ICOT Technical Report; TR-398

TH-398
Detecting Termination of Logic Programs
Based on Abstract Hybrid Interpretation

by
T. Kanameri, T. Kawamura
and K. HoriuchiiMitsubishi)

December, 1987

C'1987, 1ICOT

Mita Kokusar Bldg, 21F (03} 426-3191~3

|[ :D [ 4=28 Mita 1-Chome Telex ICOT 32964

Minato-ku Tokye 108 Japan

Institute for' New Generation Computer Technology



Detecting Termination of Logic Programs
Based on Abstract Hybrid Interpretation

Tadashi KANAMOR]  Tadashi KAWAMURA  Kenji HORIUCHI

Mitsubishi Electric Corporation
Central Research Laboratory
Tsukaguchi-Honmachi 8-1-1

Amagasaki, Hyogo, JAPAN 661

Abstract

This paper presents a framework for detecting termination of Prolog programs by
abstract interpretation. The framework is based on mode analysis of Prolog programs. The
mode analysis is in turn based on OLDT resolution by Tamaki and Sato, a hybrid of the
top-down and the bottom-up interpretations of Prolog programs. By directly abstracting the
hybrid interpretation according to the mode structure, we can infer mode patterns of goals
without either diving into iufinite looping or wasting time for mode patterns of irrelevant
goals. Termination iz detected by finding a subset of arguments for each mode pattern during
the mode analysis process such that some measure computed from the symbolic complexities
of the arquments i3 bounded downwards and always decreases in recursions. This method
for Prolog programs is an adaptaticn of Boyer and Moore’s method for Lisp programs.

Keywords : Prazram Aunalysis, Termination, Abstract Interpretation, Prolog.
Contents

1. Introduction
2. Standard Hybrid Interpretation of Logic Programs
2.1 Basic Hybrid Interpretation of Logic Programs
2.2 Modified Hybrid Interpretation of Logic Programs
d. Mode Analysis by Abstract Hybrid Interpretation
3.1 Mode Analysis
3.7 Abstract Hybrid Interpretation for Mode Analysis
3.3 An Example of Mode Analysis
1. Detection of Termination Based on Abstract Hybrid Interpretation
4.1 Termination of Prolog Programs
4.2 Abstract Hybrid Interpretation for Termination Detection
4.3 Examples of Termination Detection
5. Detection of Universal Termination and Existential Termination
5.1 Universal Termination and Existential Termination
5.2 Detection of Universal Termination
5.3 Detection of Existential Termination
€. Discussion
7. Comnclusions
Acknowledgements
References



1. Introduction

Termivation is a basic property of programs. Detection of termination is mportant
not only from the theoretical point of view but also from the practical point of view, since
nouterminatiug programs are very problematic m debnugzing. Though the termination prop-
erty is undecidable in general, many technigues for guarantecing it have been developed in
various frameworks {1],[3]. As for functional programs, Boyer and Moore [1] investigated
how to detect termination of Lisp programs, which is crucial for well-founded induction in
their verification. Dershowitz [5] studied termination of term rewriting systems by consid.
ering mare general well-founded ordering on terms. As for relational programs like Prolog,
hecanse variables of Prolog programs are freely instautiatable [6], detection of termination
is harder than the usual one so that just a few works have been done ([6], [15]).

This paper presents a framework for detecting termination of Prolog programs by ab-
stract interpretation ({2].[3]). The framework is based on mode analysis of Prolog programs.
Tle mode analysis is in turn based on OLDT resclution by Tamaki and Sato, a hybnid of the
top-down and the bottom-up interpretations of Frolog programs. By directly abstracting the
hybnid interpretation according to the mode structure, we can infer mode patterns of goals
without either diving into infinite looping or wasting time for mode patterns of irrelevant
goals. Termination is detected by finding a subset of arguments for cach mode pattern during
the mode analysis process such that some measure computed from the symbolic complexitics
of the arpuments is bounded downw=-+ and always decreases in recursions. This method
for Prolog programs i3 an adaptation of Boyer and Moore’s method for Lisp programs.

This paper is organized as follows: After presenting the hybrid interpretation of Prolog
prorrams in Section 2, we will show a method for infernng modes in Section 3, because the
made analysis plavs a crucial role 1o our termination detection. Then, in Section 4, we will
show a termination detection method based on the mode analysis method. In Section 5,
different formulations of termination and their detection are discussed,

The following sections asswne [amiliarity with the basic terminologies of first order
lome such as term, atom {atomic formula), definite clavse, negative clauwse, substitution,
mest general unifier {m g} and 2o on. The syntax of DEC-10 Prolog i= followed. Nezative
clauses are often confused with zequences of atoms. Syutactical varisbles are XY, Z for
variables, &, 1 for terms and A, B for atoms, possibiy with primes and subscripts. In addition,
t|Z] iz uzed for a term containing an occurence of variable 2. and #, &, r for substitutions,

2. Standard Hybrid Interpretation of Logic Programs

In this section, we will frst present a basic bybrid interpretation method of Prolog
programs [1G], then a modified hybrid interpretation method suitable for the basis of the
abstract interpretation presented later,

2.1 Basic Hybrid Interpretation of Logic Programs
{1} Search Tree

A search tree is o tree with its nodes labelled with negative or null clauzes, and with its
edges lahelled with substitutions. A search tree of negative clanse @ i a search tree whose
root node is labelled with & The relation between a node and its child nodes 1u 8 search tree
i specified 1o various ways depending on various stratepics of “resolution™. In this paper,

I



the class of “ordered linear™ strategies is assumed. (See the explanations of OLDT resolution
in the following subsection (4), and of OLD resolution in Section 3)

A refutation of negative clause @ is a path in a search tree of G from the root to a node
labelled with the null clause ©. Let 8;,81,...,8 be the labels of the edges on the path.
Then, the answer substitution of the refutation is the composed suhstitution r = 8182 -+ 8,
and the solution of the refutation is Gr.

Consider a path in a search tree from one node to another node. Intuitively, when
the leftmost atom of the starting node’s label is refuted just at the ending node, the path is
called a unit subrefutation of the atom. More formally, let Gg, 74, ..., G} be a sequence of
labels of the nodes and 8;, 83, ..., f be the Jabels of the edges on the path. The path is
called a unit subrefutation of atom A when Go, Gy, G2, ..., Gk—1, Gy are of the form

“A,G7,

“H,,G6,",

“H21 Gﬁlﬂﬂn1

“Hy—1, G- y"

“Goyby .. 0",
respectively, where G, Hy, Ha, ..., Hx—, are sequences of atoms. Then, the answer substitu-
tion of the upit subrefutation is the composed substitution r = §,05--- 0z, and the solution
of the unit subrefutaion is Ar.

{2) Solution Table

A solution (able is a set of entries. Each entry i3 a pair of the key and the soluticn list.
The key is an atom such that there is no other identical key (modulo renaming of variables)
in the solutien table, The solution list is a list of atoms, called solutions, such that each
solution in it is au instance of the corresponding key.

(3) Association

Let Tr be a search tree whose nodes labelled with non-oull clauses are classified into
either solution nodes or lookup nodes, and let Th be a solution table. {The solution nodes
and lookup nodes are explained later) An association of Tr and Th is a set of pointers
pointing from each lookup node in Tr into some solution list in Té such that the leftmost
atam of the laakup node’s label and the key of the solution list are variants of each other.

(4) OLDT Structure

The hybrid Prolog interpreter is modeled by OLDT resolution. An OLDT structire of
negative clause @ is a triple (T'r, Th, As) satisfying the following conditions:

(a) Tris asearch tree of 7. The relation between a node and its child nodes in a search tree
is specified by the following OLDT resolution. Each node of the search tree labelled
with non-null clause is classified into either a solution node or a Jookup node.

{b} Tbis a solution table.

(¢) As is an association of T'r and Th. The tail of the solution list pointed from a lockup
node iz called the associated solution list of the lockup node.

2



Example 2.1.1 An OLDT structure of “reach(s, ¥p)" is depicted in Figure 2.1.1. The under-
line denotes the lookup node, and the dotted line denotes the association from the lookup

node.

reach(a.Yq)
<Yp=Y, >/ V< Ype=a>
_.-reach(a,Z;),edge(Z,.Y,) ]
] <Zy<=a>|
5 edge(a,Y,)
| <Y, =b>/ AT ST
] m]

reach(a YY) : [reach[a.a]lfreach[_a,b},reach[_a,c}I]
cdgela,Y) : |edge{ab),edge(ac)]

Figure 2.1.1 OLDT Stiructure

Let €7 be a negative clause of the form “4d;. 4., A." (n > 1). A node of OLDT

structure (Tr, Th, Aa) labelled with negative clause (7 is said to be OLDT resalvable when it
zatisfies either of the following conditions:

{a)

{b)

The node is s terminal solution node of Tr, and there iz s3cme definite elause <03, -
Dy DBy....Bn" (m 2 0) in program P such that ) and By are unifiable, say by
an m.gar. #. (Without losz of generality, we assume that the m.g.u. # substitutes a
term consisting of fresh variables for every variable in A; and the definite clause.) The
negative clanse [or possibly null elavse) B8, Baf, ..., B d, Agf, ..., A0 is called
the OLDT resolvent.

The node 15 a lockup node of T'r, and there 13 some solution Br in the associated
solution st of the lookup node such that A; and Br are unifiable, say by an m.z.u.
#. {Again, we assume that the m.g.ou. # substitutes a term consisting of fresh variables
for every variable 1o Ay and the definite clause.) The negative clause [or possibly nufl
clawse) “Aaf, ... A, 8 1z called the OLDT resojvent,

The restriction of the substitution # to the variables of A; is called the substitution of the
OLDT resolution.

The initial OLDT structure of negative clause @ is the triple (Try, Thy, Asg), where

Trp 15 a zearch tree consisting of just the root solution node labelled with &, Thy is the
selution table consisting of just one cotry whose key is the leftmost atom of 7 and solution
list iz the empty list, and Aag is the empty set of poiuters.

An immediate extension of OLDT structure [Tr. Th, As) in program P is the resalt of

the foliowing eperations. when a node v of OLDT structure (Tr, T, As) is OLDT resolvable.

(a)

When v is a terminal solution node, let Cy,Ca, ..., Cy (k 2 0) be all the clavses with
which the pode v is OLDT resolvable, and &y,G3,...,Gg be the respective OLDT
resolvents. Then add k child nodes of o labelled with &), G4, ... Gy, to v. The edge
from v to the node labelled with & ie labelled with &;, where §; 13 the substitution of the
OLDT resclution with €. When vis alookup nede, let Byry, Bars, .., Ben (k > 0) be
all the solutions with which the gode v i3 OLDT resolvable, and G4, s, ..., (7L be the
respective OLDT resolvents. Then add k child nodes of v labelled with &}, 4., i,
to . The edge from v to the node labelled with &, i1s labelled with #;. where 8, is

3



the substitution of the OLDT resolution with B;r;. A new node labelled with a non-
null clanse is a lookup node when the leftmost atom of the new negative clause is an
instance of some key in Th, and i= a solution pode otherwise t.

{b) Replace the pointer from the OLDT resolved lookup node with the one pointing to the
last of the associated solution list. Add a pointer from the new lookup node to the
head of the solution list of the corresponding key.

(¢) When a new node is a solution node, add a new entry whose key 12 the leftmost atom
of the label of the new node and whose solution list is the empty list. When a new
node is a lookup node, add no new entry. For each unit subrefutation of atom A (if
any) starting from a sclution node and ending with some of the new nodes, add its
solution Ar to the last of the solution list of A in Th, if Ar is not in the solution list.
An OLDT structure (Tr', TH, As') is an extension of OLDT structure (Tr,Th, Aa}

if (Tr',Th', As') is obtained from (Tr.Th, As) through successive application of immediate
extensions.

Example 2.1.2 Consider the following “rraph reachability” presram by Tamaki and Sato [16].

reach(X,Y) :- reach(X,2), edge(Z.Y).

reach( X, X).

edge(a,b).

edge(a.c).

edre(b,a).

edge(b.d).
Then, the hybrid interpretation generates the following OLDT structures of “reach(a, ¥Yq)".

First, the initial OLDT structure below is generated. The root node of the search tree
is » solution node. The selution table contains only one entry with its key reach{s.Y) and
its solutiou list [ ].

reach(a,Yq)

reach{a,¥) : | ]
Figure 2.1.2 Basic Hybrid Interpretation at Step 1

Secondly, the root node “reach{a, Yo)" is OLDT resclved using the program to generate
two child nodes. The generated left child node is a lockup node, because its leftmost atom 18
an instance (a variant) of the key in the solution table. The association associates the lookup
node to the head of the salution list of reach{a,¥Y). Tk~ generated right child node is the
end of a upit subrefutation of reach(a, ¥g). Its solution reach{s, a} is added to the solution
list of reachia.Y).

reach{a,Yg)
<Ype=Yi >/ \<Yp=a>
mmmm reach(a ;) edge(Z, Y1) 0

iV

reach(a,Y) : I;each[a.a}]

Figure 2.1.3 Basic Hybrid Interpretation at Step 2

! Note that it is » lookup node when the leftmost atom of the new negative clause is an
instance, not a variant, of some key in Tb. (cf. the definition in our previous papers [9],{10].)



Thirdly, the lookup node iz OLDT resolved using the solution table to generate one
child selution node. The association associates the lookup node to the last of the solution

list,
reach(a,Yy)
! %
(,-I‘Ehl:h{a,zj],fdgE{ZI,TIII o
N <l =z
! edee(a,Y,)

reach(n,Y) : [rrarh{:‘s.aﬁ
edge(a, ¥} : | ]

Figure 2.1.4 Basic Hybrid Interpretation at Step 3

Fourthly, the gencrated solution node is OLDT resalved further using the program to
generate two new nodes labelled with the pull clauses, These two nodes add two solutions
reach{a. b) and reach(a.c) to the last of the solution list of reach(a,Y), and two =olutions
edge(a, b) and edge(a, ¢} to the last of the solution list of edge(a.Y).

reach(a.Yy)
/ Y
,--reach(a.Z,)edge(Z;,Y) O
[ —
:: edge(a,¥y)
! <Y, =b>/ VY, =
i 0 W

reach(aY) : [rﬂach[a.a}fmach[a,h].rcach[a,r]]
edge(a.Y) : [edge(a.b) edze(a.c)]

Figure 2.1.5 Basic Hybrid Interpretation at Step 4

Fifthly, the lookup node is OLDT resolved using the solution table, since new solutions
were added to the solution list of reach(a.Y).

reach(a.Yy)
! !
_—==-=---reach(a,Z,).edge(Z,.Y,) o
’ / |<f1<=5} Ve fj=c>
edpe(aY,) edee(b, Y] edge(e, Yy
[ { %
B [m]

e i — i —

T

reach{a.Y) : [reack(a.a) reach{ab) reachlac}]
edge(a,Y) @ [edge(u.b).edge(sc]]

edge(b,Y) : | ]

edgefc,Y) : | ]

Figure 2.1.6 Basic Hybrid Interpretation at Step 5

5



Sixthly, the left new solution node “edge(b, ¥1)" is OLDT resolved, and one new solution
reach(a, d) is added to the solution list of reach(a,Y).

reach(a,Yy)
/ \
R ~ reach(a,Z;).edge(Z;.Y)) o
. / [<Z,<b> \<Zj+=c>
' edge(a, Y1) edze(b,Yy) edge(c,Y))
! / V<Y =a=/ A<Y =d>

~. 0O O 0 |

i

reach{a,Y) : [rrach{a.a},rrach[a.b],reach{aﬁrrea:h{a.d]]
edze(a.Y) : [edze(a,b) edge(ac)]

edge(b,Y) : [edge(b,a) edge(b,d)]

edge(c,Y) : |}

Figure 2.1.7 Basic Hybrid Interpretation at Step &

Lastly, the lockup node is OLDT resolved once more using the solution table, and the
extension process stops, because the solution nodes labelled with edge(e, Y;) and edge(d, ¥;)
are not OLDT rezolvable.

reach(a,Yo)

/ \

_—=—==-= reach{a,Z;),edge(Z,,Y,) O
- / / ! Vel =d>

! edee(a.Y;) edge(b,Y,) edge(c,Y,) edge{d,Y;)
/ \ / \

F

reafhfa. Y): [reach{a a)reach({ab) reach(a,c) reach(a, d_'l]
ze{a,Y) : [edge(a.b) edge(ac))

Edge{b,'j"] : [edge(b,a),edge(b,d)]

edge(e,Y) : [ ]

edge(d,Y) : ]

Figure 2.1.8 Basic Hybrid Interpretation at Step T

Though all solutions were found under the depth-first from-left-to-right extension strategy in
this example, the stratery is not complete in peneral. The reason of the incompleteness is two-
fold. Oune i= that there might be generated infinitely many different solution nodes. Another
is that some lockup node might generate infinitely many child nodes so that extensions at
other nodes right to the lookup node might be inhibited forever.

(5) Soundness and Conipleteness of OLDT Resolution

Let 7 be a negative elanse. An OLDT refutation of & in program F i3 a refutation
in the search tree of some extension of OLDT structure of G. The answer substitution of
the OLDT refutation and the solution of the OLDT refutation are defined in the same way
as before. It iz a basiz of the abstract interpretation in this paper that OLDT resclution
is sound and complete. {Do not confuse the completeness of the general OLDT resolution

G



with the incompleteness of the one under a specific extension strategy, e.g., the depth-first
from-left-to-right strategy.)

Theorem 2.1 (Soundness and Completeness of OLDT Resclution)

If (71 is a solution of an QOLDT refutation of & in P, its universal closure VX, X5 --- X,
Gt is a logical consequence of P.

If a universal closure YY; ¥y Y, Ge is a logical consequence of P, there is Gr which
is a solution of an OLDT refutation of & in P and (7o 18 an instance of Gr.

Proof. Though our hybrid interpretation is different from the original OLDT resolution by
Tamaki and Sato {16] in one respect (see [9]), the differences does not affect the proof of the
soundness and the completeness. See Tamaki and Sato [16] pp.93-04.

2.2 Modified Hybrid Interpretation of Logic Programs

In order to make the conceptual presentation of the hybnd interpretation simpler, we
have not considered the details of how it is implemented. In particular, it is not obvious in
the “immediate extension of OLDT structure”

[a) how we can know whether a new node is the end of a unit subrefutation starting from

some solution node, and

{b) how we can obtain the solution of the unit subrefutation efficiently if any.
It is an easy solution to insert a special call-exit marker [A;, #] between B, 8, B2, ..., B, 0
and Aqf, .... A,.¢ when a solution node is OLDT resolved using an m.g.u. #, and obtain the
unit subrefutation of A; and its solution A,r when the leftmost of a new OLDT resclvent
is the special call-exit marker [A;.7]. But, we will use the following modified framework.
(Theugh such redefinition might be confusing, it is a little dificult to grasp the intuitive
meaning of the modified framework without the explanation in Section 2.1.)

A search tree of OLDT structure in the modified framework iz a tree with its nodes
lahelled with a pair of a {generalized) negative clause and a substitution. (We bave zaid
“generalized”, because 1t might contain non-atoms, i.e., call-exit markers, The edges are not
labeolled with substitutions any more.} A search tree of ({+,7) i3 a serach tree whose root
node is labelled with (G, o). The clause part of each lahel i2 a sequence “a;, az, ..., a,”
consisting of either atoms in the body of the clauses in P U {G} or call-exit markers of the
form [A.e']. A refutation of ({7.) is a path in a search tree of (G, r) from the root ta a
node labelled with (O, 7). The answer substitution of the refutation is the substitution r,
and the soflution of the refutation is G'r. A solution table and an association are defined in
the same way as before,

An OLDT structure 15 a triple of a scarch tree, a solution table and an association. The
relation between a node and its child nodes in search trees of OLDT structures is specified
hy the following madified OLDT resolution.

A node of OLDT structure (Tr, T4, As) labelled with (“ay.agq,....a,7, ¢} is said to he
OLDT resolvable when it satisfies either of the following conditions:
fa) The node is a terminal sclution node of Tr, and there iz some definite clause “By -
By.Bs.....,B,." (m >0)ive program P such that a,e and By are unifiable, say by an
m.gu §
{b) The node is a lookup node of Tr, and there is some solution Br in the associated

solution list of the lookup node such that a,o and By are unifiable, say by an m.zu.
g

-7



The OLDT resolvent is obtained through the following two phases, called calling phase
and exiting phase since they correspend to a “Call” (or “Redo”) line and an “Exit” lime in
the messages of the conventional DEC10 Prolog tracer. A call-exit marker is inserted in the
calling phase when a node is OLDT resolved using the program, while no call-exit marker
is generated when a node is OLDT resolved using the solution table. When there is a call-
exit marker at the leftmost of the clause part in the exiting phase, it means that some unit
subrefutation is obtained,

(a) (Calling Phase) When a node lalelled with (“a;,az,...,a:", @} is OLDT resolved,
the intermediate label is generated as follows:

a-1. When the node is OLDT resolved using a definite clause “By :- By, Ba, ..., Bn"
in program P and an m.g.u. @, the intermediate clause part is “B;,Ba,...,Bm,
[e;.o], a2....,a,7, and the intermediate substitution part ry is 4.

a-2, When the node is OLDT resolved using a solution Br in the solution table and an
instantiation §, the intermediate clause part is “aa,...,a,", and the intermediate
substitution part rp is of.

(b) (Exiting Phase) When there are k call-exit markers [A1, o], [A2, 2], .., [Ar,0u] at
the leftmost of the intermediate clause part, the label of the new node is generated as
follows:

b-1. The clause part is obtained by eliminating all these call-exit markers. The sub-
stitution part is og - - - oz Tp.

b-2. Add Ayoy70, AzozoyTo, ..., Ardy <+ a17p to the last of the solution lists of 4,0y,
Aaea, ..., Apeyp, respectively, if they are not in the solution lists,

The precise algorithm is shown in Figure 2.2.1. The processiag al the calling phase is
performed in the first case statement, while that of the exiting phase is performed in the
second while statement successively.

OLDT-resalve({ “ay,2z,..., a,”, o) : label} : label |
1 =10
case
when a solution node is OLDT resolved with “Bg :- By, Ba,...,Bu™ iIn P
let ¢ be the mgu. of oo and Do ;
let (75 be a negative clause “By, Ba,..., B, |21, 0], @2,...,2,." ;
let 7y be the substitution # ; — (A)
when a lockup node 18 OLDT resclved with “Br” in Th
let & be the m.g.u. of @7 and Br ;

let Gy be a negative caluse “az,...,a,"
let 7 be the composed substitution o8 ; — (B)
endcase

whiie the leftmost of G is a call-exit marker |4;4y,0.4:] do
let G;uy be G, other than the leftmost call-exit marker ;
tet fing e Fig1Ti } — [C]
add A; 4 74 to the last of A;; 04" solution list if it is not in it ;
1i=1+1;
endwhile
[Gacw Once) = (G5
return (Gohoe, Trnew )

Figure 2.2.1 Modified Hybrid Interpretation

B



Note that, when a node is labelled with (G, #), the substitution part o always shows
the instantiation of atoms to the left of the leftmost call-exit marker in . When there is
a call-exit marker [A,.o;] at the leftmost of clause part in the exiting phase, we need to
update the substitution part by composing m; in order that the property above still holds
after eliminating the call-exit marker. The sequence 7y, v,..., 7 denotes the sequence of
updated substitutions. In addition, when we pass a call-cxat marker [A;,0;] in the while
loep above with substitution r;, the atom A;7; denotes the solution of the umit subrefutation
of Aja;. The solution A;7; is added to the solution list of Ajo;.

A node labelled with {*a;. az,...,aa", @) is a lookup node when the leftmest atom
@yer is an instance of an already existing key in the solution table, and iz a solution node
otherwise (n = 1).

The initial OLDT structure of (G, ) is a triple {Tro, Thy, Aag), where Trg is a search
tree of (7 consisting of just the root solution node labelled with (G, o), Tho i3 a solution table
consisting of just one entry whose key is the leftmost atom of G and solution list is [ ], and
Asg ie the empty set of pointers. The immediate extension of OLDT structure, extension of
OLDT structure, answer substitution of OLDT refutation and solution of OLDT refutation
are defined in the same way as before.

Example 2.2 Consider the example in Section 2.1 again. The modified hybrid interpretation
generates the following OLDT structures of reach{a,¥a).
First, the iuitial OLDT structure helow is generated. Now, the root node is labelled
with (“reach(a.¥p)",<>).
reachia, Ya)
<>

reach(a,Y) : | ]
Figure 2.2.2 Modified Hybrid Interpretation at Step 1

Secomdly, the root node (“reachifa,¥y)" <>) is OLDT resolved using the program to
generate two child nodes. The intermediate label of the left child node is

(“=cach(Xy, Zy). edge{Z1, ¥y) [reach{a. Yp), <> ' <Yyel, X =a>).
It is the new label immediately, since its leftmost is not a cail-exit marker, The intermediate
label of the right child node is

{(“[reachla ¥y), <> |7, < Yo=a X, =a>).
By clizuinating the leftmost call-exit marker and composing the substitntion, the new label
5 (0.< Yy = a. X; =a>). (When the clause part of the label is 0. we will omit the
assignments irrelevant to the top-level goal in the following figures, eg, < X; <= a >
During the elimination of the call-exit marker, reach(s.a) is added ta the solution tabie.

reach{a.Yg)
o>
/ !
-reach(Xy.Zy)edee(2:.Y, ), [ reach(a Yo}.<> ] w/
L ) <Yy=Y. X;=a> <Ype=ax

-

=,

reach(a Y) : Jrrathl[a.a}]

Figure 2.2.3 Modified Hybrid Interpretation at Step 2

o



Thirdly. the left lookup node is OLDT resolved using the solution table to generate
one child solution node.

reach{a,Yy)
<>
/ \
--reach(Xy,2,),edge(Z;,Y,), | reach(a,¥o),<> ] o]
N <Yp=1, X1<a> <Yoe=a>
T
: |
u edze(Zy,Yy) [ reach(a, Yo),<> ]
H“‘*-h__ <Yo=Y,. Xi=a 21<a>
rearh(a,Y) : [reach{a,a)]
edge(a,Y) : | ]

Figure 2.2.4 Modified Hybrid Interpretation at Step 3

Fourthly, the generated solution node is OLDT resolved using a unit clause *edge(a,b)”
in program P to geperate the intermediate label

(“[edge(Z2;, Y1), < Yo=Y, X1 +=a, 21 +=a>], [reach(a, ¥p), <> |7, <Y1 =bE2>).
By eliminating the leftmost call-exit markers and composing substitutions, the new label is
(O, <Yy <=bX, <a, Z; <=6,Y < b>). During the elimination of the call-exit markers,
edge(a, b) and reach(a,b) are added to the sclution table.

Similarly, the node is OLDT resolved using a unit clanse “edge(a,¢)” in program P to
generate the intermediate label

(“[edge(Z,.V,), <Y =Y, Xy <a, 2, +a> ] [reach{a,Ys), <> |7, <Y1 <=c>)
By eliminatiog the leftmost call-exit markers and composing substitutions similarly, the new
label is (O, < ¥y =¢ X; <=a, Z; +=a,Y; = c>). This time, edge(a, t) and reach(a,b) are
added to the solution table during the elimination of the call-exit markers. The process of
extensivu proceeds similarly to obtain all the sclutions as in Example 2.1.2.

reach{a Yy)
<>
/ \
.--reach(X,.Z, ).edge(Z,,Yy). [ reach(a.Yo) <> ] 4]
K T <Y Y, Xj=a> <Yy<=a>

: |
' edge(Z;,Y3) | reach(a,Yo).<> |

s <Ype=Y . Xye=a, i) =a>
™ ! \
T o 0
TwL. =Y¥peb> <Yye=e>

reach(a Y} : [rcacl:{a-.i;?.runch{u,h],rea.fh{a.cj]
edze(a,Y) : [edge(ab) edze(ac)]

Figure 2.2.5 Modified Yybrid Interpretation at Step 4

Remark. Note that we no longer need to keep the edges and the non-terminal solution nodes
of search trees. In addition, we can throw away assiznments in # for the variables in Br at
step (B), and those in 7; for variables not in 4;410:41 at step (C) in Figure 2.2.1.

10



3. Mode Analysis by Abstract Interpretation

Suppose we would like to know that, when a goal “div(X, D + 1,Q)" with its frst
arpument X and its second argument D + 1 instantiated to ground terms is executed, it
either succeeds or fails finitely. Here div, < and aub are defined Ly

div(X.D+1,0) - X<D+1.

div(X.D+1,Q+1) - sub(X,D+1,Y), div(¥Y,D+1,Q}.

0=<D+1.

X+1<D+1 - X<D.

sub(X,0,X).

sub{X+1,D+1,Y} - sub{X,D.Y).

(For notational convinience, we will use X+ 1and X+2 instead of sue(X) and suc(sue{X}).)
When the first clause is used first to succeed, the desired termination property is reduced to
that of X < D 4+ 1. When the second clause is used first, the goal is reduced to sub{X, D +
1Y), div{¥, D+1.Q"). If we can assume the termination property for div(Y, D+1,Q") when
its first argunent Y is instantiated to a ground term, the detection of the desired termination
is reduced to that of sub{ X, D+1,Y ). It is, however, erucial to know that the third arpument
Y is instantiated to a ground term after the first subgoal sub(X, D +1,Y) succeeds in order
to resort to the termination property of goal div(Y,D + 1,Q'). More generally, the first
and the second arguments of div invoked from the top-level goal are always ground terms
at calling time and the third argument is always a ground term at exiting time. Similarly,
s0 are the first and the second arguments of sub at calling time and the third argument at
exiting time. How can we show it mechanically 7

In this scction, we will reformulate the work by Mellish [12],[13] and Debray [4] from
the point of view in Sectiou 2.3

3.1 Mode Analysis

A mode is ene of the following 3 sets of terma:
any : the set of all terms,
ground : the set of all ground terms,
@ : the emptyzet of terms.
Modes are ordered by the instantiation orderiug < depicted helow.

@
|

ground

ariy
Note that this iz the reverse of the set inclusion ordering below.
uny

ground

!
i

A mode substitution is an expression of the form

11



<Xyemy Xaeme,... Xiesm>,
where my,ms,...,m; are modes. The mode assigned to variabie X by mode substitution
u is denoted by p(X). We stipulate that a mode substitution assigns any, the minimumn
element w.r.t. the instantiation ordering, to variable X when X is not in the domain of the
mode substitution explicitly. Hence the empty mode substitution <> assigns any to every
variable.

Let A be an atom io the body of some clause in P U {G}, g be a mode substitution of
the form

<X e=my, Az e=ma,.. L XpeEmy >,
Then Ap is called a mode-abstracted atom, and denotes the set of all atoms obtained by
replacing each X; in A with a term in m;. Two mode-abstracted atoms Ap and By are
said to be unifiable when Ap N By # 8. A list of mode-abstracted atoms [Ajpy, Azpa, ...,
App,| denotes the set union UT; A;p;. Similarly, Gp (or the pair (G, p)) 12 called a mode-
abstracted negative clause, and denotes the set of negative clauses obtained by replacing each
X; in G with a term in m;. When G i3 of the form “Ay, A2, .., An", the mode-abstracted
atom A, u is called the leftmost mode-abstracted atom of Gp.

The purpose of mode nalysis is to obtain possible mode patterns of goals appearing in
the top-dewn execution of a given goal. Let us formalize the top-down execution here. The
top-down Prolog interpreter is modeled by OLD resolution. The OLD resolution is defined
using just search trees, called OLD trees. (Because there is neither a solution table nor
am association, we have no distinction of solution nodes and lookup nodes. All nodes are
solution nodes.) The relation between a node and its child nodes in OLD trees is specified in
the same way as the OLDT resolution in Section 2.1, except that we have no resolution using
lookup nodes and solution tables, hence no manipulation of selution tables and associations.

Arn atom A appraring at the loftmost of the label of a node in some OLD tree of & is
called calling pattern of &. Note that any calling pattern of  is an instance of some atom
in the body of some clause in P U {G)}. Each calling pattern corresponds to some key in the
solution table of OLDT structure.

A solution Ar of a subrefutation in an QLD tree of & iz called an exiting pattern of
(. Note that any exiting pattern of G is also an instance of some atom in the body of some
clause in PU{G}. Each exiting pattern corresponds to some element in the solution lists of
OLDT structure.

Let Gp be a mode-abstracted negative clause, C((7p) be the set of all calling patterns
of negative clauses in Gpu and £(Gp) be the set of all exiting patterns of negative clauses in
1. The mode analysis w.r.t. Gp is the problem to compute

(a) some list of mode-abstracted atoms which is a superset of C(Gp),
(b} some list of mode-abstracted atoms which is a superset of £(Gpu).

Remark. We bave adopted the simplest mode structure consisting of just 3 modes any,
ground, @ (cf. Section 3 of [4]). In order to include an addirional mode variable representing
the set of all variables, we need to take one more quantity (called sharing) into consideration
to infer modes correctly. (See Section G of [7] for details.) Dut, these 3 modes are enough for
the termination detection in Section 4.

3.2 Abstract Hybrid Interpretation for Mode Analysis

12



3.2.1 OLDT Structure for Mode Analysis

A scarch tree for mode analysis is a tree with its nodes labeled with a pair of a (gen-
eralized) negative clause and a mode substitution. (For brevity, we will sometimes omit the
term “for mode analysis™ hereafter in Section 3.) A search tree of (7, u) is a search tree
whose root node 13 labeled with (G, g). The clause part of each label is a sequence “a,, as,
..., " consisting of either atoms in the body of some clause in PU{G} or call-exit markers
of the form [A.p',n]. A refutation of (G, p) is a path in a search tree of (G, u) from the
root to a node lahelled with (O, ). The answer substitution of the refutation is the mode
substitution v and the solution of the refutation is G,

A solution tahle for mode apalysis 13 a set of entries. Each entry consists of the key
and the solution list. The key is a mode-abstracted atom. The solution list is a list of
mode-abstracted atoma, called solutions, whose all solutions are greater than the key w.r.t.
the instantiation ordering.

Let Tr be a search tree whose nodes labeled with non-null clauses are classified into
either solution nodes or lookup podes, and let Th be a solution table. An association for
mode analysis of Tr and Th is a set of pointers pointing from each lookup node in Tr into
some solution list 1n Tb such that the leftmost mode-abstracted atom of the lockup node’
Iabel and the key of the solution list are variants of each other.

An OLDT structure for mode analysis 13 a triple of search tree, solutici table and
association. The relation between a node and its child nodes in a search tree is specified by
OLDT resolution for mode analysis in Section 3.2.3.

3.2.2 Overestimation of Modes

Because the purpose of mode analysis 13 to compute supersets of the sets of calling
patteros and exiting patterns using lists of mode-abstracted atoms, we need to overestimate
them somchow by manipulating mode-abstracted atoms. We would like to do it by specifying
the operations for mede analysis corresponding to those at step (A),(B) and (C) in Figure
2.2.1. Iu order to specify them, we need to coosider the following situation: Let A be an

atom, Xy, X2, ..., X5 all the variables in 4, g a mode substitution of the form
<xl=m._x:=p_ag~....xi=ﬂ;-.
I an atom, Y. ¥5,..., ¥, all the variables in B, and v a mode substitution of the form
{}‘-1 ¢-‘~ﬂ_|.]!'g +=ha,. ..,1".[4—?3{}.
Then
{a} How can we know whether Ap apd By are unifiable, i.e., whether there i3 an atom in
Aupn But
(L) If there is such wu stom Ae = Br, what terms are expected to be assigned to each Y;
by r?

Example 3.2.2.1 There i=s a common atom of

plX.Y) <« Xe=ground ¥ <=any >,

AU} 2V = [/ = any, V =any>.
Hence, they are unifiable. Let p{f(U), g(V))r be a common stom. Then I/ must be instan-
tiated to a term in ground. and V' must be instantiated to a term in any.

{1) Overestimation of Unifiability

13



When two mode-ahstracted atoms Ap and By are unifiable, two atoms A and B must
be unifiable in the usual sense, Let n be an m.gu of 4 and B of the form

<X =, Xos=tg,... . Xp =t YVi=8, Vamag, ... Yi=8>
If we can overestimate the mode assigned to cach occurrence of £ in ¢; from the mode
substitution p and that of Z in s; from the mode substitution v, we can overestimate the
mode assigned to the variable Z by taking the join V w.r.t. the instantiation ordering {or
all occurrences of Z. If it is the emptyset @ for some variable Z, we can’t expect that there
exists 8 common atom Ar = Brin Ap M Bu.

A mode containing all instzaoces of some occurrence of Z when an instance of term t]Z]
is in mode m is denoted by Z/ < t[Z] <= m >, Due to the choice of modes (see [4]), it is
computed simply as follow:

Z{ <t]Z]=m >=m.

Example 83.2.2.2 Let t be |X|L| and m be ground, Then

X[/ < [X|L]«=ground >= ground, LJ < [X|L]<= ground >= ground.
Let t be [X]L] and m be any, Then

X/ « [X|L]¢=m }?ﬂ’ Lj <« [X]L]ﬂ:ﬂ >= any.

Note that Z/ < t[Z] <= m > is not @ when m is not §. Because the join V of non-
empty modes wor.t. the instantiation ordering is always non-empty, the mode assigned to
each variable iz non-empty when p and v do not assign @ to any variable. This means that
the unifiability of Ap and By can be reduced to the unifiability of A and B.

(2) One Way Propagation of Mode Substitutions

Fecall the situstion we are conzidering, Firat, we will restrict our aticntions to the
case where v =<> first. Suppose there is an atom Ao = Brin Au N B <> Then, what
terms are expected to be assirped to variables in B by 7

As lhas been just shown, we can overestimate the mode assigned to each variable Z
in t; from the mode substitution p. By collecting these modes assicnment for all variables,
we can overcstimate the mode substitution A for the variables in ¢, t5,....t. If we can
cverrstimate the mode assigned to #; {from the mode substitution A obtained above, we can
obtain the mode substitution '

<Y, =n.Y=nl. . Yien >
by collecting the modes for all variables ¥7,¥a,..., ¥

Let A be a mode substitution. A mode containing all instapces of » when each variable
X iz assizmed a term 1o maode A{X) 15 denated by #fA, and computed as follows:

@, MX) = 0 for some X in #;
afd = ¢ ground, when A(X] = ground {or every variable X in a;
any, otherwise.

Example 3.2.2.3 Let s be |X|L] and A be < X <= ground, L<ground >, Then

/A = ground.
Let a be IX|L] and A be < X <«any, L < ground>. Then
s/ = any.

14



Let A, B be atoms, i a mode-substitution for the variables in A, and i an m.gu, of 4
and B. The mode-substitution for the variables in B, that is obtained from p and n using
Z] « t|Z]+=t > and 2/} above, is denoted by propagate(p. n). (Note that prapagate(u,n)
depends on just g and 5.)

{3) Overestimation of Mode Substitutions

As for the operation at step (A) for mode analysiz, we can adopt the one way propa-
gatiou
propagate(p,n)

since the destination side mode substitution is <>. As for the operations at step (B) and
{C) for mode analysis, where the destination side mode substitution is not necessarily <>,
we can adopt the join V w.r.t. the instantiation ordenng

BV propagate(r, n).

i.e., variable-wise join of the mode assigned by the previous mode substitution g and the ope
by the one-way propagation prepagate(r, 5).

Example 3.2.2.4 Let v and propagate({g, i) be mode substitutions :
<Xp=any Yye=any >,
< X -‘=5rr_aumf, Yi<=any >.

Then, vV propagate(p.n) i= a mode substitution
<Ay s=ground, ¥y < any >.

3.2.3 OLDT Resolution for Mode Analysis

The relation between a node and its child nodes in a search tree is specified by OLDT
resofution for mode analysis as follows:

A pode of OLDT structure (Tr. Th, As} labeled with (*ay, ez, .... 2,7, u) iz said ts
be OLDT resolvable {r 2 1) when it satisfies either of the following conditions:

{a) The node is a terminal solution node of T'r, and there is == e definite clause *B, :-
By Ba.... EB.." (m = 0] in program P such that a; and By is unifiable, say by an
m.g.u. 1.

(b} The node is a lookup node of T'r, and there is some mode-abstracted atom Br in the
aseoclated solution list of the Jookup node such that a, is a variant of B, say by a
regaming n.

The precize alponithm of OLDT resolution for mode anaiysis is shown in Figure 3.2.3.
Note that the operations at steps (A), (B) and (C} in Fizgure 2.2.1 are modified.

A node iabeled with {"ay, a2, ... 0,7, 4} 12 a lookup node when a variant of ajpu is a
key i the solution table, and is a solution node otherwize (n = 1).

The imitial OLDT structure, immediate exteasion of OLDT structure, extension of
OLDT structure. answer substitution of QLDT refutation and solution of OLDT refutation

are defined in the same way as in Section 2.2,

15



OLDT-resolve(( “ay,@a....,a,", p) : label) : label ;
1:=0;
case
when a solution node is OLDT resolved with “By - By, Bs,...,B,," m P
let i be the m.gu. of a; and By ;
let @ be a negative clanse “Iy, Ba, ..., Be,, [on, g, 0], 02, ... 0." ;
let vy be propagate(p, n) ; — (A)
when a lookup node is OLDT resolved with “Br” in Th

let i be the renaming of B to a, ;
let g be a negative caluse ¥as, ..., a," ;
let vy be uV propagate(v,n) ; — (B)

endcase

while the leftmost of &; i3 a call-exit marker [Ais), pig1,mi4a] do
let &4 be G, other than the leftmost call-exit marker ;
let vis1 be pip1 V propagate(v;, nig1) ; — (C)
add A,y to the last of A.pypig’s solution list if it is not in it
ti=1+1;

endwhile

{Gnti't .urlﬂl:l = {G.-, "'rl'] i

return (Ghow. fnew -

Figvre 3.2.2 OLDT Resolution for Mode Analysis
3.3. An Example of Mode Analysis
We will show an example of me~» analysis, which is going to be used in Section 4.3.

Example 3.7 Let div, < and sub be predicates defined as before. Then, the mode analysis
generates the following OLDT structure of div(X, D + 1,Q) < X, D < ground > similarl-
to reach in Example 2.3, First, the initial OLDT structure is generated. The root node of
the search tree is a solution node. The solution table contains only one entry with its key
div(X, D +1,Q) < X, D < ground > and its solution list [ ).

div(Xg,Dg+1,Q0)
< Xn, Do #gfaurid}

/A
X, «Dy+1.f] sub{Xs Da=+1.Y5) div(Ys,Dz4+1,Q2) [}
<X, Dy #=ground> < Xz, Dz e=ground >

div(X.D+1,Q) <X, D<=ground> : ||
XD+l « X, D<= ground> : ||
sub{X.D+1Y) <X, D<=ground> : ||

Figure 3.3.1. Mode Analysis at Step 2

Secondly, the root node is OLDT resolved using the program to generate two child
nodes, The intermediate clause part of the left child node is

"Xy < Dy +1,

[div(Xe, Dy + 1.Qu). < Xy, Dp=ground>, < Xog=X;, Do =D, CQge=0> ]I”.
hence it is immediately the clause part of the generated node. The intermediate clause part
of the right child node is

16



“sub(Xz. Dz + 1,Ya), div(¥Y2, D2 +1,Q2),

[-:Iiu{Xa. Do+ 1, Qo)< Xpg, Dp=ground> < Xpe=Xo [heDay Qpe=Qa+ 1> ]".
hence it 15 immediately the clause part of the generated node as well. Both of these child
nodes are solution nodes. {The quantities mnside call-exit markers are omitted due to space
limit so that they are depicted simply by [].)

Thirdly, the left solution node is OLDT resolved using the program to generate two
child nodes. The right node is a new solution node. y

Xl <D|,+1,[|
< Xy, D = ground>
PN
O Xa<DgI
<Xy, Dy, Que=ground> <Xy, Dye=ground>

o\
O Xo <Do L] -~
< Xo, Do, Qo=ground> < X3, Dg = ground> -
| v
= |
<Xy, Dy, Qp =ground > !
i
div{X.D+1,Q) < X, D = ground > ; [dtv{X__D-kLQ] {xrpgﬁ?eywund}] ’/"
X<D+1 <X, D=ground > : [X<D+1 <X, D<= ground >] -____,.-"f
sub{X.D+1,Y) <X, Deground>:[] 7777 "

X<D <X, D eground> @ [X<D <X, Dczgruund>|
Figure 3.3.2, Mode Analysis at Step 5

A\
sub(Xz.Dz+1,Y;) div(¥3,D2+1,Q2).[]
< X3, Dy = ground>
I
sub( Xz Dy, Y ) [ div(Y2.D241,Q2).0)
< .T-;, .D']' = Elﬂd}
"
-~ div(VeDs+1.Qu).{] sub(Xo. D, Yo).[].[] div(¥2,D2+1,Qz).[] -
< Y5, Dy <= ground > _Im_d:gwund} %
I | |
[ = div(Y,e.Dys+1.Q45) 11 -, '.
Vv < Xo. Dy, Qo "‘-‘—“,ﬂlﬂf} < ¥is, Dy =ground> | i
k'\'\. I
= O
-"""-.. {JYU'DU*QU¢§:EE}

- o

*"———.u..n.———

e e s ——

div{K.D+i,Q} {X,,Dd—-yraum!; [dw x D+1. Q}{x D Q:grpuﬂJ
X<D+l <X, D=ground > : [X<D+1 <X. U< ground >| A
sub(X.D+1,Y) < X.D <= ground> : [sub{¥.D+1,Y) <X, D,Y < ground :-] e

-—

X<D <X, D=ground> : [X<D <X, D ¢ ground >] o
sub(X. DY) < X, D =ground> : [sub{X. DY) <X, D, Yt:yruundl‘k]

Figure 3.3.3. Mode Analysis at Step 10

17



Fourthly, the right solution nede is OLDT resolved using the program to generate two
child node. The right child node is a lockup node. The association associates the lookup
node to the head of X < D < X, D <= ground >'s solution list.

Fifthly, the lookup node is OLDT resolved using the solution table.

Sixthly, the right solution node 12 OLDT resolved using the program to generate one
child solution node.

Seventhly, the solution node is OLDT resclved to generate two nodes. Both the right
node and the left node are lockur nodes.

The process proceeds in the same way. Lastly at step 10, all nodes are OLDT resolved
up. The final search tree and solution table are as in Figure 3.3.3,

The final solution tahle says that

(a) div, sub and < are always called with its first and second arguments instantiated to
ground terms.
{b) When div, sub and < succeed, their arguments are instantiated to ground terms.

4. Termination Detection Based on Abasiract Hybrid Interpretation

In this section, we will show a termination detection method to check recursions during
the process of mode analysis,

4.1 Termination of Prolog Programs
(1) OLD Termination

Because variable: in Prolog programs are freely instantiatable, we need to define the
termination property of Prolog programs in a slightly different way.

Example 4.1.1 Let lpop be a predicate defined hy
loop(X) :- loop{X].

When any goal of the form [oap(t) is executed, it never terminates.

Example 4.1.2 Let reverse be a predicate defined by

reverse{| [.1]).

reverse{[X ], M) :- reverse(L,N), append(N,[X],M).

append([ L.M.M].

appeed ([ X|L] M, [XIN]) :- append{LM.N).
When a goal reverse([X|L], M) iz executed with its all variables uninstantiated, it returns
infinite pumber of solutions

reverse([X, ].[X4]),

reversef[X; . X;] [ X X, 1),

reverse([X ;. X0, X5 LIX5, X2, X, ),

and there exist exccution paths with arbitrary length. Hence, when it is combined with other
goals. it might never terminate. For example,
- reverse{[X|L],M), length{M.0}.

Example 4.1.3 Let esrever be a predicate defined by
esrever{| || |}

esrever{[X|L].M) :- append|N,[X],M), esrever(L,N).

18



Even if a goal of the form esrever([X|L], M) is executed with its first argument instantiated to
a ground term, there exist execution paths with arbitrary length, because append(N, [X], M)
returps infinite number of solutions

append(] |,[X},{X]).

append ([ X,],]X},[X. X)),

append ([Xz, X, ][X].[X2.X1.X]),

Hence, when it iz combined with other goals, it might never terminate. For example,
7. esrever(|X|L],M), length{M 0).

Example 4.1.4 Let reverse be the predicate as before. When a goal of the form reverae( L. M)
iz executed with its first arpument instantiated to a ground term, it always terminates. Here,
it is crucial that reverse instantiates its second argument to a ground term when it suceeeds.

Example 4.1.5 Let append be the predicate as before. When a goal of the form append( N, [ X],
M} 1= executed with its Hirst argument instantiated to a ground term, it always terminates.

An atom A is said to be {OLD) terminating when there is no infinite execution path
in the OLD tree of A, ie., it succeeds or fails Anitely. A mode-abstracted atom Ap is said to
be (OLD) terminating when any atom in the mode-abstracted atom is (OLD) terminating.

Example 4.1.6 The following mode-abstracted atoms
looplX)< X <= any >,
reverse([X|L].M) EL-e:E_EE >,
esrever([X|L].M)< L <= ground>

are uot (QLD} terminating, while
reversel L.M)< L <= ground >,
append(N.XIM)< N, X <= ground >,

are {OLD} terminating.

{2) Symbolic Complexity Measure

A mappizg m s culled a measure of atom A, when it satisfies the following cowdii ous,

(a) m iz a mapping from the set of atoms to a well-founded set (W, <).

(b) For any atom B and any substitution ¢, m({Bf#) < m(B]) .

{c} Suppose that there is a path in the OLD tree of A starting from a node with its leftmost
atom pit; . t;.... 1, and ending with a node with its leftmost atom p(s;,22,... ,25].
Let 0y, 8o, . .8, be the labels of the edgzes an the path, and § the composed substitution
Frfz- -6, Then mipleg.oz.... o0} = miplty, tz, ... ta)8).

An atom A is said to be (OLD) terminating by M when M 15 a set of all A's measures. o

particular, when an atom A is terminating by {}, it is said to be diverging.
Theorem 4.1 An atom A 1s terminating if and only if there exists a measure of A

Proof, Supposge that the OLD tree of atom A extended as far as possible 1s finite. Let mi{ )
be the multiset of the lengths of all patls from the root to the leaves in the OLD tree of
atom £, { We assume the multizet ordering over the usual ordering <, i.e., a multizet 5 i
smaller than a multiset §. when ) is obtained from S5 by replacing an element of §2 with
(possibly zero) elements smaller than the element.) Then, the measure m ovbiously satisfies

19



the conditions (a},{b) and (¢}. The inverse direction of the proof is trivial. (cf. Shapiro [15]
p.59, Lemma 3.9.)

Hence, existence of measure iz a necessary and sufficient condition for guaranteeing
termination. But, detection of termination is underidable in general. In this section, we
restrict our attentions to the following simplest class of measures. {The class of measures is
easily extended so that more general ordering can be taken into consideration. See Section 7.)
The symbolic complexity of term ¢ is the number of symbols contained in t, and denated by
|t|. The symbolic complexity measure m of atom p{ty, t3,... ,1,) is the symbolic complexity
of some argument |¢;], and the i-th argument is called the measurcs! argument of m. (Note
that the symbelic complexities are bounded downwards by constant 0.)

Example 4.1.7 Let aub be a predizate defined by

sub(X,0.X).

sub{X+1.D+1,Y) - sub(X,DY).
When X and D are ground terms, | X| and |D| are symbolic complexity measures of sub{ X, D+
1,Y), and the first argument and the second argument are the measured arguments, respee-
tively.

(3) Termination Lemmas

Termination of a given mode-abstracted atom can be detected by finding a symbalic
complexity measure for each mode such that it always decreases in recursions,

In arder to guarantee it, we resort to termination lemmas. A termination lemma is a
theorem of the form (I 2 0)

termination-lemmallemma-name}.
la| < |1'| =By, Ba, ..., By
end.

which means thar, when Oy, 04, ... , O hold and », ¢ are ground terms, the symoloe com-
plexity |#] is smaller than |¢].

Example 4.1.8 Let auc-decreaae and aub-decrease be termination lemmas
termination-lernmalsuc-decrease).
iX] < [X+1].
end.
termination-lemmaisub-decrease).
¥l < [X| - sub{X,D+1.Y).
end.
These lemmas are utilized for detecting termination of div later.

Let pls;, o2,... .8, p and p(t;, tz,... ¢, v be two mode-abstracted atoms, and T ke

a set of atoms we can assume to hold. Suppose we have a termination lemma
lul < v} - By, Ba, ..., By.

Tlew we can guarantee that

mip{e1.82.... 8. )) < mip(ti,t2.... ,1a})
under the mede substitutions g, v and the antecedant T if there exists a substitution A such
that

[a) A{B,), MBa), ..., A[B) are all contained in T,

20



{b) A{u)is &, and Alv) i= ¢;, and
(c) a, is ground under g, and ¢; is ground under ».

Example 4.1.9 Consider mode-abstracted atoms

X+1<D+1<X Deground>,

XecDaX, D#grnund}
Then, by utilizing the termination lemma suc-decrease, we can guarantee that

m{X<D)<m{X+1<D+1)

under the mode assumption < X, I} ¢gruund> <X, D« ground > and the antecedant { },
where m is either the symbolic complexity of Ll first argument or the symbolic complexity
of the secoud argument, Similarly, by utilizing the termination lemma sub-decrease, we can
puarantee that

m(div(Y,D+ 1,Q) < m{div(X, D+1.Q+ 1))
under the mode assumption < ¥, D <= ground >, < X, D = yraund’ > and the antecedant
{eub{X, D + 1Y)}, where m is the symbolic complexity of the first argument. (Note that
the symbolic complexity of the third argument is not a measure due to the mode assumption.

Remark. The termination lemnmas play the same role as induction lemmas of Boyer-Moore
Theorem Prover (BMTP), but the measured arguments found through the termination de-
tection are not used for formulation of induetion formulas in our system unlike BMTP. In this
paper, we assume that the termination lemmas are preparced before termination detection.

4.2 Abstract Hybrid Interpretation for Termination Detection

A search tree for termination detection is a tree with its node labeled with a quadruple
of a (generalized) negative clauge, a mode substitution, a usual substitution and a set of
atoms called antecedant. (For brevity, we will 2ometimes omit the term “for termination
detection™ hereafter in Section 4.) A search tree of (G, o, p.T') is a search tree whose root
node iz labeled with (.o, p.T'). The clause part of each qudruple is a sequence *ay. s,

..., consisting of either atoms in the body of P U [0} or call-exit markers of the form
TA.e' u' nl. A refutation of (G, pu, T} is a path in a search: free of (&, o, 01, T} from the
root to a node fabefled with (3.7, 1, A). The answer substitution of the refutation is the
substitution v, the answer mode substitution of the refutation is the mode substitution »,
the apswer antecedant is the antecedant A, and the sofution of the refutation is Gru.

A zolution table for termination detection is a set of entries. Each entry consists of
the key, measure set, and the solution list. The key iz a trio Asp. The measzure set iz a
set of symbolic complexity measures. The solution list is a list of mode-abstracted atoms
Ap,, ealled selutions. whose all elements are greater than the corresponding mode-shstracted
atom of the key w.r.t, the instantiation ordering.

Let Tr be a search tree whose nodes labeled with non-mill clauses are classified into
cither solution nodes or lookup nodes, and let Th be a solution table. An assoeiation for
termination detection of Tr and Th iz a set of pointers pointing from each lookup node in
Tr mmto some solution hst in T'h.

An OLDT structure for termination detection is a triple of search tree, solition tahle
aud association. The relation belween a pode and its child nodes in a search tree 15 specified
by OLDT resalution for termination detection as follows,

21



OLDT-resolve({ “ay, az,... ,an", @, i, [') : label) : label ;
1:=0;
case
when a solution node is OLDT resolved with “By :- By, B;,... ,B,.," in P
let # be the m.g.u. of aye and By ;
let n be the m.gu. of a; and By ;
let Gg be a negative clause “By, Ba, ..., B, [a1,0,8,0), az,... ,a.™:
let m be & ;
let 17y be propagate(p,n) ; — (A)
let Agbel;
when a lookup node is OLDT resalved with *Bu™ in T

let & be the empty substitution <> ;
let 7 be the revaming of B to a; ;
let Gg be a negative caluse “ag,...,a0," ;
let mp be of ;
let 1y be pV propagate(r, n) ; — (B)
let Ag be TU{a;} ;

endcase

while the leftmost of G, is a call-exit marker [Aiy1, 0041, pig1,ni41] do
let G;41 be (7; other than the leftmost call-exit marker ;
let iy be oy
let w41 be piyy V propagate(vy, mis1) ; —(C)
let A;py be ﬁ.—U{A.‘q—;} ;
add Ay vty to the last of J*t'.;.lﬂ'.'-’.;_ll.'.i.ljﬂ solution list il it is not im it ;
fi=141;

endwhile

[Gnllﬂi Tnewsr Bnew: I‘!'MI] = fGl'r i Vi "':"i} i

return recursion-cheek((Goow, Onew: fnews Fnew ) )-

recursion-check ({G, &, g, I') : label) : label ;
let A be the leftmost atom of G and p be its predicate;
if G contains call-exit markers with predicate p more than a fixed bound limit
then stop with warning “So many call patterns of p?”
else let [As, 00, px, me] be the leftmost call-exit marker such that 4;'s predicate is.p :
let [Ay.oq, pr,m], [Az. 00, 02,m2). ..., [Aket, Cimy, kmg, i ] be
all the call-exit markers left to the leftmost call-exit marker ;
let 7 be the composed substitution epap_y o900 ;
let M = {mj,ma,... ,my} be Apoyps's measure ;
forifrom 1 to !
case
mi{Aa) < m;( A7) is guaranteed
under p, g and I'r by some termination lemma : keep m; in M as it is :
m;{Ae) < m,;( A7) is not guaranteed
under g, pp and I'r by any termination lemma : eliminate m; from M ;
end
if M is @ then stop with warning “Asr calls Ao 7" else return (G, e, 4,T)

Figure 4.2 OLDT Resolution for Termination TMriection

22



A pode of OLDT structure (Tr, Th, As) labeled with (“aj,az,. ..,a,", o, g, ) i3 said
to be OLDT resolvable (n 2 1) when it satisfies either of the following cenditions.
() The node is a terminal solution node of Tr and there 15 some defiute clause “Ly -
B,.Ba,...,B." {m > 0) in program P such that a;e and Bo are unifiable, say by
au m.g.u, f.
(b) The node is a lookup node of T'r and there is some solution Bv in the associated
solution list of the lookup node such that a; is a vanant of B, say by a renaming 5.

The precise alzorithm of OLDT resolution for termination detection is shown in Figure
1.2,

A pode labeled with (“a;.ag,... ,a,”, o, g, ') is a lockup node when there already
exeist a key Bry such that a,0 is an instance of Dr and a4 is a variant of By, and is a
solution node otherwise (n 2 1), When a triple aop of a solution node is registered to the
solution table, its measure set is initialized to all the symbolic complexity measures of the
arpuments of a.

The initial OLDT structure for termination detection is a triple {Tro, Tbo, Asg), where
Tro is a search tree consisting of just the root node labeled with (“ay,a2,... ,@a", 0. 4,
{ }). Thy is a solution tahle consisting of just one entry whose key is a,op, solution list is
I ], and measure set is all the symbolic complexity measures of the arpuments of a,.

The immediate extension of OLDT structure, extension of OLDT structure, answer
suhstitution of OLDT refutation and solution of OLDT refutation are defined in the same
way as in Section 2.3

4.3 Examples of Termination Detection
We will show two examples of how termination detection proceeds.

Example 4.3.1 Let div. < and sub be predicates defined as before in Example 3.3. Then,
the termination deteetion generates the following OLDT structure of div( X, D+ 1,Q) <> <
X <= ground > similarly to Example 3.3,

First, the initial OLDT structure below is generated. The antecedant part of the root
nade is initialized to { }.

Sccondly, the root node is OLDT resolved using the program to generate two child
nodes. The clause part of the intermediate label of the lelt child pode i

.-Xl < .D; -+ i

[div{Xg. Dy + 1.Qy), <>, < Xg. Dy e=ground> < Xp =X, Do Dy, @a=0> ],
hevee it is immediately the cianse part of the generated node. The clause part of the inter.
mediate iabel of the right child node is

“aublX, Do + 1.Y5) div(¥a, D2 4+ 1.04),

[lfl':.'[:fg, ﬂn-‘.‘l,{;?n]-. <=, <Xy, Dy "Ejl'raun-:i:’,{J'fgﬁl':,ﬂqﬁﬂg1q¢-¢=q?+1 > I".
Lence it iz immediately the clause part of the generated node.

Thirdly. the left solution node is OLDT resolved using the program to generate two
child nodes. Since the Jabel of the right child node is

"Xy < Do [Xy < Dy +1,<2, <X, Dy =ground >, < Xy =Xy + 1, Dy <= D> L],
the atom Xy < Dy and the atem X; < Dy +1 -::_11_-:_:)(; 4+ 1. Dy «= Dy > are compared for
recursion check. Decause [X4| < | X4+ 1] when X, is a ground term, and [Dy| < |[Dy+1] when
Dy iz a ground term, by the terminatiom lemma auc-decrese, the 1st and the 2nd arguments
remain measures of X < D+ 1,

23



div{Xo,Do+1,Qo)
<>
< X, Do += ground >

{}
I\

xl 1I::D:I.-i"]'!II 5ub(x"2'rD'2+11Y'2}!div{YﬂrD2+11Q?]1I]
< oo 2
< X, Dy <= ground > < Xa, Da = ground >

{} {}
div(X.D+1.Q) <> < X, D<ground> : {1s1,2nd,3rd} [ ]

X<D+1 <> <X, D<=ground > : {1at,2nd} | ]
sub{X,D+1,Y} <> <X, D < ground> : {lst, 2nd,3rd} | |

Figure 4.3.1 Termination Detection at Step 2

Fourtbly, the right solution node is OLDT resolved using the program to generate two
child node. The right child node iz 3 lookup node, for which a similar recursion check is
done.

Fifthly, the lookup node is OLDT resolved using the sclution table.

/
X, <Dy+1]]
<>
{XI,D]_#EI'GUH&}
{}
/A
O xi {Dh[]:“
"':xﬂﬁ:t}.,QB cﬂ.} <

<Xo. Do Qoe=ground> <X Dy<=ground>
{X: < D1+ 1,div(Xo, Do+1, Qo)) fr}
\

O Xe <D [LILI} ----- -

<Xoe1,Qps0> <> o~

<Xo, Do, Qo<=ground> < Xg, Dg < ground > .

{Xa< Dy Xy < Dy+1div(Xo, Do+1,Q0)} I{ } !

|

D [
<Xope=Xe+2,Dog=De+1.Qp<=0> :

< Xp, Dy, Qo<=ground > |

{Xl_ = Dﬁ,)‘:., = D,,,:Xl = U]_ +i.ri:t.r[Xg, D-n.‘l" 11 Qn}} I

div(X.D+1.Q} <> < X. D« ground> : {1st} [div(X,D+1.Q) < X, Q <=ground >] ’
X<D+1 <> < X, De=ground > : {1sf,2nd} [X<D+1 <X & ground>] .
sub{X.D+1.Y) <> < X. De=ground> : {lat, Ind, 3rd} | ] =

-

X<D <> <X, D<=ground> : {lat, Ind} [X<D < X <=ground>|

Figure 4.3.2 Termination Detection at Step 5

Sixthly, the right solution node 15 OLDT resolved using the program to generate one
child sclution node. A similar recursion chieck is done using suc-deerease.

24



Seveuthly, the solution node is OLDT resolved to generate two nodes. The left child
pode is a solution node, for which recursion check 1= done using sub-decrese. The right node
is a lookup node,

The process proceeds in t1 - rame way. The final scarch tree (scarch subtree rooted
with the right son of the root pode) and solution table are shown in Figure 4.3.3.

The final solution table says that div(X, D+ 1,Q) is terminating when it 18 executed
with its first and second arpuments instantiated to ground terms, since the first argument is
the symbaolic complexity measure common to all calling patterns of drv. (It is terminating
even if it is exceuted with only the first argument instantiated to a ground term, though
the generated OLDT structure for termination detection will be twice as big as that of this

example.)

!
sub['}(g,D1—|-l,‘|"g],:iiv(‘r':,Dg+l,Q=].,||
<>
o« Ko, Dn o= ground >
{}
1
f'll'l‘.-{}:T,Df.}rr].l],di?l:?: .D:+1,ng,[]
e
< Xo, Dy = ground >

i

Foy
ememmmm div(¥e.De+1L.Qsl 0] sub(Xs,Ds.¥s)JLI]div{¥Y2,Da+1,Q2).[] - -~
o < D=0 =< .
; < ¥, Dy e=ground> <Xy Dy =ground > .
! ﬂau!n:l'-..ﬂ-r.l'r].aull{Xa.DnT-Y:HI I{ } - \

' O div(Yy Dyl Q) f} - - - - = -

I ﬁXQGx'rﬂ'l.Dn:ﬂ.Qu:Qu‘-' 1= <
! < Xg, Dy, Qoe=ground>  <¥u Dy < ground > .

D {aubl X D YR div{Xg, Do+ 1. Qo) {aub[}i’u Dy Y), aub{ Xy, Dy, Yr)eub{ Xz, D2 +1.Y3)}

I D i
¢

; cXos X+ hsDa+ L QoesQ s+ 12 ! !

i < Xa, Do, Qo= ground > S 0
{aufrl:_\-_-. Dy ¥gl, uubﬂxs Dy Yy )oulbl X2, D--'-l Yaladvwel Yo, Dyn 41,80 ). ulr.ll;.'-"m Dn+1 Qp}} ,’f N
dviX.D+1.0) <> < X, Dﬂgraund} {l-ﬂ'l '5-:!!?[}-'. D+1.9Q) {XDQtpruUﬂJ:-] {f
XeD+1l <> < X, .D-.:g-pum’ }h! Ind} |X<D+1 -d.?i'i::ground}l s
suld X.D+1.Y) <> < X. D= praund} {Llat, 2nd} [sub(X.D+LY) <X, DY -==grpund::-| Jf/

XD <> < X. D o= ground > Tlat,2nd) [X<D <xﬂ=frnund>;
|:|'|:-l'}. L, 1!r:l <o X D'.—.-_l]-'rrluniJ} {td: '.".:'l..-!}' [“ll'h[x I‘]‘Ti {x D b ¢=i|rpun.rf}]

Figure 4.3.3 Termination Detection at Step 14

Remark. Though we have assumed that the measure sets in the solution table are initialized
to the set of all symbolic complexitiez of the argpuments of the key, it i1z more eficient to
initialize them to that of the ground arpuments of the key. For example, the measure set of
div(X. D4 1,Q) in Example 4.3.1 is initialized to {13t 2nd}, oot {let, 2nd, 3rd}.

Example 4.3.2 Let gsort. part and append he predicates defined by

25



gsort([ ][ ]).

qsort([X|L] M) = part{L,X,LA LB}, gsort(LA MA), gsort(LB,MB), append(MA, [X|MB].M).
part([ ]X.[X],{ ).

part{|¥|L],X,|Y|LA],LB) :- X>Y, part(L X,LALB).

part(|Y|L],X,LA,[Y|LB]) - X<V, part(L,X,LA,LB).

append([ .M ,M).

append([X|L],M,[X|N]} :- append(L,M,N).

Then, the termination detection proceeds as follows. (Note that the first clause of part is
wrong. Thiz example is taken from Shapiro [15] p.60.)

Because of the wrong clause of part, we can’t guaraptee termination of gsort by sym-

bolic complexity measure. (gsort{]X], M) iz not smaller than gsort([X], M A) when their first
arguments are ground.] In general, the faillure of guaranteeing termination does not always
say that the atom is diverging, since we are considering a very restricted class of measures.
However, a warning that termination of gsort is not guaranteed by simple measures due to
some clause is helpful for diagnosis of nonterminating programs. (cf. Shapiro’s approach in
Section 3.4. of [15].)

[

qaart( Ly, Mg
o

< Lp <= ground >
J:: \
O part{LyX5,LA3 LB;) qeort{LAs MA; ) gsort(LD; MB3),
append(MAz [Xz|MBa]Ma) [}

o L-u..l‘lfu'::g | > £
< Lp. Mpe=ground > < X, La=ground >

{l‘i‘aﬂ‘rtl.ﬁ-n.jrfn}} ﬂ'

! | !
e mmm—— guort{LAs MAs ), Xg <V, part[Ly X, LALLDG)]] Xs >Ys, part{Ls Xs LAs LB ) J]
qeort(LD3 MOy, qeort(LAgMAL) geort(LDMD,), geert{LAs MAg ) grort (LB, MDDy ),

appendMAL [XGIMOTMIE]  append(MALXJAMB MOl append(MAg [XsMBs] M )]
LA =[NGILASL LB =]]> <> <>

< Xa. LAy LBy <=ground > <Ly Xq Yye=ground > <Ls, X5, ¥s =ground >
___ {port(la. Xz, LAs LB3)} {} {1 o

geort{L. M) <> < L e=ground> : {} [::mrl[L.M} > < L. M« ground >|
part(L.X.LALB) <> < L, X e ground > ; {1t Ind Ird 41h} | |

XY <> < XY «=yground > : {lat,2nd} [ ]

X»Y <> <X, Y eground> 1 {lat, Ind} [ |

Figure 4.3.4 Terminat!-n Detection of gsort at Step 3

5. Deteciion of Universal Termination and Existential Termination

5.1 Universal Termination and Existential Termination

In Section 2.1, atoms resolved in OLD resolution are always the leftmost cnes in neg-

ative clauses. If it 1s permited to select arbitrary atoms in negative clanses, we have SLD-
resolution. Then, what differences oceur in the termination property 7 Recall the five
examples in Section 4.

26



Example 5.1.1 Let loop be the predicate as before. When auy gual of the form loop(t) 1s
exccuted, it mever terminates in any SLD-resolution.

Example 5.1.2 Let reverse be the predicate as before. When a goal reverae(|X|L], M) is
executed by SLD-resolution with its ail variables uninstantiated, it returps infinite pumber
of solutions just like OLD-resolution in Example 4.1.2.

Example 5.1.3 Let earever be the predicate as before. Suppose that the rightmost atom
is always sclected. Then, if a goal of the form esrever({X[L]. M) is executed with its first
argument instantiated to a ground term, it always terminates Bnitely. Now, suppose that
the leftmost atoms are always selected, Then, as Example 4.1.3, there exist execution paths
with arbitrary length.

Example 5.1.4 Let reverse be the predicate as before, and suppose that the rightmost atoms
are always selected. When a goal of the form reverse( L, M) is executed with its first argument
instantiated to a ground term, there exist execution path with arbitrary length, just as
garever in Example 4.1.4,

Example 5.1.5 Let append be the predicate as before. When a goal of the form append(N,[X],
MY} is executed with its first argument instantiated to a ground term, it always terminates
in any SLD-resolution.

An atom A 1= =aid to be universally terminating when there is no SLD tree of A with
infinite execution path. A mode-abstracted atom Ap is said to be universal terminating
when any atom in the mode-abstracted atom is universal terminating. An atom A is said to
be existentially terminating when there is some SLD tree with no infinite exccution path. A
mode-abstracted atom Ap is said to be existentially terminating when any atom in the mode-
abstracted atom is existentially terminating. When an atom (or mode-absatracted atom) is
universally terminating, it is OLD termicating. When an atom (or mode-abstracted atom)
is OLD terminating, it iz existentially termmating.

Example 5.1.6 The mode-abstracted atom
looplX)< XN <=any >,
reverse{[}(ﬂ].h‘[]é Le=any>,
are not existentially terminating. The mode-abstracted atom
esrever{| XL M) < L < ground>
is existentially terminating, but not OLD terminating. The mode-abstracted atom
reverse( LM} < L <= ground >,
i= existentially terminating as well as OLD terminating, but not universally terminating. The
mode-abstracted atom
append (N [X[M)< N. X = ground >,
iz both existentially terminating, OLD terminating and universally terminatiog.

5.2 Detection of Universal Terminalion

In order to detect universal termination, it i= enough to check all SLD-trees whether
they contain no infinite execution path.

Example 5.2 Let appernid be the predicate as hefore. Then there 15 only one OLDT structure
for termination detection of append(N, [X], M) <N, X < ground> as below.

27



append (N, [X].Ma)
<>
< Ny, X == ground >
i}
/A
0 append(Nz K M;)
<Np=[ | Mp+=[X] > <>
<Np, X, Mp=ground> <Ny K <ground>

{append(Ng, [X],My)} JIIr{ \i

D append(NgKM;) -—-——-==~=~=~ .
<No<=[Y] Ma<=lY,X]> <5
< Ny, X, My <=ground> <Ny, K< ground>
{append( N3, K, M), append( Ny, [X], M)} {!}

]
< No<=[Y|N, Mo =[Y M} >
< Nop, X, My <= ground >
{append(Ny, K, My), append(Na, K, M), append(Ng, [ X], Mo )}

append(N [X| M} <> <N X<=ground> : {lat} [append(N,[X] M) < N, X, M < ground >|
append(N.K,M) <> <N, K < ground > : {lst} lappend(N.-K M} <N, K, M < ground>| ~--"

Figure 5.2 Detection of Universal Termination
5.3 Detection of Existential Termination

In order to detect existential termination, it is enough to find an appropriate SLD-tree,

which contains no infinite execution path, either by exhaustive search {with backtracking)
or by heuristic search.

esrever{ Ly Mp)
<

< Lg<=ground>

I\
O append(Nz,[X2). M2} esrever{La,Na) -«
<Lo, My=]]> <> N
< Ly, My <= ground > < X3, Ly < ground >
{earever{Lg, My)) {1 |
| )
append(N2 [X2] Mz)
<> '
< Nz, Xz = ground > .
i :
|
esrever(L.M) <> < Leground> : {lst} [esrever(L M) < L, M <= ground >| i

appeod(N [X].M) <> < N, X <=ground> : {lat} [append(N[X]| M) <N.X M <= ground >|
append(N.K.M} <> < N, K < ground> : {lst} [append(N.K.M) < N, K, M <= ground >|

Figure 5.3 Detection of Existential Termination

28

= T e e ——— ———



Example 5.3 Let earever the predicate as before. Then, termination detection proceeds
similarly as in Figure 5.3 except selection of the second atom at the right child node of the
root node instead of the leftmost atom. Since we have found one complete SLD search troe
for termination detection without violating the termination condition, mode-abstracted atom
esrever(L, M) < L= ground> is exiztentially terminating.

6. Discussion

A< is mentioned in Section 1, a few techniques for detecting termination of logic pro-
erams bave been developed. Francez, Grumberg, Katz and Poueli [6] discussed formal meth-
ods to guarantee termination of Prolog programs. But, the class of goals they considered
is restricted to those with no instantiation of variables during execution. Shapiro [15] dis-
cussed detection of diversing Prolog programs in the context of program debugging. His
method checks the actual stack when the size of the stack overceeds a fixed depth during the
execution of a given goal. Our approach is different from theirs in the following respects.

{a) Our approach considers the termination of the class of goals, whose variables may be

instantisted during the execution (cf. [6]).

{b) Our approach checks not the actual stack, but an abstracted stack for a class of goals
in a mode-abstracted negative clanse (cf. J15]).

Our approach can be extended or generalized in the following four respects. First
the class of measures considered ean be generalized. For example, we cap easily extend
the class of symbolic complexity measures to those of the form ety + ezftz] 4+ -+ + tnltal
{e; = +1,0,—1), or more general arithmetic expressions of symbolic complexities bounded
downwards. if we can prepare corresponding termination lemmas of the form

termination-lemma(lemma-name).

c=mlay. 0. .., 8n) < mlty ta, ... ) = By, Ba, ... By

end.
or tuples of symbolic complexities with the lexicographic ordering. It is even possible to
employ a measure not based on symbolic complexities, e, any user-specified basic measure
for each data struetures like length for list structures to count just the top-level rona’s, or
mappings to more novel well-founded sete. (The arguments actually contributing to the
mussure m are called the measured arguments of m.) Dut, the wider class of measures is
allowed. the more time and the more termination lemmas are needed.

Example 6.1 Let ackermann be a predicate defined by

ackermann{0 NN+1).

ackermano{M+1.0.X) :- ackermann(M.1,X).

ackermann(M=+1.N+1,X) - ackermann(M+1.N.Y), ackermann{M.Y.X}.
In order to puarantee the termination of ackermann(M. N, X) when M aud N are ground, we
need to use the tuple of the first and the sccond arguments with the lexicographic ordering.

Secondly. termipation detection can be more powerful by utilizing the result of zize
analysis and transitivity of < and < (ef. |1} Chap.14).

Example 6.2 From the size apalysis of part, we can derive
0 < |LA| < |Li: part{L.X.LA.LB), 0 £ |[LB| < |L{ :- part{L.X.LA LB).
Combined with the transitivity of < and <€, we can derive the {ollowing two termination
lemmas. which are utilized to muarantee termination in other bragches of Example 4.3.2.
termination-lemmaipart-decrenseA}.

29



0 < |LA| < |[X|L]] :- part{L,X LA LB).
end.
termination-lemma(part-decreaseB).

0 < |LB| < [{X|L]] :- part(L,X,LA,LB).
end.

Thirdly, we can store more information in the solution table. In the QOLDT resalution
for termination detection in Section 4, we recorded only mode-abastracted atoms as solu-
tions in the solution lists, i.e., neglected the usual substitution part, because the numhber
of solutions would be sometimes infinite if we did not neglect the usual substitution part.
One might wonder, however, whether such neglection might loose too murh information (of
instantiation) so that termination cannot be detected in some cases. By employing depth-
abstraction, not only more information can be saved but also the number of solutions is kept
finite. A term t is a level 0 subterm of t itself. £;.12,...,t, are level d + 1 subterms of ¢,
when fity, te, ..., tn} is a level d subterm of t. A term obtained from term ¢ by replacing
every level d non-variable subterm of ¢t with a newly created distinet variable iz called the
depth d sbstraction of ¢, and denoted by [t]g. Let § be a substitution of the form

{X| tfl,}:2¢t:.,..1x; =t >.

Then the substitution

{I|=[t1]g...’fg =[tg]a, ..., X]ﬂ:]f;'d}

it called the depth d abstraction of #, and denoted by [f],.

Example 6.3 Let t be a term f{g(X,a),¥,b) and Z,U/,V,W be fresh variables (|14] p.G42).
Then

z, when d = 0;

6l = fli0, Y, vy, when d = 1;
7 ) Sla(X,W),Y,b), whend=2;
t, when d > 2.

Nate that ¥ is not replaced with a new variable when d = 1, and neither 1s X when d = 2.

Then, we just need to modify the OLDT resolution for termination detection in two
respects.

(1) The second condition for OLDT resolution is modified as follows: The node is a lookup
pode of T'r, and there is some solution Bry in the associated solution list of the lookup
node snch that oyr and Dr are unifiable say by an m.gu. §, and &, is a variant of B,
zay by a renaming #.

{2} The statement for registration of solutions in OLDT resclution is modified as follows:
add Alr4;lavis to the last of Aoqyypig s solution list if it is not in it.

Fourthly. it 1s possible to define the termination property assuming type information
instead of assuming mode information. Then, we just need to use type inference [7].[8] instead
of mode analysis.

Example 6.4 Suppose that a type predicate list is defined by
type.
fist(] ]).
list{|XIL]) = list(L).
end.

30



Let liat denote the set of all terms satisfying the definition above. If we would like to know
that, when a poal of the form reverae(L, M) is executed with its first arpument instantiated
to a list, it always terminates, we will consider a type-abstracted atom

reverse(L M) < L+=liat >,

7. Conclusions

We have shown a framework for detecting termination of logic programs. This method
is an element of our system for analysis of Prolog programs Argus/A under development
[71.[9].(10] j11].

Acknowledgements

Our analysis system Argus/A under development is a subproject of the Fifth Generation
Computer System (FGCS) “Intelligent Programming System”. The authors would like to
thank Dr. K. Fuchi (Director of ICOT) for the opportunity of doing this research, and Dr.
I Furukawa [Vice Director of 10N0T), Dr. T. Yokoi {Vice Director of ICOT]) anud Dr. H. Ite
{Clief of ICOT 2rd Laboratory) for their advice and cucouragement.

Refercnces

[1] Boyer.R. and J.§ Moere, A Computational Logic,” Academic Press, 1678,

(2] Cousot.P.aud R.Cousor, “Abstract Interpretation : A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximztion of Fizpoints,” Cooference
Record of the 4th ACM Symposium on Priociples of Programming Languages, Los
Angeles, pp.238-252, 1077,

3] Cousot.P.and R.Cousot, “Static Determination of Dynamic Propertics of Recursive
Procedures.” in Formal Description of Programming Concepts {E.J Neubold Ed), pp.
237-277. North Holland, 1078,

[4] Debray.8.K.. “Avtomatic Mode Inference for Prolog Programs,” Froc. of 1986 Sympo-

smm on Lorie Programiing, Salt Lake City, 1986
| Dershowitz.N,, “Orderings for Term Rewriting Systems.” Theoretical Computer Sci-
ceoce, 1082,

'6] Francez.N.. O.Grumberg, S.Katz and A.Poueli, “Proving Termination of Prolog Pro-
erams.” in Logic of Programs {R.Parikh Ed.}, Lecture Notes in Computer Science 172,
P B9-105, 1985,

(7] Horiuehi.K.apd T .Kanamori, “Polymorphic Type Inference i Prolog by Abstract lo-
terpretation,” Proe. The Logic Programming Conference '87, pp.107-116, Tokye, 1787.

[8] Kaoamori,T. and K Horiuehi, “Type Inference in Prolog and its Applications,” Froc.
of 0th Inrernational Joint Conference on Artificial Intellizence, pp.704-707, Los Angels,
1985,

0] Kauamori.T. and T.Kawamura, “Analyzing Success Patterns of Logic Programs by
Abstract Hybnd Interpretation.” to appear, ICOT Technical Reporta, 1987,

110} Kanamori.T., K.Horiuchi, and T. Kawamura, “Detecting Functionality of Logic Pro-
grams Based on Abstract Hybrid Interpretation,” to appear, ICOT Technical Reporte,
1087,

[11] Maeji M. and T.Kanamori, “Top-down Zooming Diagnosis of Lome Programs.” to ap-
pear, ICOT Technieal Report, 1787,

[12] Mellish.C.5.. “Some Global Optimizatinna for A Proleg Compiler.” J. Logie Program-
ming. pp.43-G6. 1985,

31



[13] Mellish,C.S., “Abstract Interpretation of Prolog Programs,” Proc. of 3rd International
Conference on Logic Programming, pp.463-474, London, 1986.

[14] Sato,T.and H.Tamaki, “Enumeration of Success Patterns in Logic Programming,”
Proe. of International Colloquium of Automata, Language and Programming, pp.640-
G52, 1984,

[15] Shapiro,E.Y., “Algeritbmic Program Debugging,” Ph.D Thesis, Dapartment of Com-
puter Science, Yale University, 1982.

[16} Tamaki,H.and T.Sate, “OLD Resolution with Tabulation,” Proc. of 3rd International
Conference ou Logic Programming, pp.84-98, London, 1286.

32



