ICOT Technical Report: TR-403

TR-313

Preservation of Stronger Equivalence in
Unfold Fold Logic Program
Transformation ([T}

by
T. Kanamori and T. Kawamural Mitsubishi)

June. 198K

Cluss, BOOT

Wi Bekosar Bldg, 218 STYI IR L

lc;[:} | I A 1= e Todes TGN Fmin]

Aok Deskoves 1= |oigsitn

Institute for New Generation Computer Technology

Preservation of Stronger Equivalence
in Unfold/Fold Logic Program Transformation (IT)

Tadashi KANAMORI Tadashi KAWAMUERA

Mitsubishi Electric Corporation
Central Research Laboratory
#-1-1 Tsukaguchi-Honmachi

Amagasaki, Hyogo, JAPAN 661

Abstract

This paper shows that Tamaki-Sato’s unfold/fold transformation of Prolog programs pre-
seTves equivalence in a stromger sense than that of the usual leasi Herbrand model semantics,
whiclh Tamaki and Sato originally showed. Conventionaly, the semantics of Prolog programs
15 defined by the least Herbrand model. However, the least Herbrand model dose not always
characterize what answer substitutions are returned nor how many times the same answer
substitntions are returned. [his paper proves thal any program obtained from an initial pro-
gram by applying Tamaki-Sato’s transformation can compute the same answer substitutions
the same number of times as the initial program for any given top-level goal.

Keywords: Program Transformation, Prolog, Fquivalence of Frograms.

Contents

[TE I D)

4.
5.

. Imtroduction

. Unfold/Fold Transformation of Prolog Programs
. Preservation of Stronger Equivalence

3.1 Prool Tree

3.2 Mapping between Prool Tree Seis
3.5 Partial Correctness

1.4 Total Carreciness

Discussion

Conclusions

Acknowledgements
References

1. Introduction

The effectiveness of the unfold/fold rules in program transformation was first demonstrated
by Hurstall and Dadington [1] for fanctional programs. Manna and Waldinge: [7] indepen-
dently proposed a program synthesis method based on similar rules. Because the purpose
of prograim transformation is to mechanically derive programs which perform the same task,
one of the important properties of such program transformation rules is preservation of equiv-
alence. An equivalence relation between programs is defined based on a sem antics of pro-
grams. Different semantics can give different notions of equivalences {cf. Maher [6]). Tamaki
and Sato [8] [3] [10] proposed the unfold/fold rules for Prolog programs which preserves
equivalence in the sense of the least Herhrand mode) semantics, which 1= the conventional
semantics of Prolog programs. However, the least Herbrand model semantics dose not always
characterize what answer substitutions are returned nor how many times the same answer
substitutions are returned, For example, consider the following thrce Prolog programs Fy, Fo
and Fy.
‘I'-"l :].'l{}?}
q(a}.
s p[_a.].
qia).
Fyo:opla).
p(X) := a(X).
q(a).
Hecause the Herbrand universes of P, P, and Fj are {a}, they are equivalent in the sense of
the least Herbrand model semantics. 1lowever, these programs respond in different manners
1o a qunery
2 p(X)
P, returns the empty substitution <>, while Py and Py returns substitution <X 4=a> asils
answer. Moreover, Py returns ihe answer substitution only once, while Py returns il twice.
To make a distinetion between these programs, more refined equivalence is required.

This paper shows that Tamaki-Sate's unfold /fold transformation of Prolog programs
preserves equivalence in a stronger sense than that of the usual least Herbrand model se-
mantics. First, Section 2 describes Tamaki-Sato’s transformation of Prolog programs. Then,
Scction 3 introduces 2 multiset of pairs consisting of a given top-level goal and the answer
substitution as the semantics of rolog programs, and proves that Tamaki-Sato’s transfor-
mation also preserves equivalence in the sense of this semantics.

In tlke following, familiarity with the basic terminologies of first order logic such as term,
atom, definite clause, substitution, mest general unifier(m.gu.) and =0 on is assumed. The
svitax of DEC-10 Prolog is followed. As syntactical varisbles, X, Y arc used for variables,
and A, B for atems, possibly with primes and subscripts. In addition, #. o, 7 wre used fur
substitutions, and Af for the atom obtained from atom A by applying substitution #.

2. Unfold /Fold Transformation of Prolog Programs
This section describes Tamaki-Sato’s unfold/fold transformation following [10.

Definition 'rogram

A elause is a pair consisting of a clanse identifier and a definite clavse. A program is
a finite set of clauses.

Hereafter, we will assume thal no clanses has the same clause identifier so that two
definite clauses of the same form are distinguished as different clauses in the program due to
the clause identificrs. In the following, we will often use the clause identifiers for referring
the definite clauses.

Definition Initizl Program
An initial program Fp is a prograi satisfying the following conditions:
(a} Py is divided into two disjoint sets of clauses, P, and Pua. The predicates defined
by Ph. 2re called new predicates, while those by P4 are called old predicates.
(b) The new predicates never appear in P.g not in the bodies of the clanses in Prew-

Example 2.1 Let Py = {Cy,Cy, Cs} be an initial program, where

€y : apl([],M,M).

Cy : ap([XIL],M,[XIN]) = ap(L,M.N).

Ca + insert(X.M,N) = ap(U,V. M), ap(U, [X|V],N).
and Pog = {C1, 02}, Prew = {€Ca}. Then ‘ap’is an old predicate, while ‘insert’ is a new
predicate. (Cq,C2, Ca are clause identifiers.)

Definition Unfolding

Let P be a program, C be a clanse in F;, A be an atom in the body of C, and
y,C2,...,Ck be all the clauses in F._, whose heads are unifiable with A, say by m.g.u.'s
61,84,...,0. Let C] be the result of applying 0, after replacing A in the boedy of € with the
body of C;. Then Piyy = (P — {CHU{CLCo o ,CL}. C is called the unfolded clause and
C,,Ca,...,Ck are called the unfolding clanses.

Example 2.2 Let P; be the above program. By unfolding Cy at atom ‘ap(U,V,M}" in the
body of C3, program Py = {C),C,Cyq,Cs} is obtained, where

Cy ¢ insert(3LM,N) - ap([J[X|M]LN).

Ce - insert(X,JY|MLY) - ap(U,V,M), ap([V|UL[X]V]R).
By unfolding €y and s further, program Py, = {Cy,Cq,Cs5,Ce} and Py = {Cy,C3,Cq,Cr}
are obtained, where

Ce - insert(X,M,[X!M]).

Cy : insert(X,[YIM]Y[N]) = ap(T,V. M}, ap{U,[XIV], N}

Definition Folding
Let P, be & program, C be a clause in B of the form
Ag 1= Ay, Az, ... A, (n>0)
and D be a clause in Frew of the form
By :- BL|BZ|---.~Hm (m > 0},
Suppose that there exists a substitution ¢ satisfying the following conditions:
(a) Byf = Aj,, Bob = Ay, B = Aj where ji, J2,..., jm are different natural num-
bers.
{b) For each variable appearing only in the bady of D, # substitutes a distinct variable not
appeating in {Ag, Ay, ..., Aa} = {4 Ajar - Aju b
{(¢) D is the only clause in Pu.. whose head is unifiable with Ho# .
(4) Either the predicate of C's head 15 an old predicaie, o1 C is unfolded at least once in
the sequence Py, Py, %,
Let C' be a clavse with head Ag and body { Bo}é U ({41, Aos o Am b= {40 Ads - A; 1.

Then Piyy = (P, — {C})u{C'}. € is called the folded clause and D is called the folding
clause.

Example 2.3 Let Py be the above program. Then, by folding the body of €5 by €, program
= {Cy,Cy,Cg, Cs} is obtained, where
Cg o imsert(30Y|ML[Y|N]) - insert(X,M,N}.

Definition Transformation Sequence

Let Py be an initial program, and P4, be a program obtained from F; by applying
either nnfolding or folding for 1 > 0. The sequence of programs P, Py, ..., Prois called 5
transformation sequence starting from Fp.

Example 2.4 The sequence Fo, Py, Po, Fa, Iy in Example 2.1-2.3 is a transformation sequence
starting from Py in Example 2.1. Note that, for query

Tomsert(X, [X.Y]N).
these five programs return the same answer substitutions

< N<=[X, X, Y]>,

<Ne[X X Y]>,

< N<=[X, Y, X]>.

2. Preservation of Stronger Equivalence

This section first introduces several hasic notions of proof tree, then proves preservation of
equivalence in the stronger sense along the same line as [10] [4].

3.1 Proof Tree

Because we need to consider what answer substitutions are returned how mary times for
given top-level goals, more refined notions of proof trees are necessary so as to avoid the
complications due to the strategy in nondeterministically selecting atoms to be resolved.

Definition Labelled Tree

A labelled tree is a finite tree whose nodes are labelled with expressions of the form
(“A = 8", ") where A and B arc unifiable atoms and C is a clause identifier. The set of
all the equations in the labels of labeled tree T is called the Jabel set of T. The number of
nades of labelled tree T is called the sizge of T'.

Definition Most General Unifier of Labelled Tree

Let T be a labelled tree and E = {4, = By, Az = Ba,..., A = By} be the lahel set
of T. Then 1" (or £ is said to be unifizble when there exists a substilution o such that
Ay and Bye are identical for all 1 = 1,2,..., k. A substitution r is called the most general
unifier of T {or E)} when 7 is the most general substitutior among such substitutions.

Definition Most General Unifier of Substitutions
Substitutions oy, @n, ..., 0, ate said to be vnifiable when there exists a substitution ¢
such that, for each o;, there exists a substituion 7; satislying ¢ = oy, A substibulion 7

is culled the most general unifier of ¢y, 02,...,0, when 7 is the most general substitution
among such subsiitations.

Definition Proof Tree
Lel P bea program, T be a labelled tiee and Ty, T, ..., T be its immediate subtrees,
The labelled tree T is called a proof tree of atom A with answer substitution o by P when
there exists o clause C in P of the form
B - E],B},. .-=B.-4

such that
{(2) A and B are unifiable, say by an m.g.u. &,
{b) the root node of ¥ is labelled with (*4 = B",),
{(c) Ty, Tx,..., Ty are proof trees of Hy, Bs... ., H, with answer substitutions &y, &2,...,0y
by P respectively. and
(d) o is the restriction of an gy of §,0y.00,..., 0y to the variables in A.
The clanse C is called the clavse wsed at the root of T, and T37,T5, ..., T, ate called the

immediate subproofs of T. 'roof trees are denoted by T and 5, possibly with primes and
suffixes.

Example 3.1.1 Let Py Le the program in Dxample 2.1, Tree T below is a prool tree of
‘insert(X,[X.Y]. N} with answer substitution <N <= XX Y]> by Fo.

“asert(X,[X, Y], N)=insert{ Xo,Mo.No)"

a3

! \
“ap(Uq, Vo, Mo)=ap([], M, M1}" “ap(Ua,[Xa| Vo), Ne)=ap([],M2,M2)"

C]_ Cl

Tree Ty below is another proof tree of ‘insert(X,[X,Y],N)’ with answer substitution <N <=
(X, X)Y]> by R

“insert(X,[X,Y],Nj=insert(Xo,Mq,No)"

Ca
/ \
“ap(Ug, Vo, Mc)=ap([X1]L1], My, [X; [N,])" “ap(Ug,[Xo|Val No)=ap([X2]L2], M2 [X2[Na])"
: :
“ap(L, ,]LI;,H]_]=3.]':[:[],Ma._M;;}“ “api Lo, Mz, Na)=ap(]],h{.,ll'{q]”
Cl C1

Tree Ty below is also & prool tree of ‘insert(X,[X,Y],N)" with answer substitution <N <=
[KJY’X]} b}" Pﬂ-

“insert(X,[X, Y], N)=insert{ Xo,Mq,No)"

Ca
/ \
“ap(Us,Vo,Ma)=ap([X1]L1], M1, [Xs[N,])” "“PfUm[xDWu]JTu}=ﬂ(r:P{[xi|I':1.M= [X2|N2])”
Cq 2
| |
u‘P(L‘l :M 11N1]ZE’P{EX:}'L3]—?1"13-![}{31-”3}]“ “31'1(Lz,hi:g,.wg]:ﬂ.p{[:{.glL.'LM{,[X‘]H‘]JE
‘ i
“ap(Ls,Ma,Na)=ap([] Ms,Ms)" “ap(LsMa,Ny)=ap(f | Mg,Me)"
Cl Cl

Definition Success Multiset

Let P be a program. The multiset of all the atom-substitution pairs (A4,) such that

there exists a proof tree of 4 with anewer substitution & by P 1s called the success multiset
of P, and denoted by M{F).

Naote that M(1) is not a set but a multiset so that, if there exist k diflerent proof trees of
atom A with the swme answer substitution & by P, then M(F) inclndes k atom-substitution
pairs (A, o).

Lemma 3.1.1 If T is a proof tree of atom A with answer substitution ¢, then o is the
restriction of an m.g-u. of the label set of T to the variables in A.

Proof. By induction on the structure of proof trees. Let “A = B” be the equation in the
oot label of 7, @ be an m.gu. of 4 and B, and 11, T2,..., Ty be T°s immediate subproofs

of By. Ba. ... H, with answer subetitntions o1,00,...,6,. By the induction hypothesis, ¢;
is the restrietion of an m.g.u. of the label set of T} to the variables in B; for 1 = 1,2,...,n.
From the definition of proof tree, o is the restriction of an m.g.u. of §,0y,04,..., 6, 0 the

variables in A, and the variables in A never appear in the label sets of Ty, T2, ..., T,.. Thus
o is the restriction of an m.g.n. of the label set of T' to the variables in A.

Lemma 3.1.2 Let E be the label set of a proof tree ', “4 = B” be an element of E, and

be an mgn. of A and B. Then, substitution #7 is an m.g.u. of F if and only if 7 is an
m.gu. of (E—-{A= B})8

FProof. Obvious.
3.2 Mapping between Proof Tree Seis

Note that the success multisel characterizes Prolog programs more precisely than the least
Herbrand model. It is, however, not easy to consider prescrvation of the success multiset
directly so that we will consider the following set:

Definition FProof Tree Set
Let P be a program. The set of all the proof trees by P is called the proof tree set of
P, and denoted by T{P).

Note that each atom-substitution pair in the snceess multiset corresponds to a proof
tree in the proof tree set so that two success multisets are identical when there exists a one-
{o-ome correspondence between the corresponding proof tree sets. lence, we will consider
mappings between proof tyee sets in the following discussion.

Deflnition Consistent Mapping Letween Proof Tree Sets

Let P and P be programs. A mapping f frem T{F) to T(F;) is called a consistent
mapping from T{F;) to T(P;), and denoted by '.TIIP;}LT{P_,:}, when f maps a proof tree T
of atom A with anewer substitution & in 7{5) to a proof tree T" of the same atom A with

the same answer substitution o in T(F;). A consistent mapping [is said to be one-to-one
when f{Ty) = f{T3} il and only i{ T} = T3,

Definition Consistent Mapping Pair between 'roof Tree Sets
Let F; and P; be programs. A pair of mappings (f,g) is called a consistent mapping

pair between T(F;) and T{7), and denoted by T(F) L T{F;}, when
g
{a) fis a consistent mapping from T(F) to T{F;),
{b) g is a consistent mapping from T(F;) to T(F), and

(¢) gof =tdyepyand fog=idrp, wheretdy py and idyp) are the identity mappings
on T(F) and T(P;), respectively.

3.2 Partial Correctness

Let Py and F; be Prolog programs such that fy is obtained from F, by applying the trans-
formation rules. A tansformation of Prolog progiam is said to be partially correct when
M(Py) D M(PF;) holds. This subsection proves partial correctness by showing that there
exists a one-to-one consistent mappaing from T(F) to T(Fy), which is the easier direction
of stronger equivalence.

Lemmea 3.3.1 Let Fi be a program in a transformation sequenece, C' be a clavse in F;,
O be a clause oblained from € by permuting the atoms in the body of C, and Fj be
(F, = {C}Hu{C'}. Let f be a mapping from T(F;) 1o T{P!) such that it maps proof tree
T to proof tree 7" if and only il 7" is obtained from T by permuting the subproofs of the
atoms in the body of € according to the permutation from C to €' when clause C is used at
the node, and g be the inverse of f. Then (f,g) is a consistent mapping pair between T{E)
and T(F}).

Proof. Ohvious.

This lemma implies that we can arbitrarily rearrange the atoms in the bodies of the
clauges in program F; before epplying the next transformation rule while keeping the exis-
tence of a sequence of consistent mapping pairs between Fp and F;.

Lemma 3.3.2 Let Py be an initial program, and 7' be a proof tree of atom A# by program
P,. Let T be the lahelled tree obtained from T by replacing A# in the left-hand side of the
equation in the root label with 4. Then 1" is & proof tree of atom 4 by program Fa.

Prooi, QObvious.

Lemma 3.3.3 Let By be an initial program, T be a proof tree of atom A with answer
substitution o by program Fp, and # be a substitution for the variables in A such that # and
o are unifiable. Let 7' be the labelled tree obtained {rom T by replacing A in the left-hand
side of the equation in the root label with A6, Then 7" is a proof tree of atom A# by program
Fy.

Proof. Obvious.

Lemma 3.3.4 Let By Pi,..., Py be a transformation sequence. If there exist consistent
mapping pairs
f fa) I
T(Fo) = T(1) =T(f) = - = T(F),
1 s 3 i
then there exisis a consistent mapping gigs from T7(Py) to T(F) for1=0,1,2,... N =1

Proof. Let T be a proof tree of A with answer substitution & by Fi4,. By induction on the
structure of T, we will define a consistent mapping gi41 such that gi4,(T) is a proof tree T'
of A with answer substitution ¢ by P.. Let € be the clause used at the root of T'.

Case 1: Cisin F,.
Let © be aof the form
Ag 1= Ay As A, (n>0)
Ta,: Tazs--o T, be T's immediate subproofs of Ay, Ao, ..., Ay By the inductive definition,
gist(Ta, b gis1(Tun)y oy giga(Ta, Y are proof trees Ty (T ... T ol Ay, A, ..., Ay by F;

6

with the sume answer substitutions as Ty, , Tays- - Tu,. Let T' be the proof tree uhta.imrtrlkh}'
putting a root node labelled with (*4 = B",C)over T}, T4 .. T« From the definition
of answer substitution, « is an apswer substitution of T Hem:e T" is a proof tree of 4 with
answer substitution & by P,

l::rﬁI = Aﬂ!. c}
F'I:_'_l: ,"’/’ .'Ii
?A.hf1f1.:1'-' |TA1.

induction I}

{D‘A == .'Q.un, C:l'
F;:
TAL'TAE""‘?-‘-;-n

Figure 3.3.1 Definition of giy, for Case 1

Case 2 : C is the result of unfolding a clause €7 in Fi.
Let € be the unfolded clause of the form

Ag 1= Ay, Aa, o A {Tl > ﬁ}
and D be the unfolding clause of the form

Bc. e B].. ..,B-m_ (m - U).
From Lemma 3.3.1, without loss of generality, we cun assume that A; and Hp are unifiable,
say by an m.g.u. #, and € is of the form

Anf 1= Bqf, . B0, 4.0 . AR

First, let Ts, ..., To.e. Taser ..., Ta,e be T's immediate subprools of B, #, B B,
Aofl, ..., A.8. By the inductive dcﬁmtmn, gis1lTme)s - 01 Tmne), 9'-+1{T,;,p}
gi+1(Ta,0) ate proof trees T 4,75 5. Th e - Ta, e of Bl Bnf, Aa8 . Al b-.-

P, with the same answer snbstitutions as Tﬂ,_ﬂ,---,TH,.F1T.-‘.gP1---1 Tane- Let E1 be the
nnion of the label sets of T 4,0, T g0 Ta,e0- -1 T4, e 20d {A = Apf). From Lemma
3.1.1, & is the restriction of an m.g.u. of E; to the varizbles in A

Second, proof trees Sgog,. .., 5p,.8, Sage:--- T4 of By, ... B #, Aab,. .. A0 by
Py with the same answer subsmutmn as Tﬂ g TB-E: Thse1---: Ty e are uniquely deter-
mined by applying ¢i. .90 0 T 002 Th_ 0 TA:E= ... Ty s Let E5 be the nnion of the
label seis of {;H|E'1 . ..'J_E B b‘.h, .5".1 and {A }!u} ThEII from Lemma 3.1.1, 7 is the
restriction of an m.g.u. of £; to lhe 'l.a.n:ﬂ:ules in A.

Third, from Lemma 3.3.2, there exist proof trees Sg,, ..., 55,54, -., 594, of By,
Hpy Asvvoy Ag by Foosuch that they are identical 1o Sgp.. .., Spo6: 54,8, S4.6 eXcept
the left-hand sides of the equations in the root labels. Let E5 be the union of the lubel sets
of Sﬁ,, PP Sﬂ_, 5,;2, e _.S'An and [_A - Ac., f‘u = Hu]'- ‘T"hen f;-': is idE]ﬂiC&l 1o (E;s— {4"‘11 =
BylW. From Lemma 3.1.2, ¢ is the restriction of an m.g.u. of E3 to the variables in 4, since
f does not substitute for the variables in A.

Last, proof trees Tp Tp , T4 ..., 77 of By, B, Agyoo. An by P, with
the same enswer substitutions as Sp,....55,, S4,,..., 54, are uniquely determined by
applying fi,....fi to Sp,..... 58, S4;...,54,.. Let T, be the proof tree cblained by
putting a root node lahelled with (%4, = ", 7] over 'f‘é.l,...,Tj;m. Let T be the proof
tree obtained by putting = root node labelled with (A = A", C') over T:‘ s Tagreee T:, .
and E' be the label set of 77, ie., the union of the label sets of Tj; ..., Tg T, --
and {4 = Ag, 4; = Hg}. Fiom Lemma 3.1.3, o is the restriction of an m g u. af L“r lﬂ the
varizbles in A. lHence, T" is a proof tiee of A with answer substitution o by Fj.

7

(“4 = 408", C

Pras: AN

' ~ o 1 r
TE,E'\---HTB“.I!]:-TAIW:'“|jA,,#

induction I}

(“A= 4", C)
Fi: Téhﬁ""'"T;?-ﬁ’r:;,ﬂ!“" "L“g {""..‘i_]_=.|E'1;|!:l;_E"]ll'l,l
Tl sers s Ty T,

gro---ogd it fie-cro fi

Py: Sp8r- 5B 0Sa00, 054,08 = SByse-15Bm1 5451 %A,
Lemmma 3.3.2

Figure 3.3.2 Definition of gi4) for Case 2

Case 3 : C is the result of folding a clause C' in Fy.
Let €' be the [olded clause of the form
Ag 1= Ay, Az, An (>0}
and D be the folding clause of the fotm
By = By,....Bp (m > 0)
From Lemma 3.3.1, without loss of generality, we can assume that A4,.. ., A, are instances
of By,..., Bm, say by an instantiation #, and from folding condition (b), € is of the form
An = Hnﬂ,}im..i | PR ,.‘1,1

First, let Tooo, Thsys- - -+ La,, be T7s inmediate subproots of Bal, Amt1,..., Au. By
the inductive definition, gis2(Te,8) Gia1{Tamar s -2 94107,) are proof trees T g, T .,
ooy Ty, ol Bol, Amyrses An by P with the sume answer substitutions as Thot TAmarr: o
Ta.. Let E; be the union of the lubel seis of 1o T vy Th, and {A = Ag}. From
Lemma 3.1.1. is the restriction of an m.g.u. of E1 to the variables in A.

Second, a proof tiee Sps of HBofl by Fp with the same answer substitution as Tg g is
uniquely determined by applying gi;..., ¢ to Tj,p- Because the predicate of Hpf is a2 new
predicate, the clanse uscd at the root of Spee s it Poew. Further, from folding condition
{¢), this clause should be D. Hence, the oot label of Sgoe is (“Bof = By", 1), and Spue’s
immediate subproofs are proof trees Sp,,.... Sp,, of By,..., B,.. Let Es be the union of the
label sets of Sg,,...,Sp., T4 .- Tq, and {4 = Ap, Baf = By}. Then, from Lemma
3.1.1, ¢ is the restriction of an m.g.u. of E> to the variables in A.

Third, from Lemma 3.3.3, there exist proofl trees S4,.. ey Sa, of A, Am by Po

such that they are identical to Sp,...., 5y, except the left-hand sides of the equations in
the root labels, since B1# = Ay,..., Bnf = Ap from folding condition (a). Let Ej be the
union of the label sets of S4,, ..., 54, 0% __ ... T, and {4 = Ac}. Then £21s identical

to (E3 — {Bo# = Bg})f. From Lemma 3.1.2, ¢ is the restriction of an m.g.u. of E3 to the
variables in A, since # does not substitute for the variables in A.

Last, proof trees T ..., T of Ay, . An by P; with the same answer substitu-
tions as Sa,,..., 54, arc uniguely determined by applying fi, ..., fi to Sayr--154,,- Let
T' be the proof tree obtained Ly putting a root node labelled with (*A4 = Ao”, C'} over
Ty TanTh .., Ty, and E' be the label sct of T' i.e., the union of the label sets

mt1]
of T v ooy Ty 2 Ty yyeee-a Ty, and {A = Ap}. From Lemma 3.1.1, ¢ is the restriction of

41t

g

an m.g.u. of F' to the variables in A Hence, T' is & proof tree of A with answer substitution
a by .

(*A = A", €)

Figae \
TBQB!TAM-FL,--‘.TA“
induction U
{f“i = A", C')
P T}']uﬂ,TLm_H._...,T;_ .*“'"-H ,/ ’ ‘
o Ta a0 Tag
gro-cog U ft fio---ofy
{“B(Iﬂ _ BDJ!’ U}
PD: ,'J‘ 1||L _ -S'A”...,Sﬂm
Sy S0, Lemma 3.3.3

Figure 3.3.3 Definition of gi4 for Case 3

Lemma 3.3.5 Let gi41 be the consistent mapping defined in Lemma 3.3.4. Then gi4, i
one-io-one.

Proof Although this lemma is obvious from Lemma 3.4.8 to be proved later, we will prove
it by itsell heve. Due to space limit, we will show the proof only for the most complicated
“(lase 3." (See Figure 3.3.3.) The uther cases are proved in the same way.

Suppose that gier (T = gig 1 (T13)) = T, We will show that T} = 742} by induction
on the structure of T4 and T2 Let (“4 = A", C7) be the oot label of T, C' be the
clanse in P, used at the root of T of the form

Ag = A Az yAL (a7 ﬂ'}
and 7% oo T4 Ty Ty, bethe immediate subproofs of 7. Suppose that, from F
to Pigy, clause €' is folded to clause C using instantiation §. Obviously, the root nodes of
TI1) and T4 are labelled with (“A4 = A", C). Let TRLJ‘E‘LL,, . -1TL]:3 he the immediate
subproofs of T, and 'IE-:',,,TEE:"_H, : ..,Ti::’ be the immediate subproofs of T2, Following
the definition of g4, in the reverse direction, Thye- Ty, uniquely determine prool troc
Tp, e of Bof hy F. Then,
gi42(The) = gi3(Tie) = Thgen
1) (1) i
gt-‘rl{Ti ..-.+l} = 9'!"+J.{Iji,,,+,} = 'r_r!.mq.ﬂ
et (T) = guaa (TS =Ty
From the induction hypothesis, TE}L = Tﬁﬂ,,'ﬂ'ﬁﬂ = fj*l,..., Lln"' = Tf: hold, Hence

T = 7,
3.4 Total Correctness

lLet Py and P be Prolog programs such that F; is obtained from P by applying the trans-
formation rules. A iransformation of Prolog program is suid to be totally correct when

2

M(Fy) = M(F,) holds, This subsection proves total correctness by showing that there ex-
ists @ consistent mapping pair between T(Fp) and T(F;), which is the harder direction of
stronger equivalence. First, several definitions are prepared.

Definition Original Proof Tree
Let Pa. Fy,..o, P be a transformation sequence such that there exist consistent map-
ping pairs
I fi, b I,
T(Fo) ;r:. T(#H) ;_—' T{Fz) :’ SR T(F).
1 | 4 ¥
Let Ty be a proof tree in T(Fy). and T, be a proof tree in T(F;) obtained by successive
application of fi, fa,..., fi to To. {(Or equivalently, let T; be a proof tree in T(R), and To
be a proof tree in T(Fy) obtained by successive application of gi,...,92, 01 to 1;.) Then Ty
is called the original proof tree of 13

Example 3.4.1 Let Py, Py be a transformation sequence in Example 2.2, T1, Ty be proof trees
in Example 3.1.1. Let T} be a proof tree of ‘insert(X,[X,Y],N)' with answer substitution <N
& [X,X,Y]> by P depicted below:

“insert(X [X, YN)=insert{Xq,Mg No)”
Cy
1
“ap([],[Xq|Mo).No)=ap([] M1, M1}

Cs

Let T be another proof tree of ‘insert{X,[X,Y].N)’ with answer substitution <N «=[X,X,Y]>
by P, depicted below:

“insert(X,[X,Y],N)=insert{Xo,[Yo[Mq),No)”

;o
“ap(Ug, VoMol =ap([X; L, My JX, [N.0)7 “ap([YolUel,[Xo| Vo] No) =ap({Xa|L2],Ma [XalNa])"
Cﬁ C?
| |
“ap(L, M, .N1]=3Ff.[LMSst}” “ap(Lq, Mz, Nal=ap(] .M 4.11‘-'14.]'”
C, Cq

Let f, be a consistent mapping from T(Py) to T(F,) such that f,(Ty) =T and f; (T2) =13,
and g, be its inverse. Then T, is the original proof tree of Ty, and T3 is the original proof
tree of T3,

In the following defiritions and Lemmas 3.4.1-5, Fi is assumed to be a program in
a transformation sequence such that there exists a sequence of consisting mapping pairs
(fi,00), (fa.g2) - -, (fi, 0v) as above.

Definition Weight of Proofl Tree

Let P be a program in a transformation sequence, T be a proof tree of atom A by F,
Ty be the original proof tree of 7, and s be the size of Tp. Then the weight of T, denoted by
w(T), is defined as follows:

w(T) = s —1, if the predicate of A is a new predicate ;
T s, if the predicate of A is an old predicate ;

10

Example 3.4.2 Let Ty, 73,11, T; be proof trees in Example 3.4.1. Then w(T}) = w(T}) =2,
and w(Tl) = w(ly) =4

‘I'he following notions, which are generalizations of those in [10], play important roles
in the following prool.

Definition Weight Completeness
Let F; be a program in a transformation seguence. Then F; is said to be weight
complete (w.r.t. (fi,m). (fe,92),- -, {f:,8:)) when it satisfies the following conditions: let T
be a proof tree by program £, C be the clause nsed at the root of 7', and T3, T, ..., Ty be
T's immedaite subproofs. Then
(2) w(T) 2 w(Ty)+ w(Te) + -+ w(T:), and
(b) w(T) > w(Ty)+ w{Te)+ - + w(Ty) when C satisfies folding condition {d).

Definition Well-founded Ordiring = on Proof Tree Set
Tet P bea program in a transformation sequence. A well-founded oxdering = on proof
iree set of program F; is defined as follows: let T be a proof tree of A by Fi, and T' be a
proof tree of A’ by Fi. Then T = T" if and only if
(a) w(T) > w(T"), o1
{b) wiT) = w(T') and the predicate of 4 is a new predicate and the predicate of A is an
old predicate,

The next three lemmas are slight extensions of Lemma 3.3.1, 3.3.2 and 3.3.3.

Lemama 3.4.1 Let P be a program in a transformation sequenece, € be a clause in F;,
" he a clause obtained from € by permuting the atoms in the body of C, and P! be
(F, = {C}yu{C"}. Let f be a mapping from T(F,) to T(F}) such that it maps proof tree
T to proof tree T if and only if T' is obtained from T by permuting the subproofs of the
atoms in the body of € according to the permutation from C to C' when clause C is used at
the node. and g be the inverse of f. Then (f.g) is a consistent mapping pair between T{F;)
and T(P!), and P is weight complete w.r.t. (fi, 01}, (f2. 92),- .-, (fe, 9¢) if and only if Py is
weight complete w.r.t. (fi, ;1 } (fz.02)i .. {f o fi,g e 0l

Proof. Obvicus.

This lemma implies that we e¢an arbitrarily rearrange the atoms in the bodies of the
clauses in program F; before applying the next transformation rule while keeping the exis-

tence of & sequence of consistent mapping pairs between Fp and F; and weight completeness
of F;.

Lemma 3.4.2 Let P be an initial program, and T be & proof tree of atom A# with answer
substitution ¢ by program Fy. Let 7' be the lahelled tree obtained from T by teplacing Af
in the left-hand side of the equation in the oot label with A. Then 7" is a proof tree of atom
A by program FPa, and w(T) = w(T'}.

Proof, Obvious.

Lemma 2.4.3 Let P be an initial program, T be a proof tree of atom A with answer
substitution o by program [%, and # be a substitution such that # and o are unifiable. Let
T' he ihe labelled iree obizined from T by replacing A in the left-hand side of the equation in
the root label with A#. Then T is a proof tree of atom Af by program Fy, and w(T') = w{1"}.

11

Proof. Obvious.
After proving two more lemmas, we will start the proof of total correctness.

Lemma 3.4.4 Let P be a program in u transformation sequence starting from initial
pregram Fg, and € be a clause in £, If € doesn’t satisfy folding condition (d}, a1l the
predicates of atums in the body of € are old predicates.

Proof. By the hypothesis, either C remains as it is during the transformation sequence from
Py to P, or € is introduced by folding. For the former case, the lemma holds obviously. For
the latter case, there exisis a clause €' in some /% (7 < 1}, and C is the resull of folding C".
Then ' satisfied folding condition (d). But, as the condition is not affected by folding, C
also satisfies the condition, which contradicts the hypothesis.

Lemma 3.4.5 Let P, be a prograim in a transformation sequence, T be any proof tree by F;,
and T7,T%,...,75 be the immediate subproofs of T. If F} is weight complete, then T > T;
fory=1,2,...,m.

P:pc:}. Let ¢ be the clanse used at the root of T of the form
Au. Hi A1,...,Al1

Then T is & proof tree of A;. From the definition of weight completeness,

w(T) 2 w(T)+w(T2)+ -+ w(T),
hence, w(T) > w(T;) holds for j = 1,2,. .., n, since w(Ty), w(T2), ..., w(Ty) are non-negative
numbers. If

w(T) > w(Ty) +w(Te) + -+ w(T,),
then T » T; holds. If

w(T) = w(Ty) +w(lz)+ -+ w(Ta),
by condition (b) of weight completeness, C doesn’t satisly folding condition (d). Then, from
Lemma 3.4.4, no new predicate appearsin 4,,..., 4n. Henee T > T; holdsfor j = 1,2,...,n.

Lemma 3.4.6 The initial program Fp of a transformation sequence is weight complete.

Proof. Let T be a proof tree by Py, C be the clavse used at the root of T, and T3, Ty,..., T
be T's immediate subproofs. Obviously the condition (&) of weight completeness is satisfied.
In addition, € satisfies folding condition (d) if and only if the predicate of C”s head is an old
predicate. In thai case, obviously condition (b) of weight completeness is satisfied. Thus Fy
is weight complete.

Lemma 3.4.7 Let Py, Py, ..., Pyv be a transformation sequence. If there exist consistent
mapping pairs

T(P) = T(R) 2 T(F) f—u BN OF (15}

£1 "5
such that Py, Py, ..., P are weight compiete, then there exists a comsistent mapping fiy,
from T(F)to T(Fy)fore=0,1,..., N =1,

Proof. Let T be a proof tree of atom A with answer substitution ¢ by F;, C be the clause
used zt the root of T of the form

Apg 1= Ay A, AL (n 2 0
and T4,,Ta,,.... T, be T immediate subproofs of 4, 4s,..., A,. By induction on the
well-founded ordering =, we will define a consistent mapping fi31 such that fii4(T) is a
proof tree T of A with answer substitution & by Fi4,.

12

Case 1: Cisin Py

From Lemma 3.4.5, T = Ty, holds for 3 = 1,2,...,n. By the inductive definition,
JearlTad figr(Tay oo fi 1(T4,) are proof trees Ty, Ty LTy of Ay As,.. A by
Py, with the same answer substitutions as T, Taziooos Ta,. Let 77 be the proof tree
obtained by poiting a root node labelled with ("4 = Ao”, Chover Ty Ty, - s T, From
the definition of answer substitution, o is an &nswer substitution of T'. Henee T is a proal
iree of A with answer substitution & by Figq.

{“A = Ag", CJ
Fiqe ;o N

Ty Tagsei Ta,
induction 1}

(“4 = 45", C)
P I."I ,ll \L
T‘“T“;,...,TA“

Figure 3.4.1 Definition of f;;1 for Case 1

Case 2 : C is unfolded.

From Lemma 3.4.1, without loss of generality, we can assume that A; is unfolded. Let

D be the clause used at the root of Ty, of the form

By i- By,...,Bm (m2=0)
¢ be an m.g.u. of By and 4, , and €' be the result of unfolding € using D. Then C' is of the
form

_ﬂ.ﬂﬂ Hha B]_E,.. .,Bmﬁ',ﬂ:f}. o ,,.4.,, .

First, let Ty, se. -1 T B, be T4,'s immediate subprocfs of By,..., Bm. Then, proof
trees Sg, ..., 98, Sdyeee-25a, of Bi.... Bm, Au,..., An by Pp with the same answer
substitutions as Ty yoerd By JAzrc e dAn 4IC eniguely determined by applying gi,.... 0
16 Tg,,---+ T8y Tazr---11a,- Let Ey be the wnion of the label sets of Sp,,..., S5,
Sag,--: 54, and {4 = Ao, Ay = Hy}. From Lemma 3.1.1, ¢ is the restriction of an m.g.u.
of Ey 1o the variables in A.

Second. from Lemma 3.4.5, there exist proofl trees Sp s, ... S, 6y Sases -, 0a,e of
B8, ... Bmf, Agd,. .., A0 by Py such that they are identical to Ty, ,..., Th,, except the
lefi-hand sides of the equations in the root labels. Let Es be the union of the label sets of
5[,‘[3, .. -1S.Eml,‘r .SA.FE,...,SA”E and ‘{..-d. — Aulg} Then Ez is identical to {El - {.‘11 = Bn}}ﬂ
From Lemma 3.1.2, ¢ is the restriction of an m.g.u. of Ey to the variables in A, since
8 dose not substitute for the variables in 4. Note that, from Lemma 3.4.3, w(Sp,) =
w(Spa)s. . w(Sp,) = w(Sp.e), w(Sa,) = w{Sase), caw(Sa) = w(Sa.e)

Third, proof irees T g, ..., T e, Taze,--- Ta e of Bi8,...,Bnf, Axf,. .., Anl by F
with the same answer substitutions as Sgg,.... Sp.6, Sas8, -, T4,6 BT pniguely deter-
mined by applving fi,---s fi 10 S50 oy SBmbs Sazhroo 1 DAl Let Es be the union of the
label sets of To6, .- T8, Tas6se.. 1 Ta e and {A = Apf}. From Lemma 3.1.1, ¢ is the
restriction of an m.g.u. of Ey to the variables in A.

Last, since F, is weight complete,

w(T) > w(Ta,) +w(Ts,) 4+ +wl(Ts,)
w(Ta,) 2 w(Ts,) + -+ w(Ts,.)

13

hold. In addition, if the predicate of By is an old prdicate, [satisfies folding condition (d},
and if not, € does from Lemma 3,44, Hence, from condition (b} of weight completeness,
either

w(T) > w(Ta,) + w(Ta,) + -+ w(T4,)
or

w(Ta,) > w(Tg,)+ -+ w(Tp,.)
holds. Whichever holds, from w(Tp,) = w(Tse)....w(Te,) = w(Ts. p), w(Ts,) =
w(Tae), oo wiTa,) =wiT4 0)

w(T)> w(Ty,)+ -+ w(Tp,)+ wila,)+ -+ wl(Ta,)

=w(Tpe)+ - +wTp,e) +wTae)+ -+ w(la.e)

holds. Thus T' = Tg ¢ holds for j = 1....,m, and T = T,,s holds for k =2,...,n. By the
inductive definition, fis1{Tne),. .. fis1{To0) fig1{Tage),. ., fis1(Ta,e) are proof trees
Tggr-+TporTasere 1Ty of Bib,... B0, As8,... A8 by P4y with the same answer
substitutions as Tg,e, ..., T 5,.6: 7 4s8s-- 11 4,6 Lel T be the proof tree obtained by putting
a root node labelled with (“4 = 4007, C") over Ty o,.-. Tp_ps Thyer- 1T 5o and E' be
the union of the label seis of T{.}jg, coos Ty, 6, Tase,. .., Ta e and {A = Agf}. From Lemma
3.1.1, 7 is the restriction of an m.g.u. of E' to the variables in A. Hence, T" is a proof iree
of A with answer substitution & by M.

(“A = A", C")
Figa: /"H / \ ““_‘I
.;?.EI"H ;?h&: LEEI"'JTA‘E

induetion {t

{WA=A0”+ G]
E: Tees---.Ta, o, Taze, ..., Ta,e (“Ay = Bo", D)\ ™~
TB|:I"'rTF...ITﬂ-:1 "-}TA

fieefi ooy

Fy: Spg.e.. Spoe.Sase.. ... Sae = SByye e T Sdgie e 04
Lemma 3.4.3

Figure 3.4.2 Definition of f;,; for Case 2

Case 3 : (s folded.
Let D be the {olding clause of the form
By - By,....Bm {m }U]
and C' be the result of folding. From Lemma 3.4.1, without loss of generality, we can assume
that 4.,...,4m are instances of By,..., B, sav by an instantiation #, and from folding
condition (b), C' is of the form
Aﬂ H Bu'ﬂ,.."i..m.}h. . ,.-d.u.,l.
First, proofirees Sy, ..., 54 ol 4y, ..., A by Py with the same answer substitutions
85 Ta,,.... 14, are uniquely determined by appiving i, ..., 91 10 Ta,....,Ta,.. Let Ey be
the union of the label sets of S4,,..., 54 . Ta_.,..... T4, and {A = Ap}. From Lemma
3.1.1, o 15 the restrction of 2o m.g.u. of £ to the variabies in 4.
Second, from Lemma 3.4.2, there exist proofl trees S5g,,...,5p, of Hy,..., By by Iy
such that they are identical to S, ,..., 84, except the left-hand sides of the equations in
the root labels, since Byd = A,,..., B, 0 = A, from folding condition (a). Let E; be the

14

union of the label sets of 8p,, ..oy 5By Tamars oo Ty, and {4 = Ag, Byf = By} Then E,
is identical to (Ep — {Bpf = By))0. From Lemma 3.1.2, o is the restriction of an m.g.u. of
Eo to the variables in A, since # does not substitute for the variables in 4. Note that [rom
Lamma 3.4.3, w(S4,) =w(Sa,) ..., w(Sa.) = w(Sg,.)

Third, because the predicate of Bef is a new predicate, the clanse used at the root of &
proof tree of Byf by Fgis in Py . Further, from folding condition {c), this clause should be
D. Let Sp,e be the proof tree obtained by puiting a root node labelled with {“Byf = By",
D)uver Sg,, ..., Sg,.. Then, proal tree Tpyg of Bof by F; with the same answer substitution
as Sp,g is uniguely determined by applyving fi.-.., Ji to Spee. Let Ly be the union of the
label sets of Ta,or Tamars- - Ta, and {4 = Ag}. From Lemma 3.1.1, & is the restriction of
an m.g.u. of E3 to the variables in 4.

Last, since P is weight complete and C salisfies folding condition {d),

w(T) > w(ly,) +-- +w(T4,)
holds. In sddition, since the predicate of Hof is a new predicate,

w(Spye) = w{Sp,)+ -+ w(5p,)
holds. HETLCE, from tﬂ(TﬂD‘a} = W{Sﬂug} and w{S’B,] = tﬂ'l:TAll], ey T.!P[SF_} = W{TA_'],

w(T)i> w(Ta,)+ -+ wila,)}

= w(T,e) + w(Ta.,,)+ +uw(Ta,)

holds. Thus T % Ty.s holds and T = T4, holds for j = m + L..., 7. By the induc-
tive definition, fiso(Tnos) fis1(Tamardioors Jiz2{Ta,) are proof trees T]’;ng,'!'i_“,...,‘]'f,_n
of By, Amazy..-idn by Jigq with the same answer substitution as Te.e. Ta oo I P
Let T' be the proof tree obiained by putting a oot node labelled with (“A = Ap", C') over
Thoa Ty oo T, and E* be the label set of T, i.e., the union of the label sets of TE,.&,
Ty Ty, end {A = A}, Then, from Lemma 3.1.1, ¢ is the restriction of an m.g.u. of
E' 1o the variables in A. Hence, T' is a prool tree of A with answer substitution o by Fiyq.

(“A = 40", C')

Hg i .

T;E?ue‘Ta;mﬂ‘“' ’Tj‘-n
induction ff
g.ﬂ. = 4,",)
H: ‘I.IE.:.H".-T.‘-.,.+|_ LR 1Tﬂn ___.-'"'-f.‘ ;,-"r \ “““'\‘
TAir |TAM1TA...+| """ Tﬂ-n
fie-eo i Ygpe-ow
(“Bol = Bp”, D)
P-n'- I.-'III ll'k' —_— SAH ¥ --?S.ﬂ-m
S5,...-.58,, Lemma 3.4.2

Figure 3.4.3 Definition of [i4, for Case 3

Lemme 3.4.8 Let fiz; be the mapping from T{F,) to T(Fi;,) defined in Lemma 3.4.7,
and gi+, be the mapping from T(Fyy) to T(F) defined in Lemma 3.3.4. Then {fisr.9i41)
is a consistent mapping pair between T(F;) and T(Fi41). and Fiyy is weight complete w.r.t.
EJ:l~,'?1]||:f21ﬂ:’}ﬁ'-*r{f1'+l:§1+11||-

15

Proof Due to space limit, we will show the proof only for the most complicated “Case 3.7
{See Figure 3.3.3 and 3.4.3.) The other cases are proved in the same way.

The equality gis1 0 fig1(7) = T for any proof tree T in T(F;) is proved by induction on
the well-founded ordering >. Let (“4 = 457, C) be the root label of T, and Ty,,..., Tu,,,
Tapsrr---214, be the immediate subproafs of T. Suppose that, from P; to Py, clause C
iz folded to clanse € wsing instantiation #. Following the definition of fiy; in Figure 3.4.3,
Tayy---y Ty, uniquely determine proof tree Ty e. From the induction hypothesis,

Figr 0 fi+1[T_eq'i] = Tﬁuﬂr

Figr @ ft'-l-‘-l{l?zim“:' =T it

giv1 0 figa(Ta,) = Ty,
because T = Ty, T = Tu,pyr.-- T = Ty, . This time, following the definition of g;4; in
Figure 3.3.3, Tp,e uniquely determines proof trees Ty,,..., Ty . Hence, giyr0 fify(T)=T

The equality fiy; 0 9i3:(T) =T for any proof tree T in T(Fiy1) is proved similarly by
induction on the structure of proof trees.

The weight completeness of Fiyy is easily proved from the definition of, fi4; in the
proof of Lemma 3.4.7. Let ("4 = 457, C) be the clanse nsed at the root of T', and
TayseewsTu Tapey:o-..Ta, be the immediate subproofs of T'. Suppose that, from P, to
Fig1, clause C is folded to clause C' using instantiation #. Since F; is weight complete and
C satisfies folding condition {d),

w(T) > w(Ta)+ +wl(Ta,)+ w(Ta,,)+ +w(Ta,)

In addition, since the predicate of Byf is a new predicate,

w(Spee) = w(Ty,)+ +uw{lp,)

Then, from w(Tg 3) = w(Sge) = w(Ta,)+ -+ w(ly,,) and w(Ty Y =w(Tands-o-s
w(T,) =w(T4,)
w(T") = w(T) > w(Tg)+ w(T)+ +w(l))

Theorem 3.4.8 Preservation of Success Multiset

The snccess multiset of any program in a transformation sequence starting from initial
program Fy is identical to that of F.

Proof. Let Py, Py,..., Px be a transformation sequence. If there exist consistent mapping
pairs
HY
T Fs) =T[P1] _'}'{P.. = .. —T{P}
gz 23
such that Fs, P,. F; are weight complete, f_mm Lemma 3.3.4 and 3.4.7, there exist consis-

tent mappings gi41 from T{F. ;1) to T(F) and fiy, from T(F) te T(P; +1} Farther, from
Lemma 3.4.8, (fiy1, 9i31) is a consistent mapping pair between T(F) and T(Fisg),and Py,

is weight complete w.r:t. (f1,9,).(fz,82),.. .. (fis1, 0i41). From Lemma 3.4.6, initial program
Fyis weight complete. Then, by induction, there exists a consistent mapping pair (fiz1s9ig1)
between T(F;) and T(Fiy,) for every i = 0,1,..., N = 1. Hence. M(F:) = M(Fi41) holds
forevervi=0,1,.... N = 1.

The original result by Tamaki and Sato 8] [10] can be derived as a corollary.

Corallary 3.4.10 Preservation of Least Herhrand Model

The least Herbrand model ¢f any program in a traneformation sequence starting from
initial program Py is identical to that of F.

16

Proof Let P be a program, M(P) be the set of all ground atoms Ag such that atom-
substitution pair (A, o) is included in M(I"). Then M{FP}is the least Herbrand model of ,
and from Theorem 3.4.10, M(FP) is preserved. Thus, tle least Herbrand model is preserved.

4, Discussion

Preservation of snceess multiset widens the safe use of the Prolog programs obtained hy
Tamaki-Sato’s transformation, which is not validat ed hy preservation of least Herbrand model
(ef. [5]). For example, consider the ‘setof’ and ‘bagel® predicate of DEC-10 Prolog. A call
‘setof(X,P,5)" means “S is the sel of all instances of X such that P succeeds”, and a call
‘bagofi X.P.S) means “S is the multiset of all instances of X such that F succeeds™. Programs
which are eguivalent in the sense of the least Herbrand model semantics do not necessarily
behave in the same way to the ‘setol’ and ‘hagol’ calls. For example, consider the following
three programs Py, I, Pa again.
Fy o piX).
qfa).
B p(a:l.
q(a).
P3 H p[a}.
p(X) :- q(X).
q(a).
Although these three programs are equivalent in the sense of the least Herbrand model
semantics, o a guery
7- setof{ X,p(X),Y).
Py and Py succeeds with answer cubstitution <X <=a, Y < [a]>, while P; fails. Moreover, to
i query
7. bagof(X,p(X),Y).
Po succeeds with answer substitution <X < a, Y<=[a]>, A succeeds with <X <=a, ¥ +=
fa.a]>, and Py fails, However, when {he success multisets of programs are identical, they
behave in ihe same way to any ‘setol” and ‘bagol’ calls if the calls stop. (Note that the
success multisets of Py, Po and F3 are not identical.) Hence, we can safely use a predicate
as an argument of ‘setof’ and ‘bagol” when the program for the predicate is obtained by
Tamaki-Sato’s transformation.

In this paper, we have not mentioned the goal replacement Tule. which Tamaki and
Sato adepted as one of the basic transformation rules [8] [10]. We expect that, in application
of the goal replacement rule, slightly stronger conditions than those by Tamaki and Sato
would guarantee the equivalence-preservation in our sense.

5. Conclusions

We have shown that Tamaki-Sata’s unfold /fold transformation of Frolog programs pIeserves
equivalence in u stronger sense than st of the usual least Herbrand model semantics, which
Tamaki and Sato originally showed. That is, any program obtained from an initial program
by applying Tamaki-Sato’s transformation can compute the same answer substitutions the
same number of times as the initial program for any given top-level goal.

Acknowledgements

17

This work is based on the result by Tamaki and Sato [8] [9] [10]. The authors would like to ex-
press deep gratitude to Mr. H. Tamaki (Ibaraki University) and Dr. T. Sato { Electrotechnical
Laboratory) for their perspicuous and stimulative works.

This research was done as a part of the Fifth Generation Computer Systems project of
Jupan [2] [3] [4]. We would like to thank Dz, K. Fuchi (Director of ICOT] for the opportunity
of doing this research, and Dr. K. Furukawa (Vice Director of ICOT}, Dr. R. Hasegawa (Chief
of ICOT 1st Laboratory) and Dr. H. Ito (Chief of ICOT 3rd Laboratory) for their advice
and encouragement.

References

[1] Burstall, R.M and J.Darlington, “A Transformation System for Developing Recursive
Programs™, J.ACM, Vol.24, Na.l, pp.44-67, 1977,

[2] Kanamroi, T and K.Horiuchi, “Construction of Logic Programs Based on Generalized
Unfold/Fold Rules”, Proc. of 4th International Conference on Logic Programming,
pp. T44-768, Melbourne, Muy 1987, Also a preliminary version appeared as ICOT
Technical Report TR-17T7, 1986,

[3] Kanamroi, T and H.Fujita, “Unfold/Fold Logic Program Transformation with Conn-
ters”, Presented at U.S-Japan Workshop en Logic of Programs, Honolula, May 1987.
Also a preliminary version appeared as ICOT Technical Report TR-178, 1986.

[4) Kanamroi, T and M.Maeji, “Derivation of Logic Programs from Implicit Definition”,
[COT Technical Report TR-17§, 1986,

[5] Kawamura, T and T.Kanamroi, “Preservation of Stronger Equivalence in Uafold/Fold
Logic Program Transformation”, ICOT Technical Report, to appear, 1988,

[6] Maher, M.J., “Equivalences of Logic Programs”, Proc. of 31d Internatinal Conference
on Logic Programming, London, July 1986,

[7] Manna, Z and R.Waldinger, “Synthesis : Dreams = Programs”, IEEE Trans. on Soft-
ware Enginecring, Vol.5, No 4, pp 284-128, 1873,

(8] Tamali, H and T.Sato, “Uufold/Fold Transformation of Logic Programs”, Proc. of 2nd
International Logic Programming Conference, pp.127-138, Uppsala, July 1984.

[9) Tamaki, H and T.Sato, “A Generalized Correctness Proof of the Unfold /Fold Logie
Program Transformation”, Department of Information Science TRE6-04, Tbaraki Uni-
versity, 1986.

(10] Tamaki, H, “Program Transformation in Logic Programming”, (in Japanese,) in “Pro-
gram Transformation”, eds. l.Fuchi, K.Furukawa and F . Mizoguchi, Kyoritsu Pub. Co,,
pp.39-62, 1987.

18

