W 0 27158 27158 CTAL 72468 460372 532840	TABLE DM(DIRECT-WRITE)-ANALYSIS(ARFA) ALL.: ALL-AREA GIVEN 18SURD 85676	T-SWAP-OUT WAP-OUT CACHE-HITT-RATI 16529 11068564		TABLE CACHE-DIRECTORY-AREA Snapshot-after-execution HEAP INST RNV NOCE LBA GBA TRAIL INVALID 2907 732 92 3365 47 544 339 166	TABLE BUS-TRAFFIC-RATIO BUS-WIDTH(W) MEM-ACC-TIME MEM-REP BUS-CYCLE TRAFFIC-RATIO 1 8 1166604 4689981 0.402 7 11666041 4626972 0.397	4563973 450969 4262704 34262704 3379135 3379135 3253127 595660	
Page		9			TOTAL 4151 58853 1633 68835	23348 437024 1096 0	27313 0 0 624253	TOTAL 53963 765089 36330 481845 223480 3259168 5480 0 54626 0	FRI. 6511 6094 6676 531 331 043
STATE STAT		TRAIL 232525 55130 0	287655	TRAIL 11280 1404 2086 14770	PRAIL 191 1485 273 4456	592 5687 0	2986 0 0 14770	TRAIL 2483 19305 2730 23192 2920 99609 99609 0 0 0 0 0 0 0 0 0 0 0 0 0	105
1767728		CBA 330496 27720 0	358216	GBA 14384 846 0 15230		0000	15230		55819 55819 1762 2748 51
STATE STAT		LBA 69170 27269 0	000000000000000000000000000000000000000	LBA 1219 739 0 1958	2,5 1,70		19		T-HIT 955420 967929 68052 16843 43792
STATE STAT				NODE 425160 34549 24698 484407		325 14427 558 366221 0 0 0	391 24698 0 0 0 0 309 484407	ENV NODE 1054 5265 1515 278551 18420 1476 387002 1250 144270 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***********
Carche patine C256, 54, 54, 44, 11		F 62	0.02211	ENV 6691 27 391 7309	ST 10 0				ALL.: Al SC 6668621 6737 7567 0 63
Sendgroup – Auror Gache pature: c256 TANUE GIVEN-CPU (CVNCPD) R	ra - 8 PRs 5,54,54,11	3645525 0 0 0 0 0		COMMAND(AL INST 35611 0 0 35611	PE (OPERAUTE MEAP H09 10414 1343 8025				TAUR (ARRA) EN 2400158 941922 68049 7225 0 10253 3450607
Semigroo Cache po I Value G Cyncedo UW UW UW UW UW UW UW UW UW UW UW UW UP TABLE B CYCLE: PE 13: PROP 13: PROP 13: PROP 15: SOUT 05: SOUT 15: SOUT 16: CCTO 16: CCTO	лр – Амгон илло: c256	IVEN-CINU-C HEAP 1763728 207236 341808	0 0 2312772	SSUED BUS- HEAP 63646 88 138 63873	US - USB - TWF NITIERN -GH - SOUT C-SOUT 2-SOUT	C-SOUT C-ONLY ANLY EXTRA	ONLY H-EACK H-EXTRA L	US-USE: 1Y3 ATTERN -GY-SOUT -GY-SOUT -GY-SOUT C-ONLY C-SOUT C-ONLY C-SOUT N-EXTRA ONLY N-EXTRA L.	RITYTOUS-S' ED BC 5104 5104 8 8 8 0 203 618420
	Semigror Cache pv	TANDE G CONCRO R W DN LR	UW U TOTAL	SCRE SCRE	TABLE B CYCLE: P 13: PISSP 10: PISSP 07: PISSP 07: PISSP	10:CCTO 07:CCTO 05:SOUT	02: INV 65: PLUS 05: PLUS 10: PLUS	TABLE B CYCLE.P 13 FR2M 13 FR2M 10 FR2M 10 CCTO 07 ACTO 07 ACTO 07 ACTO 05 S2M 05 S2M 05 FLUS 05 FLUS 05 FLUS 10 FTUS 10 FTUS	TABLE P CPUCND R W DW UW UW UW

TOTAL 8192

		1912 8192	
	TOTAL 8192	TRAIL TAVALID 539 3211 1C-RATIC 0.012 0.012 0.010 0.010 0.009 0.009 0.009	
T-MISS 11633 1161 1146 1517 0 0 4 15441 Alder AREA	Sour Sour Xecution 1 twusep 199 3012	ecution GRA TRAIL IN 282 539 E TRAFFIC—RATIO 7 0.013 0 0.012 0 0.012 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003	
44	NAD.: ALG-AREA TITHOUT-SOUT T + EM-WITHOUT-SOUT SS - EM-WITHOUT-SOUT RATIO -RATIO Snapshot-after-execution SM C I UN 247 0 199	Snapshot-after-execution NODE LBA GRA '721 37 202 721 37 202 121 3548 GRAFF 10315548 133449 10315548 130449 10315548 100490 10315548 100490 10315548 96606 10315548 96606	
ALL: ALL-AREA PRCACHE FROM: 8579 30 24 11 0 0 1599 10112 53 LLYSTS(AREA) AL		Snapshot- NOOE 721 MEM-HER 10315548 10315548 10315548 10315548 10315548 10315548	
PRCC 1 4227 24 24 20 1509 0 1509 0 5760 5760 11775) -ANAL	905 241 RATIO(AREA) IM T-P T-P T-P T-P T-P T-P T-P T-P T-P T-P	PORY-AREA ENV	
TABLE DATACTOR TABLE AND TABLE DATACTOR AND TAB	MITHOUT-SWAP-OUT 905 WITH-SWAP-OUT 241 TARLE CACHE-HIT-RATIO(AREA) M.L.: ALL-AREA 905 TWANTHOUT-SOUT 10300999 THIT + DW-WITHOUT 909-96 (%) HIT-RATIO 99-96 (%) HIT-RATIO 99-96 (%) HIS-RATIO 178HE CACHE-DIRECTORY-STATE SNAPSHOL-After EC EN SC SM C 994 1247 2493 247 0	TABLE CACHE-DIRECTORY-AREA HEAP INST ENV 1195 2077 130 TABLE BUS-WIDTH WINNEY-CC-TIME BUS-WIDTH WINNEY-CC-TIME 1 1 5 1 1 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5	
TANIA ME CPUCAD R W W DW U U TOTAL TYNE GVEN 15SUED	WITHOUT-SWAP-OUT WITH-SWAP-OUT TARLE CACHE-HIT- 905 10300999 14536 14536 17ABLE CACHE-DIRE EC EN	TABLE CA FIEAP 1195 TABLE BUS-WIDTH	
2004000	2005		
TOTAL 7478372 2678858 153204 2557 0 2557 10315548	F	5180 241 241 1277 0 0 15609 48628 3990 27671 5600 5600 1205 1205 1205 1205 1205 1205 1205 12	TOTAL 78372 93732 93732 2557 2557 15535
788.11. 1136437 1128007 0 0 0 0 0 0 0 0 0	198/11 1042 371 123 1536 1536 720 23 23 244	396 123 123 11536 1105 1105 230 230 230 230 230 230 230 230 230 240 240 240 240 240 240 240 240 240 24	747 279 3
GBA 601789 586403 0 0 0 0 0	anu a Est	GHA 11177-7423 7423 900 000 000 000 000 000 000 000 000 00	[
LHA 33099 30742 0 0 0 0 0 0	LEPA 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i de − vi	T-RIT 7466739 2792591 37171 1040 10300094
NOIX: 1449931 907931 2550 2557 2557 2362976	393 393 311 111	17 2758 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64529 373 373 127 127 646529
875 2755 2755 0 0 0 0 0 0 0	EMV 291 26 325 325 00 0	1978 0 0 0 0 0 10 1903 1903 1903 13846 138	ALL.: ALL SC 308925 311 466 466 0 0
20	SA (17	121 241 27 27 27 27 1974 1974 198 1901 198 1900 198 1205 1205 1205 14773	PAGES PREVIOUS—STATE(ARRA) ALL.: ALL-ARRA CPUCHSD. B. SC. S.
Puzzle Antona B PEs cache parme: c256,s4,v4,111 TABLE GIVEN-CPU-CORMAND AR CVNCSD BEAP BASE W 13020 2184800 W 13020 0 DM 15324 0 UN 0 0 UN 0 0	SHEP-BIRS-C HEAP 1687 193 1733 1733 1738 1718A 1	73. CCCDC-CNLY 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.	66715 66715 797 1 10 67525
Puzzile Cache par CANCED GYNCED R R W DO DR LR UM	TABLE ISSUED-BO BUSCAD BEAD F 1 182 F 1 19 F	03.4CTCCC-CML/V 05.5SUTF-CML/V 05.5SUTF-CML/V 05.5SUTF-CML/V 05.5PLUSH-EATINA TOTAL TOTAL TOTAL 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CM-CML/V 13.FROM-CML/V 13.FROM-CML/V 13.FROM-CML/V 07.ECTCC-CML/V 07.ECTCC-CML/V 05.ECUTCC-CML/V 05.ECUTCC-CML/	TABLE PR CPUCHD R K INW INW UN UN

		TOTAL 8192 TOTAL	
		NAUSED TYPIAL 0 8192 TRAIL INVALID 169 359 GBA TRAIL	110 213 2213 2209 2209 1809 161 153 149 132
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 a a	traused 0 On TRAIL 169 GRA	TRAFFIC-RATIO 0.213 0.209 0.209 0.180 0.151 0.153 0.132
7.MISS 1007567 2 15520 2 50759 0 14824 0 1991	.: ALL-N A 1-90UF UT-SOUT	SM C 359 SM C 350 SM	
LIAREA FROM-CR 155430 14642 50759 747 747 223569	REA) ALL-ARE ALL-ARE TT-SOUT W-WITHOU	shot-after 0 0 bot-after 19A 28 28 09-BUS-CO NODE	2
ALL.: ALLRER PRCACHE PROK- 852137 1554 878 16 0 507 114077 7 0 0 19	NALYSIS(AREA) ALL.: ALL.: 6 6 6 7 7 8 8 8 9 14 8 14 15 15 16 17 11 17 15 16 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		~ * * * * * * * * * * * *
115(AREA) FRCC 5R403B 87B 0 114077 0 698993	T-FRITE)-AN 716908 07 39465 07 11294 11294 11294 11294 1295 11 H	TABLE CACHE-DIRECTORY-STATE Snapshot -after-execut EC EM SC SM C T T S	Σ
SS-ANALYS FRMC 26H099 0 0 0 0 26B099	(DIRECTI-W SWAP-OUT P-OUT 39465 41932456 1151196 2.	CHE-DIRECTO 2562 CHE-DIRECTO INST 1102 SCND-15-CH P INST	TABLE BUS-TRAFFIC-RATIO BUS-WIDTH [W] MEN-ACC-TII 1 1 2 2 2 2 3 3 3
TABLE MISS-ANALYSIS(ARRA) R 268099 SR4018 W 0 0 116077 UM 0 0 0 TOYAL 268099 69893	TABLE DW(DIRECT-WRITE) - ANALYSIS(AREA) ALL:: ALL-AREA GIVEN 126908 MISSUED 179320 MITH-SWAP-OUT 18945 MITH-SWAP-OUT 11294 MITH-SWAP-OUT 11294 MITH-SWAP-OUT 11294 MITH-SWAP-OUT 11294 MITH-SWAP-OUT 11294 MISS-BA-WITHOUT-SOUT 1151196 T-HIT + DW-WITHOUT-SOUT 1151196 T-HISS - DW-WITHOUT-SOUT 1151196 T-HISS - DW-WITHOUT-SOUT 12,67 (4) MISS-RATIO	TABLE CACHE-DIRECTORY -STATE EC EM SC 1317 2662 3864 TABLE CACHE-DIRECTORY -AREA 4662 1102 104 4062 1102 104 TABLE RUSCAD-IS-CHANGED-88CJ HEAP INST ENV 6 0 0 0	TABLE BU
TOTAL 3854515 3631374 716906 190819	190819 43094435 TOTAL 1007567 130344 10575 1218486	38878 135841 7554 35593 35993 11294 11294 0 90575 0	TOTAL 479414 479414 75540 1823815 359930 4641000 56470 0 161150 0 9338552
TRAIL 1504766 1162513 0	2687279 1781L 7238 7779 1144 16161	23179 31179 311 3018 2008 2018 200 0 0 0 1144 1546	TRAIL 28327 87282 3110 14616 8340 20237 0 2288 0 2288 0 164200
GBA 248304 135857 0	00- 4-000	19729 1	BA CRA 45 209693 4 5 209693 0
LHA 218046 100667 0	24 24 24	731 1765 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	229 229 324
NOIX 228924213 1926392 0	19019 1232553 NODR 759476 129784 18974 958576 958576	991 998 208 16286 129 2456 665 242536 625 17328 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ENV NORS 67704 211718 1290 24560 4655 1697752 6250 171280 16527 4201372 0 0 1046 157552 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NA 00 0	201 201 626 903 452 452	2 2	32113 12233 12974 32113 12233 12974 981903 67704 211718 0 1290 24560 0 6250 171280 248472 16527 4201372 0 0 0 0 0 0 1642188 109705 6479208
8 PES 54, w4, t3 NST NST 3497920 14' 0 16'	0 0 049 1920 163 1082F 1447 98 0 0 1447 98 1629 PERATTON	3030 24701 13006 75531 4658 9070 215256 9070 22056 35496 11294 0 0 0 0 0	CCCCLE) HEAP 19390 32 166901 99 16590 99 18679 9 18679 9 264 0 65432 24
Pancal - Aurora - 8 PEs Cache parms: c256,s4,w4,t1 Table GIVEN CPU COMMUN(ANEA) CANCHD HEAD INST R 112142 0 17 18 716908 0	0 3349000 1 SSURD - BUS 1 IEAP 65902 240 132 66274 66274 BUIS- USE-TYPP	13. FROM GR. ONLY 10. FROM GR. ONLY 10. FROM GR. ONLY 07. NCTOC-ONLY 07. CCTOC-ONLY 05. SOUT-EXTRA 05. SOUT-EXTRA 05. FULSIH-BACK 05. FLUSH-BACK 17. ONLY 17	TABLE FUS-USE: TYPE (CYCLE) CYCLE: PATTERN HEAP 13: FROM - CM - SOUT 19390 13: FROM - CM - SOUT 16907B 10: RCTOC - SOUT 105792 10: CCTOC - CMLY 154792 05: SOUT - CRTOK 154792 05: SOUT - EXTRA 0 05: SOUT - EXTRA 0 05: FLISH - BACK 0 10:
Pass CVN GVNK	UN TABLE PUSCH F F F F F F F F F F F F F F F F F F F	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7A9 CYC 13: 13: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10

	TOTAL	8363038	4159656	179320	190819	0	190619	3083652
		,	_	_	114824	_	_	_
					75995			
LL-AREA	35	1079467	14599	7442	16374	0	106189	1224071
ALL: A	SC	29732466	4510	3342	45092	0	255	29785665
TATECAREA	ž	5501954	4102755	113469	14502	0	62012	9814692
REVIOUS-S'	28	1041584	22272	4 30B	27	0	372	1068563
TABLE	CPUCHE	æ	2	DWC	17	MIN	P	TOTAL.

MISS-ANALYSIS(AREA) ALL.: ALL-AREA 13851	AMAL: AMA-AREA ATHROUT-SOUT ISS - DA-WITHOUT-SOUT HATTO S-RAPTO S-RAPT	333 0 291 3638 Snapshot-after-execution NOOF LBA GBA TRAIL IN 1116 54 304 418 MEM-HEF NUS-CYCLE THAPFIC-RATIO 14864771 327369 0.023 14864771 377948 0.021		
TABLE MISS-ANALYSIS (AREA) CPOCHE FROC FROC R 13651 6073 W 0 0 DW 0 0 UW 0 0 UW 0 0 TOTAL 13651 12511 TABLE CHIDIRECT-WRITE)-AWI		1292 1070 1578 TABLE CACHE-DIRECTORY-AREA HEAP INST ENV 1646 553 172 TABLE BUS-TRAFFIC-RATIO BUS-WIDTH [W] MEN-ACC-TIME 1	an ma mai Lai Cao Cao Lai Ga	
TOTAL 10498457 3588403 758659 10626 10626 10626	F .	13577 260 12251 2164 0 4210 0	TC/PAL 15641 96112 2740 95039 95039 95039 9600 0 8460 0 0	TOTAL 498457 155777 16626 16626 16626 10626
TRA1L 707055 678400 0 0 0 0 0 0 0	18ALL 539 297 297 74 910 910 20 20	23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	18411 1040 3003 3003 1617 530 1547 0 0 148	104
GRA 593317 356326 0 0 0 0 0 0 0	GRA 591 51 642 642 642 523 523	00000007 *	67999 67999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T-NISS 28215 1119 5:46 6409 9
FBA 534174 299550 0 0 0 0 0	108 108 108 108 108 100 100 100	000000000000000000000000000000000000000	1.54 1.30 1.274 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.04	T-HIT 0470242 4154658 184134 4217 10617 4823668
ANDE 2390809 1924652 0 10626 110626	74.00 74.00 74.00	47 12488 1 166 19 11P10 0 0 0 0 2 4143 0 0 0 0 373 29420	ENV NATION 15 15 15 15 15 15 15 15 15 15 15 15 15	
EA) 1 (21129 1 (21129 1 (01178 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Str 355	21 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1887 28697 48947 1894 1015 1015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2276 3873058 3873058 545 0 2276 0 0
Autora - 8 PES D. CPU CORMAND AL HEAP 10251 18219 0 15659 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMPAND (ARRA) [NST 9245 0 0 0 9345 0 8945 160 171 HEAP TOS 106 1000 171	21 21 21 21 64 11 0 4739		VPOUS-STATE(AREA) FC EX FC EX 609 4152412 0 184129 0 1624 0 6722 MB568 10556209
Historem Aurora – B 1955 Cariter permet: e276,24,44,41 TSALE cives, (19 CORMAND ABEA) GVRCSD – BEAP R 222845 3029128 112 W 221837 0 10 FM 756659 0 0 LR 0 0 0 0 0	24 50 12 4 12 12 4 12 12 12 12 12 12 12 12 12 12 12 12 12	07: PCTCC: ONLY 10: CCTCC: SOLY 07: CCTCC: ONLY 05: SOLY: ONLY 05: SOLY: EXTRA 05: FLUSH: BACK 05: PLUSH: BACK 05: PLUSH: SACK	TABLE RUS USE TYPE (CW LE) CYTLE: PAPPEN CYTLE: PAPPEN 13. PROP: GP - SOIT 13. PROP: GP - SOIT 16. CTCC - SOIT 17. CTCC - SOIT 16. CTCC - SOIT 17. CTCC - SOIT	TABLE PREVIOUS-STATE(ARRA) ALL.: ALL-ARRA CRUCYD RC EC EX SC SS R C 1523 3873058 3590 RC EX C 6 1524 2 22 6 109 C C EX C 6 109 C C C EX C 6 109 C C C EX

TOTAL

8 115	6,54,54,1.1
Triangle Kbl	Carrie parmiss r25

							10TM. 8192	1V)TAL 6760		
						TOTAL 8192	INVALID 940	ETC.		
888	5=60	, ¥3			5	UNUSED	ETC.	5129	TRAFFIC-RATIO 0.434 0.415 0.415 0.406 0.322 0.313 0.304 0.261	
T-MISS 691572 155438		ALL-ARE		-SOUT	RATIO -RATIO Geographot-after-execution	940	Snapshot-after-execution SUSP NETA COMM 2 0 21			
- AREA PROM-CM 162290 87328	255259 8229 12 32765	SA MIL		ALL-ANEA SOUT WETHOUT	46.00	00	t-after- META 0	SP SP 0	8	
ALL.: ALL.: AREA PRCACHE PROH- 529282 1622 68110 873	31955 31955 0	981876 JYSIS(ARI		BA) ALL.: ALL-AREA IM-WINDUT SOUT T-HIT + DM-WINDUT-SOUT T-MISS - DM-WINDUT-SOUT			Snapsho SUSP 2	CAUSE-OF-B L SUSP 0 0	MEM-NEP 28086335 28086335 28086335 28086335 28086335 28086335 28086335 28086335	
	0 352529 31955	FTE) - ANA 970384 975559	109164	710[AREA 14 14 14 14 14 14 14 14 14 14 14 14 14 1	5 (N) HI 5 (N) HI 50V-SPM	4002	ORY-AREA GOAL 2757	ANGED-BECZ COAL 0	CC-TINE CC-TINE 8 8 6 6 6 7 7 7 7 8	
S-ANALYSI FRMC 372822 0	0000	372822 609054 981876 545881 1547759 DW(DIRECT-WRITE)-AMALYSIS(AREA) ALL: ALL-AREA 970384	AP-OUT OUT	CACHE-HTT-RATIO(ARBA) ALG.: ALL-ANEA 209164 FW-WITHOUT SOUT 26657740 T-HIT + DW-WITHOUT 1418595 T-MISS - IM-WITHOUT	94,95	2608	R-DIRECT INST 2755	MD-1S-CH INST	778AFFIC-	
TABLE MISS-ANALYSIS (AREA) CPUCHD FRWC FRCC R 372822 1564460 W 68110		TOTAL J TABLE DW(F GIVEN	MITH-SWAP-OUT	TABLE CACH	94,95 [8] HIT- 5.05 [8] HIS- 2.05 [8] HIS- 3.05 [8] HIT- 3.05 [8] HIT- 3	32.00	TABLE CACHE-DIRECTORY-AREA HEAP INST GOAL 1717 2755 2757	TABLE BUSCHO-IS-CHANGED-RECAUSE-OP-FUS-COLLISION HEAP INST COAL SUSP META 1631 0 0 0 0	TABLE BUS-TRAFFIC-RATIO FUS-WIDTH(W) HEM-ACC-TIME 1	
₽0 ≈ 3	45 M	F F0+	. 2 2	F	•	-	F	Ħ	E- E-	
	107AL 18774678 4535179 970384	1886163 774408 1146123 28086335	TOTAL 691572	548163 318970 1558705	116783	30314	124689 484365 146095	318970 23736 0 1728538	TOFAL 1518179 1813988 303140 2397556 1346690 1346690 637940 637940 118690	AL 59 59 53 32 33
	EIC 0	0000	ETC.	000	ETC	000	0000	0000	y	TOTAL 18774078 5250304 255259 1886163 774408 1146123
	418975 418985 0	198561 198561 0 1235082	248486	227430 240905 716821	MACO 7	3836	3049 228066 0	240905 65 0 716886	COPHM 91 845 18362 1666251 30490 1596462 0 481810 3834634	T-M1SS 691572 155438 255259 360758 31967 1527759
	MET'S 0 0	0000	META	000	META 0	000	0000		40000000000000000000000000000000000000	T-HIT 18082506 5094866 0 1525405 742441 1113358
	933 60 82 60		SUSP 21	n I s	dishs o	- * *			L SUSP 0 7 7 0 0 40 0 40 0 96 0 96 0	Z050505
	252	0 0 0 0 0 0 0 0 0 114115	COAL COAL 233811	141165 22752 397728	58.5	-		0 22752 0 10809 0 0 127934 408537	GOR 140411 168259 21512 26416 34911 4550 5404	ALL.: ALL. SC 945318 1 312416 0 607 15 15 1258357 1
Friengle Kbl 3 NBs Cache parmos c256,54,54,11 easter crosses con reverses appara	19371781 40 0 40	0 0 0 17371781. 81	2	127934 3	5			55300 12864 0 475J42 127	ಉಗಿ ಬಿಕ ನ	TABLE PREVIOUS-STATE(AMEA) ALG.: ALG.AMEA CPUCHD EX SC
Ktal il inser e256,4	HEAP 926172 13 59110 970384	1687602 575847 1146123 5365238 17	URD-BUS-C NEAP 81320	179563 55300 316183	- USE-TYPS TERN M-SOCT	SOUT			F 53 ~	Aljaki 3 FC R13421 3 77346 4 0 228 1 4347 499432 11
Triangle Kbl 8 HBs Cache parmes c256,s4,v4,t1 event cross con reverses	SVSCISO SVSCIS	IN I	25 EE 25	PT IV TOTAL	TABLE BUS-USB-T CYCLE, PATYERN 13: PROM-GM-SOCT	13: PROPORTOR ONLY 10: MCIOC-SYNT 07: MCIOC-ONLY	10 : CCTOC - SYNT 07 : CCTOC ONLY 05 : SOMP - ONLY 05 : SOMP - EXTRA	02: INV-ONLY 05: PLUSH-FACK 05: PLUSH-EXTPA TOTAL	TABLE RUS-USE T CYCLE-PATTERN 13: PRCM-CM-CM-EMIT 13: PRCM-CM-CMIT 10: MCTOC-CMIT 07: MCTOC-CMIT 10: CCTOC-CMIT 10: CCTOC-CMIT 05: SOUT-CMIT 05: SOUT-CMIT 05: PLUSH-BATK 05: PLUSH-BATK 10: PLUSH-BATK	TANIA PRE CPUCAD N N LM LA LA UN TOTAL

			TOTAL 8192	TOTAL 881		
			TOTAL H192 INVALID 672	ETC. 0	710 052 052 051 051 035 035	
T-MISS 46212	11895 122655 28236 4577 168 213745	E-	AUSED 0 ETC.	N COMPI 674	TRAFFIC-RATIO 0.052 0.051 0.051 0.035 0.035 0.035	
5 €		AREA T BOUT-SOUT THOUT-SOUT	rafter-execut C 672 0 672 After-execut HETA COMM	-coulistor HETA 0	HUS-CYCLE TO 1201071 1201071 1201071 1206267 1206725 1206725 1206725 1206725 1206725 12065719 12010 12	
ALL: ALL-AREA PRCACHE PROM- 42831 33	9605 0 12 26508 4576 83520 13 SIS(AREA)	S 7 7 THA ALL : ALL-AREA IN-WITHOUT-SOUT THISS - 14-WITHOUT-SOUT	FATIO FRATIO Snapshot-after-execution SH 0 672 41 0 672 Anapshot-after-execution SUSP HITA COMM 225 0 52	USE-OP-BUS SUSP 5	HEM-REF BU 255078416 255078416 25078416 25078416 25078416 25078416 25078416 25078416	
	9605 0 22508 4576 43785 (TE) - AMALY:	24088 24088 98567 TP-IT T-HIT	9.24 (4) HIT-RATIO 0.76 (4) HISS-RATIO 0.76 (4) HISS-RATIO 0.76 (4) HISS-RATIO 0.77 SE SH 0.6 482 41 0.77 GOAL SUSP 0.17 GOAL SUSP 0.18 696 225	NASED-RECAN GOAL 0	£8~9~08~9~0	
TABLE MISS-ANALYSIS(AREA) CPUCHD FREC FREC R 39734 3097	M 0 9605 3290 IM 0 26508 26508 125555 ILR 0 26508 26508 1305 UM 0 4576 4576 130 TOTAL 39734 43786 83520 130225 TABLE DW(DIRECT-WRITE)-ANALYSIS(AREA) ALL.:	128000 MITHOUT-SMP-OUT 24088 WITH-SMP-OUT 98567 TABLE CACHE-HIT-RATIO(ABEA) ALL.: ALL-AREA 24089 EA-WITHOUT-SOUT 189657 T-HISS - LW-WITHOUT	99.24 [4] HIT-RATIO 0.76 [4] HISS-RATIO 0.76 [4] HISS-RATIO TABLE CACHE-DIRECTORY-STATE Snapshot-after-execution 641 6356 482 41 0 672 TABLE CACHE-DIRECTORY-AREA Snapshot-after-execution HEAP INST GOAL SUSP HITA CXMM 6103 444 696 225 0 52	TABLE BUSCHD-1S-CHANSED-RECAUSE-OP-BUS-COLLISTON HEAP INST GOAL SUSP HETA 202 0 0 5 0	TABLE BUS-WIDTH(W) MPM-ACC-TIME BUS-WIDTH(W) MPM-ACC-TIME 1 1 6 1 1 6 1 2 2 8 2 2 6 2 2 6 2 2 6 2 2 6	
TABLE MIS CPUCMD R	W IN IN U TOTAL TABLE DW(HISOURT-SWIR-OXT WITH-SWIR-OXT TABLE CACHE-HIT- 240808759 189657	TABLE CAC ED 641 TABLE CAC HEAP 6103	TABLE BUS HEAP 202	BUS-MIDIN	
	20220000	2000-				
	TOTAL 33570678 180862 489863 317276 116358 3359	TOTAL 46212 44710 38059	707AL 5572 1830 8162 31572 8922 98567	227548	TOTAL 72436 23790 81620 221004 89220 244048 492835 0 76118 0 0	70TAL 7746078 7746090 77276 317276 316358 3359
	500000	0	500000000	0000	NTA 000000000000000000000000000000000000	2357 72 12 31 31 3507
	CDMN 45303 46672 0 21801 21801 0 0	26508 26508 26051 25199 77958	220 220 221 221 22905 922 25502	0 0 17958	00MM 2860 1807 28710 160335 9220 178514 0 50798 0	T-M155 46212 11895 122655 28238 4577 168
	X 25 4000000	META 0000	£00000000		MFTTH CO 000000000000000000000000000000000000	7-HTT 23524466 736195 0 289038 311781 24864671
	SUSP 6795 6794 0 0 0 13589	SUSP 2173 185 1349 3707	25.5 65.7		25503	2000000
	A) COAL 129745 122011 0 0 0 0 0 0 0 0	GUAL GUAL 6636 6655 4164 7655	7. 2004 7. 2004 6. 1093 6. 2358 0. 2429 0. 2429 0. 0. 0	_	INST COSL 3711 1723 3711 14073 0 23580 0 18291 1690 17003 0 0 0 0 0	3 N.L.: ALIF- SC 3 N.S. 2056 3 4 698 0 7 7 8 1 9 7 4 1 19 7 4 2 123 9 3 9 6
855 84,11	e.	ISSUED-HUS-COPHAND(AREA) HEAP INST 0 7697 3198 6 71619 0 6 7147 0 4 26463 3198 17	28 28 189 189 189 189 189 189 189 189 189 18	319		TABLE PREVIOUS-STATE(AREA) ALC.: ALF-AREA RCPUCDD RC RN SC ST
KLI 8 PES C256,84,w4	PU-COMMANDA AP INST 66 (793969 005 0 053 75 0 57 0 25 4793969	NES-COPN NP 1 97 1 19 67 5	17PR(CPS) 1872 1872 1878 1878 130 1878 1878 1878	12503	TYPE(C) 10 10 10 10 10 10 10 10 10	415-5147EC BC 243 554 243 657 599 0 288 0 288 714 1542
Semigroup Kil 8 PES Cache parms: 6256,84,w4,tl	GIVRA-CPU- D HEAP 18394866 489863 295475 294357 1359		TABLE BUS USE T CYLLE, PATTERN CYCLE, PATTERN 13 - FROM COT SOLET OF NATIONAL SOLET CYCLE ON THE CYCLE	05. FLUSH-BACK 05. FLUSH-EXTRA TOFAL	TABLE 10S-45E TYPECTYCLE CYCLE.PATTERN HEAP 13. FROME-2B-50/H 19292 10. HCTAC SOUT 2281,0 07. HCTAC SOUT 41106 05. SCHT-0ALY 41146 05. SCHT-0ALY 4294 05. SCHT-6ALY 14294 05. FLUSH-EXTRA 0	PREVIOUS-: 27354 27354 1657 0 0 0 992 734
Senigroup Cache parm	TABLE GOVERNO 8 W CIN	TABLE BUSCHD P FI IV TOTAL	1781.R CYCLR 13.FW 10.MC 10.CC 10.CC 07.RC 05.SO 05.SO	05; FIA 05; FIA 100	TANGE CYCLE 13: PR 13: FR 10: MCI 10: MCI 10: CCC 05: SOR 05: SOR 05: FUR 05: FUR 05: FUR 10: MCI 10:	TABLE CPUCADS R W LW UN UN UN TOTAL

		TOTAL 8192 TOTAL 428		
	TOTAL 8192	INVALID 459 8TC.	710 209 208 205 205 205 136 136 1135 1135	
T-MISS 170116 28836 28836 16749 2158 23601 075210	tion unised	ETC.	TRAFFIC-RATIO 0.209 0.206 0.205 0.205 0.136 0.138 0.138	
	HEA HOUT-SOUT HOUT-SOUT Ler-execu C I	A COMM 0 27 COLLISION META	BUS-CYCLE TO 6102930 6061276 609522 5917948 3973594 3973594 3973594 3973594 3725592	
ALL.: ALLAREA 156414 13702 156414 13702 9077 19759 0 682050 154257 8192 2157 29601 321905 753105 LYSIS(AREA) ALL.	EA) MJL.: ALL-AREA TH-WIRHOUT-SOUT T-HIT + IM-WIRHOUT-SOUT T-KISS - DW-WIRHOUT-SOUT HIT-RATIO MISS-RATIO MISS-RATIO MYE Shapshot-after-execution SN C I IN 48 0 459	pshot-after SP MBTA 2 0 S-OF-BUS-CC SUSP 11	MEM-REF BUS 29206559 6 29206559 6 29206559 5 29206559 5 29206559 5 29206559 5 29206559 5 29206559 5	
FRCC FRCACHE 02455 156414 9077 9077 54257 154257 2157 2157 2157 3157 2157 46 67946 321905 67246 67246 67246 572446 572446 572446 572446	O(AREA) ML.: PE-WITHOUT THE FOR THE FOR THE FOR THE FANTO [8] HIS-RATIO [8] MISS-RATIO (Y-STATE STAPE	Y-AREA Snaps COAL SUSP 340 2 ABED-BECAUSE-AGED-BECAUSE-	Amrenomreno Guudadadada	
ALYSIS 40 10 0 10 0 10 0 10 10 10 10	117-RAT1 617 966 593 96.88 3.12 11RECTOF	TABLE CACHE-DIRECTORY-AREA Snapshot-after-execution HEAP INST GOAL SUSP META COMM 4901 2463 340 2 0 27 TABLE BUSCHD-IS-CHANGED-BECAUSE-OF-BUS-COLLISION HEAP INST GOAL SUSP META COMM 69 0 11 0	TABLE BUS-TRAFFIC-RATIO BUS-WIDTH(N) MRN-ACC-THRE 1	
EDUCKID FRRMC EDUCKID FRRMC R 53959 N 53959 NM 0 0 UM 1007AL 53959 TABLE DA(DIRECT-CIVEN ISSUE) ISSUEN	LE CACHE-DIRE 28294966 291593 91593 11593 11502 11503	LE CACHE-I HEAP 4901 LE BUSCHD HEAP 69	TABLE BUS-TRA BUS-WIDH [W] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
TABLE I CPUCND R R LR LR UM UM TOTAL TABLE I GIVEN HISSUED MITH-S	TABLE	TAB TAB	TAB	
TOTAL 20990121 2096355 2724446 1550196 92649 928792 29206559	170116 193443 52432 415991 415991 10781 16783 34176 3475	133571 518433 52432 31518 965942	TOTAL 369310 172172 167830 266232 134597 2592165 0 104864 157590 0	
2 2	-0000		77 00000000000000000000000000000000000	TOTAL 20990121 4138751 682050 1550196 916649 928792 29206559
CCRM 55281 55324 25324 26208 26308 0 0		23407 0 0 32173 71 0 91874	CCMM 2649 2649 43960 32270 32270 165849 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T-MISS 170116 28836 682050 162449 2156 29601 1075210
K500000 K5	<00000		473M	T-HIT 20820005 4109915 0 1387747 914491 899191
SUSP 7515 7514 7514 0 0 0 0 0 0 0 0 0 15029	2057 2061 313 2132 5306 AL SUSP 38 115 29 66 04 730 50 1774	- 53 53	SUS 111 730 730 135 135 135 135 135 2821	N N
EA) CAAL 204335 2023447 0 0 1066782 ARA)	22155 22155 25389 12315 59859 0N) GOAL 2674 LR238 1656 B629 0 9904		1 NST CONT 14762 237094 21528 112177 0 99040 0 24241 145124 13587 0 0 0 0 0 24630 0 24630 0 24630 0 24630 0 9753	TABLE PREVIOUS-STATE(ARRA) ALL.: ALL-AREA CPUCMD EC EN EN SC SC SCHOOL 1932709 18830576 101 SC
PUZZIO KJ 8 PES Cache parme: c256,54,v4,11 TABGE GIVEN CPP CYMMAND(AREA), GVNCPD HEAP INST 2043 H 279523 16089777 2043 W 2724446 0 2023 UW 928999 UW 928790 16088777 4066 HARLE ISSUED RUS CYMMAND(AREA) AREAD HUS CYMMAND(AREA)	51.		BECYCLE) HEAP HEAP 34671 17530 27426 446470 611079 11224 11724 147770	ATE(AREA) EM 1932/09 18 405019/9 0 1365195 912602 865777
PUZZIO RDJ - 8 PES Cache parmo: c256,54,v4,†1 TABLE GIVEN CPD CYMPAND(AB CVNCP) HEAP INST W 10070 0 INW 2724416 0 LR 1523988 0 UW 89041 0 TOTAL 8872950 16088777 TAHLE ISSUED BUS CYMPAND(AB CHOCK)	V SCRU S 5974 1 141118 V 5612 OTAL 152904 ABLE BUS-USE-TYPPERN 3.FROM-GR-GALZ 0.MCTOC-SOUT	- SANT ONLY ONLY NLY - EXTRA	T E	22549 172 118477
Puzzio Cache pa TAMER GI GVNCMD R M N IN UM U TOTAL	E 5970 5974 FT 141318 IV 141318 IV 152904 TABLE BUS-USE-F CYCLE-FATTERN 13-FROM-GW-SOUT 10-MCTOC-SOUT 10-MCTOC-SOU	10:CCTXC-500T 07:CCTXC-60LX 05:SOFF-60LX 02:NO-60LX 02:FLUSH-BACK 05:FLUSH-BACK 05:FLUSH-EXTRA	TABLE BUS-USE T CYCLE, PATTERN 13 - FROM CM-SOUT 13 - FROM-CM-ONLY 10 - ECTOC-SOUT 07 - MCTOC-ONLY 10 - CCTOC-ONLY 05 - SOUT-ONLY 05 - SOUT-EXTRA 02 - SOUT-EXTRA 02 - FULSH-EXTRA 05 - FULSH-EXTRA 05 - FULSH-EXTRA 1707-011	TABLE PE CPUCMD R W DW DW UW UM TOTAL

	FOTAL 8192	2950 2950	
8 488888888	MUSED O	2450 2450 TRAFFIC-RATIO 0.228 0.228 0.228 0.228 0.228 0.160 0.160 0.160	
HISS-ANALYSIS(AREA) ALL.: ALA. AREA PURC FROCKE PROW-ON 97727 5231 102956 6819 109797 0 1329 1329 7669 21218 0 0 12578 67503 845 68146 0 12578 12578 4 12582 0 12578 12578 4 12582 0 12578 12578 340397 DW(DIRECT-WRITE)-ANALYSIS(AREA) ALL.: ALL-AREA T-SWAP-OUT 39790 WAP-OUT 79280 CACHE-HIT-RATIO(AREA) ALL.: ALL-AREA 39790 EW-WITHOUT-SOUT	2 2		
AL AREA 6819 7869 119670 19670 144029 144029 18A) ALL.	Mentinion Mentinion ot.after c or Menta Menta	22.22.22.22.22.22.22.22.22.22.22.22.22.	
PRCACKE PRCM- 102958 68 13329 78 13329 78 12578 93 12578 9440 NALYSIS(AREA) AL	T-HIT + FW-WITHOUT-SOUT T-MISS - IM-WITHOUT-SOUT HIT-BATIO MISS-RATIO MIS Snapshot after-execut SM C 1218 EA Snapshot-after-execut SUSP META COMM 105 PECAUSE OF-BUS-COLAISION	999933 99933 99933 99933	
S(AREA) FRCC 5231 1329 67503 12578 0 98641 (TTE) - ANN 474336 119070 39790 79280	7. T-HIT + IN- 7. T-HITS - IN- 6.97 [N] HIT-RATIO 3.03 [N] HIT-RATIO 5.03 [N] HIT-RATIO 5.03 [N] HIT-RATIO 8. SC 5M 8. 1507 IN- 8. SC 5M 8. 1507 IN- 8. SC 5M 8. 1507 IN- 8. SC 5M 9. SC 5M 9. SC 7. COAL 5. SC 7. C	INST GOAL 0	
PIPHC 97727 97727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300607 T-H 300607 T-H 300607 T-H 103 [A] HITP 3.03 [A] HITP 3.03 [A] HITP 5.03 [A] HITP 5.03 [A] HITP 5.03 [A] HITP 5.03 [A] HITP 6.03 [A] HITP 6.04 [A] HITP 6.05 [A] HIT	1NST 0 0 0 0 TRAFFIC-1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ALE YALL STEEL STE	796.18 THITT-RATIO 796.97 THISS - IN-WITHOUT-SOUT 96.97 M HIT-RATIO 1.03 M HISS-RATIO 1.03 M HISS-RATIO 1.03 M HISS-RATIO 1.04 M HISS-RATIO 1.05 M HISS-RATIO 1.05 M HISS-RATIO 1.05 M HISS-RATIO 1.05 M M 1.05 M M 1.05	HEAP INST 472 0 472 0 TABLE BUS-TRAFFIC-RATIO BUS-WILDTH [W] MEN-ACC-T1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
THE COMPANY OF THE CO		<u>←</u> ±	
TOTAL 7048965 1354501 474316 496393 366819 191480 9912414 TOTAL 109797 102148	303391 3008 9008 21357 76370 18172 80469 79280 0	364871 TOTAL 117104 85397 213570 213570 56420 96400 18729 18729 18729 18729 18729 18729	
ETC	2000000000		TC/AB. 7048965 1709767 119070 496293 366839 191480
CONN 103106 103236 0 45211 45211 65213 CONN 60425 57823		176016 COMM 910 1391 1391 1391 1377006 100552 0 115540 0 115540	T-MISS 109797 21218 119070 68148 12582 9382 340397
A173M	ATTAM 0000000000000000000000000000000000	A 4000000000000000000000000000000000000	T HIT 6979168 1688549 0 427945 354257 182098
SUSP 57845 56024 0 4649 0 2 1167 2 1167 1970 1970	552 527 528 117 129 117 117 117 117	24952 2 24952 2 7592 6 5018 6 7540 5 7150 6 7150 6 9093 6 9093 6 9093 6 9093 6 0 0 7 13935 7 13935	2000000
000 0	ST 779 444 779 21 551 21 551 0 447 04 291 0 1154	2034 2039 3132 3132 5489 2039 2039 38444	MA.: MA.: SC SC SCTISS1 BS:599 0 0 192 6792 1950 5772204
5 2 = 5 2	0058ATON) 1 (1058 10 10 10 10 10 10 10 10 10 10 10 10 10		TE(ANEA) ALL ES1937 S67 S961S1 B 5961S1 B 0 0 426910 346817 174592 800397 S77
# PPS: c256,24,w4,, FU COMMAND: TNST C2 5162/92 64 0 33 0 79 0 PP 0 PP 0 PP 0 PP 0 PP 1 PP 1 P	10 10 10 10 10 10 10 10 10 10 10 10 10 1	7 134 TYPE (CV TY 23 1113 196 1759	US-STATEGARE EV. EX. 1913 1596151 0 0 0 615 426910 399 366910 564 178502
PROCESS (1) 1 PES CACING PATHOS: C256,545,945,13 TANIA: GIVEN-CPU-CUMMAND AREA) TANIA: GIVEN-CPU-CUMMAND AREA) R 467702 5162792 1257 W 74736 0 11H7 TANIA: 446433 0 UM 116379 0 UM 116379 0 TANIA: 194440 0 TANIA: 194440 0 TANIA: 194440 0 TANIA: 194440 0 TANIA: 1537 18 FI 25683 0 16 TANIA: 1547 18 FI 1547 0 16 TANIA: 1547 18	TABLE BUS-USE-TYPE (OPERATION) CYCLE PATTERN (PERATION) CYCLE PATTERN (FARE PATTERN (F	TOTAL TOTAL TOTAL TO	PREVIO 8 6 1
PAGGAT Cacher Cacher TARIA: TARIA: N N N N N N N N N N N N N N N N N N N	13. PR 13	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TABLE I CPHCHD R W IN IN UM U TOTAL

Charge C					TOTAL	6192 TOTAL 9079		
Colored Colo							0.0.0.5.10.0.10.0.10.0.10.0.10.0.10.0.1	
116.972 10.224 1 2.0024	80	16917	EA		MUSED 0 0 ETC.	0	PFIC-RATE 0.237 0.237 0.228 0.168 0.16 0.16	
11 12 12 12 13 13 14 15 15 15 15 15 15 15	F 64	5		A T-SOUT UT-SOUT	r-executi 1172 1172 executio	39 MLLISION META 0		
11 12 12 12 13 13 14 15 15 15 15 15 15 15	PROM-G 1215	197411 2314 1233 17463	(A) ALL	LL-ARE-SOUR WITHOU	ot-afte	-FUS-CO	28	
COMPAN SUSE HETTA COWH ETC. TOTAL 116,492 941879 0 200282 0 14991090 1467502 0 0 0 0 0 0 0 0 0	NLL.: ALL RCACHE 199404	22617 0 116162 36149 0 374332	YSIS! ARB	ALL.: A-WITHOUT- HIT + DW- HISS - DW- I-RATIO	SS-RATIO SM 355 355 Shapshot Susp	CAUSR-OF-	MEM-REE 1685997 1685997 1685997 1685997 1685997 1685997 1685997 1685997	
COMPAN SUSE HETTA COWH ETC. TOTAL 116,492 941879 0 200282 0 14991090 1467502 0 0 0 0 0 0 0 0 0		22617 0 16162 36149 0	1E) - ANAL 548048 137417 59194 78223	TIO(AREA)	DRY-STATI SC 452 ARY-AREA GOAL	1753 NAGED-BE	I	
COMPAN SUSE HETTA COWH ETC. TOTAL 116,492 941879 0 200282 0 14991090 1467502 0 0 0 0 0 0 0 0 0	NALYSIS PMC B09		ECT-WRI	9194 0194 9777 97.10	2.90 DIRECTA EM 6168 DIRECTA	166 TIS-CH/ INST	MEM-AM	
COMPAN SUSP HETTA COWH ETC. TOTAL 116,492 941879 0 200282 0 14991090 1467502 0 0 0 0 0 0 0 0 0	MISS-A	190	DW(DIR	CACHE-5 1637 48	CACHE- ESC 45 CACHE- SAP	959 BUSCHI HEAP 1044	HINH MI	
COMPACE COMP	TABLE CPUCHI R	N LR UN TOTAL	TABLE GIVEN ISSUE WITHOU	TABLE	TABLE	TABLE	TABLE BUS-W	
COMPACE COMP								
170 170		TOTAL 13991050 1469502 548048 401307	76807 16859971 TOPAL	211557 187661 181569 580787	12093 12793 12793 41443 1149366 19100 164423	0 181569 0 0 0 0 0 0 0 0	TOTAL 165209 165209 414430 1045562 191000 191115 0 363138 0	AL. 550 117 557 71
INST SUSP META CONNI 1316.1933 105.24.3 0 200262 116.1492 941.89 0 200262 0		ERC. 0 0			<u> </u>	00000	y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOT 139910 18801 1374 4013 3732 768
100 100		200252 200252 200298 0 81609	821895 0 0 0			0 113285 0 0 356831		T-MISS 211557 33021 137417 118481 36159 12336 544971
(EAA)		M K00000	O O O	0000	E 0 0 0 0 0 0	00000	MET 4	T-HIT 779493 847112 0 282826 337098 64471
116749 1116749 1116749 1116749 1795 1795 1775 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 13340 13			50 G 95	367 944 618 929	22416 171 171 1330	24618 0 57929	StiSP 6604 4433 95450 156912 1710 9310 6 69236 6	ENEOWN-0
116749 1116749 1116749 1116749 1795 1795 1775 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 11310 13340 13			-		6521 6521 3754	9270	COAL. 131417 749315 74950 528490 65210 26278 0 0 0 18540 0 0 0 18540	ALE-AR
Cache parmer - C256, E4, W4, t. TABLE GIVEN CLIT (XXMAN)QA BY 7523 10382701 W 7523 0 UW 548048 0 UW 750408 0 UW 750408 0 UW 75051 10382701 TABLE 155102175 10382701 TABLE 155102175 10382701 TABLE 155102175 10382701 TABLE 1551021 10502 UV 7550 1 11551 UV 7500 - C000 1 1155 UV 7500 - C000 1 11550 UV 1 1700 - UV 700 UV 1 1700 - UV 700 UV 700 - UV 700 UV 1 1700 -	-	222	E 5	25054 17950 9270 52274 1000)	100 100 87 0 234 340	7610	1300 1133 0 2340 2380 0 0 0 0 0 0	N ALL: 1247362 15129 2772 1265265
Abdusen Kil - Cache parms C256 TABLE GIVIN CHIT GWCPD B86451 W 548048 UM 12902 TABLE BUS USE THEAP F 15315 VOTAL 12902 TABLE BUS USE THEAP OF CCTOC - SOUT OF SOUT - S	3,84,84,t	10382701	0 10392701 COMMANIA	761 0 0 761 761	HEAP 1235 1155 16151 18714 10920 36421	34396 34396 0 0 0 0 191215	PE(CYCLG) IRAP 16055 15015 101510 110998 110998 1110998 1110993 0 0	TATE (ARE.) EM 1135912 1686105 0 282483 307496 63069
Angeween Cache per Parke out Gaynorg B B B B B B B B B B B B B B B B B B B	. KL) - 8 mer c256	HEAP HEAP 1986451 1 7523 548048 319698	291648 76807 3230175 1 strg:D-BUS HEAP	35361 43235 34396 112992 5-USR-TYP	FTERN CM-SOUT CM-ONLY -SOUT -SOUT -CNLY	EXTRA NLY - BACK EXTRA	S-USE-1YI TTERN GR-SOLT GR-ONLY -SOUT -SOUT -ONLY ONLY EXTRA NLA NLA	EVIOUS-S EC 167300 7984 0 137 1262 1381 178064
	Adqueen Cache pai	TABLE OF GVNCMD R W EW LIK	UTENTAL TABLE 1SE BUSCHD	F FI IV TOTAL TABLE BUT	CYCLE: PN 13: FROM- 13: FROM- 10: NCTOC 07: NCTOC 10: CCTOC 07: CCTOC	05:2017- 05:3007- 02:1NV 0 05:FLUSH 05:FLUSH	TABLE BU CYCLE: PA 11: FROM- 11: FROM- 10: CCTYC 07: ACTYC 07: ACTYC 05: SOUT- 05: SOUT- 05: SOUT- 05: FULSBI 10: CTYC 05: SOUT- 05: FULSBI 10: CTYC 05: FULSBI 10: CTYC 10: C	TABLE PR CPUCMD R N DM DM UN UN

References

- [1] Quintus Prolog User's Guide and Reference Manual Version 6, April 1986.
- [2] P. Bitar and A. M. Despain. Multiprocessor Cache Synchronization. In 13th Annual International Symposium on Computer Architecture, pages 424-433. Tokyo, IEEE Computer Society, June 1986.
- [3] P. Borgwardt and D. Rea. Distributed Semi-Intelligent Backtracking for a Stack-Based AND-Parallel Prolog. In Symposium on Logic Programming, pages 211-222. IEEE Computer Society, 1986.
- [4] P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog The Language and Application in Distributed Simulation. In International Conference on Fifth Generation Computer Systems. Tokyo, November 1988.
- [5] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley Ltd., Wokingham, England. 1986.
- [6] R. Butler, E. L. Lusk, R. Olson, and R. A. Overbeek. ANLWAM: A Parallel Implementation of the Warren Abstract Machine. Internal report, Argonne National Laboratory, Argonne, IL 60439, 1986.
- [7] R. Butler et. al. Scheduling OR-Parallelism: an Argonne Perspective. In Fifth International Conference and Symposium on Logic Programming, pages 1565-1577. University of Washington, MIT Press, August 1988.
- [8] A. Calderwood. Scheduling Or-Parallelism in Aurora—the Manchester Scheduler, July 1988, submitted for publication.
- [9] M. Carlsson, SICStus Prolog User's Manual, PO Box 1263, S-16313 SPANGA, Sweden, February 1988.
- [10] M. Carlsson, K. Danhof, and R. Overbeck. A Simplified Approach to the Implementation of AND-Parallelism in an OR-Parallel Environment. In Fifth International Conference and Symposium on Logic Programming, pages 1565–1577. University of Washington, MIT Press, August 1988.
- [11] J. Chassin, J. Syre, and H. Westphal. Implementation of a Parallel Prolog System on a Commercial Multiprocessor. In *Proceedings of ECAL*, pages 278–283, August 1988.

- [12] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In Fourth International Conference on Logic Programming, pages 276-293. University of Melbourne, MIT Press, Cambridge MA, May 1987.
- [13] K. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. Journal of the ACM, 8:1-49, January 1986.
- [14] K. L. Clark and S. Gregory. Notes on the Implementation of PARLOG. Journal of Logic Programming, 2(1), April 1985.
- [15] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, Berlin, New York, 1981.
- [16] J. S. Conery. Binding Environments for Parallel Logic Programs in Nonshared Memory Multiprocessors. In Symposium on Logic Programming, pages 457-467. San Francisco, IEEE Computer Society, August 1987.
- [17] J. S. Conery. Parallel Execution of Logic Programs. Kluwer Academic Publishers, Norwell. MA 02061, 1987.
- [18] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation Computer Systems, pages 471-478. Tokyo. November 1984.
- [19] T. Disz, E. Lusk, and R. Overbeek. Experiments with OR-Parallel Logic Programs. In Fourth International Conference on Logic Programming, pages 576-600. University of Melbourne. MIT Press, Cambridge MA, May 1987.
- [20] B. S. Fagin. A Parallel Execution Model for Prolog. PhD thesis, The University of California at Berkeley, November 1987. Technical Report UCB/CSD 87/380.
- [21] I. Foster and S. Taylor. Flat PARLOG: A Basis for Comparison. Research Report DOC 87/5. Imperial College of Science and Technology. March 1987.
- [22] K. Furukawa, A. Okumura, and M. Murakami. Unfolding Rules for GHC Programs. New Generation Computing, 6(2-3):143-157, 1988. Also available as ICOT TR-277, and in France-Japan A&CS Symposium, 1987.
- [23] R. P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press. Cambridge MA, 1985. Also available from Stanford University Computer Science Dept. as Research Paper 111.
- [24] A. Goto, 1987. Internal ICOT Memo.

- [25] A. Goto. Parallel Inference Machine Research in FGCS Project. In Proceedings of the First Japan-U.S. AI Symposium, pages 21–36, December 1987.
- [26] A. Goto, Y. Kimura, T. Nakagawa, and T. Chikayama. Lazy Reference Counting. In Fifth International Conference and Symposium on Logic Programming, pages 1241–1256. University of Washington, MIT Press, August 1988.
- [27] S. Gregory. Parallel Logic Programming in PARLOG: The Language and its Implementation. Addison-Wesley Ltd., Wokingham, England, 1987.
- [28] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, Dept. of Electrical and Computer Engineering (Dept. of Computer Science TR-86-20), University of Texas at Austin, Austin, Texas 78712, August 1986.
- [29] N. Ichiyoshi, T. Miyazaki, and K. Taki. A Distributed Implementation of Flat GHC on the Multi-PSI. In Fourth International Conference on Logic Programming, pages 257-275. University of Melbourne, MIT Press, Cambridge MA, May 1987.
- [30] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set. In Symposium on Logic Programming, pages 468-477. San Francisco. IEEE Computer Society Press, August 1987.
- [31] R. A. Kowalski. Predicate Logic as a Programming Language. In Proceedings IFIPS, pages 569-574, 1974.
- [32] E. Lusk et. al. Portable Programs for Parallel Processors. Holt, Rinehart and Winston. Inc., New York, 1987.
- [33] E. Lusk et. al. The Aurora Or-Parallel Prolog System. In International Conference on Fifth Generation Computer Systems. Tokyo. November 1988.
- [34] D. Maier and D. S. Warren. Computing with Logic: Logic Programming with Prolog. Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA 94025, 1988.
- [35] A. Matsumoto et. al. Locally Parallel Cache Design Based on KLI Memory Access Characteristics, Technical Report 327, ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, 1987.
- [36] G. J. Myers. Advances in Computer Architecture, Second Edition. John Wiley and Sons, 1982.
- [37] K. Nakajima. Piling GC: Efficient Garbage Collection for AI Languages. In IFIP Working Conference on Parallel Processing. North Holland, May 1988.

- [38] K. Nishida et. al. Evaluation of the Effect of Incremental Garbage Collection by MRB on FGHC Parallel Execution Performance. In COMPCON Fall 88, San Francisco, 1988. IEEE Computer Society, submitted for publication.
- [39] A. Okumura and Y. Matsumoto. Parallel Programming with Layered Streams. In Symposium on Logic Programming, pages 224-233. San Francisco, IEEE Computer Society, August 1987.
- [40] R. A. Overbeek, J. Gabriel, T. Lindholm, and E. L. Lusk. Prolog on Multiprocessors. Internal report, Argonne National Laboratory, Argonne, IL 60439, 1985.
- [41] P. Van Roy. A Prolog Compiler for the PLM. Master's thesis, University of California at Berkeley, August 1984. Also available as Technical Report UCB/CSD 84/203.
- [42] D. E. Sanger. I.B.M. Signals Big Shift in Designing Computers. New York Times. December 24 1987.
- [43] M. Sato, 1988. personal communication.
- [44] M. Sato and et al. KL1 Execution Model for PIM Cluster with Shared Memory. In Fourth International Conference on Logic Programming, pages 338-355. University of Melbourne, MIT Press, Cambridge MA, May 1987.
- [45] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory Multiprocessor. In IFIP Working Conference on Parallel Processing. North Holland, May 1988.
- [46] K. Seo and T. Yokota. Pegasus: A RISC Processor for High-Performance Execution of Prolog Programs. In C. H. Sequin, editor, VLSI '87, pages 261-274, IFIP, North-Holland, Amsterdam, 1988.
- [47] Sequent Computer Systems, Inc. Sequent Guide to Parallel Programming, 1987.
- [48] E. Shapiro, editor. Concurrent Prolog: Collected Papers. MIT Press. Cambridge MA, 1987.
- [49] K. Shen and D.H.D. Warren. A Simulation Study of the Argonne Model for OR-Parallel Execution of Prolog. In Symposium on Logic Programming, pages 54–68, San Francisco, IEEE Computer Society, August 1987.
- [50] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge MA, 1986.
- [51] P. Szeredi. More Benchmarks of Aurora. unpublished, Manchester University, March 1988.

- [52] S. Takagi. A Collection of KL1 Programs Part I. Technical Memo TM-311, ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, May 1987.
- [53] K. Taki. Measurements and Evaluation for the Multi-PSI/V1 System. In France-Japan Artificial Intelligence and Computer Science Symposium, pages 359-384. Cannes, November 1987.
- [54] E. Tick. Lisp and Prolog Memory Performance. Technical Report CSL-TR-86-291, Computer Systems Laboratory, Stanford University, Stanford, CA 94305, January 1986.
- [55] E. Tick. A Prolog Emulator. Technical Note CSL-TN-87-324, Computer Systems Laboratory, Stanford University, Stanford, CA 94305, May 1987.
- [56] E. Tick. Memory Performance of Prolog Architectures. Kluwer Academic Publishers. Norwell, MA 02061, 1987.
- [57] E. Tick. Compile-Time Granularity Analysis of Parallel Logic Programming Languages. In International Conference on Fifth Generation Computer Systems. Tokyo, November 1988.
- [58] K. Ueda. Guarded Horn Clauses. PhD thesis. University of Tokyo, March 1986.
- [59] K. Ueda. Making Exhaustive Search Programs Deterministic: Part II. In Fourth International Conference on Logic Programming. pages 356-375. University of Melbourne, MIT Press, Cambridge MA, May 1987.
- [60] D. H. D. Warren. Logic for Compiler Writing. Software Practice and Experience, 10:97-125, 1980.
- [61] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artificial Intelligence Center, SRI International, 333 Ravenswood Ave. Menlo Park CA 94025, 1983.
- [62] D. H. D. Warren. Prolog Engine. Technical report. Artificial Intelligence Center, SRI International, 333 Ravenswood Ave. Menlo Park CA 94025, April 1983. Unpublished draft.
- [63] D. H. D. Warren. OR-Parallel Execution Models of Prolog. In Proceedings of TAPSOFT 87. Lecture Notes in Computer Science, Springer-Verlag, March 1987.
- [64] D. H. D. Warren. The SRI Model for OR-Parallel Execution of Prolog. Abstract Design and Implementation. In Symposium on Logic Programming, pages 92–102. San Francisco. IEEE Computer Society. August 1987.

- [65] D. H. D. Warren and F. C. N. Pereira. An Efficient, Easily Adaptable System For Interpreting Natural Language Queries. Research Paper 155, Dept. of Artificial Intelligence. University of Edinburgh, February 1981.
- [66] H. Westphal and P. Robert. The PEPSys Model: Combining Backtracking, AND and OR- Parallelism. In Symposium on Logic Programming, pages 436-448. San Francisco, IEEE Computer Society, August 1987.