ICOT Technical Report: TR-417

I H-417

A Programming System Based on QJ

by
Y. Takayama

uly. 1988

C 1988, 1COT

Mita holius=ai Bldg, 21T (EC5 b= 3180~ 5

H :D I -0k Mt 1-Chome Tolos WO 13064

Minate-ka Tokyo 108 Japan

Institute for New Generation Computer Technology

A Programmung System DBased on QJ

Yulihide Takayvama

Institute for New Generation Computer Technology
4-28, Mita i-chome, Minato-ku, Tekye 108 Jupan

talayamafiicot Jp

This paper presents a programmming environment wlich is based on a constructive
logic, QJ. This programming envirenment provides uniformity to work on prob-
lem salving, document preparation, and aulomatic coding. Simple prograimming
developments are presented to demonstrate the mathematical programming in the
environment, The programming logic behind the system and the automatic cod-
ing algorithm based on q-realisabiliiy are piven. Finally, techniques to improve
the efficiency of the program are investigated.

1. Introduction

The current improvement of programming and document preparation environment on compatt-
ers is remarkable. However, there are extremely few satisfactory computer system that allow
a computer scientist to solve problems, write mathematical papers, and implement the algo-
rithms which he or she has developed all in uniform way and in uniform environment. Mast
peopie communicate with other rescarchers by distributing papers, documents or reports, not
by distributing source programs even if thev are written in high level programming languages.
Papers can be prepared on computers, distributed through computer networks, and used as
good materials to convey the contents of research achievement. Computers are becoming more
important as a medium for computer scientists in this respect. However, computers do not
assure the correctness of the contents of one's papers, so that proof reading takes a lot of time.
When one implements the algorithm which is presented in a paper, one has to use a sort of
programming system. However, no matier how good the programming environment is, one has
to translate the definition of the algorithm given in that paper into a suitable programming
language manually as long as the programming environment is separated from the document
preparation environment. This is not efficient. Also, maintaining the consistency between the
algorithms presented in the paper and the programs which implement the algorithms is difficult
in most cases. This can be seen as one of the reasons why programs tend to be distributed
separately even if they are describing the same mathematical contents. In other words, it is one
of the bottle necks to making computers a better medium among computer scientists.

The aim of this research is to develop an environment on computers in which mathematics
is mechanised to help its correct development, good document processing facilities are avail-
able, and implementation of the algorithms can be performed automatically when one finishes
the preparation of the documents. Suitable programmming logic, in which formal specification,
reasoning about correctness and execution of programs can be described, is indispensable in
realising this sort of envirenment. The constructive logic or constructive theory of types is
thought to be a good candidate {or programming logic |Beeson 83] [Martin-Lof 82] [Nordstrém
83a] [Smith 82 [Bates 73] [Huct 5G] [Huct 88]. The chief reason for this is that, in intuitionistic

iogic, logtenl constants sy mterpreted as sorts of operation [Martin-L&f 85], so that computation

and reasoning can be described in uniform way.

Constructive logie 15 research theme in itself Various formulations of the logic have been
developed [Beeson $3] [Coquand 80 [Feferman 78] [Martin-L5{ 84], and the evaluation of the
fornmilations is performed both from the theoretical and practical points of view. The work
presented in this paper i au implementation of a constructive logic, QJ [Sato 85] [Sato 86a]
[Sate 86b] [Sato §7], an a proof assistant svstem dedicated to linear algebra, CAP-LA [Hirose
86) [Sakai SG), and the first step of the trial of evaluating the formulation of the logic mainly
from the practical point of view. This paper also works on the program extraction technique:
a technique te link documents and programs. 1t is well known that executable codes can be
extracted from consiructive proofs by using the notion of realisability [Kleene 45] [Beeson 85]
[MeCarty 84}, Godel nterpretation [Goto 78], or proof normalization (Goad 80]. The method
of the extraction by using realisability is demonstrated in detail in [Bates 79} and [Hayashi 87].
However, the teclmigue to extract efficient evecutable codes has not yet been fully investigated
although there Liave been a few notable works [Goad 80| {Sasaki §6) [Mohring 88]. This paper

alzo looks at this theme,

This paper is structured as follows. Section 2 demonstrates the mathematical programming
where algorithms are described in the theorem proving style. Here, it is considered to be
the description style of documents to be distributed, and it makes it clear that our system
is not a coding support system, but an environment where mathematicians and designers of
algorithms work. The document deseription language, PDL-QJ, is introduced in this section.
Some problems in realizing this programming paradigm are also discussed. Section 3 presents
the programming logic, QPC logic, of our system. The logic is a sugared version of a subset of
QJ. The proof compilation algerithm, an algorithmic version of realisability interpretation of
QJ, is also given here. Section 4 discusses the problems of the proof compilation algorithm in
Section 3 from the point of view of runtime efficiency of extracted codes. The proof normalization
technique, the modified v code, and the extended projection method are presented to improve
the efficiency of the extracted codes. Section 5 is the conclusion.

2. Mathematical Programming

This section overviews the image of the environment, which is a combination of document
processing facilities and programming facilities [Takayama 87a).

2.1 Programming as Mathematical Documentation
Programs can be wrilten as proofs of specification in the form of
Wry.oo Vo 3y e AlT, o Tma Y10 VU)
where 2,4+, Ty and ¥y, - Un are input and output variables, and Afzy, -+ Tm, U1, \Yn) 18

the logical deseription of the iuput-output relation [Nodstrom 83a] [Nedstrom 23b] [Smith 82
[Bates 85]. This is based on the following anclogy between mathematics and programming.

-2
|

i alathematics Programming

!
Theorem | Problem or specification
Proof Frogram + verification information
Proof strategy Algorithm
Refercuce to other theorems Subiroutine call
Normalization Execution
Definition Definition of functions or predicates

Here, a few simple examples are shown in the ideal way as documentation to be distributed
among computer scientists, i.c., in natural language, to demonstrate how the documentation of
algorithms 1= described,

Theorem A: For any naiuwral number list, X, there ezists a nofurel number list, Y, such thei;
a) the length of X is equal to the lengih of Y

b) for any natural number, I, 1f 1 < I < length(X) then the I-th element of ¥ is equal to the
I-th element of X multiplied by 2,

Froof: The proof proceeds by induction on the structure of list X.

1) Base step: Assume that X = nil, then 1" = nil is the list satisfying conditions a) and b).

2} Induction step: Suppose that for list X, list ¥, satisfying conditions a) and b), has been
obtained. Then a list, Ls, must he constructed from Y satisfving the following conditions. For
an arhitrary natural number, a

a'l the length of list @ X is equal to that of Ls;

b') the N-th element of Ls 15 equal to the N -th element of . X multiplied by 2 where 1 < N <
length{a.X).

Ls = 2aY. Conditions a’) and b’} arc checked.

a’} length{a. X)) = length{X) + 1, length{2a.Y") = length(Y') + 1 and because of condition a)
for X and Y. a conclusion is obtained;

L') Here, elem(I, X} denotes the I-th element of list X. Now, let 1 < N < length(X), then
elem{N + 1, Ls) = elem{N + 1,20.Y) = elem(N,Y) and because of condition b) for X and Y,
elem({N,Y) = 2- elem(N,X), so that elem(N + 1,Ls) = 2 elem(N, X). Now let M = N +1,
then elem(M,Ls) = 2 - elem{}M,a.X) because 2 £ M = length(X) + 1 = length{a.X), so
that elem{M,a.X) = elem{N, X). In addition, elem(1,Ls) = 2-a =2 elem(1l,a.X), so that
elem({N,Ls) = 2 - elem(N,a.X) where 1 £ N < length{e. X}

It is easy to see that the proof describes a program which takes a natural number list as input
and doubles each element of the list, and it also gives the justification of the algorithm. Note
that the chief proof strategy, induction of the list siructure, corresponds to the recursive call
algorithm on list structure,

The next example, the sorting problem, 15 well known.

Definition B: Let X be a list of length V. Then,
X is sorted = For any natural numbers, [and J,
if1<7<J<N then (I-th element of X) < (J-th element of J)

Proposition C: Let X be an arbifrary bisi of length N, and J be an arbitrary natural number
such that J < N. Then, there exisis ¢ lis!, Y, satisfying the following conditions:
u) The length of ¥ ir equal 10 the length of X | and every element peeurring in X alse vecurs m

V" (permutetion condilion),
b)If T # 0, for every nutural number, I, such that J < T < N
(J-th element of 1) £ {I-th element of Y

Proof: The proof proceeds by the divide and conquer strategy: N =nilor X E£ml IFX =mnil,
it s sufficient that Y is nil If X # nil, let M = N — J, and mathematical induction is uzed
for M. If M = G, it is sufficient that ¥ js just X itself Now assume that 1 < M < N and
there is a list Yo such that a) Yy is a permutation of X, and b} for any natural number, I,
such that J < I < N, elem{J,Y3) = elem{I, Yo} Assume also that M + 1 < N, otherwise
these is nothing to prove. Now consider the case when M +1 and define a list, Y, as follows: if
elem(J — 1,Yp) < elem{J, Yy} , then let ¥ = Ty, Otherwise, i.e, elem(J,Ys) < elem{J = 1, Yy},
Y is defined as
elem(J = 1,Y) = elem(J, ¥o)

elem{J, Y} = elem{J — 1, ¥5)
elem(K, V) = elem{K,Ys} (if I #J-1,J).

From the above definition and the induction lypothesis, it can be checked easily that this Y
satisfies the following:

a') Y is a permutation of X;

b’} For all natural number, I, such that J -1 = I <Nelem(J-1,Y) <elem([,Y). s

Definition D: Let X = ay..... uy.nil be alist of length N and J be a natural number. Then,
X is partially sorted with regard to J =8 < N then list a;..... ay.nil is sorted.

Proposition E: Iet X be an erbitrary bst. If X s partially sorted with regard to length(X),
then X 15 sorted

Proof: Trivial g

Proposition F: Let X be an arbitrary liet and J be an arbitrary notural number such that
J < length(X). Then there exiats @ list, ¥, which catisfies the following conditions:

) Permutation condition with regard to X}

b)Y is partially sorted with regard to J;

¢) For all natural numbers, I and I, such that 1 € I £ J and J < I < length(X) ,
elem{I,Y) < elem(K,Y).

Proof: It is proved by mathematical induction on J. If J =0, 1t is sufficient that ¥ is X jtself,
Now assume that 0 < J and there exists list ¥y which satisfies conditions a), b) and c). The
existence of Y, which satisfies the following conditions, is shown,

a') Permutation condition wi th regard to Yo,

b') Y is partially sorted with regard to J +1;

¢’) For any natural numbers, J and I, such that 1 £ T s J+1% I < length(X), elem([,Y) £
elem(J, Y}

Applying Proposition C to Yo with J + 1, e list, ¥, can be obtained such that

elem(J + 1,17} € elem(1,Y])

for any natural number, Iis.t. J +1 < I < length(X), and by the definition of 1y in the proof
of Fropasition C
elem({ I, Y1) = elem{ K, Ys)

is obtained for any natural nmumber, KNst.,1 € N < J. Now froam the induction hypothesis, i

can be easiiv shown that Y5 s such a 17 g

Theoremn G: Sorting problem
For any noturel number Iisi, X, there exists ¢ natural number hst Y sueh thot
o) 17 satisfies the permuiation condition;

b)Y as sorted.
Proof: Siraightforward from Froposition E and F. g

The above proof of Theorem G corresponds to the bubble sort algorithm. It is also possible
to write 2 proof which corresponds to the quick sort algorithm. The ssme example is also
demoustrated in [Sato $5] where the specification is proved by transfinite induction, [Smith 82
where the proof is written in Martin-Lof’s theory of types, and in [Mobring 86] where the proof
is written in the caleulus of canstructions [Coquand S68]. The proof by ordinary mathematical
induction is given here.

Proposition H: Divide lemma
Let X be any list of natural number elements, end let a be an arbitrary nafurel number, There
12 ¢ permutation of elemenis of X, o, such that

(X)) = append{S5{a), L(a})

where every element of S{a) 12 less than a, and every element of Lia) is equal o or greater than

a.
Proof: This can be proved by induction on the recursive structure of the list. (See [Sato 85].) ¢

Anather proof of Theorem G: The following proposition, & shglhtly modified version of Theorem
G, is proved here.

“Let X and X, be any natural number lists. If length(X)) < length{X), then there exists ¥7,
a permutation of X, that is sorted.”

This is proved by mathematical induction on length{X).

Base case (length(X) = 0); X; must be nil and ¥ = nil.

Induction step: Let X be an arbitrary list with length N, and this satisfles the proposition.
Now consider any list, ¥, with length N + 1.

With the divide lemma, two lists, Y;, and Y3, can be obtained such that:

(1) for any natural number, I, if 1 < I < length(Y)) then elem(I, Y1) < hd(Y');

(2) for any natural number, J, if 1 £ J < length(Y:) then hd(Y') < elem(J, Y3),

(3) append(Y,,Y3) is a permuiation of ti(17).

The lengths of Y7 and Y, are both less thar or equal to length(X) so that by the induc-
tion hypothesis, there are sorted versions of Y) and 1;, sayv W) and W;. Now let Z =
append| W, kd[Y). W) |, then Z is a sorted version of Y whose length is length({X) + 1. Thus,
the proposition is proved for the case length{X) + 1. g

As can be seen from the three examples illustrated so far, constructive proofs of formal specifica-
tions have very similar structures to algorithms which realise the specifications. More precisely,
o constructive proof of a specification can be seen as the description of an algorithin plus its
mathematical meaning, in other words, justification of the algorithm.

3.2 Duocumentation Language: PDL-QJ

It is necessary to use a suitable deseription language to mechanise the handling of the math-
ematical documents as demonstrated in the previous section. PDL-QJ is the language in our
systemn. A proof description language, PDL, has been designed and implemented in the CAP-
LA project, whicl is developing 2 proof assistant system dedicated to linear algebra [Hirese
86] [Sakai 86]. The design goal of the language is similar to that of AUTOMATH {de Bruijn
80] or the Prl [Constable 86]; however, the approach is a little different. The basic idea of
AUTOMATH and the Prl is to deseribe mathematics in typed lambda calculus by using the
notion of formulae-as-tvpes |Howard 80]. On the other hand, the design of PDL started by
investigating quite a number of proof descriptions in ordinary textbooks of mathematics to find
a good syntax to mechanise mathematics on computers. Therefore, PDL allows, in a way, a
more natural proof description style than other languages in the type theoretic approach. The
siructure of the syntax is basically natural deduction [Prawitz 65] with additional expressions
to describe mathematizal abjects such as natural numbers, scalars, matrices, indexed sums and
products, and vectors, PDL-QJ is one of the PDL families. The chief purpose of the language 15
to describe algorithms on natural numbers and lists. It is an intuitionistic version of PDL with
additional syntax for program constructs, such as if-then-else and lambda €Xpressions.

The following is part of the basic syntax of PDL-QJ.
{0) Expressions

e fun [X1,...,%Xn] --- function with parameter X
if then elsze - if-then-eise construct

e me [21,...,Zr] --- fixed point operator

s Type expressions:

nat --. natural number type

L{nat) - natural number list type

<TYPE> # <TYPE> - -- cartesian product type
<TYPE> --» <TYPE> --- function type

» Logical constants: & (A), | (V), => (D), 211 (V), and some (3} (negation]
s = ... equality symbal

s <LABEL> : <FORMULA>;--- labeled formula
* $abort$ --- abort

{1} Definition of functions

function <FUNCTION NAME> : <TYPE>
attain <DEFINITION>
end functien

{2) Reasoniug ou logical constants

(-1 rule) (A-E rule) {v-1 rule)

A AREEB
hence & [E]
B
hence & & B
(Vv-E rule) (21 rule)
4 -» B
since
. assume A
Al B
hence C
since divide and conguer A | B B
case A end_since
o
case B
C
end _since
(2-E rule) {¥-1 rule)
all x:t. Alx)
since
. let a:t be arbitrary
A =->H
Ala)
. end _since
A
hence B
(3-1 rule)0 {3-E rule)
Lia) some x:t. Afx)

hence B

since

let a:t be such_that A{a)

& [B)
hence & | B

(¥-E rule)

-

all x:t. a(x)

a:t
hence Afa)

(L-E rule)

&

contradiction
hence 4

a:t

hence =eme x:t. Alx)
end_since

{3) Induction schema

{nat-induction rule} (L{nat)-induction rule)

2ll m:nat. Alm} all m:L{nat). Al{m)

since inductien on m since inductien on m

base base

ACD) Alnil)

step step

let n:nat be arkbitrary let a:nat. =x:nat be arbitrary
{ind hyp_is a{n)] [ind hyp-is Alx)]

A(n+l) Lt{consfa.x))

end_since end_since

{(4) Description of equalities
{=-ref rule) (=-trans rule) [=-E rule)

g = b g =k a=>b
hence b = a

h=c Ala)
hence a = C hence A(b)

(5) Reasoning about programs

(if =; rule) (1if =y rule)

A A

hence if A then B else C = B hence if A then B else C = C
(#-red) {p-red)

(fun [XI. F(x)){a) = F{a) mu [2]. F(Z) = F(mu [Z]. FCZ))

The proof of Theorem A in PDL-Q)] is given in the Appendix.

2.3 Proof Checker with Proof Finding Facility

One of the important research problems in developing good proof assistant systems 1s how to
realise proof finding facilities. There are a lot of logical gaps in proofs written by humans; they
usuaily skip the proofs of trivial facts which might cost hundreds of steps if they are proved in
formal logic, and this makes proofs more readable for human beings. Therefore, the facility to
fill the logical gaps is indispensable although a full automatic theorem proving fucility is not

always necessary.

The tactic facility of ML, which enables end users of the system to program proof finding strate-
gies that they developed, is used in the proof finding package of the LCF [Gordon 78] and the
Nuprl system |Constable 86]. The proof finding facility of the CAP-LA system uses the theorem
proving mechanism of PROLOG in the first order logic part and the term rewriting system
based theorem prover in the equational logic part [Sakai 86). One observation of mathematical
reasoning which the design of the proof finding facility is based on is that most of the logical
gaps in mathematical reasoning by humans are in the equational logic part; they usually skip te-
dious reasoning about manipulation of equations and inequations of mathematical expressions.
Therefore, the application of the rewrting technique is mostly elaborated. This observation
basically holds for the reasoning of algorithms in computer science, so that this sort of proof
checker system can alse be used to realise our programming environment.

2.4 Expressive Power of Constructive Logic and Automatic Coding

The examples given in the previous section are examples of constructive proofs [Beeson 83).
1t is well known that if a proof of the theorem is written constructively, the computational
meaning of the proof can be analysed io extract a program automatically by using the notion
of realisability [Kleene 45] {McCarty 84] [Hayashi 86]. In other words, some class of proofs can
be compiled, so that there is no need for end users of the environment to be involved in the
coding of programs if only the document in the form which is shown in the previous section is
well prepared.

This raises a question: which class of preblems can be solved as constructive reasoning, and
which class of algorithins can be extracted automatically? It is basically possible to handle
most of the elementary fundamental algorithms as given in [Aho 74]. For more complicated al-
gorithms, it depends on the expressive power of the type system and how powerful the induction
schema of the constructive logic involved is. For example, the notion of ordering, the induction
schema on ordering structure, and the definition of the polynomial ring structure have to be
described in constructive formal logic to extract the Grobner base algorithm [Buchberger 83]
[Takayama 87b]. Most of the definitions and proofs in linear algebra seem to be described in
constructive ways. However, describing linear algebra in constructive logic and extracting pro-
grams of matrix caleulation is also difficult [Takayama 87¢]. The chief difficulty comes from the
fact that matrices are described at various levels from vector spaces to ordered sets of scalars. If
linear algebra is described at the level where matrices are handled as sequences of scalar valued
functions, it is easy to prove the existence of products, sums, inverses, and determinants of

matrices. However, defining the type of, sey, (m, n) matiices over the type of natural numbers,
nat. is a little difficult because functions of type, nat x nat — nat, have to be handled generally.
I other words, no specific function can be used in discussing matrix types, and the general
strategy of type checking of nat » nat — nat 15 unhkely to be defined in a constructive way. In
addition, there is a difficulty in defining the type of regular matrices at this level. Linear inde-
pendency of vector spaces can be defined by using the apariness aziom [Beeson 85]. Therefore,
it 35 necessary Lo harmonise the vector space approach to linear algebra with the axiom and the
sealar valued funclion approach.

Investigating and extending the cxpressive power of constructive type theery and the induction
scheina are ongoing research themes. Many mathematics libraries have been developed on the
Nuprl system [Constable 86]. The extraction of a simple parser system is given in {Chisholm
87]. A constructive logic which has an array siructure and the notion of call-by-reference is
given in {Sesaki §6]. For induction schema, CIG recursion, which is an extended schema of that
given in [Feferman 78], is given in {Hayash 86). A powerful induction schema in the calculus
of construction {Coquand 86] is given in [Huet 87). They aim to realise induction TEASONINng on
general domains with particular postulates.

For non-deterministic or parallel algorithms, it is necessary to extend the programming logic
from intuitiosistic logic. The intuitionistic interpretation of the logical constant, V, prevents
non-determinism |Tekayama 87c]; to prove, for example, A V B, it is necessary to give the
proof of A or B and the information of which of the formulae actually holds. Also, stream
siructure or infinite objects must be handled to describe parallelism such as generate and test
style algorithms [Takayama 87d] An approach to handle parallel algorithms is presented in [Goto
£3).

The second question is why the programmiug logic should be intuitionistic. The chief reason
is that programs cannot be extracted from some proofs in classical logic at least by the notion
of realisability. However, not all parts of the proof are related to the wlgorithm; the reasoning
about the correctness of the algorithm given implicitly, or sometimes explicitly, in the proof
may be written in classical logic. 'X has a modal operator, §, to eliminate double negation
[Hayashi 87). However, it is not always clear which part of the proof is not related to algorithm,
and the extraction of the program which is not needed to implement the necessary algorithm
causes inefficiency of the extracted code. This problem is investigated in the later sections.

Here, the constructive logic is restricted to handling natural numbers, natural number lists
and the induction schema on them. The program extraction algorithm is made clear and the
technique to improve the efficiency of the extracted codes is elaborated.

3. Formal Structure of the System

The chief design feature of our programming environment is utihzing the fundamental facilities
of the CAP-LA system. It is necessary to implement a sort of constructive logic in the proof
assistant environment to realise the program extraction facility. However, as explained in the
previous section, the CAP-LA system docs not take the type theoretic approacl. Therefore, 1t
is desirable for the constructive logic used in our environment to be a different formulation from
the constructive tvpe theory; type structure and logic should be strictly separated. One suitable
formulation for the criteria is Feferman-Beeson-Hayashi’s constructive theory of functions and
classes [Beeson 83] [Feferman 78] [Hayashi 87). It is implemented in the PX system [Hayashi 86].

- 10 -

Another candidate 15 QJ [Sato 85 [Sate 86h]. whick i= also a non type theoretic formulation of
constructive logic. The chief difftvence berween QJF and Feferman-Beeson-Havashi's theory s
that types can be treated as objects in the latter formulation; new data structure can be defined
in the formal language. However, the fonmulation of QJ is much simpler, so that it is easier to
work on the proof finding mechanism and extraction of an efficient programs from proofs.

3.1 Outhine of QJF and Quty
311 QJ and Quty

QJ is an extension of the typed logical language, Quty, in the sense that a program in Quty 1s
just a term of QJ. It is therefore poussible to reason about Quty programs formally within QJ.

The logic of QJ is based on the logic of partial terms [Beeson 83] [Beeson 85] [Havashi §6] where
term expressions can fail to be denoted. This is 2 suitable framework for reasoning about partial
recursive functions. Inference rules of QJ are basically an intuitionistic version of the Gentzen
stvle of natural deduction with additional rules for terms such as construction and reduction
rules of M-expressions and if-then-else terms, special functions, left, right, inl, inr outl and
outr, and induction schema on recursive type structures. The notion of g-reslisability [Beeson
§5) [Hayashi §6] is adopted as the fundamental {acility to extract programs from proofs. For
the semantics theory of QJ, a domain theoretic semantics is given [Sato §5]. In this model, &
type structure is interpreted as a domain.

The type system of QJ does the typing of Quty programs, and types are not regarded as
propositions as in constructive type theory.

Definition 1: Types

1. A type variable, &, is a type.

2. 1i1s a type.

3. If ¢ and 7 are types, then ¢ x 7 is a type.

4. If # and r are types, then & + 7 is a type.

5. If o and = are types, then o — 7 is & type.

6. recursive type: If 5 is @ type vadable and ¢ is a type such that any subtvpe of @ which is
of the form 7 — p or pt.7 does not contain free occurrence of s, then ps.o is o Lype.

Tyvpe 1 denotes & singleton poset (partially ordered set). Type ¢ x 7 denotes the cartesian
product of the posets denoted by ¢ and . Type a + 7 denotes the disjoint sum of the posets
denoted by o and 7. Tvpe o — 7 denoles Lhe set of pariial functions from o to 7. The poset
denoted by ps.c is the smallest poset denoted by s such that s becomes the same as o.

Definition 2: Typed variables
V(o) denotes the infinite set of variahles whose type is o. Vi(g)NnV(r)=¢ il o # 7. ~is the
equivalent relation of types. Type expressions which have the same denotation are regarded as

eguivalent.
Definition 3: Typing rules
a:ag gaT x € Via}

ia:7T T

- i1 —

Ly:m T:1

a:eg b:7 g boT

a==0:1 a,b:o w7

a:l b:1 G0 %7

amb:1 lefte : o

a.axT a -

righta : 7 inlya:e 471
a7 a:o+4+T

INret: o7 outla: o

a:o+T Ti& o o@arT

outra ;7 m

a:o—7 b:o T:g~—7 a:g—7 {Tisnot critical}
a(b): 7 pr.a:o =T
a:1 b:v c:7T a:1 b:1

ifathenbelsec:r avb:1l

r:0 a1l

dra:1l

The notion of critical variables makes the treatment of u-expressions sale.

Note that the definition above is the typing rules of terms, and it shows that terms of type 1, i.e,
A, V and 3 formulae and equalities of terms, are regarded as terms. They are also regarded as
formulae. The operational semantics of terms, i.e, the Quty program, are given by regarding the
terms as a term rewriting system; in particular, terms of type 1 are execuled as logic programs
[Sato B7].

Definition 4: Formule

1. Terms of type 1 are formulae.

2. fa:c and b: o, then a T bis a formula.

3. If A and B are formulae, then 4 A B is a formula.

4. If A and B are formulae, then 4 v B ie a formula.

5. If A and B are formulae, then A D B is a formula.

G. If r i a variable and A 1z a formule, then ¥z.4 1s a formula.
7. I{ £ is & variable and A4 a formula, then Jdr. 4 is a formula.

3.1.2 Induction on the recursive type

Let - %' jts.c be a recursive type and A be a formula. Then, the induction rule on the recursive

tvpe, 7, with regard to A is as follows:

[olz]]
Alz] .
‘:"':::.A[z]l:wms]I

where ¢% |z}, which is the induction hypothesis made from o, is defined as follows.
Definition 5: Induction hypothesis
Let A be o formula and ps.e be a recursive tyvpe. The induction hypothesis o3 is defined as
follows by the induction en the construction of ¢. ¢ [2] is abbreviated to o*[z] in the following
description.

del .
1. s*[z] = Afxz]

1t BT

(g1 % pa)ia] e pilleft z] A p3[right x]
A+)tz = ({outl 2) | Ap][outl 1) V ({outr 1) | Ap3foutr z])

. del
Apr = p)E] =T

A ptp)tx] del

L I N

The form of type ¢ in recursive type 7 must be 1 + ». There are four recursive types depending
on the form of the = part:

ps{l+s) -+ notural numbers
s{l+sxs) --- S-expressions
pus{l+eoxs) --- o-list (oisatype)

According to the rules on the partial order, L, the natural number type has flat ordering,

and a function of type ¢ — ws. (1 + s) has almost flat ordering, i.e., functions such as Az. L
exist. The natural number list type also has flat partial ordering. A function of type ¢ —
ps. (14 (pf. (1-1)) % s) also has almost flat ordering because the natural number list type has
the bottom element, L.

As a theoretical result, the following holds.

Theorem 1: [Sato &3]
Every partial recursive function is representative in QJ.

3.1.3 Realisability interpretation

In the following, t q 4 reads “¢ realised A”. This can also be read “program t reclises specification
A"

Definition 6: q-realisability

Let r,y,--- denote variables, and T,¥, - - - denote sequences of variables. ¥ means z) A---Azp,.
. If Aisan atomic formula, then a q A “ Ana=nil

(TT)qArNBETqANTq B

(5 57) qAVE S (outlz) AAAT q AAT |}V (outr{z) AT | ABAT q B)

.YqADB d=ﬁ§ L amono{F}AVE{AAT q A DWZI)q B}

. TaVvrd® v (7(z) q 4)

6. (2,7) q 324 = A A4,[z] AT q A,[z]

_, def e = - -
where mono(y) = VT.¥5,.(7y E F; D 9(T0) E ¥(T1)). A;[z] mneans the substitution of z to z
which accure freely in A,

Nobe that by induction on the construction of 4, F bqA>b) In ordinal g-realisability,

daf

o A= Aaf Az atomuc. However, the realisers for atomic formulae are restricted to nel in
QJ. This is the same as P X-realisability [Hayashi 87]. The realisability here is not the standard
q-realisability in this respect.

3.2 QPC Logic

QPC logic is a sugared version of & subset of QJ. It is the subset of QJ which is related to
program extraction from proofs, and the primitive data structure is restricted to natural numbers
and lists of natural numbers. By this restriction of data types, handling the C relation is easier.
QP s, roughly, an intuitionistic version of natural deduction with mathematical induction and
induction on natural numbes lists plus higher arder equality and inequality. The program part
of QPC is alzo a subset of Quty, which is called Tiny Quiy, and the operational semantics
is siven as ordinary lambda calculus with sequences of terms and multi-velued recursive call

M OFTATIS.
. L

3.2.1 Expressions

Definition 7: Types

1. Primitive types: nat (the set of natural numbers), L{nat} (natural number list), bool (boovlean
tvpe), atom, lterm (logical term)

2. Function types: If ¢y and o, are types, then oy —+ o, is also a type.

3. Tvpe of sequence: If ¢y -+ o,_, ave types, then gy % -+ ¥ g,_; 15 also a type.

Definition 8: Terms
The terms of QPC are defined as typed terms.
1. Watural numbers

4, 1,2, -+ are terms of type nat.
suee : nat — nat pred s nat — nat + : nat x nat -+ nat
2, Atoms

3. Bogolean
T bhoal F: bool

4. Natura! number list

NIL: L{nat) cons : nat ¥ L(nat} — L(nat)
hd : L{nat) — not tl: L{nat) — L{nat)
5. Typed variables 6. A-expression
r € Vie) Tig tige—T
o Ar.t:7

i4 —

7. ,'-'e,p]_:lii_':a::.{m
.o —7 E.I o

) a(b) is also denoted {a b)), {a)b and o b
alb) T

8. Logical terms
€y 10, ln 0y bpraoy,--- by ion Ris well defined on oi(1 <1 < n)
a RBby Ao moag Ry, - Herm

where R is <, < or =.

9. if-then-else

a:ltermn bie c:0

ifwthen belsee: o

10. Sequence
0y 1Ty, fin On

(81" "18n) i 01 % ==+ X Oy

If n = 0, the sequence is denoted nal. It is sometimes denoted a;,---,a,. If z;s are typed
variables, T denotes (z;,---,z,).

11. Any
anyn]: o) ¥ --- X g, {n : nat) denotes a sequence of arbitrary terms of suitable types.

12. Fixed point
Firg—=T trog—=T

pr.tio—r7

Definition 9: Eguivelence relations on terms

(1) Amil t =t

(2) AZ. nil = nil

(3) AT t = Axy. - Az 8

(4) H{nil) =1

(8) 1f athen (b, by) else (¢1,---,cn) = (if a then by else ¢;,---,if a then b, else ¢,)
(6) if a then nil else nil = nil

(T) AT (41,00, 8m) = (AT, a1, , AT, ap)

Definition 10: Fermulae

1. 1 15 an atomic formula.

Z. Equation and inequation of terms are atomic formulae.

Note that 1f {15 a term and o 1s a type, then ¢ : ¢ is an abbreviation of t = ¢,

3. If 4 and B are formulae, then AA B, AV B and A O B are formulae.

4. If z is & variable of type o and A 15 a formula, then 3z : 0.4 and ¥z : 0.4 are formulae.

G. 1T A s g formula, =4 T4 o 1 is a formula,
Tlie type declarations of bound variables are often omitted. Also, atomic formula ¢ : & is often
denoted simply {.

Note that inequality is defined as follows in the standard formulation of number theory: a <

def def -
b= drimat.a+r=banda <bE @ < bA-(a=>b). However, they are treated as atomic in

QPC.

3.2.72 Inference rules

The inference rules of QFC are as ollows:

(1) Introduction rules

4] [x : o]
A B A 11 B Az) t:o Alt)
AnDB AvEH AvB ADEB Vi:o. Alx) 3r: o A(x)
(2} Elimination rules
[4] [B]

AnB AnB AVB ¢ C A ADD

A B c B

[t e, Alt)]
t:o ¥r:c.Alz) Jz :o.A(x) (& L
Alt) C A
(3) Induction rule
|z : nat, A(z)] [a : nat,z : L(nat), A(z)]

A(0) Alsucc{z)) (nat-ind) A(NIL) A(cons(a.z))

Wz :nat. Alz)
{4) Rules on equalities

t=3s(ing)
s=1{ina)

= (=2)

t=t{ine

t=s(in o) Alt)
A(s)

(= E)

b:o Arag:oc—rT

vz : L{nat). 4(z) —(L(nat)-ind)

P=Q(if':¢}ﬁf_=f(iﬂﬂ][=3j
p=r(in o)

GralD = aiim)

a

ui.a =az|uz.el

(B =)

-

(if =1)

if athenbelsec=b

(5) Axiems

if athenbelsec=10

(if =2}

Inference, for examnple, on inequalitics s performed by giving axioms.

Definition 11: Aziem
1. Atomic formulae are aioms.

2, If A and [are axioms, then A A B and 4 2 B are axioms.

4. If 4 is aformula, then =4 is an axiom.

5. 1 415 an axiom and T @ o 15 a sequence of typed variables. then ¥F. 4 18 an axiom.

Note thal axioms are self realizing formulae [Beeson 85], and also the interpretation of the set
of type 0 formulae in PX [Hayashi 87} and QPC.

3.2.3 Second order QPC

It is not permitted to quantifv over propositions in QJ. However, propositional variables and
universal quantification over them are very useful, particularly in manipulating user defined
rules of inference or second order axioms such as course of value induction [Takayama 88a].
Second order QPO is 2 conservative extension of first order QFC.

Definition 12: Types
1. Types of the first order QPC.
2. prop {tvpe of propositions and predicates)

Note that tvpes such as prop — prop and prop x prop are not allowed,

Definition 13: Terms
The same as the first order part of QPC.

The definition of formulae is given as the typing rule of prop.
Definition 14: Formauloe

Vie} denotes the infinite set of typed variables.

P € V{prop) tyio tp:0 (0 # prop)
L prop P prop iy =1, : prop
t1:0 ty:0 (0 # prop) ty:c¢ t3:c (¢ # prop) A:prop B :prop
iy <ty ;prop iy = iy : prop AnB :prop
A:prop B:prap A:prop B:prop x € V(o) (o #prop) A:prop
Awv B prap A B prep Yz:o. A:prop
xeVieg) (e # prop) A:prop A prop
Jz:e6. A:prop =A: prop

The inference rules of second order QPC are those of first order QPC and the following two
rules on second order universal quantifier V7
[P : prop]
F(P)
\;ﬁ!P . P‘r{.‘j’?. F[Pj

Q :prop Y*P:prop.F(P)
F(Q)

(¥*-1)

(V-E)

3.5 Proof Complation

The realisability is reformulated here as the Ext procedure |Takayama 88], which takes proof
trees as input and returns functional style pragrams as output. The realiser code extracted by

Extis in the fonin of a sequence of terms.

3.3.1 Realizing variable sequence and length of formulae

The realizing variable sequence (or simply realizing vartables) for a formula, 4, which 15 denoted
R2v(A), is 2 sequence of variables to which realiser codes for the formula are assigned. Realizing
variable sequences are used as the realiser code for assumption m the reasoning of natural
deduction.

Definition 15: RuA)

1. Ru(A4) % (nil), if A is atomic.
Ru(A A B)E (Re(A), Ru(B)).
Ru(Av B) def (z, Ru(A), Rue(B)) where z iz a new variable.
Ru(A D B)E Ru(B).

Ro(¥z : 0. A(x)) % Ru(A(z)).

Ru(3z : @. Az)) = (z, Rv(A{z))) where z is a new variable.

tua

o oo W

Example:

Ru(¥z :nat. ((z > 0) 2 (2 = 0V Jy : nat. sucely) = z))) = (20, 21)

where zg denotes the information that shows which subformula of V formula helds and z; denotes
the realizing variables of Jy : nat. suce(y) = z. Note that Rv(succ(y) = z) = (nil).

Definition 16: Length of formulae
I{A), which is called the length of formula 4, is the length of Ru(4).

3.3.2 Definition of the Ext procedure

In the following descrption, a substitution is denoted {Xo/Tp, -+, Xne1/Tos }, which means
substituting T; for X', and X; may be both a variable and a sequence of variables. When X 1s
a sequence of variables, T; must also be a sequence of terms. Application of a substitution, #,
to a term, T, is denoted T9. The following functions are also used in defining Ezi:

s proj(n) --- function that projects the nth element of a sequence of terms
e proj{I} --- I is a finite set of natural numbers. If S is a sequence of terms of length n and
m < n, then

proj{{io, -+ im}) = (proj(io)(S), -, proj(im)(S))

e tzeqin) -+ - function that returns the subsequence of a given sequence: if § is a sequence of
length n, then

tzeg(s) = (proj()(S), proj(i £ 1)(S), -, proj(n = 1)(5))

v ttsegin.m) - function that returns the subsequence of a given sequence: if §isa sequence

of length n, then

ttseq(z,1) = (proj(i)(S), proj(i + 1)(S),- - -, prej(i + {1 = 1))(5))

In the following, IT always stands for proof trees, and T for the sequence of proof trees.

(1) For the realiser codes of assumptions, realizing variable sequences are used:

Ext(|A]) ¥ Ru(A)

(2} No significant code is extracted from atomic formulae and axioms:

z
Ext (E{Rule}) Ll il
where A is an atomic formula or an axiom.
(3) The realiser codes for the /4 and V formulae are denoted as sequences. Atoms left and right

are used to denote the information indicating which of the formulae connected by V actually
holds.

Ap An—] del E'ﬂ - Eﬂ-l)
L] 4 - = e e Pt | —
Ex Aun---hAn_,m I} (Ext(Au), VEz (-‘in-x)
=

. Ag Ao A Ana def t-'l) ; _.,._E.__
o Bt Y (An-E) | = ttse (Co AL A;}) (Eﬂ(ﬂunu-hﬂﬂ_1)>

e
L=
A

e Fxt
"\ ave

(v-I) | % (left, Ext (i—) yany[I(B)])

» Ert E%J'LEW‘” = (right,any(l{ A)], Ext (H)}

{4) The realiser code extracted from the proofs by using the v-E rule is the i f-then-else program.

4] (B
S 5 I
Ext| AVB L C_(v-E)

(4] (4]
cel Eu

! F le ft = proj(0)(Ext (Avﬂ)) then Ext % § else Eat % 6

— 19 —

where

-
Ro{ A)fttseq(1, 1 Ro{4)}) (Ert (y VUB)) ,
™

It B)/iseq(H{ Rv(A)) + 1) ("“ (4 vﬂ))

5 A expressions are extracted from the proofs in (O-7) and (V-1
2 !

del
=

fa : o]
T [x: o]
Alz) def B
» Bat| o | T A B U
[4]

L i4]

def 5

e Ext Ao B(:J I) ARuv(A). Ezt 5

(6) The code that is in the form of a function application is extracted from the proofs in (2-E)
and (¥-E)

Dy 2
A_ADB - py |, D o s Zo)
o Ext 2 (2-E) Ex (AZ!B) (.L:m.‘("ai
g b
t:o V¥z:o Alz) \def (I)
. . | —————
Ext) (V-E} *\ 7o, A (t)
.J'r
(7) The codes extracted from proofs in (3-I) and (3-E) are as follows:
R
e en)® (o= ()
» Ext | —————(3-1 i, Exi
| 5o A@)) Alt)
[z : o, Alz)]
Ly T
3o Azl = 1o, Alz)]
« Brt 20 Alz) G A (3-E) 4! Fat (l T,) #
C

where @ & {Rv[d{r)};’tseqill (En (ﬂ%ﬁ:ﬁ')) z/proj(0) (Em: (%@D }

(8) Any code is extracted from a proof in the (L-E) rule:

— o0 —

5

|

o Lrt -;—i-:_L-E:I < anyI4)].

(9) The muiti-valued recursive call function is extracted from the induction proofs [Takayama
85¢].

[z nat, A(z)]
)31

bl
A(0) Alsued())
Y :nat. A(x)

o Fixt

(nat-ind}

|z : nat, A(z)]
=z
Alsuce(x}))

def pz o hroif z=0then Ext (E‘(EE_}) else Erxt

where ¥ = Ru(A(z)), and ¢ = {Z/Z(pred(x)), z/pred(x)}.

la: nat.z : L{nat}, A(z)]

Lo L
A(NIL) Alcons(a,z)) .
» Ert Ve Linat). A(z) {L{nat)-ind})
ia : nat.x : L{nat), A(z)]
def X

= p7T. Az if £ =NIL then Ext () else Ext 2 g

-
A(NIL) Afeons(a, 1))

where T = Ruv(A(z)), and ¢ = {F/Z(tl(z)), z/tl(z)}.

Note that T denotes a sequence of variables, so that pZ. -+ is a multi-velued recursive call
function. The multi-valued recursive call function of degree n, g (20, za-1)- F(20," 3 Zn=1)
wheren > 1 and F(zg,***, 2n-1) i5 a term with free variables, zo,- -+, 2n—1, is defined as follows:

1) Assume that F(zg, -, 2n—1) is equivalent to the following sequence of functions:
{Fﬂ[3n1 e lzﬂ-])1 e '|Fﬂ-1|:zﬂl' T 1211‘-'1}]

2) Let & o pzi. Filzgy ooy zn=1), where 0 €1 Sn -1

3) Define H;, where 0 £7 < n — 1, inductively as follows:

(a) Ho < Gos

(b) For1<i<n—1,let H; Y GifzofHo, +22na1/Hnor};

{(¢) Redefine Hyi, where 0 £ k €14, as follows: Hl. aef Hi{z:i/ G}

4) jlz0,21,22).Fl2o, -, 20m1) = (Holzg, o 2Zami)i Huca(20, 000 20m1)-
Example:

Let Flzg, =, 1) def (Az. plzo.21,22). Ay. gfzp, 21,870, Az rlzg,2y,22)). By the definition and

21 -

(=) aule:

— = (- =)
us. Fiz) = F(pz. F(z))
plzg sy, s2 b F{sg, 50022) = (Holza, 210 22), Hi(2o, 21, 22), Hal{20, 21, 22))
'ﬁ.'l]i:[ﬂ
def
Ho = o Az.plze, pzydyglzo, oy, e Az (20, 21, 32)), praAzar(z, p2i-Ay.g(z, 21, 22), 22)
def . :
H, = urpAyglpzeAr.plza, 7y, za Asr(zg, 21, 22)), 21, pee Az r(pse. Az.p(20, 21, 22), 21, 22))

Ha def pegdzr(esg Az plog, par Ayl zo. 21, 22)y 22)y s Ayglpze-Az.p(z0, 21, 22), 21, 22), 22)

The execution of multi-valued recursive functions is quite expensive, so that making the degree
smaller is an effective way of generating an efficient realiser code.

Theorem 2: Soundness of the Ext procedure
Let A be & sentence. If Fqeg, A and P s its proof tree, then Fgpe Ext(P) q A

Froof: By straightforward conversion from the proof of the theorem on the soundness of the
realisability interpretation of QJ. See [Sato 85].

Definition 17: Principal s10n and C-formula

(1) Let 4 be a formula that is not atomic. Then, 4 has exactly one of the forms A A B, AV B,
A D B, ¥z. A, and 3z.4; the symhol A, V, 3, V, or 3, respectively, is called the prineipal sign of
A

(2) A formula with the principal sign, C, 1= called the © formula.

3.3.3 Proof compilation of second order QPC

The proof compilation algorithm for ¥2-I/E rules is a2 native cxtension of that for first order
logie.

[P : prop]

FUF) __ w15) % ARV(P). Ext{(P/RV(P)+ F(P))

E2lap prop. F(P)

RV P} is the variable to which Rv{@), where @ is a particular first order formula, is to be
substituted. The intentional meaning of A is similar to ordinal lambda notation. A is used
simply to distinguish the above case. Ex{(P/RV(P)F F(P)) means that if Ezt(P) is needed
in the procedure of proof compilation of F{F), RV(F) should be used as the value of Ext(P).

Eﬂ{g;lﬂ‘fp_l_%%ﬂ[ﬂﬁ_f'ffl (¥:.E)) ef B-reduction on Ezt(¥2 P : prop. F(P))(Ruv(Q))
Ext{(¥?*F : prop. F{P)) must be of the form ARV({P).Ezt(P/RV(P) + F(P)), so that by §-
reduction of the A-expression, the above code is Ex#(Q + F(Q)}). This corresponds to the
following normalisation of second order logie:

[P+ prop]
IL(P) I,
B BB (g e
Q:prop YIP: prop.FiI)
= IL{Q)
Q) Q)

4. Optimization Technigue

There are two kinds of optindzation technigue in terms of proof complication. One is optimiza-
tion of algorithms at proof tree level, For example, as explained in section 2, the extracted
sorting algorithms vary from the bubble sort algorithm to the guick sort algarithm according to
the proof strategios. It needs quite a drastic change of proof strategy, so that it is difficult to
perform this sort of chauge of proofs automatically. However, a much smmaller chiange of proofs
is possible. A technique to eptimise programs at proof level, pruning, is given in [Goad 80].
Generally, proofs contain a lot of information about the programs that correspond to the proofs,
and the pruning technique uses the information in optimization to change the strategies of al-
gorithms. Goud also investigated an application of the proof normalization methed ta partial
evaluation of proofs. [Bates 79] applied u traditional syntactical optimization technique on the
code extracted from proofs which mizht destroy the clear correspondence between proofs and
program through realisability.

Another kind of optimization i1z reducing the redundancy of the codes extracted by the Ext
procedure, in other words, realiser codes. Healiser codes generally contain a lot of codes which
are irrelevant to the algorithm. [Sasuki 80] improved the program extraction algorithm based
on realisability so that the trivial code for formulae that have no computational meaning can be
simplified. The hasic idea is as follows: if 4 and B are atomic formulae, then the computational
meaning is trivial, so that the code extracted from, for instance, A A B is (trivial, trivial). The
modified program extractor simplifies the code to trivial. A similar technique is used in the PX
systern [Hayashi 86] as fype 0 formulae. However, the code extracted from constructive proofs
still has redundancy, and it causes heavy runtime overhead.

If & constructive proof of the following formal specification 15 given:
Yrgg. Jyiay. Alz,v)

where g and ¢, are types, and Al{r, v} is o formula with free variables, x and y, the function,
f, which satisfies the following condition can be extracted by g-realisability:

Vi ooop. Alx, fiz)).
For example. if the proof is as follows:

[r:op] lz:ey)
Tg Iy
teog Afzr,tg)
dy ey Alz,y)

Vr:iop Jycoyp. Alzy)

(3-1)
(V-I)

where Dy and T, denote sequences of subtrees, the extracted code can be expressed as:
Ar. (te,T)

where T iz the code extracted from the subtree determined by A(z.t.), and {, denotes a term
wlhich contains a free variable, © In this paper, the evecutable codes extracted by the Ext
procedure are in the form of sequences of terns or functions which output a sequence of terms.
The codes contain verification information which is not necessary in practical computation. In
this case, the expected code is:

s that 77 s the redundant cocle.

The most reasonable idea to overcome this problem would be introducing suitable notation
to specify which part of the proof is necessary in terms of computation. The sel notation,
{x : 4|3}, 3= introduced in the Nuprl system [Constable 36] as a wealer notion of 3z : 4. B.
This is done to skip the extraction of the justification for B. [Mohring 88] modified the calculus
of constructions {Coquand 86][Huet 86][Huet 88] by introducing two kinds of constants, Prop
and Spec, to distinguish the formulae in proofs whose computational meaning is not necessary.
These works are perforined in the type theoretic formulation of constructive logic in the style
of Martin-Lof.

In the following, the mefficiency of the extracted codes is demonstrated through examples, and
three optimization techniques are given. The first two techniques, normalization and the modi-
fied V code are well known. The third one is called the estended projection method [Takavama
&Sb]. and is a proof theoretic method in the style of D. Prawitz to perform the program analysis
at proof tree level, and to generate a redundancy-free realiser code.

4.1 Redundancy in Realiser Codes
The extraction of a ged program is given in [Taekayama 83a]. The specification is
Yr:inatWy:naldzinat((zz)A(z | yv)A Ve nat((w |2} A {w|y)) D w < z2))

defl

where (p|¢) = 3r:nat.g = r - p and the outline of the proof is as follows:

Zo
Vz:nat{Vu:nat(y<z2Qy)) D> Hz)) I,
Vz :nat.Qiz)
where II, is as follows:
L3
Za Yz nat.(Vy:nat.y <z D Ply)) D P(z)) 3 Vz : nat.P(z) (V1)
Q: prop COV-IND (V2-E)

Vr:nal(Vy:nat(y <z 2 Qy)) D @z)) DVe:nat.@z)

where COV-IND is as follows:

WEP i prop. (¥ :nat ¥y :nat.(y < z D P{y)) D P(z)) 2 ¥z : nat.P(z))

The extracted code by Ezt is as follows:

GCD=(fg)

Foa A (wy, s
An(uwg.wyun) 2
({j {20,271, 22} A
if @ =0 then Ay.any|3]
else 1f left = {pz. Ak, if k=0 then left
else if left =z then vight else vight) pred{z)
then Ay. ({{we,wy,wy) 0) ly.uny[ﬂ“
else Myaf left = (A4 pred(z) y)
then ((zq,23,22) pred(z) v)
else (wq, wy,wa) pred(x)({ze. =1, 22) pred(z]}) z)

AA =gz Az, if @ =0then Ay if y=0then right clsc anyfi]
else hy. if left = (pz. Ak if k= 0then left
else if left = = then right else right} y
then left
else if left = (z pred(z) pred(y)) then left else right

g = an. Alzg, 51, 22)-
tf left = (pz. M. if k=10 then left
else if left = z then right else right) n
then Amfm, (Ap.0) m, (g1} m)}
else Am. { (zg (m med n) n),(2; (m mod n) n),
m—(m mod n)
n

}

(z; (m meod n} n)+ (22 (m med n) n}-

This code contains three kinds of inefficiency:

(1) § redex: The code, GCL, 1= an application of f to ¢ {A terms). Also, (Ap. Dy and (Ag.0)m
are F redex. These purts can be optimised by performing the partial evaluation of 8 reduction.
(2) Simple decision procedures in complicated algonthms

The code left = (A4 z y)in f and the code left = (pz.Akif k=0 then left else if left =
s then right else right)n are lagically equivalent to the simple decision procedures, v < x and
n = 0. They are the codes extracted from the induction proofs of ¥z : nat.Vy : nat.(fy <z+1D2
y<zVy=2z)and ¥z :nat.r = 0Vz > 0. These have to be proved by mathematical induction
as long as constructive way of rcasoning is maintained.

(3) Verification information

The whole program calculates the sequence of three natural numbers: the ged of two given
natural numbers and two other natural numbers, The latter natural numbers are redundant.
This can be ohserved by the u{zp.z;, 72) part in f. The reason why the multi- valued function
5 extracted is as follows. The realizing variable sequence of the specification is (20, 2;,d2). 2
corresponds to the variable in the specification, z, which is quantified by 3, and z, and z; are
realizing variables of {z |) and (= | y). Therefore, the two redundant natural numbers which
the program caleulates are the Justlﬁcatmn that 2 actually divides x and y.

4.7 PFroof Normalization

Tt is well knewn that proof normalization [Prawitz 63] [Troelstra 73] corresponds to the evalu-
ation of A expressions. In particular, the following two ruies correspond to § reduction of the
extracted code by the Ext procedure, so that the inefficiency of 3 redex can be removed by this
methad.

25 —

(1) ¥-normalisation 1?1 2 normalisation

o(a) o z
;'a]) = [":]
I8y B (51
Ve Pla) 0 G_oanse M by
) (V-E) =) = (D-E) == B‘

By applying these rules, the proof of the specification is made simpler and the following program

is extracted by the Ext procedure:

Az. Al:.tﬁ.lzh 22}.
g: = ((p{z0,21,22). An.
if 2 =101then Ay.anyl3]
else if left = (pez. Ak 2af k=0 then left
else if left = = then right else right) pred(a)
then Ay. g Ay.any(3]
else Ay. if left = (AA pred{z) y)
then ((2g,21,22) pred(z) y)
else g: ((20,21,22) pred(z))))

where

g= dél “'I:fl:l:zh 31:}-
(if left ={pz. Ak if k=0 then left
elsc if left =z then right else right) =
then dm.(m,0,1)
else Am. [(zy (m mod z) 2), (22 (m med z) z),
{z1 (m mod 2] 2)
m {mzmad z))

+(zy (m mod z) 2} -

4.3 Medified V-code

This technigue removes the inefficiency of simple decision procedures in complicated algorithms.
The idea is to translate complex decision procedures into simple and equivalent decision proce-
dures. A similar technique is used in the Nuprl program extractor system [Bates 76] [Constable

86] [Sasaki 86].

The definition of the Ext procedure on the V-E rule is modified as follows. Note that logical
terms are the formulae which can be executed as programs.

Al 18]
B I, I

Eqt|A¥B € C (v.F)

Ty

by T“
a) if A then Ext —F else Eai —‘-E_i [modified v code]
- when A is a logical term
(5] [4]
v E"T El -
b) if [} then Ext C else Lxt a3 [modified v code]
.- when A is not a logical term, but F 1s.
(4] (B]
-
c)if left = prog{0} Ext (_g_:uﬂ)} then Ext % f else Ext % g
-+ - otherwise
where
Zy
(LAY »
et Rv(A) itseq(1, [(Re(A))) (th (A <5/
- z
Ru(B)/tseq(l{Ru(A)) + 1) (E.-r:! (I V‘))

The foliowing code is extracted by applying the modified Ext procedure to the proof obtained
in the previous section:

A z.Mzp, 21, 22)-
gt z ((u(z0,21,22). Az, if 2 =0 then Ay.any|3]
else if pred(z) =1 then ly. gj Ay.any[3]
else dy. i f y < pred(z)
then (20,21, 21) pred(z) v)
clse g} ((zor 21, 22) pred(z))) £)

where
al e Azq, 21, 22).
(ifz=0

then Am.(m,0,1)
else Am. ((zo (m mod 2) 2),(2p (m med z) z,
{21 {m med 2} z)

m — (m mod z)

+(z; (m mod) z)-)i

-4

4.4 Extended Projection Method

The proof trees are a clear description of the logical meaning of programs, so that the analysis
to detect the redundancy of realiser codes is much easier te perform if it is performed at the
proof tree level.

The realiser of a formula, 4, is 2 sequence of codes of length [(A4) as defined in the last section.
However, not 2l the elements of the sequence are always necessary. In addition, it is generally

S T -

difficult to determine sutomalically which part of the realiser code is reallv necessary, so that
it is necessary for end users to specifyv which elements of the realiser codes of each node are
needed, but at the same time, it is preferable to limit the information that end nsers should
specify.

On the other hand, the proof comnpiler performs realisability interpretation. It analvses a given
proof tree from botlom to top, extracting the code step by step for the inference rule of each ap-
plication in the proof tree, so that if the information is given in the end-formula, the information
can be inherited from bottom to top of the proof tree being reformed according to the inference
rule of each application. The proof compiler uses the information to refrain from generating
code that is not necessary. Consequently, end users may not specify the nodes in the proof tree
about the redundancy; it suffices to specify them only iu the conclusion of the proof.

4.4.1 Proof theoretic terminology and netation

Definition 18: Application end node
In the following proaf tree,

E'I:' Eﬂ.
An

Ao
foAn(R)

I

A
the formula occwrrences, 4 and B, are called nodes, and the —

BER] part is called the epplication

of rule R, or the R epplication.

Definition 19: Subiree
If Ais a formula occurrence in proof tree 11, the subiree of I1 defermined by A is the proof tree
obtained from Il by removing all formula occurrences except 4 and the anes above A.

Definition 20: Side-connected

Let 4 be a formula occurrence in II, let (IIg,IIy,+++ 11,1 /A) be the subtree of 1 determined
by 4, and let A9, 4;, -+, 4,.; be the end formulae of II,,IT;, - - -, =7 respectively. Then, 4;
is said to be side-connected with A4; (0 < 4,7 < n).

Definition 21: Top and end-formula

(1) A top-formula in a formula tree, I1, is a formula occurrence that does not stand immediately
below any formula occurrence in 1.

(2) An end-formula of I is & formula oceurrence in II that does not stand immediately above
any formula occurrence in I1.

Definition 22: Minor and mejor-premise
In the following rules, C, Cy, € and Cy are said to be minor premises. A premise that 1s not
THINGT IS & majer premise.

(4(z)]
C COB 3z. A(z) €,
5 (>E) e ———(3-E)
(4] [B]
AVE ¢,

c o (V-E} €y, Cy, Cp are of the same form.
2

Co is called the left rinor premaise, and C) is called the right miner premasc,

Definition 23: Cui
« An application of {2-1} succeeded by an application of (2-F) is called a cut.
i1
".‘1

Bo _Ti
B 52420 g

Y

4.4.2 Declaration to specifications

Definition 24: Declaration

(1) A declaration of a specification, A, is the finite set, [, of offsets of Ruv{A}. It is & subset of
the set of natural numbers totally ordered by £. A specification, A, with the declaration, I, 15
denoted {A);. Elements of the declaration are called marking numbers.

(2) The empty set, ¢, is called the nil declaration.

(3) The declaration, {0,1,---,{{A) = 1}, is called trivial

The declaration indicates which values of the existentially quantified variables of a given theorem
are needed. It is the only information that end users of the system need to specify; the other part
is performed automatically. Suppose, for simplicity, that the given theorem is of the following

canonical form:
Hﬁ’un o -HIm_l-Elyc-. s Eyn_1-z4('-"m ey Im=1 M, T 1-"-:—1}1

and the values of yg.++-,¥x, 0 £ k € n =1, are needed. It is declared with the set of the
positions:

{0, k)

Example;
A% v (3 <z 3vy3r3w. x =y 7+ w) a specification of division of natural numbers more
than 3. Ruv[A) = {zq, 21}, Where 2o corresponds to z and z; to w. If the function that calculates

the remainder of division of z by y is needed, the declaration of 4 is {1}.
The following restriction assures a sort of soundness.

Restriction: The marking numbers of a declarations cannat specify realizing variables of more
than two subformulae of the specification which are separated by A. For example, if the speci-
fication is of the form A A B and I(A) = 2 and [(B) = 3, marking such as {0,3} is thought to
be illegal because 0 specifies a variable in Rv(A) and 3 specifies a variable in Ru(B).

4.4.3 Marking

Definition 25: Marking

(1} Marking of a node, A, in a proof tree, [I, is the Hnite set,], of offsets of Ruv(A). It is a subset
of the set of natural numbers totally ordered by <. A node, A, with the marking, I, is denoted
{4} Elements of the marking are called marking numbera,

(2) The empty set, @, is celled nil marking.

(3} The marking, {0,1,---,I{4) - 1}, is called trivial marking.

— 0 —

Note that declaration is a special case of marking; the marking of the end-formula of the proof

iree 15 the declaration.

Marking means to atiach to ench node of given proof trees the information that indicates
which codes among the realizer sequence of a given formula are needed. The marking can be
determined according to the inference rule of each node and the declaration. For example, let
Vz. Jy. 3z. Alx,y, z) be the specification of a program and a function from z to y, and z be the
expected code from the proof of this specification. Assume the proof to be as follows:

(2]
E(*J 4.[:1:25 1)
~(*) ————=(3-I)
5 Jz. A(z,s,2) (3-1)

Jdy. J=. :flI:z:, ¥z
Yr. Jy. Jz. Alz,v,2)

(¥-I)

The code extracted by Exf 1=
Ar. (s, f, Ext(A(x,s,1))

or equivalently
(Az.s, Az, Ar Ext(A(x,s,1))).

However, only the Oth and 1st codes are needed here, so that the declaration is {0,1}. The
marking of 3y.2z. A(r,v.2), {0,1}, is determined according to the inference rule (v-I) and the
declaration. For the node, 3z. 4{z,s,z), the Oth code of the realiser sequence is the 1st code
of dy.Jz.A(=z,v,2), so that the marking is {1}. For A(x,s,t), no realiser code is necessary here,
so that the marking is ¢. ¢ and s should also be murked by {0}, which indicates that s and ¢
themselves are necessary. Conszequently, the following tree is obtained:

]

— () % e,

(s} oy (3= Az s 2))y)
{3y. 3z. Alz,¥,2)) o1
(Vo dy. 3z Alz,y,2)} o

(3-I)

(3-1)

(1)

Definition 26: Marked proof iree
A marked proef tree is @ tree obtained from a proof tree and the declaration by the marking
procedure.

The marking procedure continues from the bottom of proof trees to the tops. The proof compi-
lation procedure, £xt, should be modified to take marked proof trees as inputs and extract part
of the realiser code according to the marking. It will be defined later. The formal definition of
the marking procedure, called Mark, is given in [Takayama 88b], but here, part of the definition
will be given rather informally to make the idea clearer.

(1) Marking of the (3-) application

— 30

By definition, the Oth code of

‘e the term which is the value of 7 bound by 3. Let I be the marking of the conclusion, then ¢
chould be marked {0} if 0 € I, otherwise the marking is ¢. The marking of A(1) is given as all
marking numbess in I except 0. However, note that the tth code (0 < 1) of 3z, A(x) corresponds
to the 1 — 1th code of A{t). Consequently, the marking of A(t) is (I = {0}) = 1 where, for any

. . lef -
finite set of natural numbers, JX, and any natural number, n, K =n'= {a—nla € K An < a}.

(2) Marking of the (3-E) application

Byv the definition of the Ext procedure, the realiser code of C' concluded by the following inference
is obtained by instantiating the eode from the subtree determined by the minor premise by the
code from the subtrec determined by the major premise:

[z, A(=)]
Zo &
dJz. Alr) C (3-E)

c

where 4(z) contains = as {ree variables.

Hence, both the marking of C as the conclusion of the above tree and the marking of C as the
miner premise are the same. The marking of the subtree determined by the minor premise can
be performed inductively. Let J and J be the union of the marking of all occurrences of the
swo hypotheses, z and A(z). Note that J is either {0} or ¢.

[{z}s {A(z)} Kl
ED El
Jz. A{z) {C}1 _
e (FE)

The marking of the subtree determined by the major premise is as follows:
Case 1: J = {0}
This means that the following reasoning is contained in the subtree determined by the minor
premise:
(z) P(z)
Jy- Ply)
and the marking of (x) is {0}, so that z should be extracted from the proof tree determined
by the minor premise, C. Consequently, the Oth element of the sequence of realiser codes of
3z1. A{r), which is the value of 7 in A{z), is necessary to instantiate the code from the subtree
determined by the minor premise, so that the marking is:

Lo
{3z, Alz) Hoyoue+n

(1)

Cage 2t J=4¢
This means that the value of r is nol necessary to instaniiate the code from the subtree deter-
mined by the ininor premise, so that the marking 1s:
o
{3z Alz)}ra

= 1

(3} Marking of the {v-E) application

The realiser code of C concluded by the following inference

(4] (5
LI o5
-l‘ll'i"rB C'G cl {V‘E}

isan if Ty then T\ else Ty type code where Ty and T3 are sequences of the same length (because
both are the codes of C), =o that € as the conclusion and twe C's as minor premises should
have the same marking. Ty and T are obtained by instantiating Ruv{A) and Ru(B) in the code
extracted from the subtrees determined by the minor premise. The code extracted from the
subtree determined by the major premise is used both to make Ty and for the instantiation of
Rv(A) and Ru(B). Let I be the marking of the conclusion, then the marking of the subtrees
determined by the minor premises can be determined inductively. Let J; and J; be the unions
of markings of all A5 and Bs as hvpotheses:

{t4l}s {8}
1] E] EQ
AV EB

€ Tl .p

{Chr
The marking of the subtree determined by A vV B is as follows:
Case 1: T=¢
This means that it is not necessary to extract any code from this proof tree, so that, of course,
no code from the subtree is necessary:

Lo

{AV EB}a

Case 2: T #£ ¢

Code Tp is the decision procedure that decides which formula in A and B actually holds, This
is obtained in the Oth cade of the sequence of realiscr codes of the subtree determined by AV B.
Also, the codes to be assigned to {[A]}j, and {[B]},, are obtained in the remainder of the code
from the subtree, so that the marking is:

Eo
{AV B Hounus

where Jo = Jo + 1and J, = J; + I{A).
(4) Marking of the (3-F) rule

The realiser code of A D B is of the following form:

AT (ta,- -, i) = {.:".E.!m Lrey A.E.Eg}

and (ty,--,t;) is the code of A 3 B which contains the variable sequence T(= Ru{A4)) as free
variables, so that the length of the code frem A O B is the same as that of B. Let I be the
marking of the conclusion. Then, the marking of A 7 B should also be I

o T
A {AD B,
{Bh

3

(2-E)

Tiie marking of the subtree determined by A is as follows.

Case 1: The application of (2-E) 1s part of the cul:

The realiser code of A us the minor premise is restricted by the marking of A as a hypothesis
of the subtree determined by 4 O B. Let I be the marking of B, and let J be the union of the

marking of As as a hypothesis:

{4l
Ly
Iy —E (o)
P {A2 B}s
(2-E)
{B}I
Hence, the marking of the subtree is:
o
Al

Case 2: Cut-free proof

The marking of A O B restricts only the length of output sequence AZ. (to,--- ,1g), and, for
the input, all the values of the variable sequence T are necessary. Specifically, it may hap-
pen that some variables in T are not used in a particular output subsequence, AZ.(tig, -+ 1)y
{tigs=2ti} © {to,--,t&}. These redundant variables cannot be detected by the proof theo-
retic method. However, this cannot always be seen as redundancy; Mz,y)zr and Ar.x is to be
seen as a diffierent function. Consequently, the marking of the subtree determined by the minor
premise is trivial,

4.4.4 Critical applications
(1) Induction hypothesis and marking

The programs extracted from induction: proofs are recursive call programs. For simplicity, it is
assumed in the following description that induction steps are proved without any application of
ancther induction, and induction always mecans mathematical induction here. If the recursive
call program, f, extracted from the induction proof

fA(z)]
o E;

is a program that culculates a sequence of terms of length n{= I(Wz.A(z))), every recursive call
of f must calculate the sequence of realiser codes of the same positions, so that the marking of
not only A(0), 4(z+1) (conclusion of the induction step} and Yr.4(z) but also A(z) (induction
hypothesis) should be the same. This raises a question: are the markings of Alz+1) (conclusion
of the induction step) and A{z) (hypothesis of induction) by the Mark procedure always the
same? Actually, if the (V-E), (3-E), (3-E) and (A-I&E) rules are used in the proof of induction
step, the answer is not always affirmative.

The rest of this section is dedicated Lo the analvsis of these critical applications of the rules.

(2} Critical (V-E) and {3-F) applications

— 33 —

Let A(x) < 32 : nat. B(z) Vv C(z) where B{z) and Clx) are some formulae with z as free

variables. Suppose that ¥z : nat. A{x) is proved by mathematical induetion, and the induction
step proceeds as follows. 3z. B{z) Vv C(z) is the induction hypothesis.

=] []
[B(z)] {C(=)]
_ T b1
B(z)v C(z)] Alz+1) Alz+1)
[B=. B(z) v C(z) Az + 1) (V'El'ﬁ_b_}

Alz +1)
If the declaration of ¥z. A(z) is {0}, the marked proof tree is as follows:

{l=e{[B(2)}}; {=}e{lC(z)]},

Eos Ly
(Bz) v (), 1A+l {42+ Dby, p
_{PL B(z)v C(z)l}, {Alz+ U}

(A + gy TEE

where Epo and Iy are the suitably marked versions of Iy and £y 1 and J are the union of
the markings of B(z) and C(z), and P and @ are the union of the markings of as hypotheses.
Note that P and @ are either {0} or . Then K and L are as follows:
Case 1: PUQ = {0}

K={0yu(I+1)u(J+{B(z))

L={0}U(K +1)={0,1} U(T + 2 U(J +I(B(z)) + 1)

Case 2: PUQ =¢
K={0yuiI+1)u(J+1{B(z))
L=K+1={1}u(I+2)U(J+1B(x))+1)

On the other hand, because 3z. B{z)V C(z) is the induction hypothesis, it should have the same
marking as Vz. A(z), i.e., {0). However, the marking of the induction hypothesis, L, contains a
1 that is not contained in the marking of ¥z. A(z). This indicates the fact that it is necessary
to specify more codes in the realiser sequences than one expects when (V-E) and (3-E) is used
below the deduction sequence down from the induction hypotheses.

The reason for this phenomenon is that the realiser code of A V B consists not only of the code
of 4 and B but also of the left or right code, so that the marking of 4V B must contain 0
except in a few special situations. A similar thing can be said about the marking of Jz. A(z)
type formulae.

Definition 27: Thread
Let § & (A1, Az, -+, An) be a sequence of proof occurrences in a formula tree, M. Then Sisa

thread ift

(1) A, is a top-formula in II;

(2) A; stands immediately above Ay in I for each i < n;
(3) A, is the end-formula of JI.

Definition 28: Segment

del 3 R . .
Let §°= (A, 43, -, A.) be a sequence of conseculive formila occurrences in a thread inoa

-

proof tree, Il Then 5z a sepment iff

(1} A, is not a conclusion of the application of (V-E) or (3-E}.

(2) For arbitrary i (< n). A; is a miner premise of an application of (V-E} or {3-E).
(3) An is not 2 minor premise of any application of (V-E) or (= EJ.

Note that all formuln occurrences in a scgment are of the sane form. Any formula cccurrence
A in a proof tree IT that is not a conclusion or & minor premise of the application of (V-E) or
(3-E) is a segment by (1) and (3) of the definition. This kind of segment will be called a trivial
segment in the following descniption.

Definition 29: Major premise attached io & formule
The major premise of the application of (V-E) or (3 E) that is side-connected with a formula
4 in a segment is, if it exists, called the major premise alleched to A,

Definition 30: Proper segment
The segment in a marked proof tree [Tis called proper iff every formula occurrence in the segment
has non-trivial marking.

Definition 31: Path

Let 5 aef (A1, Az,--+,An) be a sequence in a deduction, IT. 5§ is a path iff

{1) A; is a top-formula in 1T that 15 not discharged by an application of (V-E) and (3-E).

(2) Aj, for each i < n, is not the minor premise of an application of (2-F), and either {(a) 4,
is not the major premise of (V-E) or (3-E), and A;;, is the formula occurrence immediately
below A4;, or (b) A; is the major premise of an application of (V-E) or (3-E), and A4 is an
assumption discharged by the application in IL

(3) A, is either a minor premise of {2-E), the end-formula of II, or a major premise of an
application of (V-E) or {3-E) such that any assumptions are not discharged by the application.

Definition 32: Main path
The main path in & proof tree, I1, iz the path whose last formula is the end-formula of 11

Definition 33: Critical segment

Let TI be a subtres of the induction step proof in a proof tree in induction. A proper segment,
o, in 11 is eritical iff there is a formula oceurrence, 4, in o such that the major premise, B, at-
tached to A is a formmula occurrence in one of the main paths of II from the induction hypothesis.

(3) Critical (2-E) applications

Suppose that the induction hypathesis is used as a hypothesis above & minor premise of {3-E)
and the proof is cut-free:

[A(=)]

E{I‘ E'l
BoC
_..i—c . D—-Q{]-E:I
Il
Alz +1)

Then the marking of B is trivial, so that [A(z)] has trivial marking. In this case, the correspon-
dence between the markings of induction hypotheses and the conclusions of the induction step
holds only if the marking of Alx + 1) is trivial,

== 35 =

Definition 34: Criticel (D-E) application

If there i a path from the induction hypothesis to a minor premise, 4, of an application of
(D-E), 4 is called the critical (D-F) premise, and the application is called the eritical (0-E)
apphication.

(4) Critical (A-T&E) applications

Assume that the induction hypothesis is of the form 4 A B and the end-formula of the proof is
A" AB. 4and A" are of the same construction and differ at most in some atomic formulae. B
and B are of the same relation. Assume that the proof is as follows:

[AAB)
A
IIp L
4' B
a4' s o

Let I be the non-nil marking of 4" A B, and assume that {ala € T Al(A") € a} = I. Then
the marking of 4" is ¢ so that the marking of the induction hypothesis, 4 A B, is also ¢, i.e.,
different from I. This situation is problematic in terms of the correspondence of markings of
induction hypotheses and conclusions of the induction steps. The restriction on declarations in
Section 4.4.2 prevents this sort of situation.

(5) Soundness of the marking procedure

Theorem 3: [Takayama 88b]

Suppose that a formula, Vz.A(z), is proved by mathematical induction, and that I is an arbitrary
declaration of the conclusion. Let Il be a normal deduction of A(z) F A(z + 1), and assume
that there is no critical (A-T&E) application in Il:

[Af=z)]
Alz +1)
A{0) T+ .
Vo A(2) (nat-ind)

(1) If11 has a critical (D-E) application in one of the main paths from the induction hypothesis,
[A{z)], its marking is nil.

(2) If 1 has no critical (O -E) application or eritical segment, the marking of the induction
hypothesis by Mark, [A(z))], is trivial

(8} Otherwise, the marking of [A(z)] is I.

According to the theorem, the declaration of the conclusion is as follows:

Case 1: If the proof tree of the induction step has the critical {3-E) application in one of the
main paths from the induction hyvpothesis, the declaration must be trivial.

Case 2: If the proof tree of the induction step has no critical {3-E) application or critical
segment, the declaration may be arbitrarv.

Case 3: If the proof tree of the induction slep has no critical {D-F) application but has eritical
segments, the declaration must be enlarged to eliminate critical segments. In this case, the
marking of the induction hypothesis, S, and the initial declaration are different, so that the
éeclaration should be same 85 S and the marking be performed again.

4.4.5 Modified proof compilation: N Ex!

The proof compilation should be modified to handle wsked proof trees. The chief modifications
are:
1) if the given formula, A, is marked by {ig, 14}, extract the code for the yth (0 =1 < k)

realizing vanable in o4},
2 if formula A is marked by ¢, no code should be extracted and there is no need to analyse the

subtree determined by A;

3) if formula A is trivially marked, all the codes for Rv{A) should be extracted.
The following is the definition of the modified version of the Ext procedure, N Ext.

(1) Assumptions:
NEzt({[A]}7) & proj(I)(Rv(A))

{2} Atomic formulae or axioms:

T {Aﬂ}uﬂa {Ai.]',h, e el i
NE f(B (Fad })]

where B is an atomic formula or an axiom

{(3) A and V formulae:
Ty Lo

{Ao}r {-l‘ln-ui.- det (To) (Tho1)
NExt L Lia-T = (NEzi| —=—=], NExt | =——————
* N {Ag Ao NA l (A1) { {Aokr, {An-1}incy)

T
Note that if I; = ¢, NExzt (!) =(ml) t=0---1
{Ai}r

N

—d

r {Ao A NAna}s o | def z)
L] hEIt {A.]‘j‘ {h E) P”E t {An R ."‘\.Ara-i}ur

where { = (J+++m = 1.

s NETi | - {4} (V-1) def | “f‘ﬁ N Ezt ({A} \1 canylk]) f0eT
{AVE}I {NEIE({A}) ﬂﬂJ[I]} ifﬂﬁ'f

z y ‘
 NEzt {B}; v-I) et | lrzghi any|k], N Ext ({B}) iw0el
{AV B}; {anyll], ¥ Ext (?1;}}_.4) d0e]

where b =T | =(1+|JJandI=[T|-|J]

— 37 —

{4} The code from the (V-E) rule:

{{4l}s {8}

EIZI E] Eg
1AV By, {C)y {ICh ..
15 as follows:
{[4]} 5 {[B]} »
a)if Athen NEzxt —Z else NExt | —22 modified V code]
{Chs ‘\ {Ch

when both A4 and B are equations or ineguations of terms
Note that, in this case, Jy = J; = ¢

) {1A]} 1B,
. _ . . 0 e 5 ofe T
b) i f left = proj(0) (!\E.ﬂ (_m_{AVE};n)) then N Ext —{-Eh— 6 else NErt {C?}; g
otherwise

o
T4 3 i 19 WNEz [—=2
where § & proith)(Re(A))presiJo+1) (; ({"’- V B}y,)) ’

Lo

proj(Ja)(Ru(B)}proj(Jy + (14 | Jo |)) (”Eﬂ (—{A V B},

{5} The codes from the (3-I) and (¥-1) rules:

[z : o])
A=) y
. i . def oy N ")
L] .r'-E.’I:'t {"I"II:J.. .&(E}}]{V I} = Ar. JF'I'Fxt {A(T}}f
1[4},
{E} {{Al}s
i 1 def .
* NEzt| 5By, (0D | = A preil)(Ru(A)). NEst |~

J is the union of all the markings of A used as assumptions.

(6) The code that is in the form of a function application is extracted from the proofs in (D-E)

and (V-E):
Note that proofs must be cut-free.
o 5
. A {42 B}, def (-) . (Eu))
» NExzt -E) | = NEzt|{ ———— | [NEzt| —
gy B | e (s) (Ve (3

—() T .
. t:0 Wz o Alz)lr det o (E)
. P-rErt(T (v E}J < NEt (w3) @
(7) The codes fromn the (3-1) and (3-E) vules:

bH - T 1

N B IS PR O] T P {i’hﬂzt(_—{ﬂ{fj};;)j ifJ #¢
o NExt o A (3-1) | = - S o
: ’“({A{t)};—; #=e

[z : e} 5, {A{x}}e]
B

Gro A1) an
{Ch

o VExt

(3-E)

— ([{z : «}Hé{arzzm.]) E
{Chs

. {wi{L](Rv{MI}J}!!m{I) (¥8et (e ®))
where £ = Y

2/proj(0) (Nf-f-f ('{'3:_ co.)]s

(8) The code extracted from a proof in (L-E} rule:

o NExzt (—l—g—) L anylk] where k = |I]
- (L-E)
{A}s

(9) The realiser code extracted from the proof from induction proofs:

[I : nu!.{.‘i(:l::l};]
ED E]
oy | O TAGueeEDl
Nzt {¥r :nat. A{z)}; (nat-ind)

[z : nat, {A(z)}4]
L,
{A{suec{z)}r

. . Lo
def p T A a if =0 then NExt () elsg N Ext
= ! 1A(0)}r

)

where 7 = proj(1)(Rv(A(z))),and o = {z/Z(pred(z}), z/pred(z)}

— B0 e

[a : nat.x © Linai), {Alz}} 1]
Eu. =]

{A(NTL)}; fA({cons(a.x})};
{%z: Linat). A{z)};

s NExt { L{nat}-ind)

>
F Az ifz=N n NEgt | —=8
pz oAz if x=NIL then NExt {A[NIL]I};)
oot [a : nat.x : Lnat), {A{z)}/]
= else N Ext 2 a

{A{consia, r))};
where T = proj(I)(Jtv(A(z))), and o = {£/2(tl(z)), =/21(z)]

{10} Trivial marking:
NExt (-Ai:—é—if{.ﬁufej) el o (%ﬁifﬂui’e}}

The following theorem shows that Afark and N Exf can be seen as an extension of the projection
function on the exirected codes.

Theorem 4: Soundness of the NEzt procedure
Let A be a sentence and I} be the declaration. If Fqpe A and 11 is its proof tree, then

proj(D)(Ext(I)) = N Ext(Mark(I))

Proof: Straightforward g

The following program is exirzacted by declanng {0} to the specification and applying the N Ext
procedure accompanied by Mark to the proof obtained in the previous section.

A Z,a}iZn.
g% z ((pze. Az. if T = 0 then Ay.any[l]
else if pred{z) = 1 then Ay, _qg Ay.any(l]
else Ay. if v < pred(z)
then (zq pred(z) y)
else g2 (zp pred(z))) z)

where

g2 BN zg.if 2 = 0 then dm.m else Am. (20 (m mod z) 2)

5. Conclusion

This paper prescnted 2 programming system based on a constructive logic, QJ. It is not a
coding support svstem, and the goa! of the design i to provide an environment for researchers in
which document processing and implementation of the algorithms can be performed in uniform
way. A programming logic, QPC, a sugared subset of QJ, was defined, and g-realisability

interpretation was reformulated as the program extraction procedure, Eat. The document
deseription language, PDL-QJ, which is the mathematics vernacular of QPC, allows us to write
in the natural style as scen in ordmary mathematics textbooks. The Ezt procedure does not
always generate efficient executable cades. Three kinds of redundancy in the code extracted by
Ext were pointed out, and the proof normalization method and the modified V code method
were investipated to reduce the redundancy. Finally, a technique to generate redundancy free
codes, the extended projection method, was given.

Acknowledgment

Thanks must go to Mr. K. Sakai of ICOT first laboratory with whom 1 discussed the basic
design of the programming environment on the CAP-LA system. My thanks must also go to
Dr. C. Mohring and Dr. G. Huet of INTA, Professor M. Beeson at San Jose State University,
Professor 1. Bates at Carnegie Mellon University, Mr. §. Goto of NTT Lab., Professor S. Hayashi
at Kyoto University, Mr. T. Sakurai at Tokvo Metropolitan University, and Mr. Y. Kameyama
at Tohaku University who game me many useful suggestions, I also extend special thanks to
Professor T. Itoh and Professor M. Sato at Tohoku University for encouraging me in my work
and giving useful suggestions.

REFERENCES

[Aho 74] Abo, AV, Hoperoft, J.E., and Ullman, 1.D., “The Design and Analysis of Computer
Algorithms”, Addison Wesley, 1874

‘Bates 79] Bates, J.L., “A logic for correct program development™, Ph.D. Thesis, Cornell Uni-
versity, 1970

(Bates 85) Bates, J. L. and Constable, R., “Proofe as Programs”, AMC Transaction on Fro-
gramming Languages and Systems. Vol. 7, No. 1, 1985

[Beeson 83] Beeson, M.J., “Proving Programs and Programming Proofs”, in Legic, M ethodology,
end Philosophy of Science VII, Barcan Marcus, R. and Dom, G.J.W., Weingartner, eds.,
North-Holland, Amsterdam, pp.51-82, 1983

[Beeson £5] Beeson, M.J., “Foundation of constructive mathematics™, Springer-Verlag, 1985

[Buchberger 83] Buchberger, B. “Grobner bases: An Algorithmic Method in Polynomial Ideal
Theory”, Technical Report, CAMP-LINZ, 1983

[Chishelm 87] Chisholm, P., “Derivation of Parsing Algorithm in Martin-Lof's Theory of Types",
Science of Computer Programming Vol. &, North-Holland, 1987

|Constable §6] Constable, R.L., “Implementing Mathematics with the Nuprl Proof Development
System”, Prentice-Hall, 1880

|Cogquand 86] Coquand, T. and Huet, G., “The Calculus of Constructions”,
Rapports de Recherche N° 530, INERIA, 1956

lde Bruijn 80] de Bruijn, N.G., "A Survey of the Project AUTOMATH”, in Essays on Combi-
natory Logic, Lambda Caleulus and Formalism, Academic Press, pp.579-606, 1980

|Feferman 78] Feferman, S., “Constructive theory of functions and classes”, in Logic Colleguium
‘78, North-Holland, Amsterdam, pp.159-224, 1978

[Goad 80] Goad, C.A., “Computational Uses of the Manipulation of Formal Proofs”, Ph.D.
Thesis, Stanford University, 1930

[Gordon 79] Gordon, M. J., Milner, A. J.. and Wadsworth, C. P., “Edinburgh LCF", LICS Vol.
T8, 1979

|Goto 79] Goto, S., “Program synthesis through Godel interpretation”, LNCS Vol 75, Springer-
Verlag, 1579

[Goto 85] Goto, 5., “Concurrency in Proof Normalizetion”, ITCAI-85, 1985

[Hayashi 8G) Hayashi. 5., “PX: & system extracting programs from proofs”, Proceedings of Ird
Working Conference on the Formal Description of Programming Concepts, Ebburup, Den-
mark, North-Holland, 1886

[Hayashi 87] Hayashi, S. and Nakano, H., “PX: a computational logic”, RIMS-573, RIMS, Kyoto
University, 1987

[Hirose 86] Hirose, 1., “An Approach to a Proof Checker”, LNCS Vol. 233, Springer, 1956

[Howard 80] Howard, \W.A., “The formulag-as-types notion of construction”, in Essays on Com-
binatory Logic, Lambda Calevivs and Fermalism, Academic Press, pp.479-490, 1930

[Huet 86] Huet, G., “Formal Structure for Computeiion ond Deduction”, lecture given at CMU,
1986

[Huet 87] Huet, G., “Induction Principle Formalized in the Caleulus of Constructions”, TADP-
SOFT'8T, LNCS Vol. 250, Springer-Verlag, 1987

[Huet 88] Huet, G., “4 Uniform Approach te Type Theory, (to appear)

[Kleene 45] Kleene, S.C., “On the interpretation of intuitionistic number theory”, Journal of
Symbolic Logic Vol. 10, pp.108-124, 1945

[McCarty 84] McCarty, D.C., “fcalizability and Recursive Mathematics”, Ph.D. Thesis, Oxford,
19384

[Martin-L&f 82] Martin-L&f, P., “Constructive mathematics and computer programming”, in
Logic, Methodology, and Philosophy of Science VI, Cohen, L.J. et al, eds,, North-Holland,
pp.153-179, 1982

iMartin-Lof §4] Martin-Laf, P., “Intuitionistic Type Theory”, Bibliopolis, Napoli, 1954

[Martin-Lof 85) Martin-Laf, P., “On the meanings of the logical constants and the justifications
of the logical laws" | lecture given at Sicna, included in Proceedings of the Third Japanese-
Swedish Workshop, Institute of New Generation Computing Technology, 1985

[Moliring 86] Mohring-Paulin, C.. “Algorithm Development is the Calculus in the Construc-
tione”, Proceedings of Symposiumn on Logic in Compuier Sectence, 1986

Mohring 88] Mohring-Paulin, C., 1988, personal communication

4?-

[Nordstrom €3] Nordstrom, B. and Petersson, 1$., “Types and Specifications”, Information Fro-
cessing 83, pp-015-920, 1953

[Nordstrom 83] Nordstrom, B, and Petersson. IX., “Programming in constructive set theory:
some examples”, in Proceedigs of 1981 Conference on Functional Programming Language
and Computer Architeciure, pp.141-153, 1983

[Prawitz 03] Prawitz, ., ¢ Natural Deduction”, Almquist and Wiksell, Stockholm, 1965

[Sakai 86) Sakai, IL., “Toward Mechanization of Mathematics - Proof Checker and Term Rewrit-
ing System”, France-Japan Artificial Intelligenece and Computer Science Symposium '86,
ICOT, 1986, also to appear in Programming of Future Generation Computers, ed; Fuchi,
I{., and Nivat, M., Narth-Eolland, 1988

[Sasaki G| Sasaki, J., “Eriructing Efficient Code From Constructive Proofs”, Ph.D. Thesis,
Cornell University, 1956

{Sato §5] Sato, M., “Typed Logical Calewlus™, Technical Report 85-13, Department of Informa-
tion Science, Faculty of Science, University of Tokyo, 1985

[Sata §6a) Sato, M., Lecture given at the University of Tokyo, 1986

[Sato 86b] Sato, M., "QJ: A Constructive Logical System with Types”, France-Japan Artificial
Intelligence and Computer Science Symposium 26, Tokyo, 1986

[Sato 87] Sato, M., “Quty: & Concurrent Language Based on Logic and Function”, Proceedings
of the Fourth International Conference, MIT Press, pp. 10341056, 1987

[Smith 8§2] Smith, J., “The identification of propositions end types in Martin-Lol’s type theory:
a programming example”, LNCS Vol. 158, Springer-Verlag, 1982

(Takevama §7a] Takayama, Y., “Writing Programs as QJ-Proofs and Compiling inte PROLOG
Programs”, Proceedings of 4th Symposium on Logic Programming, 1987, also published as
Technical Report TR-244, ICOT

[Takayama 87b] Takayama, Y., “On the Extraction of Grobner Base Algorithm from the Con-
structive Proof”, unpublished manuscript, 1987

[Takayama §7c] Takayama, Y., “On the extraction of matrices calculation programs from con-
structive proofs”, unpublished manuscnpt, 1957

[Takayama 87d] Takayama, Y., “Proof Parameterization Method in Constructive Logic”, Tech-
nical Report TR-245, ICOT, 1987

[Takayama 88a] Takayama, Y.. “QPC: QJ-based Proof Compiler ~Simple Examples and
Analysis”, Proceeding of European Symposium on Programming ‘88 LNCS Vol. 300,
Springer-Verlag, 1988, also published as Technical Report TR-296, 1ICOT

[Tekayama 88b] Takayama, Y.. “Prool Theoretic Approach to the Extraction of Redundancy-
frec Realizer Code”, Technical Report, ICOT, 1888, (to appear)

[Takayama 88¢] Takayama, Y., “Proof Compilation of Induction Proofs in the QPC System”,
unpublished manuscript, 1838

[Troelstra 73] Troelstra, A.S. “Mathematical investigations of intwitionistic arithmetic and
analysis”, Springer Lecturc Notes in Mathematics, Vol. 344, 1973

43

Appendix: Sample Cading in PDL-QJ

function length: L{nat) =--> nat
attain
length = mu [z]. Fun [X]. if X = nil then 0 else z(t1(X)} + 1

end _function

function elem: nat # L(nat) --> nat
attain
elem = mu [z2)}. fun [I, X]. if I = 0 then %abort}
else if I = 1 then hd(X0 else z(I-1, t1(X)})

end function

theorem SIMFLE.EXAMPLE:
all X:L{nat). some Y:L{nat).
(length(X) = length(Y)
£ all I:inmat. (1 =< I =< length(X) -» 2=elem(I, X) = elem(I,Y)))
proof
since induction on X : Li{nat)
base [+ X = nil =/
length(X) = length(nil)
all I:nat. (1=<I=<length(X) -> Z+elen{I,X) = elem{I, nil)
since
let I:nat be such that 1=<I=<length(X)
contradictien
hence Z=elem{I,X) = elem(I,nil)
end._since
hence concluded
step /* net (X = nil) =/
let a:nat, X:L(nat) be arbitrary
ind hyp-is
some z:L(nat).
(HYP.1: length(X) = length(z)
& HYP.2: all I:nat. (1=<I=<length(X) -> 2%elem(I,X) = elem(I,z))
length{a.X) = length(X) + 1
length(2#*a.X) = lenpth(X) + 1
hence length(a. X} = length(2=*a.z) by HYP.1
all I:nat. ({1=<I=<length(a.X) -> 2=elem(l,a.X)=elem(l, 2%a.z))
since
let I:nat be such that
1=¢I=<length(a.X)
then 2#elem{I,a.X) = elem(I,2=a.z)
since divide and cenguer I=f | 2=<I=<length{a.X)
case I=]
Z=elem(I,a.X)
== 24[if I=0 then $abori$
else if I=1 then hd(a.X) else elem(I-1,ti{a X))
= 2*hd(a.X) = Iwa

44 —

elem(I,27a.2)
== 4f I=0 %then Sabort¥d
else if I=1 then hd(2+#a.z) else elem(T-1,t1(2*%a.z})
= hd{Zwa.z) = Z*a
hence 2*elem{I,a.X) = elem(I,2%a.2)

case 2=<I=<lengthia.X)

Label i: 2+*elem(I,a.X)
== g#[if I=0 then Sabort¥d
else if I=1 then hd(a.X) else elem(I-1,t1{a.X))]

= sxelenm(T-1,t1(a.X)) = Z+elen(I-1,X)
on_the.sther hand
g=¢I=<length{a.X} by assumption
length(a.X) = length(X)+i
hence 1=<I-1=<length(X)
hence LABEL.2: 2=elem(I-1,X) = elem(I-1,z) by HYP.2
hence Z+elem(I,a.k) = elem{I-1,z) by LABEL_1,LABEL 2
elem(I 2*a._z)
== if T=0 then $aborti

else if I-1 then hd{2#a.X) else elem(I-1,tl(Z%a.z))
= elem(I-1,t1(2#a.z)) by assumptiion
= elem(l-1,2}
hence 2*elem(l,a.X) = elem(I,2*a.2)

end._gince

end._since

hence concluded

end.since
end_proof

=45 =

