ICOT Technical Rep_pf_t:_ _T_ﬁ-395

TR-395

Proof Theoretic Approach to the Extraction
of Redundancy-free Realizer Codes

by
Y. Takayama

June, |98E

C19%8. 1COT

Mia Kokuesa Blde 2:F (03 456-31591~35

" :C} | 4-28 Mita 1-Clome Teles ICOT 132964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology



Proof Theoretic Approach to the Extraction of Redundancy-free Realizer Codes

Yukihide Takayama

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokvo, 108, Japan
takayama@icot.jp

Abstract

Executable codes can be extracted from constructive proofs by using realizability interpretation.
However, realizability also generates redundant codes that have ne significant computational
meaning. This redundancy causes heavy runtime overhead, and is one of the obstacles in apply-
ing realizability to practical systems that realize the mathematical programming paradigm. This
paper presents a proof theoretic method to elimnate redundancy by analysing proof trees as
pre-processing of realizability interpretation; according to the declaration given to the theorem
that is proved, each node of the proof tree is marked automatically to show which part of the
realizer is needed. This procedure does not always work well. This paper also gives an analysis
of it and technique to resolve critical cases. The method is studied in a simple constructive logic
with primitive types, mathematical induction and its standard q-realizability interpretation. As
an example, the extraction of a prime number checker program is given.

Keywords: constructive logic, realizability, natural deduction, proof tree analysis, proof compi-
lation

1. Introduction

Writing programs as proofs of theorems is thought to be one good approach to automated
programming and program verifieation [Constable 86] [Takayama 87]. The automated theo-
rem proving technique and language design are the key techniques to realize this paradigm.
Executable codes can be extracted from constructive proofs by using the Curry-Howard isomor-
phism of formulae-as-types [Howard 80}, or equivalently, the notion of realizability [Kleene 43
[Beeson 85]. This is also a key technique to make mathematics run on computers. Here, it raises
the problem of extracting cfficient codes from proofs, or, in other words, optimization at proof
level.

A technique to optimize programs at proof level, pruning, is given in [Goad S0]. Generally,
praofs contain a lot of information about the programs that correspond to the proofs, and the
pruning technique uses the information in optimization drastically changing the strategies of
algorithms. Goad also investigated an application of the proof normalization method to partial
evaluation of proofs and a program extraction technique other than those using realizability.
[Bates 79| applied a traditional syntactical optimization technique on the code extracted from
proofs which might destroy the clear correspondence between proofs and program via realiz-
ability. [Sasaki 86} improved the program extraction algorithm based on realizability so that
the trivial code for formulae that have no computationel meaning can be simplified. The basic
iden is as follows: if 4 and B are atomic formulae, then the computational meaning is trivial,
so that the ende extracted from, for instance, 4 A B is (¢rivial, trivial). The modified program
extractor sinplifies the code to trimal. A similar technique is used in the X system (Hayashi



86) as type 0 formulae. The QPC system [Takayama 88] uses a similar technique to Sesaki’s,
a normalization method to eliminate §-redex in the extracted codes, and the modified V code
technique to simplify some classes of decision procedures. However, the code extracted from
constructive proofs still has redundancy, and it causes heavy runtime overhead.

If & constructive proof of the following formal specification is given:

Yz:gp. Jy:or. Alz,y)

where oo and a; are types, and A(z,y) is a formula with free variables, z and y, the function,
£, which satisfies the following condition can be extracted by q-realizability:

Yz : oo.Alz, f(2))

For example, if the proof is as follows:

[z:00]  [z:00]
Eg E.'I

t{z} o0 Alz,t(z)) o
Jy: oy Alz,y) (e I}r

W-I
Vz:og. 3y: oy Az, y) (D)

where Ip and T, denote sequences of subtrees, the extracted code can be expressed as:
Az, (#(z),T)

where T is the code extracted from the subtree determined by A(z,(z)), #(z) denotes a term
which contains a free variable, z, and (term,,terms,---) means the sequence of terms. In this
paper, the executable codes extracted from constructive proofs, which are called realizer codes
are in the form of sequences of terms or functions which output a sequence of terms. The codes
contain verification information which is not necessary in practical computation. In this case,
the expected code is:

74z #(z)

so that T is the redundant code.

The most reasonable idea to overcome this problem would be introducing suitable notation
to specify which part of the proof is necessary in terms of computation. The set notation,
{z : A|B}, is introduced in the Nuprl system [Constable 86] as a weaker notion of 3z : A. B.
This is done to skip the extraction of the justification for B. [Mohring-Paulin 88] modified the
calenlus of construction [Coquand 86][Huet 86]{Huet 88| by introducing two kinds of constants,
Prop and Spee, to distinguish the formulae in proofs whose computational meaning is not nec-
essary. These works are performed in the type theoretic formulation of constructive logic in the
style of Martin-Lof.

This paper presents a p-oof theoretic method in the style of D. Prawitz to perform the program
analysis at proof tree level, and to generate a redundancy-free realizer code. The method of
program analysis can be presented quite clearly and naturally if it is performed at the proof
tree level because proots are the logical description of programs and have a lot of information
about the programs. In some cases, the redundancy can be removed easily by applying a pro-
jection function to the extracted code. However, the situation around the redundancy is a little
more complicated, particularly when the program extraction is performed on proofs which use
induction, in other words, when the recursive call program is extracted. It needs a shghtly

_2_



more detailed program analysis to distinguish the redundancy from the algorithmically signif-
icant part of extracted programs. It is mainly because, as the realizer codes can be naturally
expressed in the form of sequence of terms, recursive call programs which correspond to proofs
-1 induction have the form of multi-valued recursive call functions. The projection function on
the extracted codes can be extended to a procedure on proof trees, and in this case, the meaning
of the procedure becomes clearer.

The formalism of proof description and programs used in this paper is basically the intuitionistic
verswn of the Gentzen type of natural deduction [Prawitz 65] with some additional program
construrts such as A- expressions and i f-then-else terms, simple type structures, and the re-
culsive type structure introduced in (Sato 85]. However, the feature of type structure, inference
rules and the program constructs are not stressed in this paper. This formalism is mere like
C. Goad’s formulation of constructive logic [Goad 80] than type theoretic formulation such as
the Nuprl and the ealculus of construction. Standard g-realizability is used as the program
extraction algorithm.

Section 2 gives a formulation of the constructive logic and the realizability interpretation used in
this paper. Here, realizability is given as the proof compilation procedure which is an algorith-
mic version of g-realizability. The definition of declaration to a specification and the marking
procedure are given in section 3. These two methods are the basic idea of pre-processing to
extract redundancy-free realizer codes. The eritical part of declaration and the marking proce-
dure is investigated in section 4. A sort of soundness theorem of the marking procedure is given
at the end of this section. Section 5 works on the proof of the theorem. The modified proof
compilation algorithm, which takes a marked proof tree as input and returns a redundancy-free
realizer code, is defined in section 6. An example, a prime number checker program, is worked
out in section 7. Section § is the conclusion.

2. Simple Constructive Logic

The constructive logic used here is, roughly, an intuitionistic version of first order natural de-
duction with mathematical induction plus higher order equality and inequality. It 15 a sugared
subset of Sata’s theory, QJ [Sato 85| [Sato 86].

9.1 Expressions and Inference Rules

The definition of the formal language is given somewhat informally here. See [Sato 36] for a
more formal definition.

{1} Types

1) nat (the set of natural numbers) and bool (boolean type} are the primitive types.
2} If oy and o; are types, then gg — o is also a type.

3) gy - 7oy are types, then op % -+ X Onm) 1s also a tvpe.

These type structures are not used explicitly in this paper. The definition of the recursive tyvpe
structure is not given for the same reason.

(2) Terms (program constructs)

» Variables z, y, --- , and sequences of variables Z, ¥, - -

¢ Lambda abstraction: A{zg, - Tn=1). Term (0 S n).

The following equivalent relations hold:

a) Mnily. Term = Term b)) Alxo, -+ Tny). Term = Azg. - - AZn Term

_— d_



o Atoms
1) Elements of nat: 0,1, 2, -
2) nil (element of nil sequence), left and right, T and F (boolean), any|n| (denotes n sequence

of any atoms: any[0] <l nil)

3) constant that represents absurdity: L

o If A is an atomic formula and B and C are terms, then if A then B else C'is a term.

e If r is a variable or a sequence of variables and A is a term, then Az.4 is a term.

« Application: a(b)(c)- - (d)

For any term, a, a(nil) =

s Sequences

If ty, - -, Eny are terms, then the sequence of terms, (toy- - ytn—1), or simply tg, - -,tn-1, 15 8
term.

1) If n = 1, the sequence (tg) is equal to to.

2) Nil sequence: If n = 0, the sequence 1s denoted (nil).

3) Concatenation: The concatenation of two sequences, Sy and S, is denoted (Ss, S1). This ne-
tation will be used more generally: {Ss, 51, -, Sk—1) denotes the concatenation of k sequences.
Note that (Sg, (nil)) = (Se,nil) = ((nil), So} = (nil, Sp) = Sp for any sequence, Sp.

4} Equivalence:

a) if A then (ag, --,an-1) else (bp, - N -y

=(if Athen ag else by, - ,if A then an—1 else by—y)

EF] }.{zg,- .- :In—l}- {du,- .. ;,ﬂ.m_].:] = (A{Ig, v T.‘I:-.,_.;:l. T, ** ", }ll::I[h T ':Eﬂ_ljl ﬂm_]}

¢ Fixed point operator p.

(3) Formulae

1) L is an atomic formula.

2) Equation and inequation of terms are atomic formulae.

Note that if f is a term and ¢ is & type, then ¢ : ¢ is an abbreviation of t = 1.

3) If A and B are formulae, then AN B, AV B and A O B are formulae.

4) If z is a variable of type ¢ and 4 is a formula, then 3z : 0.4 and ¥z : 0.4 are formulae.

5) If 4 is a formula, =4 ' 42 L is a formula.
The type declarations of bound variables are often omitted. Also atomic formula t : ¢ is often
denoted simply t.

(5) Inference rules

e Introduction and elimination rules on A, V, D, ¥ and 3

¢ | elimination rule

¢ Mathematical induction rule

¢ Rules on equality and inequality of terms

s Term construction rules

e % is the abbreviation of the names of equality rules, term construction rules, and axioms.

(6) Built-in functions

e succ, pred - - - successor and predecessor functions
e proj(n) --- function that projects the nth element of a sequence of terms
e proj{I) --- I is a finite set of natural numbers. If 5 is a sequence of terms of length n and

m < n, then

proj({ie. - im}) S (projli )(8), -, proj(im)(S))
— 4 —



s tseq(n) --- function that returns the subsequence of a given sequence: if 5 is a sequence of
length n, then

tseq(i) = (proj(:)(S), proj(i + 1)(5),-- -, prej(n — 1)(5))
e ttseq(n,m) --- function that returns the subsequence of a given sequence: if S is a sequence
of length n, then

ttseq(i, 1) = (proj(i)(S),proj(i + 1)(S), -+, proj(i + (I = 1))(5))

9 9 Proof Theoretic Terminology and Notation

o 11 always stands for proof trees, and I for the sequence of proof trees.
e Assumptions discharged in the deduction are enclosed by square brackets: [ and |. Note that
this is different from Prawitz’s notation, in which both (, ) and [, | are used.

Definition: it Principal sign & C-formula

(1) Let A be a formula that is not atomic. Then, 4 has exactly one of the forms A A B, AV B,
A D B, ¥z.A, and 3r.4; the symbol A, V, D, V, or 3, respectively, is called the principal sign of
i&-

(2) A formula with the principal sign, C, is called the ' foermula.

Definition: Application & node
In a proof tree as follows

the formula occurrences, A and B ,are called nodes, and the %[R} part is called application of

rule B, or R application.

Definition: Subliree
If A is o formula occurrence in proof tree I, the subtree of Il determined by A is the proof tree
obtained from TI by removing all formula occurrences except A and the ones above A.

When a proof tree

n]m|n-1 £

is given, the subtree determined by B should be denoted ([A]/Z/B). However, it is often referred
to as theproof(tree) X in the following deseription.

Definition: Side-connected

Let A be a formula occurrence in II, let (I, II,, -, Ila—y/4)} be the subtree of II determined
by A, and let Ag, 45, -, 4n—1 be the end formulae of Ilg, Ty, - -+, Iln=y respectively. Then, A,
is said to be side-connected with 4; (0 £ 14,7 < n).

Definition: Top & end-formula
(1) A top-formule i o formula tree, I1, is a formula eceurrence that does not stand immediately

5 —



below any formula occurrence in Il.
(2) An end-formula of Il is a formula occurrence in II that does not stand immediately above
any formula occurrence in I1.

Definition: Minor & major-premase
In the following rules, T, Cyp, € and C are said to be minor premise. A premise that is not
minor is a major premise.

[A(=)]
C CHOB 3z. A(z) C
____B___(}E} o (3-E)
(4] [B]
AVEB Co Gy (ygy  Cy, Cy,Ca are of the same form.

Ca
Cy is called left minor premise, and C) is called right minor premase.

Definition: Cut
e An application of (2-I) succeeded by an application of (2-E) is called cut.

(B]
Zo _Zi =T
B _B 2 A ){:u-E]

2.3 Realizing Variables Sequence and Length of Formulae

The realizing variebles sequence (or simply realizing variables) for a formula, A, which is denoted
as Ru( A), is a sequence of variables to which realizer codes for the formula are assigned. Realizing
variables sequences are used as realizer code for assumption in the reasoning of natural deduction.

Definition: Rv(A)

1. Ru(A) ¥ (nil), if A is atomic.

2. Ru(A A B) ¥ (Ru(A), Rv(B)).

3. Rv(AV B) 4 (z, Ru(A), Ru(B)) where z is a new variable.
4. Ru(A > B) € Ru(B).

Ruy(¥z : Type. Aix)) % Ru(A(z)).

6. Ru(3z : Type. Alz]) def (z, Ru(A(z)})) where z is a new variable.

(o]

Example:

Ru(Vzr :nat. ((z 20) D (z =0V 3y : nat. suce(y) = z))) = (20,21)

where z; denotes the information that shows which subformula of V formula helds and z; denotes
the realizing variables of 3y : nat. succ(y) = r. Note that Ruv(suee(y) = z) = (nil).

Definition: Length af formulae
i(4), which is called the length of formula A, is the length of RviA).

6 -



2 4 Proof Compilation ( Ext Procedure}

The realizability used in this paper is g-realizability as scen in [Sato 85] and Chapter VII of
[Beeson 85). The realizability is reformulated here as the Ezt procedure {Takayama 88] that
takes proof trees as input and returns functional style programs as output. The realizer code
extracted by Ezt is in the form of a sequence of terms.

In the following description, a substitution is denoted {Xo/To, - , Xn-1/Tn-1} which means
substituting T} for X;, and X; may be both a variable and a sequence of variables. When X is
a sequence of variables, T; must also be a sequence of terms. Application of a substitution, 6,
to a term, T, is denoted TH.

(1) For the realizer codes of assumptions, the realizing variable sequences are used:

Ext([A]) € Ru(A)

(2) No significant code is extracted from an atomic formula:

Exzt (%[Rufa}) il

where A is an atomic formula.

(3) The realizer codes for A and V formulae are denoted as sequences. Atoms left and right are
used to denote the information indicating which of the formulae connected by V actually holds.

|": _E'_ﬂ L En-—l
Ay An def Ly (En-—l
. Ext (A1) | € =0\ ... Ext
o Auh"'ﬁﬂn—ll 2 [Eﬂ(a‘ln)' T An—1 )
/ z
Au Mo By .4."_1 def f=1 E
-4 gy | .

o Ex _ (n-E) | = ttseq (D0 I(Ax), 1(A2)) (Emt (Aﬂ — An.,i))

= ) S
s Ext I—&E(v-r} def {left, Ext (E) canyll(B}])

nl

s Ext

iv B (v-T} def .[_ri_ghf,ﬂﬂyEl{A}], Fxt (%)}

(4) The realizer code extracted from the proofs by using the V-E ruleis the i f-then-else program.
If the decision procedure of AV B is simple, i.e., directly executable on computers, Ext generates
the modified V code [Takayama 88}.

4] [B]
= Ly Iy
Ext | 4V B CC C_(v-E)



15 as follows:

(4] [B]
a)if A then Ezt %L else Ext —%l [modified V code]

-+ when both 4 and B are equations or inequations of terms

(4] [B]
b) if left = proj(0)(Ext [ —2= )) then Ext | 2L | 8 else Bzt [ =2 | 0
pred AV B C c

.- otherwise

where

Ru(A)/ttseq(1,l( Ru(A))) (En ( Aﬁ” E)) :

Edéf
Ru(B)/tseq(I(Ru(4)) + 1) (Ef( v ))

(5) A expressions are extracted from the proofs in (O-I) and (V-I):

[ [z:Type]
—L [z : Type]
o Ext "a*.-r:TJ:rEE FOLNEL 4l \z. Ext yie
\
[ [g] "
e Ext I%(j 1) | ' ARu(A). Ext %

\

(6) The code that is in the form of a function application is extracted from the proofs in (D-E)
and (V-E):

Lo 5y
A ADB - py | g 2 o

o Bzt 3 {D-E) _EIf(AjB) (Emt(ﬂ))
Zo 2
t:e Yr:e Az) def Ly

o Ext 0] (V.E} | = Ext (me . }> (t)

{7) The codes extracted from proofs in (3-7) and {3-E) are as {ollows:

5
tio AI:T.]I def i)
» Lot 3r:e. _ﬂ-!.{:‘llr ﬂ) (t Ext ( (t) )

_a_..



[z : o, A(z)]

T [z : 0, A(2)]
o Bt | 2222 A{I}G ¢ —(3-E) “;fgn(z'c:j_l : )E
C

where 8 2! {Rﬂﬂfz}}ﬁseq{l} (Ezt (T?m)) 2/proj(0) (Ezt (ﬁﬁ)) }

(8) Any code is extracted from a proof in the (L-E) rule:

T
o Ext {;(.L-E} ' anyll(A4)]-

(9) The multi-valued recursive call function is extracted by mathematical induction.

[z : nat, A(z)}

o b3
» Ext A[DLI : ﬂ'ﬂﬂ:ﬁ]ﬂ} {nat-ind)
(z : nat, A(z)]
e 1% Mz if =0 then Ext (%) else Ext 'T[.sl.%:(T]}_ o
where T = Rv(A(z)), and ¢ = (z/7(pred(z)), z/pred(z}}.
Note that 7 denotes a sequence of variables, so that pz. --- s a multi-valued recursive call
function. The multi-valued recursive call function of degree n, p (20,7, Zn=1). F(zo, "1 2n-1)

where it > 1 and F(zp,+++, Zn—1) is a term with free variables, zo, -, 2n-1, is defined as follows:

1) Assume that F(zg, -+, 2a-1) is equivalent to the following sequence of functions:
ILFn(Zm Rty 'zll-—']. :I1 e !Fﬂﬂ-'l |:zl.'h e llz'll-"'l)}

21 Let 5 def uzi. Fi(zo, -+ 2n—), where0 €1 Sn -1
3} Define H;, where 0 <1 < n — 1, inductively as follows:
del

{a) Hy = Ga
(b)For1<i<n—1,let Hi = Gi{z/Ho. -+ 2n-1/Fn-1}.
(¢) Redefine Hy, where 0 < k < 1, as follows: H; f Hi{z/Gi}
4) plzo, 21,520 Flzg, - yan=1) o (Holzo, - 1 Zn=1)y y Haal20, 0  Enu—i))-
Example:
Let F{zg,21.22) L plzo. 21,22}, Ay glz0,23,22), Az. r{z0,21,22)). By the definition and
(p-=) rule:
pz. F(z}
pz. Flz) = Fluz. o
— 9




wlzg, 21, 22).F(20,21,22) = (Hol(zo, 21, 22), H1 (20, 21, 22), H2(20, 21, 22))
where

Hy et pzo.Az.plzo, pz1-My.qlze, 21, p22.A2.07(20, 21, 22)), pza.Az.r{zg, pz1.Ay.9( 20, 21, 22), 22))
ef
H, = pzy Al pze. AT.p( 20, 21, p22. Az.r(20, 21, 22)), 21, ;:zg.};z.r(pzn.}.:.p{zg,zhzﬂ.zhzz}]

Hy &y dzr(pzo. Az plzo, p2a-A-a(z0, 21, 22), 22), B2 M.g(pz0. 02 p(z0, 21, 22), 21, 22), 22)

The execution of multi-valued recursive functions is quite expensive, so that making the degree
smaller is an effective way of generating an efficient realizer code.

Theorem 1 (Soundness of the Ext procedure):
Let A be a sentence. If Fqpe A and P is its proof tree, then Fqpc Ezt({P)gq A
where a q A means that a term, a, realizes the formula A.

Proof: By straightforward conversion from the proof of the theorem on the soundness of realiz-
ability interpretation of QJ. See [Sato 85]. §

3. Declaration and Marking of Proof Trees

The proof trees are a clear description of logical meaning of programs, so that the analysis to
detect the redundancy of realizer codes is much easier to perform if it is performed at the proof
tree level.

The realizer of a formula, A, is a sequence of codes of length [[A) as defined in the last section.
However, not all the elements of the sequence are always necessary. In addition, it is generally
difficult to determine automatically which part of the realizer code is really necessary, so that it
is necessary for end users to specify which elements of the realizer codes of each node are needed,
but at the same time it is preferable to limit the information that end users should specify.

On the other hand, the proof compiler performs realizability interpretation. It analyses a given
proof tree from bottom to top, extracting the code step by step for the inference rule of each ap-
plication in the proof tree, so that if the information is given in the end-formula, the information
can be inherited from bottom to top of the proof tree being reformed according to the inference
rule of each application. The proof compiler uses the information to refrain from generating
code that is not necessarv. Consequently, end users may not specify the nodes in the proof tree
about the redundancy; it suffices to specify them only in the conclusion of the proof.

3.1 Declaration to Specifications

Definition: Declaration

{1) A declaration of a specification, A, is the finite set, I, of offsets of Ru(A). Tt is a subset of
the set of natural numbers totally ordered by <.

A specification, A, with the declaration, I, is denoted {A}}.

Elements of the declaration are called marking numbers.

(2) The empty set, &, is called nil declaration.

(3) The declaration, {0,1,---,I{A) — 1}, is called trivial

Declaration indicates which values of the existentially quantified variables of a given theorem are
neeced. It is the only information that end users of the system need to specify: the other part
-1 U —



is performed automatically. Suppose, for simplicity, that the given theorem is of the following
canonical form:

Vg - '1?’Im—1~3yn- T 33‘n—1-1‘1[1n1 T me=1s M, .yn-U,

and the values of yg,---,y1, 0 € & €< n — 1, are needed. It 1z declared with the set of the
positions:

{ﬂ:"':k}

Example:

A% oz (z €32 Vy.3z.3w. = y = z + w) a specification of division of natural numbers more

than 3. Rv(A4) = {z¢,2;}, where zo corresponds to z and z; to w. If the function that calculates
the remainder of division of = by y is needed, the declaration of 4 is {1}.

The following restriction assures a sort of soundness, proved later.

Hestriction: The marking numbers of a declarations cannot specify realizing variables of more
than two subformulae of the specification which are separated by A. For example, if the speci-
fication is of the form A A B and {(4) = 2 and !(B) = 3, marking such as {0,3} is thought to
be illegal because 0 specifies a variable in Hu{A) and 3 specifies a variable in Ru(B).

3.2 Marking

Definition: Marking

(1) Marking of a node, A, in proof tree II is the finite set, I, of offsets of Ru{A). It is a subset
of the set of natural numbers totally ordered by <.

A node, A, with the marking, I, is denoted {A4};.

Elements of the marking are called marking numbers.

(2) The empty set, ¢, is called nil marking.

(3) The marking, {0,1,---,1{ A} — 1}, 15 called trimal

Note that declaration is a special case of marking; the marking of the end-formula of the proof
tree is called declaration.

Marking means ta attach to each node of given proof trees the informalion that indicates
which codes among the realizer sequence of a given formula are needed. The marking cen be
determined according to the inference rule of each node and the declaration. Let, for example,
Yz, dy. Jz. A(z,y. z) is the specification of a program and a function from z to y, and = is the
expected code from the proof of this specification. Let the proof be as follows:

[=]

.'I._:
Alx,s,1)
d:z. Alr, e, z)
Jy. 3z. Alz,y,2)
Yz, Jy. 3z Az, v, 2)

-{*}
: (3-1)

;{*}

(3-I)
e (-1)

The code extracted by g-rezlizability is

Ax. (s, t, Ext(Alr, s,1))
11 —



or equivalently
(AT.a, Azt Az Ezi(Alz,st))).

Ext(A(z.s.t)) denotes the code extracted from the subtree determined by A(zx,s,t). However,
onlv the Oth and 1st eodes are needed here, so that the declaration is {0,1}. The marking
of Jy.3z. A{r,v,2), {0,1], is determined according to the inference rule (3-I) and the decla-
ration. For the node, 3:. A(zr,s,z). the Oth code of the realizer sequence is the lst code of
3y.3z.Alr, v, z), so that the marking is {1}. For A(z,s,t), no realizer code is necessary here
so that the marking is ¢. ¢ and s should also be marked by {0}, which indicates that s and ¢
themselves are necessary. Consequently, the following tree is obtained:

[]

T
‘o {thoy {AmS'ﬂ}d[H-I]
fel, " 12z, Alx, 5.2}
15)15} { }f'l.] (S—I:]

{3y. 3=. A{I;H:z}}{u._l_}__
{¥z. Jy. 3=. .f-i{.:,y,z}}{n_”

Definition: Marked proof iree
The marked proof tree is & tree obtained from a proof tree and the declaration by the marking
procedure.

The marking procedure continues from the bottom of proof trees to the tops. The proof compi-
lation procedure, Er?, should be modified to take marked proof trees as inputs and extract part
of the realizer code according ta the marking. It will be defined later. The formal definition
of the marking procedure, called Afark, will also be given later, but before that, part of the
defirition will be given rather informally to make the idea clearer.

3.2.1 Marking of the {3-]) rule

By definition, the Oth code of

: z

(%) ——
. t Alt) ]
£t 31..—1{1'} (3-1)

is the term which is the value of = bound by 3. Let I be the marking of the conclusion, then {
should be marked {0} if 0 € I, otherwise the marking is ¢. The marking of A(t) is given as the
marking numbers in [ except (. However, note that the ith code (0 < i} of 3z.4(x) corresponds
to the ¢ — 1th code of A{t). Consequently, the marking of 4(t) is (I — {0}) — 1 where, for any

- 1) bl - 4 d": r - -
Anite set of natural numbers, K — 1= (o = lla € K},
3.2.2 Marking of the {E"J- Y Rule

By the definition of the Ex? procedurs. the realizer code of ¢’ concluded by the following inference
is obtained by instantiating the code from the subtree determined by the minor premise by the
code from the subiree determinad by the major premise:

Iy Afx

Fa

[RA]
id




where A{z) actually contains z as free vanables.

Hence both the marking of C as the conclusion of the above tree and the marking of C as the
minor premise are the same. The marking of the subtree determined by the minor premise can
be performed inductively, and let J and K be the union of the marking of all occurrences of the
two hypotheses, r and A(z). Note that J is either {0} or ¢.

[{z}s, {A(z)} K]

Eﬂ E]
dz. A(zx) m ]
°h (3-E)

The marking of the subtree determined by the major premise is as follows:

Case 1: J = {0}

This means that the following reasoning is contained in the subtree determined by the minor
premise:

lz] Pz)
3y. Py)

and the marking of [z] is {0} so that = {variable} should be extracted from the proof tree
determined by the minor premise, . Consequently, the (th element of the sequence of realizer

(3-1)

codes of 3z. A(z), which is the value of z in Az}, is necessary to instantiate the code from IIy,

so that the marking is:
Lo

{3z. A{EJ}{njufHﬂ‘J

Case 2: J=¢
This means that the value of z 15 not necessary to instantiate the code from the subtree deter-
mined by the minor premise, so that the marking is:

Ty
{3z Alz)} i

3.2.3 Marking of the {V-E) Rule

The realizer code of C concluded by the following inference

4 B
AvB C{v-E}

C

isanif Ty then Ty else Ty type code where Ty and T3 are sequences of the same length (because
both codes should be of the same type), so that C as the conclusion and two Cs as minor premises
should have the same marking. Ty and T are obtained by instantiating Ruv(A) and Rv(B) in the
code extracted from the subtrees determined by the minor premise. The cade extracted from
the subtree determined Ly the major premise is used both to make Ty and for the instantiation
of Rv(A) and Ru{B). Let I be the marking of the conclusion, then the marking of the subtrees
determined by the minor premises can be determined inductively. Let J; and J; be the unions
of markings of all 4s and Bs as hypotheses:

{[Al}s  {[B1}a

=i Y

=]
AVE  {C}l {C}: (
{C}s
—_13 —

- 2

V-E)



The marking of the subtree determined by the major premise is as follows:
Case 1: [ =¢
This means that it 1s not necessary to extract any code from this proof tree, so that, of course,
no code from the subtree is necessary:
Zy

{AV B}s
Case 2: [ # ¢
Code Tp is the decision procedure that decides which formula in A and B actually holds. This
is obtained in the 0th code of the sequence of realizer codes of the subtree determined by AV B.
Also, the codes to be assigned to {[4]}j, and {[B]}, are obtained in the remainder part of the
code from the subtree, so that the marking is:

o
{AV Bl gyunus

J and J; are obtained by translating Jo and J; in the realizer sequence of AV B,

3.2.4 Marking of the (D-E) Rule

The realizer code of A 2 B is of the following form:

ME. (g, k) = (ATto, -, AF.15)
and (to, --,tx) is the code of B which contains the variable sequence Z(= Ruv(A)) as free
variables, so that the length of the code from A O B is the same as that of B. Let I be the
marking of the conclusion. Then, the marking of 4 3 B should be also I

% 5
A {ADB}
B (2-E)

The marking of the subtrec determined by A is as follows.

Case 1: The application of (2-E) 15 a Cut:

The realizer code of A as the minor premise is restricted by the marking of A as a hypothesis
of the subtree determined by 4 2 B. Let I be the marking of B, and let J be the union of the
marking of As as a hypothesis:

{{A]}s
Z
B .
I 2py ()
: (>-E)
{Bh
Hence the marking of the subtree is:
“
)
{4hs

Case 2: Cut-free prool

The marking of A O B resiricts only the length of output sequence A7, ({q, - -,1x), and, for
the input, all the values of the variable sequence T are necessary. Specifically, it may happen
that some variables in T are not used in some particular cutput subsequence, AT.(¢; -, t;, ),
{tis, 8} © {to, -,k }. These redundant variable cannot be detected by the proof theoretic
method. However, this cannot always be seen as redundancy; A{x.y).z and Ax.x is to be seen as
a different function. Consequently. the marking of the subtree determined by the minor premise
is trivial.

14 -



3.2.5 Definition of the Mark Procedure

» Notational preliminary
Mark is defined in the following style:

T‘n N El) Y
o, . Murk(——-)---Mark( )
Mark —-—-—B“{J‘;}IB" (Rule) ! {Bo} s AT {Bn} 1. (Rule)

The following are the finite natural number set operations used in Mark:

I+ndé'{x+n]::+n£mar{f},rEI}
[-n®{z-n|z-n>0,z€l}
H<n)E {zel|z<n)

Izn)® {zel|z2n)

» Definition of Mark

T
ark | =——
s ths Mar ({A{t]}I_n) (31) HO0gI;
Vark | AR @ | {3z. A(z)}; r
3z A=)} Mark (_E—)
{tho) A/ 21y otherwise.
{3z. Al2)};
Lo “ E‘?]UH Mark Yo Mark “ SLI“J]
ar . Alx) C ) def {3z. Alz)}x {Ch -E
Merk T ©; o
where
HA{M+] #L=¢
T {0 UM +1) ifL={0}

and L and M are the maximal markings of hypotheses t and A(t) obtained in

fr, At
Mark | © 31{ )
{Ch
22 0] e
£ T E
- Mark | =~
T A P TENY
Mark Al) vy | (¥-T)
(vz:o A(x)}, {vz: 0. Alz)}; R

_15 -



c Mark (--—E———-)

arke | 1V AlT) det 1 {vz. A=)}, / .\,
Merk | =Gy, 8 A, (v-E)
Zo ‘E_l‘_ Mark ({A}i.) Mark ({B} Ly )
A B def H<I(A)) 1(21(A)) ~1{A)
Mark (m{ﬂ-f}) = (4 .r’\B}J (n-T)

Note that, according to the restriction on the declaration, at least one of I(< [{A)) and I(>
1(A)) = H(A) is ¢.

> ar _E
Mark (M{A-E}) def Mark ({A"B}’)(A-Ej

{4}, {4}

b3 Mark (—E__)
AAD {h-E}) def {47 Brsna (A-E)

{Bl;

T Mark ( o z )
A MNE (I-1(<ican )

{AV B},

T\ Mark (_z____)
Mark( B {mf}) e \Blr-umen (v-I)

Mark o Mark T Mark T,
{4V B} {Cy; {C}; o e ros
o | T, (V-Ey f T4
Mark o ark 5, Maurk T,
{..."1. W E}¢- {C},ﬁ '{‘G‘}ﬂ N
T {(v-E)

where I = {0} U{Jo +1}U(Jy +1(A}). aud Jy and J; are the maximal markings of [4] and [B].
— 16 -



{B}; {B};
[A(z)]
Zo o
A0) A+,
Mark Ve A(D)], (nat-ind)
Mark o Mark [Aiz}]
{A(0}}, ... B
G0
{Vz. A(z)}; .
Lo I ar Ly ar z
Mark M{:-E) d:"M k(f"'":y) M k({d{x]}j){z'E}
{A(y)}; {A(y)}y
o >
= Mark (—)
ark L (. def {L}e -
M ({A};‘* E}) @,
Ty i wrk (=20 N nparr (2
o [ B B | o o @g) M (mm)
{A}ﬁ- '{‘4}¢

Termination pattern of Mark:

s Assumption

Mark({[4]},) % {141},

» Trivial marking

Mark (ﬂ%(*;) df _B%Bﬁ(*j

4. Critical Applications



4.1 Induction Hypothesis and Marking

The programs extracted from induction proofs are recursive call programs. For simplicity, it is
assumed in the following description that induction steps are proved without any application of
another induction. If the recursive call program, f, extracted from the induction proof

[A(=)]
Lo b
A{BLLJ‘:E:}_{_ 1 (nat-ind)

is a program that calculates a sequence of terms of length n(= l(Vz.A4(z))), every recursive call
of f must calculate the sequence of realizer codes of the same paositions, so that the marking of
not only A(0), A{z+1) {conclusion of the induction step) and Vz.A(z) but also A(z) (induction
hypothesis) should be the same. This raises a question: are the markings of A(z+1) (conclusion
of induction step) and A(z) (hypothesis of induction) by the Mark procedure always the same?
In fact, if the (v-E), (3-E), (2-E) and (A-I&E) rules are used in the proof of induction step,
the answer is not always affirmative.

The rest of this section is dedicated to an analysis of these critical applications of the rules.

4.2 Critical Segments
4.2.1 Problematic (V-E) and {3-E) Application

Let A(z) %' 3z : nat. B(z) v C(z) where B(z) and C(z) are some formulae with = as free
variables. Suppose that ¥z : nat. A(z) is proved by mathematical induction, and the induction

step proceeds as follows. Jz. B{z] v C(z) is the induction hypothesis.

(=] [=]

(B(z)]  [C(z]]

o T,
[B(z)vC(z)] Alz+1) Alz+1)
[3z. B(z) v C(z)] Alz +1) (V-E) (3-F)

Alz +1)
If the declaration of ¥z. A(x) is {0}, the marked proof tree is as follows:

{[z]}p{[B(=)l}r  {z}ellC(z)]}s

Zao i
({Biz)v C(z))}, 1Ale+1}yy {4+
. - (V-E}
{[3z. B(z) v C(z)]}, {Alz + 1)}y

ETEESy) - i

where Do and I;; are the suitably marked versions of Ep and I;. I and J are the union of
the markings of B(z) and C(z), and P and @ are the union of the markings of z as hypotheses.
Note that P and @ are either {0} or ¢.
Then I and [ are as follows.
Case 1: PUQ = {0}

K={0lu I+ u(J+ Bz



L={0}u(K+1)={0,1}u(I+2)U(J +I(B(z))+1)

Case 2: PUQ=¢
K={0}u{I+1)u{J+1(B(z))
L=K+1={1}u{I+2)u(J+1(B(z))+1)

On the other hand, because 3z. B(z)Vv C(z) is the induction hypothesis, it should have the same
marking as ¥z. A(z), i.e., {0}. However, the marking of the induction hypothesis, L, contains a
1 that is not in the marking of Vz. A(z). This indicates the fact that it is necessary to specify
more codes in the realizer sequences than one expects when (V-E) rule (3-E) is used below the
deduction sequence down from the induction hypotheses.

The reason of this phenomenon is that the realizer code of 4 V B consists not only the code of
A and B but also the code, left or right, so that the marking of 4 vV B must contain 0 except
in a few special situations. The case for the marking of 3z.A(x) type formulae is similar.

4.2.2 Formal Definition of Critical Segments

Definition: Thread

Let § &' (A;, Az, -+, An) be a sequence of proof occurrences in a formula tree, M. Then 515 a
thread iff

(1) A, is a top-formula in II;

(2) A; stands immediately above A;4; in Il for each : < n;

(3) An is the end-formula of IL.

Definition: Segment

Let 5 duf (Ay, Aa,- -, 4,) be a sequence of consecutive formula occurrences in & thread in a
proof tree II. Then, § is a segment iff

(1) 4, is not a conclusion of the application of (V-E) or (2-E);

(2) For arbitrary ¢ (< n), A, is a minor premise of an application of (V-E} or (3-E');

(3) A, is not a minor premise of any application of (V-E) or (3-E}.

Note that all formula occurrences in a segment are of the same form. Any formula occurrence,
A, in a proof tree, II, that is not a conclusion or a minor premise of the application of (v-E)
or (3-E) is a segment by (1) and (3) of the definition. This kind of segment is called a trivial
segment in the following description.

Definition: Major premise attached to a formula
The major premise of the application of (V-E) or (3-E) that is side-connected with a formula,
A, in & segment is, if it exists, called the major premise attached fo A

Definition: Proper segment
The segment in a marked proof tree, TI, iz called proper iff every formula occurrence in the
segment has non-trivial marking.

Definition: Path

Let §$ %' (4, Az, -, An) be a sequence in a deduction IL. § is a path iff

(1) 4, is a top-formula in II that is not discharged by an application of (V-E) and (3-E};

(2} A;, for each t < n, is not the minor premise of an application of (2-E), and either (a) A,
is not the major premise of (V-E) or (3-E), and 4,4, is the formula occurrence immediately



below A;, or (b) A; is the major premise of an application of (V-E) or (3-E), and A4, is an
assumption discharged by the application in II;

(3) A, is either a minor premise of (D-E}), the end-formula of II, or 2 major premuse of an
application of {V-E) or (3-E) such that no assumptions are discharged by the application.

Definition: Main path
The main path in a proof tree, II, is the path whose last formula is the end-formula of II.

Lemma: (Existence of indispensable marking)

Let § % (4, A;,---,A,) be a proper segment in a proof tree, and let 11 be the subtree

determined by A,. Assume that there is a main path, P, from the major premise, F', attached to
An—1, and let Sg = (By, By, -+, By), where By = F, be the sequence of the formula occurrences
along P such that B, is a major premise attached to some A, in S. Let S; = (B;,, By;,---, By)
be a subsequence of Sy such that By, (1 < j < 1) is either (a) the major premise of the application
of the (V-E) rule, or (b) the major premise of the application of the (3-E) rule such that at least
one marking of the variable as the assumption of the application is not nil. Then, the marking
of F contains the marking numbers, (i;) (1 < j <), where

o E' S w(n)

n=1
det 0 ifn=1
Y(n) = { l{Ag) if Bpoy = Ap Vv A4, is a major premise of (V-E) and B, = 4,
1 otherwise

Proof: Let A; and 4,4, be elements of S which are the minor premise and the conclusion of an
application of (V-E) rule as follows. Assume that AV B is an element of 5;.

4] [B]
Eﬂ' El Eg
= A Lo (V-E) Aiﬂ'i.;' and A;4y have the same form.
i+1
I

By the definition of Mark, the marking of AV B contains 0 as a marking number.

Case 1: Assume that there is a formula occurrence of 5 in II; {including A4, ) which is a minor
premise of an application of (3-E) and that the major premise, Fp, of the application precedes
AV B in Sp. Then, by the definition of Mark for (3-E), the marking number, 0, of AV B is
incremented by 1 in the marking of Fy.

Case 2: Assume that there is a formula occurrence of § in II; (including A;;1) which is a
minor premise of an application of (V-E} such that (a) the major premise, Fy, of the application
precedes AV B in Sy, and {b) AV B stands on the left minor premise of the application. Then,
by the definition of Mark for (v-E), the marking number, 01, of A V B is incremented by 1 in
the marking of Fi.

Case 3: Assume that there is a formula occurrence of § in II; {including 4,4,) which iz a
minor premise of an application of (V-E) such that (a) the major premise, 5, of the application
precedes AV B in Sy, and (b) AV B stands on the right minor premise of the application. Then,
by the definition of Mark for (V-E}, the marking number, 0, of A v B is incremented by [[A)
in the marking of F7.

— ] —



The proof is similar where 4; and A4, are the premise and the conclusion of an application of
(3-E). The lemma follows from the above discussion. g

Note that the Mark procedure analyses the given proof tree from botiom to top along paths.
Thus, according to the above lemma, if there is a formula occurrence which is a major premise
atiached to a formula occurrence in a proper segment in a main path from the induction hy-
pothesis, such a formula occurrence may cause the problem illustrated in the previous section.
When there is a path from the induction hypothesis to the conclusion of the induction step which
is not a main path, another kind of problem is raised. This is discussed in the next section.

Definition: Critical segment

Let II be a subtree of the induction step proof in a proof tree in induction. A proper segment,
. in 11 is critical iff there is & formula occurrence, A, in ¢ such that the major premise, B, at-
tached to A is a formula occurrence in one of the main paths of II from the induction hypothesis.

4.3 Critical (2-FE) Applications

Suppose that the induction hypothesis is used as a hypothesis above a minor premise of (2-E)
and the proof is cut-free:
[A(z)]
o Z,
B
= BoC (5-E)

I
Alz+1)
Then the marking of B is trivial so that [4(z)] has triviel marking. In this case, the correspon-
dence between the markings of induction hypotheses and conclusions of induction step holds
only if the marking of A(z + 1) 15 trivial.

Definition: Critical (D-E) application

If there is a path from the induction hypothesis to a minor premise, 4, of an application of
(3-E), A is called the critical (D-E) premise, and the application is called the critical (>-E)
application.

4.4 Cntical (A-J&E) Applications

Assume that the induction hypothesis is of the form A A B and the end-formula of the proof is
A A B . 4and 4 are of the same construction and differ at most in some atomic formulae. B
and B are of the same relation. Assume that the proof is as follows:

(4 A B]
=
Mo £
A B'
A nEB

Let I be the non-nil marking of A" A B, and assume that I{> [{A')} = I. Then, the marking of

A is ¢ so that the marking of the induction hypothesis, A A B, is also ¢, i.e., different from I.
This situation is problematic in terms of the correspondence of markings of induction hypotheses
and conclusions of the induction steps explained in section ¢.1.

_21 n—



4.5 Main Theorem

Definition: {mazimum segment)
A mazimum segment is a segment that begins with a consequence of an application of an I-rule
or the (L-E) rule, and ends with a major premise of an E-rule.

Note that cut is a maximum segment.

Definition:
An application of (V-E') or (3-E) rule is said to be redundant iff it has a minor premise at which
no assumption is discharged.

Definition: Normal deduction

A proof tree, I1, is normal iff

(1) II contains no maximum segment, and

(2) II contains no redundant applications of (V-E) or (3-E).

Theorem A: [Prawitz 65]
I T F A holds in the system for intuitionistic logic, then there is a normal deduction in this
system of A from T

For the normal proof trees, the soundness of the Mark procedure holds in the following sense.

Theorem 2:

Suppase that a formula, Yz A(x), is proved by mathematical induction, and I is an arbitrary
declaration of the conclusion. Let II be a normal deduction of A(z) F A(z + 1), and assume
that there is no critical (A-I& E} application in II:

[A(z)]
£
A{UE;I. ifi]-!* 2 (nat-ind)

(1} If 1 has a critical {D-E) application in one of the main paths from the induction hypothesis,
{A(z)], its marking is nil.

(2) If 11 has no critical (D-E) application or critical segment, the marking of the induction
hvpothesis by Mark, [A(z)], is trivial.

(3) Otherwise, the marking of [A(z)] is I.

According to theorem 2, the declaration of the conclusion is as follows.
Case 1: If the proof tree of the induction step has a critical (O E) application in one of the
main paths from the induction hypothesis, the declaration must be trivial.
Case 2: If the proof tree of the induction step has no critical (3-E) application or eritical
segment, the deciaration may be arbitrary.
Case 3: If the proof tree of the induction step has no critical {3-E) application but has critical
segments, the declaration must be enlarged to eliminate critical sepments. In this case. the
marking of the induction hypothesis, S, and the initial declaration is different according to the
Lemma, so that the declaration should be the same as S and perform the marking again.

22 —



5. Proof of the Main Theorem

5.1 Form of Normal Proof Trees

Definition: Sequence of segments
Every path, 7, can be obviously divided uniquely into consecutive segments (usually consisting
of trivial segments): ¥ = og,- -, k. This sequence is called the sequence of segments in 7.

Theorem B: [Prawitz 65]

Let 11 he a normal proof tree, let m be a path in 11, and let ¢,,02, - ,0n be the sequence of
segments in 7. Then there is a segment (minimum segment), o;, which separates two (possibly
empty) parts of w, called the E-part and I-part of =, with the properties:

(1) For each o; in the E-part (i.e, j < 1) it holds that o; is a major premise of an E-rule and
that the formula oceurring in o4, is a subformula of the one occurring in o;;

(2) o;, provided that i # n, is a premise of an I-rule or of the (L-E) rule;

(3) For each ; in the I-part, except the last one, it holds that o is a premise of an I-rule and
that the formula occurring in «; is & subformula of the one occurring in oj41.

Note that theorems A and B hold for pure intuitionistic natural deduction. Our system also
has rules on (in)equalities and several other rules on terms. Those rules do not eliminate or
introduce any logical constants. The sequence of premises and conclusions of these rules is
similar to segments in this respect. Therefore, the minmum segment may not be a segmert in
the prools in our system; it may be a sequenécé of formulae deduced by these inference rules.

Hawever, for simplicity, this sequence is also called a minimum segment.

5.2 Proof of Theorem 2

Let II be a normalized proof tree from A(z) (induction hypothesis) to A{z + 1) {conclusion of
the induction step). If there is a path in II that contains a minor premise of (2-E), the marking
of A(z) should be trivial. Therefore, assume here that all the paths in IT are main paths.

Let S be an arbitrary main path in II. According to the theorem in the last section, there exists
a segment, o;, that separates the segment sequence of the path into the E-part and I-part.
A(z) and A(z + 1) are of the same form if the difference of parameters z and z + 1 is neglected.

. def . . .
Therefore, if So = €y, Cz,- -, Ci is the sequence of logical constant occurrences that are elim-

inated in the E-part and 5 el o' .05, --,C' | is the sequence of logical constant occurrences
that are introduced in the [-part, and Sp and §) are equal as multisets. Furthermore, the order
of elimination of logical constants in the E-part and the reverse order of introducing of logical
constants in the I-part is equal because the construction of A(z) and A(z + 1) is the same, 0
that 5y = Ci,Crey.---,C1. The theorem follows by mathematical induction on the length of
So (and equally S, k.

The base case is clear because, by the definition of Mark, the marking of minor premises of
applications of (3-E) and (V-E) are equal to the conclusions. For the induction step, as there
are no critical segments, it suffices to check the logical constants, ¥, 3 and A.

Case 1 (¥):



0y
t Wz.A(z)]
Alt) (V-E)

II

A'(s)
\ a0

Mark

/

11 contains the minimum segment, and let II' be the marked version of II. A(t) and A'(s) are of
the same construction and differ at most in some atomic formulae. By the induction hypothesis,

the markings of A(t) and A'(s) are equal. Then,

_{.!} —| =
Mark (* [H"Am]{v-ﬂ]) i) (vzAE) v-E)

YO vy
= I.l[l' - H
{A'(s)] {A'(8)}r
i“i"yu‘i'{y;}:ﬁ'” {Vy. A" (N} (v-)

Consequently, the markings of Vz.A(z) and ¥y.A (y) are equal.

Case 2 (D):

Lo
(I [4 > B]
E ’
(Hlai:'q ]}

Mar B -
fﬂ- k' {Ar :}E"}_r r:‘ I:I'

\ /

I1, contains the minimum segment, and A, B and A, B differ at most in some atomic subfor-
mulae. The markings of B and B' are equal by the induction hypothesis. Then,

v

. H_ﬂf [4 D B] Zo
Mark | —————=(D-E) -
o o)
(I, {{4']}0) (10, {{4']}0)
— {B'}1 : _ {B'}s
B (A DB} (>-D = (A28} =0

Consequently, the markingsof A D Band 4 D B " are equal.
Case 3 (n):

¢ (A-Elp rule



[4 A B](h_E}

AnE
(B2Blnr) ) aank
1 £ H'“ Mark ( =l )
; i {A }i<uay {B'}1iz1an-104)
Mﬂr;: g {Ath-’}I - {A"""'B'}I
/

\

By the induction hypothesis, the markings of A and A are equal. Then,

Iﬂ A B) .
Mark ({ }J'w;e[,am{ﬂ Ej)

I, L,
{A Ji<nay {B' brizuan-ua
a (AADL
{EA A E]}I{ﬂ{m}(n E"I
{A}reercan '
10, L
{A Yri<ican {B }J{;i{nn—u,.q].
[A"nB'}s

because there is no critical {A-T& E) application, I(< I(4)) =

L] (h-E)l TUJ.E
[ EAAB, E))
T 1
j‘.l_' 1
Mark | ———Z&
far (A B
\ /
- Merk (A EB] (A-E)
. Zo
Mark ( — ) Iy
{4 Frzigan =i .
~ {B'Hriaua)-na)
{.ﬂr N Br}f

{[AA Bl}rzican

By the induction hypothesis, the markings of A and A4 are equal. Then

(AN B [A-E})

[B}i(zi0A)-1{A)

(A-E)

Mark | -
A B iz an-ia) .
—~0 I, Za
{4 iy {B }izian—=1a) _ {4 b rcnan {Br};{gamn-mm
{4"n B} N [A"ANEB'}i




because there is no critical (A-I&E) application, I(> I(4)) =

6. Modified Proof Compilation Algorithm

The proof compilation should be modified to handle marked proof trees. Th?: chief modification
151 .
1) If the given formula, 4, is marked by {#,---,%x}, extract the code for the ;th (0 £ [ < k)
realizing variable in Ru(A).

2) If the formula, A, is marked by ¢, no code should be extracted and there is no need to analyse

the subtree determined by A.
3) If the formula, A, is trivially marked, all the codes for Rv(A) should be extracted.

The following is the definition of the modified version of the Ext procedure, N Ext.

(1) Assumptions:
NEzi({[Al}r) = proj(I)(Rv(4))

{2} Atomic formulae:

NEzt ({Aﬂ}Ju{E};[A*}JI { Rule }) ..E. nil

where B is an atomic formula

(3) A and V formulae:
EEI E'|'1.—1

(Ao}, {Anci)L_,

def Zo \ . NEst{—Znmi
+ NEst| Sl ) | vt () s ()
Note that if I, = ¢, NEz t<{f}r)=[nifj 1=0---1.
z
. {Ag A= ANAna}s def o, 2
o NEzt Ry (A-E) | & F”Eﬂ({.dm---min-:}hr)
wherei=0---n—1.
> (left, NE ( ) (K]) i0el
—_— eft xt L any ule
e NEzxt -j-{%l;—{mf] e {4}
{ b {j\, Ext ({A} ) cenyll]) ifogr
E ' g ht ik “JEt( = ) el
« NExzt {iBBJ} (v-Iy | %4 right, ey, N B2 {B}s ) H0€
W I ’ Z :
{anyll], I‘I.E.J:f({B} )} f0g!

where k=|I | {1+ |J)andI=|Ti1-|J|.
- 26



(4) The code from (V-E} rule:

{lalys,  {{Bl}n

Zo ) pap
| EvERm 10 k..
NEzt CT: (V-E)
i follows:
s {[A)} s (B}
a) if Athen NExt -—:[[:E:]'T else NExt —E-Ezﬁ-;u [modified v code]

when both 4 and B are equations or inequations of terms
Note that, in this case, J; = J; = ¢.

{[Al} 4, {{B]},
' ] Lo L else T 22
b} if left = praj(0) (NE;:! (m)> then N Ext ©n # else NExt °h
otherwise

Jp must contain 0.

pros( ) Ro( A eseatt, 1l (Bt (7o ),

, 5
proj(J2)(Ru(B))/tseq(1Jo] + 1) (J“* Ext ({ﬁ v fg}_,w))

where § =

(3} The codes from the {OJ-1) and (¥-I) rules:

[z : Type]
ﬁ [z : Type]
H i def v - _E__
¢ NEat | i n sy (D) | Sk NEst | B
{{4]}s
{BE} {[4)}o
r I del L . E
o NExt m(]-[] = }LP’FGJI:J}{R‘U{A:I) NEzxt BL:

(6) The code that is in the form of an function application is extracted from the proofs in (2-E}
and (V-E): Note that proofs must be cur-free.

5 T

. A {ADB) def ) B Lo
o VExt (B} (5-E)| = NEzt (__{..4.:! B}I) (,.!"I.-E. t( ‘i))




z
—) T A
e NEzxt ( t:o {J{;rf)}f - A{ }}I {‘#’-E}) d='r NEzt ({"q": : J:EAI:-TJ}I) (tj

{7) The codes from the {3-I} and (3-E} rules:

T z .
et | ol TR 5 | e (ror i
L - L =
{3z : 0. Alz)}r NEazt ( E )
{A(t)}x

[z : ol {A(z)} L]

(*) =z
{3z :0. A(z)} {C}r
C

s VEzxt

(3-E)

o (uz =a}x,E{A(:}}L1) E
{Ch

o {pm;(L)chmtx}ufmq{lzr(Nﬂﬂ( s A[z;}.,f*f'))=]
where = .
wtrei®® (V8 (s )

(8) The code extracted from a proof in {L-E) rule:

o« NEzt -ivz—u—u X anylk] where k = |I|
7 (L-E)

{Ah

(9) The realizer code extracted from the proof by mathematical induction:

[z : nat, {A(z)}/]
pf Iy
{A(0)}s  {A(succ(z))}r .
s NExt (V= Tmat. A()}7 (nat-ind)

[z : nat, {A(z)}/]
Lo T,

{A(0)} {A(suce(z)) s
where T = proj([)(Rv(A(z))),and o = {Z/Z(pred(z)), = /pred(z)}

(1) Trivial marking:
N Ext (A” — "”{Ru:s}) L Bat (‘4*’ E A Ry Ic})

def pZ. A x.1f x =0 then NE;-:*!( ) else NExt o

B
— 9§ —



The following theorem shows that Mark and N Ezt can be seen as an extension of the projection
function on the extracted codes.

Theorem 3: Soundness of the NExt procedure
Let A be a sentence and D be the declaration. If Fqec A and II is its proof tree, then

proj(D)( Ext(Il)) = NEzt(Mark(I))

Proof: Straightforward g

7. Example

Here, the example of a prime number checker program is investigated. The redundancy-free
code is extracted by the method given in the previous sections.

7.1 Extraction of a Prime Number Checker Program by Ext

The specification of the program which takes any natural number as input and returns the
boolean value, T, when the given number is prime, otherwise returns F" is as follows:
Specification

Wp:nat. (p=>22 3b:bool. ( (¥d:nat, (l<d<po-(d|p)ab=T)
V(3d:inat. (1<d<phA(d|p))ab=F}))

This specification can be proved by using the following lemma:
Lemina: ¥p: nat. ¥z :nat. (z 2 2 D A(p,z))
where

Alp,2) & 3b: nat. (Po(p,2,b) V Pi(p, 7,b))
Fy(p,z,b} yvdinat. (1<cd<zo-(dip)nb=T

def

Pip,z,b) = 3d:inat. (1<d<zn{d|phnb=F

Proof of specification

™
= b1
[p:nat] Yp:nat.¥Vz:inat. (z 2 22 A(P,z}}[LemmaJ
[p : nat] ¥z :nat. (z > 22 Alp, 7))

p222 AEP:P)
pinat(p2 2 > A(p.7))

The proof of the lemma, T, is given in the Appendix, and the program extracted by Ext is as
follows:

prime <« Ap. Ext(Z)(p)(p)



Ezt(Z) < Ap. u(zo0, 21,22, 23).
Az if z=0
then any(4]
else ifz=1
then any[4]
else ifz2=2
then (T, left, any(2])
else if proi(1)(zo 21,22, 53)(z — 1) = left (»)
then if proj(0)(Ezt(prop)(p)(z — 1)) = left
then (T, left,any[2])

else (F,right,z — 1, proj(1)(Ext(prop)(p)(z — 1)))
else (Fyright,zo(z — 1), z3{z — 1))

Ezt{prop)
E Am. An. (if proj(1)Ezt(Th.) = 0 then (right,proj(0)Ezt(Th.)) else left, any[1])

Ert(lemina) is a multi-valued recursive call function which calculates four sequences of terms.
The boolean value which denotes whether the given number is prime is the first element of the
sequence, so that the other part of the sequence seems to be redundant. However, the decision
procedure (*) uses the second term of the sequence. This means that the second term of the
sequence is also necessary. The other part, the third and fourth elements, is redundant.

7.2 Declaration
The realizing variables sequence of the specification is as follows:
(20, 21,22,23)

where
zo = variable for 3 symbol on b : bool

z; = variable for v symbol which connects Py and Py
2 % variable for 3 symbol on d : nat
z3 = variable for 3 symbol in (d | p)
Note that (d|p) = 3r: nat. p=r-d, so that I((d | p)) = 1.
As the only iformation needed is whether the given natural number is prime or not, z; should

be specified, i.e., the declaration is {0}.

7.3 Proof Tree Analvsis

7.3.1 Main Paths from Induction Hypothesis

The main part of the lemma is proved by mathematical induction, and Figure 1 is the skeleton
of the proof tree of the induction step. This is a part of the proof tree involved in the paths
from the induction hypothesis to the conclusion of the induction step. Gy and G, are the
formulae whose logical constants are not eliminated in the deduction. Formulae 4 to F are of



the following form:

A(z) == 2 B(z)

B(z) = 3b.C(z,b)

C(z) = Do(z,b) V Dy(z,b)
C(z,Term) = Dg(z,Term) V Dy(z,Term)
Do(z) = Eo() A»

Dy(z) = Eg(z) A=

Ey(z) = Vd.Fo(z)

Ey(z) = 3d.Fi(z)

Fo(z) = * D Go(z)

Fi(s) = Ga(2) A Ga()

where * is the abbreviation of some particular formula.

31



(Do)

—A-E)
ED{I}[E'I
—(V-E)
Fo(z)® [Fi(z)]
—(2-E) —————(A-E)
Go(z + 1) Gi(z)*® [Fi(z))B0
—{V-E) (*) (A-E)
G'g;.{:r =+ IJ(B}I GI(: + 1}{21] Gz{i + 1){32}
—>J) (A-T)
Fo(z+ 1) [Dy(2)]™ Fy(z + 1)
(v-I) (\E) ——(31D)
Ey(z + 1}{”] E;[.'L'juu Ei(z + I}I?EJ
(A-T) (3-E)
Dy(z + 1:_]“}{11] Ey(z + lj'[“:‘
—{V-I)o (A-1)
T Clz+1,T)0% Dy(z +1, F)(38)
(3-I) —_—(V-I)
Bz+1)'¥ F Clz + 1,F)9
{V-E} (3-1)
(A=) [C(=)]® B(z +1)014) B(z + 1)@V
—(-E) (V-E)
B(z)® B(z + 1))
(3-E)

There are four main paths:
def

B{z +1)1'®
————(V-E)
Bz +1)17
————{2-I}
Alz +1)18)
————(V-E)
Az + 1))

Figure 1

Sp = [1}1' [Q}F (3)! {4]1 [5]1‘ [ﬁ}r ﬁ_j! {B}‘ (9}1 {lﬂL [11}5 {12}, {13}, {14::', (15), I:lﬁj, I:l?}, {18}*{19}
51 déf [1}! I:z:]'r [:3') ' (Eﬂ}, {21}, EZE]T (23),{24}: (25]}{26}? (ETJ‘ [:‘23): (29:] , {3[})‘ [’15}? [:].ﬁ):, (17}’ {18}, {19}

del

Sy = (1),(2),(3),(20),{21),(31),(32),(25),(26), (27}, (28),(29), (30),(15), (16), (17), (18),(19)

and
def

53 = (1}1 {?}: {3}1 {EU] s (21}1 {31}: {32}1 {25}1 (25}, {2?}, {23}1 {29}, {30] ) {15}, {lﬁ]‘ (]TL [:]_ BJ \ {19]

There are six segments: (a) (7),(8); (b) (13),(14),(15),(16),(17); (c) {30),{15),(16),(17); (d)
(18),(19); (e} (26),(27); and (f) {32).



Note that this is a normal proof tree, and (a) and (f) are minimum segments, and the seguence

(23), (24) is not a segment, but, as stated
segment. Segments (b) and (c) are critical.

7.3.2 Initial Marking

in section 5, has the same nature as a minimum

The marked proof tree initiated by the declaration, {0}, is given in Figure 2.

[Do(z)]e
se——A-E)
Eo(z)e
—_—{¥-E)
Fol(z)e [Fiz +1)]e
—{D-E) —_—(A-E)
Golz +1)e G=)e IR
—(V-£) (*) (A-E)
Golz +1)¢ Gilz+1)e Galz+1)s
—_— (DI} {n-1}
Folz+1)s  [Dilzlls Fi(z +1)s
—{-I) (A-E) — )
Eo(z +1)s Ey(z)e Ei(z + 1)
(An-T) (3-E)
Doz +1)s Ei(z+1)s
—_—{V-T)g —{A-T)
Ty Clz+1,T), Dijz+1,F),
{3-1) —AV-I}
Bz 4+ 1)a) Fioy G(I+1.F]|¢
(V-E) 3-1)
(A=) [Clzllioy Bz + 1)) B(z + 1)o)
(2-F) (v-E)
B(x)40,1} B(z + 1}0)
(3-E)
B(z + 1)(0)
(V-E)
B(z+ l:l{n]
—{2-I)
Alr + I:I{UJ
(v-E)
Alz 4+ 1}{.:.}
Figure 2

As this proof tree has no critical (2-E) application but has eritical segments, the marking of
A(z) (induction hypothesis) is different from the initial declaration of A(zx + 1) because of the

mevitable marking.

7.3.3 Re-marking - Elimination of Critical Segments

Set the declaration to be the same as the marking of A(r) obtained in the previous section, Le.,
(0,1} and perform the marking again. The obtained marked proof trec is given mn Figure 3.



[Dol(z)]s

—(A-E)
Eo(z)s
—{(V-E}
Fo(z)e [Fi(z + 1)
—(2-E) —(A-E)
Golz + 1) Gi(z)s [Fi(z —1)]g
(V-E) —(s) ——(A-E)
Go(z +1)s Gilz+1)s  Gaz+1)4
—_—{2-I) (A-T)
F(z+1)s  [Di(a)]s Fi(z +1)
(v-I) (A-E)  o———roA3-])
Eo(z+1)s  Ei(z)e Ei(z +1)s
{A-T) (3-E)
Dy(z +1)4 Ex(z +1)4
——(V-I)o —{(A-I)
T{ﬂ] Cf3+1;T}{g} D][I+1,F]{u}
(3-1) —{V-I);
B{I-}-]]{n’” F{u] C(E‘!‘I,F]{u]
—~———{(-E}) (3-1)
[A(z){0.0) [C(z)]{0) Bz + 1)qo0,1) Bz + 1){0,1)
———(2-E) (V-E)
Bz}, B(z + 1)q0.1)
(3-E)

Bz + 1){0,1}
———V-E)
Blr + 1){31]]
—(])
A(E + lj{u'”

——(V-E)
A[:I + 1}{::,1}

Figure 3

i.3.4 Extraction of Redundancy-free Codes

The code extracted by using the N Ezt procedure from the marked proof tree obtained in the

previous section is as follows:



Ezxt(lemma’} < ap. p(z0,21)-
Az.if 2=0
then any(2)
else 1if z=1
then any[2]
else if z=2
then (T, left)
else if proj(1)((z0yz1)(z = 1)) = left
then 1f proj(0)(Ext(prop)(p)(z — 1)) = left
then (T, left)
else (F,right)
else (F,right)

Comparing the above code with Ert(lemma), the reason why the declaration should be {0,1}
(not {0}} is as follows: To calculate the boolean value which indicates whether the input natural
number is prime, the information whether the input can be divided by & natural number less than
the input is necessary, and the information is calculated in the 1th code of the term sequence
calculated by the main loop of the multi-valued recursive call function.

8. Conclusion

A proof thecretic method to extract redundancy-free realizer code from a constructive logic was
presented in this paper. The realizer codes of standard q-realizability contain some redundancy
which can be seen as verification information, and cause heavy runtime overhead. The redun-
dancy can be removed by analysing of the length of formula occurrences in the given proof tree.
The crucial part is the analysis of proofs by induction where the (V-E), (3-E) and (D-E) rules
are used in particular ways in the proof of induction step. These critical cases are specified from
a proof theoretic point of view. The method presented in this paper automatically analyses and
eliminates redundancy by making a simple declaration when the theorems and their proofs are

set.

REFERENCES

[Bates 79] Bates, 1.1, “4 logic for correct program development”, Ph.D. Thesis, Cornell Univer-
gity, 1970

[Beeson 83) Beeson, M., “Foundation of Constructive Mathematics”, Springer, 1985

[Constable 86] Constable, R.L., “Implementing Mathematics with the Nuprl Proof Development
System”, Prentice-Hall, 1986



[Coquand 86] Coquand, T. and Huet, G., “The Calculus of Construction”, Rapports de
Recherche N°® 530, INRIA, 1986

(Goad 80] Goad, C.A., “Computational Uses of the Manipulation of Formal Proofs”, Ph.D.
Thesis, Stanford University, 1980

[Hayashi 86] Hayashi, 5., “PX: a system extracting programs from proofs”, Proceedings of 9rd
Working Conference on the Formal Description of FProgramming Concepts, Ebburup, Den-
mark, North-Helland, 1986

[Howard 80] Howard, W. A., “The Formulae-as-types Notion of Construction”, in ‘Essays on
Combinatory Logic, Lambda Caleulus and Formalism’, Eds J. P. Seldin and J. R, Hindley,
Academic Press, 1980

[Huet 86] Huet, G., “Formal Structure for Computation and Deduction”, Lecture Given at CMU,
1986

[Huet 88] Huet, G., “4 Uniform Approach to Type Theory”, (personal communication)

[Kleene 45] Kleene, S.C., “On the interpretation of intuitionistic number theory”, Journal of
Symbolic Logic 10, pp109-124, 1945

[Mohring-Paulin 88] Mohring-Paulin, C., 1988, personal communication
{Prawitz 63] Prawitz, D., “Natural Deduction”, Almqvist & Wiksell, 1965

[Sasaki 86] Sasaki, J., “Ertracting Efficient Code From Constructive Proofs”, Ph.D. Thesis,
Cornell University, 1986

[Sato 85] Sato, M., “Typed Logical Calculus”, Technical Report 83-13, Department of Informa-
tion Science, Faculty of Science, University of Tokyo, 1985

[Sato 86] Sato, M., “QJ: A Constructive Logical System with Types”, France-Japan Artificial
Intelligence and Computer Science Symposium 86, Tokyo, 1986

[Takayama 87] Takayama, Y., “Writing Programs as QJ-Proofs and Compiling into PROLOG
Programs”, Proceedings of Jth Symposium on Logic Programming, 1987

[Takayama 88] Takayama, Y., “QPC: QJ-Based Proof Compiler - Simple Examples and Anal-
yais =7, European Symposium on Programming ‘88, Nancy, 1988

36



Appendix Proof of Lemma (I)

Main Proof
[z, p, 222D Alp, 2]
Lo P}
0>22 A(p,0) (z+1)222A(p,z+1) B
Wz. (z 22D Alp, z)) (nat-ind)
¥p. ¥z. (z 2 22 A(p, 2z))

Extracted Code:

Ap. pRv(z 2 2 D A(p, z)).
Az. if z =0 then Ext(Z,)
else Ext(p,z,z 22D Alp,z)F(z+1) 223 A(p,z + 1))o

where o % {Ru(z 2 22 A(p, 2))/Ru(z 2 2 D A(p,2))(z = 1)}
e Proof of F 0> 22 Ap,0) ()

0>2
Tar“ -E)
0>2D Alp,0)

(5-1)

Extracted Code:
any[l{ Rv(A(p, 0)))]

e« Proofof z, p, 2222 A(p,z) F (z+1) 222 A(p,z +1) (I1)

[z+l}2] [z=10] [z+12= 2]
[z =22 A(pizﬂ
[z : nat] A[p,z + 1}( -E) Zi

zzﬂ‘h’lﬂzi*} :+12224(pz+1) (z+1)22D Alp,=
(z+1) 222 Alp,z +1)

v

Extracted Code (modified v-code):

if z =0 then any[l(Rv(A(p,z +1))] else Ezt(z > 1,z 22D A(p,2) 221D Alp,z + 1))

eProcfafz 21, 2220 4(p,2)F2+1222A(p,2+1) (1)

[z 2 2]
=1  [z22DA(pz)]
R EPR 1 S
:=1V2<z Alp.z +1) Alpz+1) (V-E)

{z+1}323.4{p.z+1]{

Extracted Code (modified Vv code):

ifz=1then Extlz=1F Alp,z + 1)} else Ext{: 22,2222 Alp.z) F Alp,z + 1))

— 37 —



o Proof of I
d [1<d<?
: (+)
@
l1<d<2o-d|p) 7(*)
Vi (l<d<2o5-{d|p) T=T
Fo(p,2,T)
T Py(p,2.T) V Pi(p, 2, T)
[r = 1} A{Piz}
Alp,z +1)

Extracted Code:

T,left, Ad. anyl[l{ Rv(~(d | p)))], any[i{(Pr(p,2,T))]

s Proof of E]L‘[

(6] (8]
EP{;{p,Z,ﬁ)] {Pﬂ:?:zv b)]
[ z22 J [ Fo(p,z,b) ] Zio L1111
z22] [DAlpz) VPi(p,z,0) | A(p,z4+1) Alp,z+1) v.E
3b. Py(p.z,b) V Pi{p, 2, b) Alp,z+1) (V-E)

Alp.z +1) (3-E)

Extracted Code:

if proj(1)(Ru(z 2 2 D Alp,z))) = left then Ext(b, Py(p,2,b) b Al(p,z + 1))
( else Ext(b, Py(p,z,b) F A(p,z + 1}}) o

where o % {b/proj(0)(Ru(z > 2 > A(p, z2)))}.

e Proof of $y10: b:mnat, Pylp,z,b) F A(p,z) (= 3b. Po(p,z +1,b) V Py(p,z +1,b))

R R QLD KT ED Ak AT S P
[z : nat] ¥n. ~(n l?:' vinlp ___Eu;uu E::m. _
~(z{p)Viz|p) Alp,z+1)  Alp,z+1) (v-E)

3b. Py(p,z + 1,0}V Pi(p,z + 1,b)
Extracted Code:
if proj(0)( Ext(Prop.)(p)(z)) = left then Ext(Py(p,z,b),~(z | p) F Alp,z +1))

else Ext(Py(p,z,b),(z | p) b Alp, 2+ 1)
— 38



e Proof of Z11100 : -(z | p), Polp, z,b) - A(p,z + 1)

[Po(p, 2, b)] -
1] l1<d d] "'F'd.l::d{z:)—'{d|p][hbj [d = z]
L<deztd {{z 1<d<zD=(d|p) [=(z | p)]
' ;:di{zz -(d | p) -(d | p)
~(d]p) a
led<(z+1)2-(d]p)
Vd.l<d<(z+1)D~(d|p)
PQEP,Z'FI,T}
T Po(p,z+1,T)V Pi(p,z+1,T)
3b. Pg{p,z+1,b]VP1{p,z+1,I:]

-
#
R

|
I
~

Extracted Code (modified V code):
T, left, Ad. if 1 <d < z then nil else nil, any[l( Py(p, z, T})]

e Proof of Ty ¢ binat, o(z|p), Polp,z,0}F Alp,z +1)

[z : nat]
l<z<z+l [(z]p)] ,
[z:nat] l<z<z+1A(z]|p) ?k*)
dd.1<d<(z+1)A(d]p) F=F
—-[*} P1|:P1Z + l!F}
F Po(p,z + 1, F)V Pi(p,z2+1,F)
3b. Po(p,z +1,0) V RI(p,z +1,8)

Extracted Code:
F,right, any{l(Po(p,z + 1, F))],z, Rv({z | p))

e Proof of b, By(p,z,b)F Alp,z + 1) (Zun)

1<d
<z [1<d
rdl p) [z : nat] l <z

ljedesz z=<z+1 f"‘-(f':|P]_

led<z+1 (d|p)
[Piip, z,b) [d:nat] l<d<z+1A(d]p)
dd.1<d<zn{d|p 3dl<cd<z+1n(d]|p) —(3E)
dd.1<d<z+1A(d]|p) 'F=F
—(#) Fiipz+1,F)
F Popz+ L)V Piip,z+1,F)
3. Py(p,z +1,0)V Py(p,z + 1,b)

Extracted Code:
F,right,eny[l( Fo(p,z + 1, F))], (d, Re((d | p)))o

where
o € {d/prej(0)Ru( Py (p, 2, b)),

Ru((d | p))/tseq(1)Rv{Pi(p, 2, 8]}
—_— 39 .



Proposition
¥m :nat. ¥n :nat. =(n |m)V(n|m)

The code extracted from the proof of this proposition is to divide m by n to calculate the
quotient and the remainder, and returns the quotient if the remainder is zero other wise returns
any code.

Proof of Proposition

m:nat] V¥p.¥g.3d. 3r. (p=d-g+rAD<r < gj{Th'J

[n : nat] Vg.3d. 3r. (m=d-g+r A0 <r < g)
Jd. Ir. (m=d-n+rn0<r<n) 11
=(n|m)V(n|m)
Yn. s(n |m)V(n|m)
Vm. ¥n. =(n |m)V (n | m)

(3-E)

Extracted Code:
Am. An. (if 0 =r then right,d else le ft, any[Rv((n | m))])e

where ¢ {d/proj(0)(Ext(Th.)}, r/proj(1)(Ezt(Th.))}. Th. is the theorem of natural

number division.

IT
m=d-n+rA0<r<n
 0<r<n 0=r] [0D<r<n]
Dd=rvil<r<n II, II;
[Br.(m=d-n4+rA0<r<n)] =(n|m)V(n|m)
=(n{m)Vin|m)

(3-E)

H::.
[m=d-n+rAl0<r<n]
[0=r] m=d-n+r
[d] m=d-n
(n|m)
“(r|m)V(n|m)

II
ﬁ 0<r<n} I, ] [0 < r < n] Hc[*
(d' —d): nat (+ Dec(d-d <l )
[(n | m]] L
4
T[>

“(nim)V(n|m)

Proof of I1.:
[m:d-n—!—rﬂﬁir{n]
m=d n+r m = d' - n]

(' —d) - n=r

_4{’]-



