ICOT Technical Report: TR-410

THR-410
Muacro Processing in Prolog

hy
5. Kondoh (Mitsubishiy and T, Chikayama

Julyv. 198K

A TUES, 1COT

Ao ookesad Blog, 21 TR TR L N

IGDT 4=26 Mita -Chonie e OO

Mimato Ky Tokve 108 Lipee

1.-'._'!:1i i

Institute for New Generation Computer Technolﬁg;

MACRO PROCESSING IN PROLOG

SEI-ICH KONDOH

Information Systems and Electronics Development Laboratory,
Mitsubishi Electric Corporation,
Kamakura-shi, Kanagawa, JAPAN

TAIKASHI CHIKAYAMA

Institute for New Generation Computer Technology (1COT),
Minato-ku, Tokyvo, JAPAN

ABSTRACT

Macro expansion capability is introduced to Prolog. Macros are de-
fined 1o the same way as Prolog clauses are defined, and are expanded
anywhere in a program, including both heads and bodies of clauses,
and also by clauses themselves. The proposed macro mechanism not
only replaces the original macro in place, but also inserts goals and
auxiliary clauses. Various extensions to Prolog can be casily imple-
mented using the macro feature. The syntax of macro definition and
its expansions along with their rules are presented. Typical examples
are also presented.

1 Introduction

Macro expansion is a very powerful tool of program abstraction.
Abstraction using macros is very similar to that provided by sub-
routines. Maecros differ from subroutines in that inline expansion is
explicit for macros, while inline expansion may be used as an op-
timization technigque for subroutines in smart compilers. In some
cases, implicit optimization withoul botlhering the prograuuner is
desirable. Yet, in other cases, the programmer may want to specify
the expansion explicitly, if he has a little more intelligence than the
optimizing compiler.

Macros are frequently used in the two major language families,
namely, assembly languages and LISP languages. Although the no-
tions of macro expansion in the two language fumilies look quite
similar, there is & crucial difference between them.

Macros in assembly languages are written in a specially devised
macro definition language, a meta language for the assembly lan-
guage. Though the syntax of the expansion language usually resem-
bles that of the assembly language itself, it is a different language
indeed. When macro expansion capability is introduced to an assem-
bly language, the langnage has to be augmented with a totally new
set of instructions (a conditional assembly instruction, for example),
and programmers using the language are also asked to learn those
new features in order to fully utilize the newly introduced capability.
Macros in language C arc the same as those of assembly languages
in this sense.

The situation is utterly different with LISP. Macros are expanded
using LISP itself. In other words, LISP itself is chosen to be the
meta-language. Thus, all that is nceded to introduce macro expan-
sion capability to a LISP system is only to implement the expansion
capability itself. The only extra that programmers have to learn is
how to access arguments to macros within macro definitions, how to
convey the expanded result to the system, ete. All the essential part
of the macro expansion can be written in LISP itself. This is made
possible by the fact that programs can be easily handled as data in
LISP.

Prolog has the same characteristic as LISP; programs can be
nicely processed as data by themselves. Details of expansion can be
written in Prolog itself, and, without any doubt, it is much easier
to write programs which generate parameterized patterns in Prolog
than in LISP, thanks to its powerful unification and backtracking
mechanisrms.

2 Motivation

In Prelog, argumnents of body goals are treated as data and are never
eveluated except for some special built-in predicates. Functional
notation, however, is sometimes very convenient.

[Example 1] Mathematicul uperation in arguments

p(X,Y) := q(X-1,Y).

In this example the predicate g should be given an argument one
less than X which should be computed as follows:

p(X,Y) = X1 is X-1, q(X1,¥Y).

As a functional notation in the head argument is considered to be an
output, subtracting 1 from X should be done in the tail of its body.

p(X,X-1) :~ integer{X).
===> p(X,X1) :- integer(X), X1 is X-1.

If both patterns can be speaficd using a Prolog clause itself as
follows, 1t 1= very convenient.

i-Y =» Z when Z is X-Y.

Such a mechanism can be achieved if an interpreter is invoked
ut runtime whenever the specified patterns appear. Unfortunately.
interpretive cxecution is usually 20 - 50 times slower than compiled
execution. Thus, the interpretive method is not practical. In this
paper, we show a mechanism which implements these functions using
macro expansion at compilation time, not runtime.

3 Requirements

The simplest macro expansion rules are those which replace some
pattern appearing as an argument of a head or a body goal.

[Example 2] Radix conversion and character code conversion

p(lE&"A",X) :- q(X,ascii#"a").
===> p{10,X} :- q{X,65).

In Lisp, as arguments of function calls are evaluated, macro-ex-
panded results are also evaluated. In Prolog, data are explicitly dis-
tinguished from executed goals and arguments are never evaluated.
Thus functional notation for arithmetic operations like in [Exam-
ple 1] cannot be treated well by in-place replacement. The macro
expansion mechanism must be able to insert additional goals.

When the inserted goal requires certain conditional or recursive
behavior at runtime, some new elauses are also added to the pro-
gram.

[Example 3] Replacement of a mapear macro with a list which
consists of absolute values of all elements of the given list.

p(List) :- q{ mapcar(abs,List)).

== p(List) :- $(List,Result), q(Result).
(00,00 .
$([XIRest], [Y|Taill) :-
aba(X,Y), $(Rest, Tail).

In order to convert each element in the list whose lenglh is not
known at compilation time, a new predicate including a loop struc-
ture, “§” in the ahove case, and a goal which calls it is generated.

In the above examples only arguments of goals are considered to
be macros. The following patterns are also considered.

(1) When an argument is a structure, its elements, and if some of
them are structures, their elements recursively, are expanded.

[Example 4] Elements of a list are considered to be macros.

P{I,Y] b q{[K+Y,I-Y]]+
—— chrY} -
add(X,Y,Z), subtract(X,Y,W), q([zZ,¥]).

(2) Expanded result of a macro may include another macro as its sub-
term which, in turn, will be expanded, including the cases where the
expanded pattern itself is another macro.

(3) Goals in the clause body are expanded. Their expanded patterns
are also gouls.

[Example 5]

p(L,X) :- every(L,q), r(L,X).
===3 p(L,X) :- $(L), r(L,X).
$([1).
$CLHITI) :- q(H), $(T).

(4) Clauses are expanded. Their expanded patterns will be a set of
clauses. DCG (Definite Clause Grammars) of DEC-10 Prolog [1] can
be implemented using this function.

These requirements arc summarized in Table 1. Data, goals, and
clauses are considered to be macros.

Another requirement for the macro expansion is that expansion
conditions and expanded results should he easily defined. Pralog has
the following advantages.

Table 1: Invecation Pattern and itz Results

Result
Invocation Data | Goals | Clauses
Data Replacement Insertion Insertion |
Goals - Iteplacement Insertion
Clauses - . - Replacement |

(1) Programs can be naturally processed as data.

(2) Unification mechanism can make expansion condi-
tions concise.

{3) Backtracking mechanizin can be utilized for specify-
ing complicated macro definitions easily.

Thanks to these mechanisms, especially (2) and (3), Prolog is
much more suitable for macro programming than LISP.

4 Macro Definition and Examples

4.1 Macro Definition

The macro definition has the following syntax. It consists of one
Prolog clause,

<pattern> "=»" <{expansion>
[<runtime conditien>]
[":-" <expansion-time condition>]

<Pattern® is the macro to be expanded. It will be replaced
with <expansicn>. <Pattern> and <expansion> may include logi-
cal variables. A sub-term in a macro, which appears at the position
corresponding to a vanable in <pattern> will be included in the
expanded result at the position where the same variable appears in
<expansion>. Following are examples of the simplest macro defini-
tions without runtime nor expansion-time conditions:

[Example 6]

(Di1) cne =» 1.
(D2) ++X => X + one.

T

In this case, every atom “ene” which appears in the source pro-
gram is replaced with integer 1 and every compound term “++X" is
replaced with another compound term “X+one”.

<Runtime condition> has the following format:

["when" <goals>]
["where" <goals>]
["with" <list of clauses>]

These conditions are also included in the expanded result. How
they are expanded will he described in the following sections.

<Expansion-time condition> is also a condition associated with
the macro expansion, but it is examined when a macro is expanded,
rather than being included in the expansion. It is for checking
whether the candidate pattern should really be expanded. It is
also used for generating patterns in <expansion> and/or <runtime
condition». When it fails, its macro is not expanded even if the
unification with <pattern> was successful.

Following are examples of macro definitions:

[Example T]

(D3) T*I => E when arg(I,T,E).
(D4) X+Y => 2 -

integer(X), integer(Y), add(X,Y,Z).
{Ds) X+Y => 7 when 244(X,Y.7).

The definition (D2) is for accessing structure arguments in a fune-
tional format. Two definitions in (D4) and (D5) are meant to al-
low functional deseription of arithmetical expressions. (D4} specifies
partial evaluation at macro expansion time. If both operands of an
addition are integer like “142" in the source program, it is evalu-
ated at macro expansion time, not runtime, without any semantic
difference. In this way an optimizaetion to specify partial evaluation
at macre expansion time is easily defined using <expansion-time
conditien>. When hoth (D4) and (D5) are given, {D5) will be used
only if expansion by (D4) fails.

4.2 Macro Expansion in a Clause Body

Macros appearing in a body of a clause, including cases where goals
themselves are macras, are expanded as follows:

{1) The candidate patiern is unified with the <pattern>
part of the macro definition.

(2) The expansion-time condition, if any, is executed
in the same way as in normal Prolog execution. If
unification (1) or exceution (2) fails, next macro def-
inition will become an alternative,

{3) The predicate call including the macro is replaced
by a logical conjunction of the following 3 parts:

1) the runtime conditions preceded by “when”,

2) the original predicate call with the con-
corning pallern substituted by the ex-
pansion,

3) the runtime conditions preceded by “where”.

{4) The clauses in the list preceded by “with" are as-
serted.

Macros are expanded when the term containing the macro i com-
piled, consulted or asserted. Even if a pattern looking like a macro 15
generated during program execution, macro expansion does not take
place.

Following are examples of macro expansions occurring in predi-
cate calls:

[Example 8]

(B1) f(M+2) ===> add(M,2,2), £(2) {D5)
(B2) g(++K) ===> g(N+one) (D2)
===> add(N,one,Z), g(Z) (D5}
===> add(N,1,Z), g(Z) (D1)

Macro expansions are tried only in a top-down manner. Once a
term is examined and is not recognized as a macro, it will never be
reated as a macro even if a later macro expansion of its sub-terms
has made the parent term unifiable with a certain macro pattern.

4.3 Macro Expansion in a Clause Head

Macros appearing in the head of a clause arc expanded in a shightly
different manner:

=1

(1) The candidate pattern is umbed with the <pattern>
part of the macro defimtion (the same as when ex-
panded within the body).

{2} The expansion-time condition, if any, is executed 1n
the same way as in normal P'rolog execution. When
unification (1) or execution (2) fails, next macro def-
inition will become an alternative (same).

(3) This step is different. The clause head including the
macro 15 replaced by the original head with concern-
g pattern substituted by the expansion specified in
the macro definition. The body, i.e., the right-hand
side of the clause, is replaced by a logical conjunc-
tion of the following in this order.

1) the runtime condition preceded by “where”,
2) the original body.

3) the runtime condition preceded by “when™.
{4) The clauses in the list preceded by “with" are as-
serted |swne).
FUJle'illg oare L‘}LHIH]J].L'E U.[II2ET0) C.\']Jil'il".:iiﬂllﬁ 0'.:'.:111'11‘.]1?’ i-ﬂ C].El.usc
heads,
[Example 9]

(06) op(::,xfx,200).
R::Type =>» X where Term

;= Term =.. [Type,X].
(C1) addi(N::integer,++N}.
===> addi(N,++N) :- integer(N). (De)
===> addi(N,F+cne) :- integer(N). (D2}
===> addi(N,M) :- integer(N), add(¥,one,M). (D5)
===> addi(N,M} :- integer(N), add(N,1,M). {D1)

Extensions like macros and functional notation in [3] can be easily
implemented using these macro definitions.
4.4 Insertion of Clauses

Newly generated clauses are also asserted using “with” definition of
<runtime conditionb.

[Example 10] Function is applied to each clement of the given list,
and the macro is replaced with the hist of results like mapear function
of LIST.

(D7) mapcar(Function,List) => Result
when $(List,Result)
with [C $([1,[1)),
($([XIRest],[VITaill) :-
Call, $(Rest,Tail))]
:= Call =.. [Function,X,Y].

(c2) p(List) :- q(mapcar(abs,List)).
===3 piLlist) :- $({List,Result), g(Result).
$(01,00).
$([XIRest],[Y|Taill) :-
abe(X,¥), $(Rest,Tail).

In the above example predicate names ($) will conflict when there
are several mapcar macros, This problem is solved by a mechamsm
which creates a new unigue atom.

4.5 Macro Expansion of a Clause

Clauses are also treated as a candidate pattern. A clause is replaced
with apother clause by the expansion and some new clauses may also
be inserted.

[Example 11] Generation of clauses of a given predicate with one
argument which is an element of the given list. One clause is gener
ated for each of the list element.

(D8} op(<-,xfx,1100).
{ Functor <= List } =>» void
% void means a null clause.
with Clauses
:= create_clauses(List,Functor,Clauses).
create_clauzes([],_,[1) := 1.
create_clauses({[OnelRest] ,Functor, [ClauselTaill) :-
Clause =.. [Functor,One)
create_clauses(Rest,Functor,Tail).

(C3) atomic_type <- [atom, integer, fleating_point].
===y atoemic_type(atem).
atomic_type(integer).
atomic_type(floating_point).

4.6 Controlling Macro Expansion

When a pattern unifiable with some macro pattern should be treated
as it i3 rather than being expanded, it is quoted using the opera-
tor “'7 or “°'". For example, when a deseription “X+1" should be
treated as a compound term whose functor is '+°, not as the result
of adding 1 to X. it is described as “* (X+1)”. The term prefixed hy
% or "' is never expanded even if it is a macro. The difference
between them is that “'" is effective only for the tap-level of the

pattern, and “* "7 is effective also for all levels inside the pattern.

[Example 12]
(B3) v 17 wew, pUGA+BY+(CHD)),

s==> ... 1= ...,
add(A,B,X),
add(C,D,Y),
add(X,Y,Z),p(Z),
(B4) coeotm o, pUR((A+BY+(CHD))), ...

==xy . s
add(A,B,X),
add{C,D,Y),
p(X+Y),

(BS) vew = oo, pCOC(CA+BY+(CHD))),

=== e s I

p(((A+B)+(C+D))),

5 Comparison

The functionality provided by the macro expansion mechanism de-
scribed in the previous sections can be achieved if an interpreter is
invoked at runtime whenever specified patterns appear. For example
mapcar function and every can be realized as follows, using meta-
level “call” mechanism which essentially invokes the interpreter.!

!The univ operation is avoided here because it is much slower than the combi-
nation of functor/3 and arg/3.

10

Table 2: Evaluation of Inline Expansion

i' " Machine _]Function | 1nter1:;re‘ter] Inline rutir.:|

DEC10-Prolog | mapcar 1681msec | 82msec || 20.5
| on DEC2060 every | 53bmsec | 3Tmsec || 13.0
' Quintns Prolog | mapcar 480msec | 40msec || 12.0
o VAXBT00 | every 417Tmsec | 1lmsec | 37.9

mapear([],[],.) - !.

mapcar { [X0|Rest]) , [X|Taill ,F) :-
functor(Term,F,2),
arg(1,Term,X0),
arg{Z,Term,I},
call(Term),
mapcaI{Rest,Tail,F}‘

every([],.) = !.

every([X1Tail] ,F) :-
functor(Term,F,1),
arg(1,Term,X},
call(Term),
every(Tail,F).

In Table 2 execution times of the above examples are shown com-
pared with the cases when inline expansion like [Example 5] and

[Example 10] is done. They are measured with executing the fol-
lowing goal:

., mapcar(List,Output,abs),

abs(X,Y) (- X >=0, ', ¥ = X.
abs(X,¥Y) = ¥ is - X.

., every(List,integer),

“List™ is a list which consists of 1000 elements like [1.-1,1.-1,
v]« We used DEC10-Prolog on DEC2060 and Quintus Prolog on
VAXETO). When inline expansion is used, the execution is more than
10 times faster than when an interpreter i1s invoked.

1l

Of course, such an inline expansion can be done only when the
function is explicitly given in the source programs. It is easily speci-
fied to do inline expansion only when function is explicitly mentioned
in the source program and to invoke an interpreter dynamically oth-
erwise, as follows:

(D3} every(List,Function) => $({List)
with [$([1),
{ $({[0nelTaill}) :-
Call, $(Tail))]
:= atom(Function), !, Call =.. [Function,One]
every(List,Function) => $(List,Function)
with [$(01,_),

{ $([OnelTail] ,Function) :-
functer(Term,Function,1),
arg{1,Term,One)},
call{Term),
£{Tail,Functien))]

If a macro expansion mechanism can be used, we do not have to
deseribe frequently the inline expanded patterns which are almost
the same and need not to be worried about naming expanded pred-
icates no longer. Thus, the writability and readability are improved
without lowering of efficiency.

6 Implementation

We implemented these macro expansion mechanisms for the language
ESP, Extended Self-contained Prolog [2]. ESP is an object-oriented
logic programming language based on Prolog and is the system and
application program description language for the sequential inference
machines PSI and P3I-1I [4]. Its macro expansion mechanism has
been practically used in many application programs. ESP language
has the following standard macros:

(1) Constant values
e.g. radix conversion. character code conversion
(2} Arithmetic and relational operations

{3) Object-oriented features

e.g. method call, slot access

12

In ESP, macro definitions are described in a module called macro
bank, which is treated as an object elass. Macros defined in a macro
bank are effective in the cless® definitions where the name of the
macro bank is mentioned. The inheritance mechanism allows the
sub-macro bank to inherit macro definitions. Normally, macro banks
inherit the standard macro bank.

[Example 13} Macro bank and class
In ESP “;" is used to end a clause instead of *.7.
{M1) macro_bank mi has
T"I => E when arg(I,T,E};
X+Y => Z :- integer(X), integer(Y),
add(X,Y,2);
X+Y => Z when add(X,Y,Z);

end.
{E1) class cl with_macro ml has
:p(0bj,V,E,V'H+1) ;
end.
EEE

class ¢l has
:p(0bj,V,K,Eleml) :-
arg(N,V,Elem),
add(Elem,1,Eleml};
end .

7 Remaining Problems

The macro expansion mechanism replaces macros with specified ex-

pansion patterns asutomatically. The writability and readability are

improved as the result. However, in some cases, expanded patterns

may be greatly different from the corresponding original patterns in

the source program. During the debugging phase, users may have

difficulties in relating the source image to the traced result.
Following two solutions are considered.

(1} To display programs before macro expansion and ex-
pand them at runtime whenever a macro appears. A

*ESP programs consist of a set of axiom databases called clusses.

13

major problem of this method is the large execution
tine overhead for maero expansion.

(2} To maintain both onginal and expanded patterns,
display the original one when tracing and use the
expanded one for execution. There still remain two
problems. First, two patterns must be maintained
only for tracing. Second, it is hard to treat macros in
the head argument that requires insertion of runtime
conditions to the tail of the hody.

8 Conclusion

Intreduction of macro expansion capability to Prolog has been pro-
posed, It has the following features.

(1} Macros are expanded using Prolog itself, that is,
Prolog 15 used as the mete language for the macro
processing.

{2) Powerful mechanising of Prolog, that are, unifica-
tion and backtracking make macro definitions con-
cisc and readable,

(3} The macro mechanism not only replaces the original
pattern but also inserts newly generated goals and
clauses. By this, the macro expausion feature is
used for both data and control abstraction.

DCG (Definite Clause Grammars) of DEC-10 Prolog [1] ean be
easily implemented using these maeros. Many of other special Prolog-
like systems. such as. Prolog based on fuzzy theory [3], Prolog includ-
ing extension [3], and so on. can be also implemented easily. If many
desired features can be easily implemented using one general mech-
anism. there should be no reason to implement each of the features
ndependently.

References

[1] D. L. Bowen, L. Byrd, F. C. N. Pereira, L. M. Pereira, and
D. H. D. Warren. DECsystem-10 Prolog User’s Manual Novem-
ber 1983,

2]

3]

4]

T. Chikavama. ESP Referemce Manual 1COT Technical Te-
port TR-044, ICOT, 1984.

P. BR. Eggert and D. V. Schorre. Logic Enhancement: & Method
for Extending Logic Programming Languages. In Conference
Record of the 1982 ACM Simposium on LISP and Functional
Programming, 1982,

1. Nakashima and K. Nakajima. Hardware Architecture of the

Sequential Inference Machine:PSI-II. In Proceedings of JEEE
Symposium on Logie Programmang, 1987.

1. P. Orci and M. Karlson. PROLOG/S Programming Language
Based on Possihilistic Logic. 1n Proceedints of Fourth Jopanese-
Swedish Workshop on Fifth Generation Computer Systems, July
1986,

