ICOT Technical Report: TR-401

TR-401

Term Indexing for Retrieval by Unification

bwv
H. Yokota. H. Kitakami and
A. Harttori(Fujitsu)

June, |98%

Colwds, WoT

Wi Rokusa Blde, 9 F Ay BAG- I - 5

IE Q I =28 Mita 1-Chomg Telex 1007 a2

Minato-ku Tolivo 8 Jopan

Institute for Neiv Generation Computer Technology

Term Indexing for Retrieval by Unification

Haruo Yokota™
Hajime Kitakami®’

Akira HattoriTT7

Artificial TIntelligence Laboratery
FUIITSU LABORATORIES LTD.

Kawasaki, Japan

ABSTRACT

This paper presents a method for indexing terms in a knowledge-
base retrieval-by-unification (RBU) svstem. The term is a well-defined
structure capable of handling variables to represent knowledge. RBU
operations are an extension of relational database operations using
unification and backiracking to retrieve terms from term relations. The
term indexing we propose uses hashing and trie structures to reduce the
number of comparisons between elements of a search condition and of an
object term relation. Unification on a trie struciure is suited o
hackrracking bindings of wvariables. The search and updating speed of an
RBU prototype is measured to evaluate the indexing method. This method is
effective in fast term retrieval for a large number of similar and wvaricd

form terms. The overhead for maintaining indexes in updating is low.

¢-mail address:
v hvoko%moioko.stars. flab.fujitsy. junet@ueunet UUNET
TY kami%motoko.siars.flab.fujitsu.junet@uuner UUNET
77+ hattori%ayumi.stars.Tab fujitsu.junev@uuner. UU.NET

1. Introduction

Retrieval-by-unification (RBU) operations have been proposed
[Yokota 86] for a knowledge base system of the Fifth Generation Computer
Systems (FGCS) project in Japan. RBU operations are an extension of
relational database operations for manipulating knowledge. A knowledge
element is represented by a term, 2 well-defined structure capable of
handling variables, A knowledge base consists of sets of terms called term
selations. The RBU system searches the term relations for desired terms,

those unifiable with a search condition.

The relational database presents a large amount of data and the
knowledge stored in the RBU is easy lo usc. The SLD resolution can be
implemented with a combination of RBU operations [Yokowa 86]. The SLD
resolution is a resolution algorithm for Hom logic, which is a subser of
first-order logic (Lloyd 84]. The execution mechanism of Prolog systems is
based on the SLD resolution. A parailel production sysiem usSing RBU
operations has been proposed for solving artificial iniclligence problems
[Yokota 88]. In these knowledge-based sysiems, Homn clauses and production
ruiles are stored in term relations as knowledge bases. This chunk of

knowledge is important in handling a large amount of knowledge.

Term retrieval speed influences the performance of knowledge-based
systems. Different approaches have been proposed for fast term retrieval.
One is dedicated hardware, c.g., parallel unification engines with a
multiport page memory [Yokota 86, Morita 86, ltoh 871, The engines
perform umnification on term sireams in a pipeline fashion. The multiporn

page memery is shared by the engines. Superimposed code words for terms

and apother tvpe of engire for manipulating the words has been also

proposed [Wada 8§7].

A more cconomical approsch is indexing using software without

dedicated hardware. Prolog systems use hashing f{or indexing Prolog
clauses. A hash wvector for a join operation with wunification has been
proposed [Ohmori 87). Hashing effectively retrieves a term [rom many

terms in varied forms, but hash collisions doe 1o similar form terms make
the effectiveness of indexing low. Many similar form terms are stored in
term relations for knowledge-based sysiems. and simple hashing is not
cnough to implement the RBU system. Backtracking in the index for
variable binding and index-maintenance owverhead in updating must also

be considered in implementation.

We propose szophisticated indexing that uwses hashing and trie
SITUCIUTES, This is suited o retrieving terms from term relations
containing a large number of terms in both similar and wvaried forms using
backtracking, and o frequent updating of term relations. We implemented
an RBU prototvpe using this indexing, and measured its search and
updating speed to evaluate the indexing method. Section 2 defines the term
refation and RBU operation. Section 3 presenis indexing implementation.

Secuon 4 reports the results of the RBU prowtype evaluation,
2. Term relation and RBU operation

Our definition of "term"” is the same as that of [frst-order logic [Chang

ang Lee 73}, We use "set” w define 2 term relation,

Definition Let F, be a finite set of n-arity function symbols. Let ¥V be an

enumerably infinite set of wvariabies where

Y F,nV =G,

Definition T is aterm sct when
iy IfreFgporteV thent T,
i) Ifeyme T, fe Folnz1)then firy ... ie T .

An clement of term set ¢ is aterm.

Definition Let Ty. T3 ... T be term sets. TR, is an m-atiribute term
relation when
TywTy .., «Tp=TR, (m21)
It 15 & lETM when
e = (11 4 12 seeer Im) eTRy

rr[i} is the § th item of term wple 1.

Figure 1 shows a (wo-auribute term relation having six term tuples.
In the examples in this paper, symbols beginning with capital letters are
variables. When the wariable X in the term p(X.g(Y)) at the first attribute
of the first term tuple in Figure 1 is bound to a term ffa.b), the term rfX. Y]
at the second atribute of the term tuple becomes r(f(a.b)¥Y) because the

variable scope is a lerm tuple. The vanable binding 8 = [ffa.b)iX]} is called a

subsiitution.
P Yl riX.Y) +— Tem wpie
giffa i) g(X)) riffaX)X)
X bl rihfab] ffal)
gt XY gicl saX.piVel
piffablhiX)) sfapib.e))
piffaX).nX)) sfaX]
First atiribute Second at‘{ﬁhum

Figure 1. Example of term relation

Definition A substitution & is called a gnifier for terms r) and r; if and
only if 118 =128

Definition A unifier o for terms ¢y and ¢4 is 3 most general unifier, if and

only if, for each unifier @ for these terms, there is a substitution 1 such

thar & =i,

Cperations on term relations are based on relattonal algebra [Ullman
4Z]. There are scveral retrieval operations in relational algebra, including
union, projection, join, and selection. We have implemented these
operations, extended by unification in the RBU prototype, and have also
implemented updating operations and defining operations for term
relations. Because our theme is indexing, we focus on a simple selection

operation with unification which we call "unification-restriction.”

Definition Inifi ipn-restriction is an operation generaling a new lerm
relation TRy from TR,y and a search condition term r for the | th
attribute:

' € TR 3 31 e TR, Za. ttplilo=ta, i y[k] = lkla(1 sksm).

Here, o is the most general unifier between /i) and 7.

Given the search condition term for the first attribute of the term
relation in Figure 1 as p(ffd.c),B), unification-restriction derives the firsr,
third, and sixth term tuples of that term relation and generates a new lemm
relation (Figure 2). The o3 on the right of the table indicate the most

gencral unifiers between the search condition term and each ierm tuple.

pUftAc).g(Y)) rifid.c)Y) o={ffA.chX, g(YVEB]
pifiA.cloibl) rikiab)fia)) a={flAclX, gibiiB}
piffa.c)hic)) sa.c) o={c/X. alA, hic)B}

Figure 2. Resuit of wunification-restriction

3. Implementation of indexing

3.1. Representation of terms

Somec representation of terms is reguired for sworing and searching.
A term can be viewed as a tree structure and unification as a wype of pauem
matching on the tree. A variable is bound to a subtree in the
corresponding location. Figure 3 shows the tree structure of the term
piffa b hiX)). When the term is unified with term p(¥.Z). ¥ is bound to the

subtree whose root is fand Z 1o the subtree whose root is A,

Figure 3. Tree structure of term piffa.b} afX])

Level-order and family-order saquential representation are two ways
to represent a tree structure [Knuth 73al The level-order sequential
representation (LOSR) of the tree in Figure 3 is [(p-2, f-2. k-1, a-0, b-0, X] and
the family-order sequential representation (FOSR) is [p-2. f-2. a-0. b-0, h-1,
¥]. Each element denotes a function symbol and its arity (the number of
branches of the node) in this representation to preserve the original tree

structure.

Prolog svstems use the FOSR. Since each node's symbol is followed
recursively by the symbols for all child nodes, the FOSR is suited to
traversing complicated variable bindings caused by repeated unification.

A difference in term structure is found after examining fewer nodes of the

LOSR than of the FOSR. In the example, information that the top of the tree
is constructed from the three nodes p, f, and A is derived by checking only
the [irst three elements of the LOSR (independent of the size of the subtree-
rocted f J; five elements must be checked in the FOSR. The more nodes the
subtres f has, the more elements must be checked in the FOSR. Because
unification is repeated only a few times in the RBU system and most lerms

in a term relation have a similar top., we use the LOSR in the RBU prototype.

The length of the representation of a term is variable, so we use a cell
siructure 0 store the LOSR of a term. A cell corresponds to each element of

the LOSR, and has four fields:

Atom table entry Arity or Allernate Nexi

ornull varizble number cell celil

The first and second fields are used to indicate element contenis. For a
function symbol, the first field comiains a pointer for the corresponding
eniry of the atom tabie, and the second contains the arity of the function
symbol. Function svmbols are stored in an atom table because the svmbol
length is also variable and the same symbol may appear many times in term
relations. For a variable, the first field contains a “null”™ pointer and the
second containg the variable number, Symbels for wariables are not
important because they are renamed in unification. Yariables are
numbered sequentially in a term tuple because of the wariable's scope, and
the identical wvariable has the same wvariable number. The third field of the
cell is used for constructing a trie structure, described later. The fourth
ficld contains a pointer to the next cell and contains a "null” for tail

elements.

Figure 4 shows the cell structure of the terms in the first auribute of

the term relation in Figure 1. For readability, a function symbol is directly

illustrated using a pair consisting of the symbel and arity (i.e., pointers for
the atom 1able are omined.) A lewwer V and its subscript indicate a variable
and its variable number., The alternate-cell field is omitted and a slanted

line in the next-cell field indicates a "null” pointer.

X 2(Y)) p2 Vg -1 Vs
q(ffa X} g(X)) g-2 72 2-f a-0 V V1
PE b)) p-2 Vo g-1 b-0
aifix ¥ eich) g-2 -2 g-1 Vo Vo o=
pifiab)hiX)) p-2 f-2 kel a-0 b-0 | 4+—AV 4
piffaX) X)) p-2 -2 k-1 a-0 Vi V1

Figure 4. Cell structure for LOSE of terms

We use the cell for both storing terms and constructing indexes for

scy attributes of term relations. We call the cell structure in Figure 4 the

fat cell Hist of a term.
3.2 Hashing and the trie siructure

Hashing is a popular indexing technigue for fast searching [Knuth
T3b]. Terms with similar forms cause hash collisions and reduce the
effecuveness of the indexing, however. A large number of similar form
ierms is stored in term relations for knowledge-based svstems [Yokota 88).
Because the REBU operation requires backtracking of variable bindings,
alternatives being bound to a wvariable are located close together In an
index. We therefore combined the tric structure with hashing for our

indexing scheme,

A iric structure is a iype of tree for sharing idenucal elements [Knuth
73b]. Tt is usually used 10 siore a sequence of numbers or letters. We apply
a Lrie structure to the LOSR of 1erms having the same function symbol as
their first eclement. The alternate-cell field of each cell is used for
branching. The list of werms in Figure 4 is translated into two trics ropted at
p-2 and g-2 (Figure §5). For example, the first three elements of the LOSR
for p(X.g(Y)) and p(X.z(b)) are identical. These three elements are shared
and the fourth element has a alternate cell. Terms resembling each other

are located close to cach other in the tne.

pfanryﬂ p-? -+ v 1 -—iI 2=l —_ 1 g};
i
piX.28)i /g;/..g
pifia X)X} "J-z S kel N a0 NV Ly 4oV
e
piffabiaX)) b0 \{ = V 4
qUitx.Y)gle)) g-2 |\| 4 2 |\ & \ 4oV vV 2 [\ T -0
7
qUfiaX).gX)) a-0 \-- vy v

Figure 5, Trie structures for lerms

The cost of the unification-restriction operation is proportional to the
count of comparisons between elements of the condition and object terms.
A rie reduces the number of comparisons when unification is performed

an it

Consider a scarching of the set of terms in Figures 4 and 5 [or terms
unifiable with the condition term p(f(a.b) h(c}). Cells are traversed as

follows to search for all such terms:

Without trie structures (Figure 4):
<slar>
g-2, V=21 g-1 =fail=,
g-2 =fail>,
p-2, Vi(=f2), g-1 <fail>,
g-2 <fail>,
p-2, f-2, k-1, a-0, b0, Vji{=c-0} <success:,
p-2, f-2, k-1, a-0, Vyr=b-0), V; <iail>.
<ends
With trie structures {Figure 5):
<star>
p-2, Vi, g-1 <fail>,
-2, k-1, a-0, Vii=0-0), V) <fail>,
b-0, Vi{=c-0) <sucecess=>,
g-2 <fail=,

<gnd>

The first cell of the condition term is compared only twice with the
first cell of the trie structures, but all six of the first cells of the flat list of
terms must be compared. The size of this difference increases with Lhe
number of terms having the same first element. The same applies o the
second and subsequent cells. The total number of cell comparisons for
searching without the tric structure is N = M in the worst case when all
elements except the last are same for all terms, where N is the number of

term tuples and M is the average length of the flat list of terms. The trie

strucrure reduces 11w AN + M in that case.

Note that the amount of backiracking is alse decreased with the trie
structure. A sign at the end of each line of the above trace, <fail> or

<tuccess>, indicates invocation of a backirack., The number of backiracks

cocs from six to four. making the total nmumber of cell comparisons with the
tric structure smaller than N + M, almost M. when the trie is balanced. In
this example, the 1otal number of cell comparisons is 11 using the trie

strugiure, and 20 withour

We use hashing before the trie strueture 1o store both similar and
varied form term. A hash iable is prepared for each kev attribute in a term
relation. The first element of the LOSR of terms in the key auribute is used
as a hashlkey. A bit sequence of the atom table enmiry for the first element
is [oided by a bit width depending on the hash table size. and exclusive-
ORed as a hash function to decide its location in the hash table., Even
entries for similar function symbols are distributed well by this hash

function,

The hash 1able contains pointers 1o the corresponding trie structures
(Figure 6). The next-cell field of each leaf cell in the trie structure
contains @ pointer for a term tple. The temm wple is a list of pointers for

all aunbutes being flat cell lists of a term.

p2 = . p-2 U e Vil t, Tem wple

all .,

2 A a-0 Vo I"'1-'-l'1:f3
Hash
tabie b1 Vl—hﬂ‘s
g2 —p * g2 ™2 el Vi Va2 eo I—'rr5
ad = Vi Vi""'ﬂﬁ

Figure 6. Combination of hashing and trie structures

The trie structure is treated as a mechanism for resolving hash
collisions efficiently. Hashing is invoked only once for each search
condition, and backtracking for the search can be performed in the same
trie structure because the condition rerm is not unifizble with terms whose
LOSRs have different first elements. Hashing is suited to narrowing a
search space and the trie swructure for traversing the space efficiently.
The combination of hashing and trie structures is effective for a large

number of both wvaried and similar form terms.
3.3, Unification on LOSR

The wunification algorithm used in Prolog systems is based on the
FOSR of terms. The RBU system requires a special mechanism to unify

terms represented in the LOSR.

Two terms, p(X,g(Y)) and pifla.b).gic)i , are unifiable because X can

be bound to ffa.b), and ¥ 10 ¢ . The LOSRs are [p-2, Vi, g-/, Va] and [p-2. f-2.

— 1‘3_

g-1. a0, b-0. c-0]. The first variable Vy { =X) is bound to both f-2 and [a-0.
h-#1] which are not located in a sequence. The second variable V(= 17Y) is
bound to c-7 which is in a different location than Vs in the LOSR., A
mechanism for expanding variables is needed to make a virwal LOSR [p-2,
Vi g-l, Vi V7L Ve lo We use first-in-first-out (FIFO) lists [Knuth 73a] as a
working space to cxpand variables. Nenexpansion and expanded variable
flags are prepared for the unification and pushed into the FIFOs

corresponding to the arity number. The followings is a unification

algorithm on LOSRs using these flags and FIFOs:

Unification algorithm on LOSR of terms:

Stepl: Let L, and Lg be the LOSR of terms.
Push a nonexpansion flag s into each FIFO W, and Wp as the initial
state.
Step2: If (both W, and Wy are empty) then
Unification succeeds
Eise
et flags A and B from the top of W4 and Wp.
Step3: Casel: (both A and 8 are n)
Get clements E4 and Eg from the top of Ly and Lg.
If thoth E4 and Eg are function syvmbols F4-K4 Fp-Kg) then
If(Fy=Fp and K4y =Ky) then
Push flag n into W, and Wy repeated K times
Go 1o StepZ:
Else
Unificarion fails
Else if (Eqp 18 F-K and Eg,4 is a variable V) then
Bind V; 10 F-K

Push V; as an expanded variable flag into Wy,p

repeated K times,

Push [ag n inw Wg,q repeated K times
Go 1o Stepl.

Else if {(both £E4 and Ep are variables) then
Bind thesc variables cach other
Go 1o Siepl.

Cascl: (A/B isnm and B/A 15 V)

Get an element E4,p from the top of Ly,s.

if (Eqg is F-K) then
Bind the wvariable V; o0 F-&
Push V; into Wpg, 4 repeated K times
Push n into W,,p repeated X limes
Go w Stepl.

Else if (E45 is a variable V; bound to F-&) then
Bind the wariable V; to VJ,-
Push V;, and V;into Wa,8 and Wpg,a repeaied K times
Go to Stepl.

Else if (E4p is a unbound variable V;} then
Bind the wvariable V; 1o V;
Go to Stepd.

Case3: (A isV; and B isV;)

Bind each wariables

Go to Step2,

A wvariable bound to a function symbol F-K is expanded in the FIFOs as
K expanded wvariable flags. Each elememt that must be bound 1o the wvariable

is bound late corresponding to the flags. Figure 7 shows unification

between [p-2. ¥y, g-7, Vo] and [p-2. /-2, g1, a-0, b-0, ¢-01].

Wy

Wy

W,

w.'!. :

Wyt

F1OFs LOSR of ierms
n L L LT L] tattez. Vigl vy
n s M Ly :lp2.f2, 81, a0, b0,
- Initial stae -

n I n 5“ e Ezz’ :ﬁ: LA :[P'.? + Vlr .f'air ¥ VI]
nn s L LT tgilp2. f2.41. 00, 00,
A=nB8=n EA‘F‘EEQ=P'3

=ramearn ¢ Lyt[p2. Vo gd.Vy]
adn|n|nln i Lpilp2.f£2.234.a0, 60,
Vi=lF-2]
s i a DL Lacte2. Viegd. vy
alnin|n|nin i: Lg ilp-2, f2 g1, a0, 80,
apnadVyVi|n o Lytlp2. Vypgd, Vgl
mindnin|aln Ly :(p2 ., f2. 81 .a0 b0,
Vi=[f2, a0}

b it |y Vli n] Ly:lp2, Vgl Vy]
Adlritaidndn |n | Ly ilp2 ., 2, gl a0.b0,
Vi=[f2, a-0,b-0]

o fm e fvipada | Lyslp2, Vygd Vol

medn b bn fadn Lp :[p2.f2.81, a0, b0,
Vo= [c-0]

niln e {VyV)fn Ly:lp2, Vygl, V,y]

zL;.;r;;I"rE"'n" mola | Lg :lp2.,f2,g], al, b0,

Figure 7.

Unification successtul

Unification process on LOSRs

- [5 —.

o

=l

c-{

e-0

e

3.4, Trie structure traversal

The unification algorithm is applied to trie-structure traversal for
retrieving term tuples. Each node of the t(rie structure is treated as an
element of L, in the algorithm. Lpg is the LOSR of a search condition term.
Backtracking is rcquircd because the unification for branches of the trie

siructure starts from the middle of Ly and Lg.

Information for backtracking must be pushed into a stack when the
unification algorithm examines an element having alternatives, i.e.. a
branch. The address of the Eg cell and of the alternate cell far £4, the head
and toil of FIFOs W, and Wg, and the level of wariable bindings at a
backtracking point must be kmown., Each element bound 1o variables has
its level - increased by one at each backtracking point. The environment of
variable bindings is recovered E}f unbinding elements whose level is
higher than the level of the backiracking point. The wunmeshed arcas of
FIFOs in Figure 7 are working spaces indicated by the head and tail
Because FIFQ contents remain after the rtail passes the element, the peinters
to the hecad and tail of FIFOs zre enough to revert the FIFQOs to the previous

sratg.

When backtracking occurs, the information at the top of the swack is
popped and the FIFOs and variable bindings revert to the backtrack point
The next compariscn siaris from the cell address stored as the Ep cell and

alternate cell far E4.

When the umnification succeeds at some leaf of the trie structure, the
pointer for the corresponding term tuple and the variable bindings are
retained as a retrieval result, This is another benefit of this method,

deriving the wvariable bindings by indexing.

16 =

4, Performance evaluation

Using an RBU prototype implemented in C, we compared the search
and updating speeds with those of the Quintus Prolog interpreter to
svaluatc the indexing method. Although the functions of these two sysiems
are different, the speed of the Prolog system can be regarded as a general

indicator of performance.

We prepared four types of term relations for evaluvation. Examples of
the index for ecach type are given in Figure §. Each iype has the following
characteristics:

Type A All terms have an identical function symbaol in each element
except the tail. When indexing is applied, the 1rie connectied (o
only one hash enury for the term relation is a highly skewed 1tree
whose branches are oanly its leaves.

Type B: Terms have one of 16 [unction symbols as their first element, and
all other elements but the tail have an identcal function symbol.
When indexing is applied, all 16 tries connected to each hash
entry are almost the same size and shaped the same as the trie in
lvpe A.

Type C: All terms have an identical function svmbol as their first element.
and the other elements have one of eight function symbols
recursively. When indexing is applied, one hash entry contains a
balanced trie. Each node of this trie has eight branches.

Type D: Terms have one of 16 function symbols as their first clement, and
the other elements have one of eight function symbols
recursively. When indexing is applied, all 16 tries connected 10
each hash entry are almost the same size and shaped the same as

‘the trie in Type C.

— 17—

JH
o— —
L]
i}
N
S | -—
Tvpe 4 - Type B -
—
—F—Or—orc
= L
- - Dy - :
Type €

Figure 8. Index appearance for four type relations

We used five relations having 50, 250, 500, 730, and 1000 rerm tuples
for each tvpe. The search speeds of the Prolog interpreter and unification-
restriction with and without indexing are compared for each relation.

Figure 9, 10, 11, and 12 show the results for types A, B, C, and D.

Figure 9 shows the effect of using only a trie structure in the worst
case. Hashing does not work for this type of relation. Because the rmple
count (N} of backiracking occurs at the leaves of the trie structure, the
search time increases with the tple count, both with and without indexing.
Differcnces in search speeds with and without indexing cause the number

of comparizson between the elements.

— 18 —

0.30

0.2%

0.20

0.15

010 =

0.0s

025 ¢

0.20 4

0.15

010

0.05 +

Figure

¢ RBU without indexing

©@: RBU with indexing »

B: Quintus Prolog /
L
//i
| §

t/. /
. /

e

" i & "

—

250 S00 7350 1000
Tuples

Figure 9. Search speeds for Type A

#*: RBU without indexing *

B: Quinms Prolog /
@ RBU with indexing

. 0 ¢ ©
250 500 700 10040
Tuples

Figure 10, Search speeds for Tvpe B

10 shows the effect of hashing for this case. The search speed

of uniflication-restriction with indexing hardly changes, regardless of the

number of tuples. The ceombination of the trie structure and hashing is

very effective.

0.30 T & RBU without indexing .
0.25 + B (Quimwus Prolog
2: RBU wath indexing

015 + b

0.10 ¢
ocs | f/f///

0 L B Q & o
o 250 500 750 1000
Tuples

Figure 11. Search speeds for Type C

Figure 11 shows the effect of the trie strucwure for type C. in which
hashing docs not work. Because backtracking is reduced by branching, the
search speed is almost independent of the tple count N. Hashing does not

significantly improve the search speed { Figure 12).

0.25 v & RBU without indexing
.) /
0.20 : Ouintus Prolog *

& RBU with indexing

0.05 4 .J/fl__,,f"’"

Figure 12, Search speeds for Type D

Figure 13 compares the tuple insertion speeds of the 1wo sysiems.
Tuple insertion using RBU rakes only about one sixth the time of a Prolog
consulr operation. The overhead for making an index for a term relation is

small compared to that the inserion ume.

30~ W Quintus Prolog
o5 0+ RBU load + make index]
® : RBU lnad
20 -+ a
15 -+
n
10
3 . Gﬁ?
_ﬁ&alﬁ—-"—:
o L¥——2 ; : |
0 250 500 750 1000
Tuples
Figure 13. [nsert speed comparison
5. Conclusions

As indexing for RBU systems. we proposed using trie structures for
indexing of term relations and showed that the trie structure reduced
comparisons between elements and backtrackings in the RBU operaton.
Combining the trie structure with hashing is most effective for terms in
both varied and similar forms. The LOSR of terms in the trie structure can
be applied to denote differences of term structure after checking as few
nodes of the trie structure as possible. We also proposed a umification

algorithm for the LOSR using FIFOs and trie structure traversal with a stack.

The search and updating speeds of our prototype were cvaluated and
compared with thosc of a Prolog system, Clearly, indexing using hashing
and trie structures is verv effective in speeding up term retrieval and

requires little overhead for maintining indexes in updating.
Acknowledgments

We thank Dr. Hidenori Itch, manager of the Third Laboratory of I1COT,
and the laboratory staff for their constructive discussion and Mr. Hiromu
Havashi, manager of the Anrificial Intelligence Laboratory, Fujitsu
Laboratories Lid., for his helpful suggestions. We also thank Mr. Mark
Feldman of the arificial intelligence laboratory for his helpful advice on

the refinement of the paper.

References

[Chang and Lee 73] C. L. Chang and R. C. T. Lee, Symbolic Logic and
Mechanical Theorem Proving, Academic Press, 1973.

[lioh §7] H. Itoh, T. Takewaki, and H. Yokota, "Knowledge Base Machine
Based on Parallel Kernel Language,” Proc. of 3Ith International
Workshop on Database Machines, pp. 15-28, 1987,

(Knuth 73al D. E. Knuth, The A~ =% Compuier Programming, 3, Soring and
Searching, Addison-Weslev. =73,

[Knuth 73b] D. E. Knuth, The Art of Computer Programming, 1.
Fundamental Algorithm, Addison-Wesley, 1973.

[Llovd 84) J. W. Lioyd, Feundz:iion of Logic Programming, Springer-Verlag,
1984,

[Morita 867 Y. Morita, H. Yokotz, K. Nishida, and H. Iich, "Retrieval-By-
Unification Operation on 2 Relatienal Knowledge Base," Proc. of I12th

International Conference - VLDB, pp. 52-59, 1986

(Ohmeri 87] T. Qhmori and H. Tanaka, "An Algebraic Deductive Database
Managing a Mass of Rule Clauses,” Proc. of 3Sth [nternational
Warkshop on Database Machines, pp. 291-304, 1987

[Ullman 82 J. D. Ullman, Principals of Darabase Sysiems, 1nd ed., Computer
Science Press, Potomac, Md., 1982,

[Wada 87] M. Wada, Y. Morita, H. Yamazaki. 5. Yamashiia, M. Miyazaki, and H.
Ttoh, "A Superimposed Code Scheme for Deductive Databases,” Proc. of
Sth International Workshop on Database Machines, pp. 569-382, 1987,

[Yokota 86] H. Yokota and H. Itoh, "A Model and Architecture for a
Relational Knowledge Base,” Proc. of the I13th International
Symposium on Computer Architecture, pp. 2-9, Tokyo. 1986.

[Yokota 88] H. Yokota. H. Kitakami, and A Hatori, "Knowledge Retrieval and
Updating for Parallel Problem Solving,” submitted to the International

Conference on Fifth Generation Computer Systems 1988,

