TR=420
W H S IREEOR W7 B 2 AR S EEROTE

mhil 2%

(Bf) Fiiitth = v ¥ = — S AHRRRM
=05 EEEEETE 128 =HEREAF X2 E
takavamadiicot.jp

S TIRETH (realisability imterpretation) 1T X - THEMNEHMLT o r LBz hic dE (B TR
B, LisListh, ERTSARACLRELEROL WLEENE S TEBA=— FEEAKT o 72 AsililiZN D C
P S, BRITR. EEATENL, &/ - FEAERT T ac el h, MREOR-T =77 LRI
% =5 (Exteaded projection method) 354 2.

A EEL . tTEAEOSRES R 2 ROTEET-TITENE ARTHO S DY OEUNOESRLRS L
SEEEEL L, B, AFOEEHEHFEOSS L L i HEEEoER LT OMETERT 4T E, &/ -
FRESomEs 543, CcOMERE., BRSHOREL ECTEDAIERRAC L - THRENICTEZAD. L
c—ay S, EETARRR COWEIBELTTEA T~ FRERLEVE S KT 3, CcoiER. AWET
Eo OB SCReh N HEC k5, RRITR, COXIRIEORNTEYSA 5,

Proof Theoretic Approach

. to the Extraction of _ |
Redundancy-free Realiser Codes

Yukihide Trkayama

Institute for New Generation Computer Technology
2-28 Mita l-chome, Minato-ku, Tokvo 108 Japan
takaramadlicot.ip

Txecutable codes can be extracted Tom constructive proofs by using realisability intespretasion. However, real-
isabiiity alsc generates the recundant codes shat bave no sigmficant computational meaning, The redundancy
causes heavy runtime overnead, and is one of the obstacles in appiring realisability to practicel systems ther reaiize
the mathematieal programming paradigm. This paper presenis a proef theoretic meshed to elimvinate redundancy
by analyzing proof tress as pre-processing of realisabiiiiy lntecpretation; according to the declaration given to the
theorem that is proved, each node of the proof iree is marked autematically to show which part of the realiser is
nestied, This procedure does not always work well. This paper also gives an anaiysis of it and technique to resolve
critical cases. The method is studied in a simnle conssrucsive logle with primitive types, mathematical induetion
and its g-reaiisability interpretation.



i. Introduction

The idea of program syathesis fom constructive proofs by using the notion of realisabiliny is rathes old. However,
the programs exiracied by realisability, resliser codes, are aot always efficient: they generally contain some
redundancy. The classifcation of the redundaner is given in [Takayuma 33al.

‘Bates 10] apniied a traditional syntactical optimization technigue on the code eusracted frem proofs which
mizht descray the clear correspondence between proofs and program via realisability ‘Basali 36 improved the
program extraction aigorithm based on realisability so that the wrivial code for the formulae that has no signifcant
computational meaning can be simplified. A similar technique is used in the P system Havashi 37) 83 type 0
jormules. The QPC svsiemn [Takarama 35a] uses a similar techninue to Sasaki’s, normalization method 1o eiiminate
S-redex in the extracted codes. and modified V code technique to simplify cestain classes of decision procedures.
Howaver, the code exiracted from consiructive proois still has redundancy. Thas is the codes which can be seen
as verification information of the extracted algorichms.

The most reascnable iden o overcome this problem would be introducing suitable notatien to specify which past
of the proof is necessary ia terms of computation. The ser notation {z: A|B} is introduced in the Nupt] system
[Constable 56] s a weaker notion of 3x : 4. B. This is 1o skip the extraction of the jussification for B. [Meohsing
28] modified the calewdus of construction {Coquand 36] by introducing swo kinds of constants, Prop and Spec, to
distinguish the formulae in proofs whose computational meaning is 1ot necessary. These works are performed in
the Martin-La's sivle of constructive type theosy

This paper presente a nroof theoretic method in the stvle of D. Prawitz wo perform the program analvsis at proof
tree jevel, and to generate redundancy-free realiser code. In some cases, the redundancy can be removed easily

- by appiving a projecsion function to the extracted code. However. the situation around the redundancy iz 2 lizle

more complicated particularly when the program extraction is performed on the proofs which use induction. The
method of program analysis can be presented quite clearly and naturally if it is performed at the proof tree level
because proofs are the logical description of programs and have a2 lot of miormation about the programs.

The notion of marking, which corresponds to the set notaticn in the Nuprl and Spec and Prop constants in the
ralenlus nf construction, is introduced, and the program extraction algonthm is also given,

2. Proof theoretic terminclogy and netation
Following is the st of the notation and terminologies used in this paper. Most of them are berrowed from [Prawitz
63/,

Definition 1; Jasic neigiion
{1} TI denoies a proof wree, and T denotss a sequeace of proof trees:

{2} Proof trecs such a3 follows are denoted ([4]/Z/B).

] 19 e

Definition 2: FProof dkeorstic fermunaiogies

(1} Appiication, se= [Prawuz 63] p26:

'} - » " e I.} - ‘. . ¥ - . - - . * ]
(2) Fornulae which occur as conclusions and premises of applications of ruies are called noges:
(3} The subiree of o iree, 11, determined by ¢ formuia, A, see [Prawitz 63) 23

(4) Top end end-farmauie. see [Prawitz 83 p235;

(3) Side-connecied, tes Prawitz 631 p26;

(8) Minor and major-premise, ses [Prawiiz 63] pii:

(T) Az application of (3-I) succeeded by an application of (2-£) is called 2 ¢nd.
(8) Thread, see {Prawitz 83] p25:

(8) Segmant, see [Prawitz 63] pdd
(10} Path, see 1:_F":ww:.r,z. ﬁ-:ﬁ pik:
{11} Main path, ses Prawitz 63] p33;

3. A Program Extractor Svstem: QPC

QFC is asugared version of a subset of QJF {Savo £6), Tt is she subser of QJ which is reteted to progrem exzracticn
from procts, and the primitive data structure is resiricted to aasurel zumbess and lsts of natural numbpers. QrC
is, rougnly, an mtuitionistic version of nawaral deduciion with mathematical induesien and induecsion on natural
aumber liste plus higher crder eguality and ipequeiity, The program part of QPC s miven as ordinary lpmbda
caleulus with sequences of terms and multi-valued recursive call zregrams. See [Takayama 38a] for more detail
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3.1 q-reaiisability and Ezt procedure

Definition 3: g-reafisablily ) .
Let z,y,--- denote variables. and T, 5. denote sequences of variables. ¥ means £ A-or A Zm where. &; is an

abbreviation of 1, : o for a type 7.

1. If 4 is an atomic formula, thena g 4 1 ag=nil

2 (EFjqANBE TqAArTq B

3. (=274 avBYE (outliz) NAAT g AAT]) vioutriz) AT | ABAT q B

4.7qA2BY§ 1 AmonoT) AVE(4 AT g ADF(F)a B)

5.7 q¥ed S vz (Flz) g A)

6. (2.7} a 3.4 2 A 4[] AT q Acl3]

where moenaliy) L e, vEL (T CF D W) T WE- A.{=} means the substitution of = to = which occurs
freslv in A

In the standard g-realisability, o g 4 del 4 i A is atomic. However, the realisers for atomic formulae are restricted
to nil in QJ, The realisability here is not the standard g-realisability in this respect.

Ezt procedure is the algprithmic version of the realisability interpretation given in [Takayama S5a] which takes
consiructive proofs as inputs and returns the eomputational meaning of the proofs in A-expressions.

3.2 Realizing variables and length of formulae

The reslizing vericble sequence (or simply reslizing variables) for n formula, 4, which is denoted Ru{A), is a
sequence of variables to which realiser codes for the formula ase assigned. Realizing varisble sequences are used
a5 the realiser code for assumption in the reasoning of natural deduction.

Definiiion 4: Ruld)

1. Ro(4) % (nil), if 4 is atomie.

3. Ru(4 A B) E (Ru(4), Ru(B)).

. RuiAv BY Y (2, Ru(A), Ru{B)) where s is & new variable.

. Ru(4 2 B) Ru(B).

Ru(¥z: . A(z)) = RulA(=)).

6. Ru(Zz:e. A(z)) 2 (= Ru(A(z))) where = is a new vanizble,

[

oh

Definition 5 lengih of formulae
I{4), which is called the lengih of fermula 4, is the length of Au(Ad).

4, Dieclaration to specifieations
The declaration indicates which values of the existentially guanufied variables of & given theozem are needed.

Definition 6: Jecleration -
(1) A declerazion of & specification, 4, is the fnive set, I, of ofsets of Bu{A). It is a subset of the set of natural

numbers totally ordered by <. A specification, 4, with the declaration, I, is denoted {A};. Elements of the
declarasion are called marking numbers.
(2) The smpty se1, @, i5 called the nil decloration.

{3) The declaracion, {0.3,---, [{A) =1}, is eniled frivial

Suppess, for simplicity, that the given theorem is of the following canonical form:
\.;qu‘ v “F'Ii.'m_lagym e E?J'n—l --'lf;ﬂ1 ERERE L PP P 15"!1.—1}1
and the values of yo.--.yk, D £ & 27— 1, are needed, It s deciared with the set of the positions:

(0. k)

The following restriction essures a sort of soundness.

Restdcrion: The marking numbers of 2 declarations cannot specify reallzing variables of more than owo subior-
mulzae of the specification which are separated by A



5. Marking

Varking means to attach 1o each node of given proof trees the information that indicates which codes among the
realiser sequence of a given formula are aeeded. The marking can be determined according to the inference ruie
of each node and the declaration as will explained later.

Definition T: Marking

(1) Merkng of a node. 4, in a proef tree. T ie the fAnite ser. I, of offsets of Re(A). It is a subses of the set of
natural numbers totally ordered by <. A node, A, with the marking, [, 1s denoted {4}, Elements of the marking
are called marking numbers,

(9) The empty se1, ¢, is called ni marking.

(3) The marking, {0.1,---,[{4] = 1}, is called trivial marking.

Note that declaration is a special rase of marking; the marking of the end-formula of the proof tree 13 the
declaration.

Definition & Marked proof iree
A marked proof tree is a tree obtained from a proof tree and the declaration by the marking procedure.

The marking procedure continues from the bottom of proof trees to the tops. The proof compilation procedure,
zt. should be modified to iake marked proof trees as inputs and ex:rac: part of the realiser code according 1o

the marking. It will be defined later. The formal definition of the marking procedure, cailed Mark, is given in

{Takayama 38b), but here, part of the definition will be given rather informally to make the 1dea clearen.

5,1 Marlicg of the (3-I} application
By definition, the Oth code of

-"*] E
. ¢ Alt)
Bt 3z.A(z) (=0)

is the term which is the velue of £ bound by 3. Let [ be the marking of the conclusion, then t should be marked
{01 i 0 & I, otherwise the marking is ¢, The marking of A(2) is givea as all masking aumbers in I exceps 0.
However, note that the ith code [0 « i) of Zr.A(z) coresponds to the § — lth code of Al#). Conseguently, the
marking of A(f) is (I = (0}) = 1 where, for any fnite ses of natural numbers, . and arny natusal oumber. 1,

. { - - T .
F-n la=nlng KAangal. K +nis defined similariy,

5.2 Marking of the [3-E) application

Dy the definition of the Ext procedurs, the reahiser code of O coneluded by the following infereace is obinined by
instantiating Bv(A()} in the code from the subiree, {tt. A(£)]/Z1/C), by the code from the sustree, (Za/3r. A=)

[t A2
Zp )
Zr. Afz) T = o
c L=_ E.J

where 4(z) ecntaing 2 as free variables.

Hence. both the marking of C as the conclusion of the above tree and the marking of C as vhe minor premise are

the same. The marcking of the subtree decermined by the miner premise can be performed inductively, Lec J and

K be the union of the marking of all oceurrences of the two hypotheses, ¢ and A{t) Note thats J is either {0} or
@.

{3 {4} &]
o =,
= Alz) T oo
iCh o

The marking of the subtres determined by 12e major premise is as follows:

Case 1: J = {0}

This means that the following reasoning is contained in the subcres detersained by the minor premise:
{11 P -
SFry )
Zy. Ply)

&



and the marking of (1) is {0}, so that ¢ should be extracied {rom the proof tree determined by the minor premise,
C. Consequently, the Ot element of the sequence of realiser codes of 2. A(z), which is the value of £ in Alx),
ie mpressary to insiantiare the code from the subires determined by the minor premise. so that the marking i

o

{Zz. A=) Hoyur+1s

Cose 2: J =0
This means that the veiue of r is not necessary to instaoiiate the code from the subtree determined by the miner
premise. so that the marking ia:

-

—1

{ T '4'{."-'} ]'.FF,—:

5.3 Marking of the (v-E) application

The realiser code of C concluded by the following inference

[4] 18]
4Av E .;‘;'C C v-E)

is an if Ty then Ty else T tvpe code where T; and T are sequentes of the same lenezh (because poth are the
codes of C), so that  as the conclusion and two Ot a8 minor premises ghould have the same marking. Ty and Ty
are obrained by instantiating Ru(A) and Ru(B) in the code extracted from the subtrees determined by the minor
premise. The code extracted from the subtree determined by the major premise is used both to make Ty and for
:he inetantiazion of Ru(4) and Ru(B). Let I be the marking of the conclusion. then the marking of the subirees
derermined by the minor premises can be determined inductively. Let Jp and Jy e the unions of markings of &l
As and Bs as hypotheses:

{[4la  {[Bls :

Ly ] Za
ivd oy (€
e e B
Chs (V-]

The marking of the subtres determined by 4 v B is as follows:
Case l: /=0
This means that it is oot necessary 1o extract any code from this proof iree, so that, of course, no code frum the
subiree is necessaty:
T

e[l

{Av Bl

Cage 2: [ =4

Code Ty is the decision procedurs that decides which formula in 4 and B actually holds. This is obrained in the
0th code of the secuence of realiser codes of the subires detesmined by AV B. Also. the codes to be assigned 1o
{141 . and {{B]];, are obtained ia the remainder of the cods from the subtree, 5o that the marking is:

-
i)

1AV B}iﬂ:lu.r';u-l':

where Jp = Jy =1 and J; = Jy +1{A4)

3.4 Marking of the (2-E) rule
The realiser code of A 2 5 is of the following formu:
3E. (tgy -+ te) = (WEdg, oo, ATty

ey ) be ol s a4 e N e mr oy . . .
and iy, 00,25} e the code of 4 = B which eontains the varinble sequence T(= Fu{Ad)) as fres variables. so thas
the lemmii of the code o 4 5 B is the same as that of H. Let T be the marking of the conclusion., Thez the
marking of 4 3 5 should alsa be It

ko kN

i 4y

4 {4z Eh

151 (==E)



The marking of the subtree detesmined by A is as follows.

Case 1: The application of {3-£) is part of the cut:

The realiser code of 4 as the minor premise is restricted by the marking of 4 8s a hypothesis used in the subtree
determined by A 3 5. Let I be the macking of B, and lex J be the umon of the marking of As a3 & hypothests:

{140
rEREET T

151 (Z=E)
Hence, the marking of the subtree is:
k3
o
{4}s
Case 2: Cut-free proof
The marking of 4 O 5 restricts only the length of ourput sequence AT, (fp.---.#;). and. for the input, all the
values of the varinble sequence T are necessary. Specifically, 1t mey happen that some variables in ¥ are not
used in & particular output subsequence, AT.{ti,.<+ .ty )y {figr o8] C© {f0.---.tx}. These redundant variables
cannot be detected by the proof theoretic method. However, this canaot always be seen as redundaney; Mz, y)z
and Az.= is 1o be sess as a different function. Consequently, the marking of the subtree determined by the minor
premise 5 trivial.

§. Critical applications

8.1 Induction hypothesis and marking

The programs exiracted from induction proofs are recursive call programs. Fer simplicity, it is assumed in the
following description that induction steps are sroved without any appiicaticn of another induction, and induction
always means mathematical induction here. If the recursive call program, £, extracted from the induction proef

(A=)
- -
A0} al=+1 .
L[_‘\“{n“‘mdj
¥z .A{x)

is & program that calculates a sequence of terms of length n{= [{¥=.4(x) )}, every recursive call of f must celculate
the sequence of realiser codes of the same positions, so that the marking of aet ondy A(Q), Az + 1] {eenclusion of
the induction step) znd ¥z.A(z) but alse A(z) (induction hyputhesis) should be the same. This raises & question:
zre the markings of A{= = 1) (conclusion of the nduction step) and A(z) (hrpothesis of induction) by the Mark
procedure alwavs the same? Aetually, if the (V-E), (=-E), (2-£) and [Aell=E) rules are used in the proof of
inductien siep, the answer 15 not always afirmasive.
The sest of this seczion is dedicated to the analvsis of these critical applicntions of the rules.

" 8.2 Critieal (¥-F} and {=-F) applications

def - . . . . - ;
Let Afz! = zy. B(z,y) v Clz,y) where Blz.y) and C{z.y) are some formuiae with = and y as ree vari-
ables. Suppose that ¥z, A(z) is proved by machematical induction, and the induction siep proceeds as follows.
Zy. Blz,y) v Cl=z.y) is the induciion hyposhesis.

fel [l
B(z.t)] [Cl=z.1)]
Ta s
[Biz,t1v C[:.r}] Alz =1l Al +1]
Ey. Bz g}V Cla. y)] A=< (v-E)

.{i'x = 1:]
If the declarasion of ¥z. Aiz) is {0}, :he marked proof res i as foilows:
1:[ﬂ]’?‘{[-af_::Ihl]}J-' {;}5{'{;‘{:.:-.'-;}.;
-

. Zm T
((Biz.tyvClz.d}, {3+ {4iz + D}y (v-E)
{Ey. Blz.y) v C{=.yl]i, {dlz+ 1)}y =
V=

{.*J.f_: - 1}}{._1]

8



where Typ and Tpp are the suitably marked versions of Iy and Ty. [ and J are the union of the markings of
Bi=,t} and C(z.t), and P and Q are the union of the markings of ¢ as hypotheses. Note that P and Q) are either
{0} or 0. Then K and L are as follows:
Case 1: Pu@ = {0}

E={0)u(l=0u{J=lB3=

L={0ulR =1 ={0.1}ui{l=210(J+ Bzt =1}

Case 2: PUQ =20
F={0}u{I+1ju{J +I{Blz.2])
LK +1={1}u{I+2)u(J={B(r.t)j+1)

On the sther hand, because 3y. B(z.y) v C(z,y) is the induction hypothesis. it should have the same marking
as Wr. A(z), i.e., {0}. However. the marking of the induction hyporthesis, L. contains 2 1 that is not comtained
in the marking of ¥z. 4(z). This indicates the fact that it is necessary 1o specifr more codes in the realiser
sequences than one expects when (V-E) and (3-E) is used below the deduction sequence down from the induction
hypoiheses.

ThI:a rensan for this phenomenon is that the realiser code of AV B consists not only of the code of A and £ but
also of the le ft or right code, so that the masking of AV B must coatan 0 except in a few special situations. A
similar thing can be said about the marking of 3z.4(z) type formulae.

Note that all formule occurrences in a segment are of the same form. Any formula occurrence A in & proof tree
T that i€ not & conclusion or a minor premise of the application of {V-E) or (Z-E) is & segment. This kind of
~ segment will be called a trviel segment in the following deseription.

Definition 9: Mejor premise cilached to & Jormuls
The major premise of the application of (V-E) or (Z-E) that is side-connested with a formula 4 in a segment is,
if it exists, called the major premise attoched do A

Definition 10: Proper segment

The segment in a marked proof tree I is called proper iff every formule ocourrence in the segment hias non-irivial
merking.

Definition 11: Crtical segment

Le: T be a subtree of the induction siep proof in & proof tree in induction. A proper sezment. o, in IO is eritical
ST .loes i3 8 jormula occurrence, A, in o such that the major premisge, 5, attached 1o 4 15 a formule occurrence
in one of the main paths of II from the induction hypothesis.

6.3 Criticel (-E£) applications

Suppose that the induction hypothesis is used as & hypothesis above a minor premmise of (3-E) and the proof is
cui-ires:

it

Alz=1)
Then the maricng of 5 is trivial. so that [4(z)] has trivial marking. In this case. the correspondence between the
markings of inducsion hypotheses and the conclusions of the induction step holds cnly if the marking of A(z+1}
is trivial,
Definition 12 Critical (3-E) appifcation
If thers is a patk from the inducsion hypothesis to a minor premise. A, of an application of {2-E7, 4 is called the
eritical ( 3-E) premise, and the application is called the emtical {Z-Z) spplication.

8.4 Critical {A-T3:F) applications
4ssume that the nduction hrpothesis is of the form A A 2 and ihe end-formula of she proef i A MEB Aead

A" are of zhe same constructjon and diTer at mos: i1 some aromic formulas. 2 and 3 are of the same relazion.
Assurmne that the oroof 5 as follows:
fA A Bl




Let I be the non-nil marking of 4" A B, and assume that {aja € [ A [{4") £ a}) = I. Then the marking of 4
is o so that the marking of the induction hypothesis, 4 A B, is also 9, ie., different from [. This sitcation is
probiematic in terms of the corzespondence of mariings of induction hypotheses and conciusions of the induetion

steps. The restriction on declaracions in Section 4 prevents this sort of situation.

6.5 Soundness of the marking procedure

Theorem 1: [Takayama 385]
Suppose that e formula, ¥z.4(z), is proved by mathemasical induction, and that I i5 an arbitrary declaration of
the eonciusion. Let T be a normal deduction of Alz) & A{z + 1), and assume that there is no critical (A-Ti:E)
application in II:
lA(=]]
bl

—h"-
Aoy Alz=1)

vy .4(1'] I:ﬂﬂf-ir:d]

(1) If I has a critical {D-E) application in one of the main paths from the induction hypothesis. [A{z)], its
marking 15 tzivial.

(2) ¥ has no critical (D-E) application or critical sezment, the marking of the induction hypothesis by Mark,
[A{z)], is .

{3) Otherwise, the merking of [Alz])] is a proper superset of I

According to the theerem, the declaration of the ronclusion is as inllows:

Case 1: I the proof tree of the induction step has the critical (D-E) application in one of the main paths fram
the induction hypothesis, the declaration must be trivial.

Case 2: If the proof tree of the induction step has no criticel (2-F) application or critical segment, the declaration
may be arbitrary.

Case 3: If the proof tree of the induciion step has no csitical (2-E) application but has critical segments, the
declaration must be enlarzed io efiminate critical seements. In this cose, the marking of the induction hrpothess,
5, and the initial declaration are different, so thas the declaration sheuld be same as § and the macking be
performed again.

T. Program Extraectien Algerithm

The prooi compitation snould be modifed to handie marked proof irees. The chief modifcations are:

1) if the riven formuls, 4, is marsked by {fs, -+, 7}, exrract the code for the ich (0 =1 € k) realizing variable in
Ru(A):

2] if formula 4 is macked by &, no code should be exsracted and there is no need to analvse the subtres determined
by A

« 371 formmla 4 is cvielly marked, all che codes for o) should be extracted,

The foliowing is nart of the deSnition of the modifed version of the Zz¢ procedure. NV Zzt. prap{I)(f) for & Snize
set of natural mumbers. T, and 2 sequence of terms, 5, 05 the set of i-53h projection (1 £ ) af &

Ta En-i
N O T T T TR P ( Lo ) : ( Tt )
o NV Ert 2=l (A-d = (W E=xt e NERt | —m————
A Ay, D SR =L

-
Note that if I; = ¢, NEzt {—-"—-\J ={ail} §i=0.--1

A/
. Ao Ao A dao: b i . b . .
o NEg | def o Adnoi)s o | e g (o S— where i=0.--n—1
{.1;:_?' tolg A M ﬂ—l}."
{ b E z
T‘Ir (lg; TE::(, - ).ﬂr"j[.ﬂ.!} -
. 3\:-521 ﬁi"p"*f} d.;l' . t-‘ll'::-.r
{- br (VEzt| ) any(ll} foer
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- =
- e ot {right, any|k], ¥ Ext ({B};)] dnel
e W= _-II_J_ETUH = ,f{ ol
. M {any{ll, N Ext ?}._,” i0el
where x =i [ ={1+ | J[)and I = Ifi=iJ ) end anyln] is the sequence of any n codes,
'l.['q‘!}‘:’] '“B]]'Jr
=T} E] E
. {4V Bl; {C)r {C 1 .
MNExt —~ {-E
' Ich

41} {[E]}J1
Ao 5 left = prog({0)) [NE:! (w)\l then N Est —{—gl};—- f else WEzt {Ei_:

atherwize
projidy ) Rul AN/praiiJs + 1) (‘-’J:zf (———
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where {2 n) « [zel|zz n}.
[z :nat, {Alz)} ]

Ty =,
{.—LI'I:I}}_r {Alsuce{z})}r

a:“:-': snat. Alzh}s

s VErr {(rat-ind}

Iz inet, {Alz)}
-

{Al{sueciz})}s

=

Gef . Az if r=01%hen NE=xt ( = ) else N Ezt
o d ETOHY

where T = proj{ 1) Ruv{A(z))).and & = {Z/Fprediz)), = /prediz)}
The follewing thecrem shows that Mork and N Ez¢ can be seen as an extension of the projection function on the
exiracted codes.
Theorem 2: Scundness of the N Ez? proceduze
Let A be a sentence and D be the declaration. If Fope 4 and [1 is its proof tree, chen

proj{ DY Ezt{)) = NEzt{Mark(1I)}

8. Conciusion

A technigue to eliminats the redundancy in resliser codes, the extended projection method, was presented in chis
paper. [t performs program analysis in the form of proof theoretic analysis of proof trees,
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