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Abstract

The reduction of bus traffic 1s the key issue to improve the performance of
shared memory multiprocessors based on coherent cache mechanism. Commit-
ted choice logic programming languages, such as Flat GHC (FGHC), consume
memory area very rapidly, and require large storage size. Such large storage size
requirement affects the tatal system performance net enly by frequent global
3C, but also by increasing bus traffic especially for memory allocation.

Incremental GC reduces the bus traffic for memory allocation by decreasing
the required storage size. It also reduces other bus traffic by decreasing cache
misses, since the locality of memory references can be enhanced by reclama-
ticn and reuse of memory cells. Therefore, incremental GO is the key issue to
unprove the total system performance of committed cheice logic programming
language.

Incremental GC by Multiple Reference Bit (MRB-GC) has been proposed
as an efficient incremental GC scheme for FGHC. The required storage size is
reduced o 30 % by MEB-GC. The overheads of incremental GC, such as extra
memory references for management of reference count, is reduced not to affert
the performance of FGHC execution.

This paper evaluates the effect of MRB-GC on the bus traffic of FGHC
execution on the shared memory multiprocessar. The evaluation result shows
that memory-cache traffic is reduced more than expected from decrement of the
required storage size, Yet the problem on the lncrease of cache-cache traffic by
mutual invalidation of cache blocks is revealed,

1 Introduction

The parallel inference machine (PIM) is one of the most important targets of the
FGCS project [7}. It consists of about 16 clusters connected by a network. Each
cluster includes eight processing elements (PEs) which share one address space and
communicate through shared memory {(SM) on 2 common bus. Each PE has coherent
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cache memory to enable quick access to the shared memary [7). The kernel language
of PIM is designed based on Flat GHC [6, 15, 16]. Flat GHC (FGHC) is a kind of
committed choice logic programming languages without backtracking.

While FGHC can describe basic operations such as synchronization and commu-
nication between paralle]l processes without any side effects, destructive assignment
is not allowed. Therefore, naive implementation of such committed choice logic
programmming laaguage consumes memory area very rapidly. As a result, parhage
collection (GC) occurs frequently’. Cache misses and memory faults occur often
during global GC, because the locality of memory references cannot be expected in
widely used GC based on marking scheme.

This problem becomes more serious in the FGHC implementation on a shared
memory multiprocessor such as the PIM cluster. It is because the global GC by
marking scheme has following problems: (1) Bus contentions during global GC by
cache misses makes it difficult to perform global GC by multiple processors; and (2}
Svnchronization among PEs to initizte and terminate global GC is rather costly.

Therefore, incremental GC is a key issue to improve the total system perfor-
mance. By collecting garbages during execution, not only the memory consumption
rate can be reduced, but also the locality of memory references can be increased, so
that coherent caches can weork efficiently. The overheads of incremental GC, such as
extra memory references for reclamation and management of reference count, should
be reduced not to degrade the system performance.

A good reclamation rate with low overhead can be expecled by reclaiming single
relerenced memory cells, since it is empirically known that most of the references
to memory cells in FGHC are singte [9, 11]. Incremental GC by multiple reference
bit (MRB) is proposed as an efficient incremental GC scheme (MRB-GC for short)
for FGHC {2]. Reference information is maintained by only one bit flag in pointers
to reduce the overhead of managing reference count. Memory cells which have
multiple references are not reclaimed in MRB-GC,and global GC must therefore be
used together. However, MRB-GC has 60 to 70% of reclamation ratio according to
our evaluation[9, 12}, it can reduce the frequency of global GC to 1/3.

This paper evaluates the effect of MRB-GC on the performance of FGIC on
shered memory multiprocessors with coherent cache memory. MRB-GC is expected
to reduce not only the frequency of global GC but also the bus traffic. The bus
cvcle count is measured by cache simulation based on the memory references of
the FGHC pseudo parallel emulator. The evaluation result indicates that cache-
cache traffic constitutes the majority of bus traffic, although memory-cache traffic
is greatly reduced by MRBE-GC.

2 Storage Management for FGHC

This section briefly describes the memory reference characteristics of FGHC and the
effect of incremental GC on the performance of FGHC implementation on shared
memory multiprocessor with coherent cache.

'In sequential FROLOG, this problem is not so serious because of the backtracking feature [14],



foo :- true | generator(0,Y), consumer(Y,Z).

generator(X,¥) :- true |
X1 = X + 1, ¥ = [XIY1], generator(X1,Y1).
generator{X,Y) :- % > 10000 |

Y = [1. < termination for generator >
consumer( [X1Y1],2) :- true |

Z =X+ Z£1, consumer(¥1,Z1).
eczsumer( [, Zi) = true |

Ll = 0. ¢ termination for consumer >

Tigure 1; Example of Stream Communication in FGHC

2.1 Memory Reference Characteristics of FGHC

The execution of FGHC is based on a communication between goals using 2 stream.
Figure ] is an the example of communication in FGHC. In this program, generator
‘allocates 2 wvariable cell, ¥1, and a cons cell, [X]Y1], to create a stream, Y, and
consumer receives stream Y. The cons cell unified with [X1Y1] in consumer (which
is allocated in generator) is never be referenced in consumer after the unification.
Similarly, the variable cell unified with X will never be referenced after the unification
in consumer. If there exist no other references to these variable cell and cons cell,
these memory cells can be reclaimed incrementally in consumer.

Since FGHC does not allow destructive assignment, generator keeps allocating
new memory cells until it terminates. Therefore, naive implementation of FGHC
without incremental GC consumes memory area very rapidly. Such rapid consump-
tion of memory area requires a large storage size, or it causes frequent GC. Frequent
cache misses also occurs, because the locality of memory references is deteriorated.
As a resuilt, the total system performance is seriously affected.

2.2 Incremental Garbage Collection by Multiple Reference Bit

In the example in Figure 1, memory cells used in a stream zre created iz generater
and referenced only in consumer, so that they can be reclaimed in consumer, but
usually there may exist another reference to those memory cells. Thus, it is necessary
to ensure that there is no other reference to the memory cell {the cell is single
referenced) to reclaim a memory cell.

Implementing a reference count on for each memory cell requires an extra word
for each memory cell, and, it also requires extra references to each memory cell
although FGHC employs many pointer operations which does not need to refer the
memory cell. Since most of the memory cells in FGHC are considered to be single
referenced, a good reclamation rate can be expected by reclaiming only memory
cells that has been single referenced.

Incremental garbage collection by Multiple Reference Bit (MARB-GC for short) [2]
iz proposed as an efficient incremental GC scheme for FGHC. MRE iz one-bit pointer
tag which holds multiple reference information, and the references to memory cells



FEI PE‘ﬂ—l PE..

Cach | I Cach Cach PE : Processing element
;‘_.Ei LT'_E‘ LT_E! 531 : Shered memory
|

SM

Figure 2: A Shared Memory Multiprocessor

just for management of reference count can be avoided. MRB reduces the overhead
of reference count management, thereby reducing reference information to one bit
(single or multiple). As a result, MRB cannot manage the reference count of multiple
referenced cells. Thus, MRB-GC cannot reclaim memory cells once they are multiple
referenced, although it may return to single referenced memory cells.

Although MEB-GC must be used together with global GC because of its recla-
mation zbility, it can reduce the global GC frequency by reducing the memory con-
sumption rate, thereby improving the total svstem performance of FGHC execution.
Reduction of the memory consumption rate also improves the cache characteristics
by enhancing the locality of memory references. Thus, performance improvement by
reducing cache misses is also expected. MRB-GC on FGHC requires free-list man-
agement for memory cells [9]; however, further enhancement of locality of memory
references is expected if free-list is performed last in first out.

2.3 MRB-GC Effect on Shared Memory Multiprocessor

PIM cluster is a shared memory multiprocessor with coherent cache memory (Figure
2). A ccherent cache protocol [1, 5] includes brond-casting and invalidation. When
write operation occur to a shared cache block on one PE, The cache memory based
on broad-casting sends 2 new data on common bus to update all the shared cache
blocks on other cache memories. On the other hand, the cache memory based
on invalidation sends a invalidate command on common bus to invalidate all the
shared cache blocks on other cache memories. A ccherent cache protocol based on
invalidation is examined for PIM [10]. In this protocol, @ missed cache block can
be transferred from other cache memory, not from the shared memory, if any other
cache memory has the cache block. This protocol is called cache-cache data transfer.

The key issue for the performance of shared memory multiprocessor is to reduce
bus traffic. The bus traffic of such parallel processing systems are includes memory-
cache traffic(such as swep-in and swop-out) and cache-cache traffic. If the free-list
for MRE-GC is commeon to all PEs in the svstem, cache-cache transfer may occur by
fetching the top of free-list in every reclamation and reuse of a memory cell. Thus,
MRB-GC for FGHC parallel execution provides an independent free-list for each
PE.



WMREB-OC can reduce the bus traffic as follows.

Reduction of Required Storage size: Reduction of the required storage size ef-
fects reduction of swap-in operations for newly allocated memory cells. Swap-
out operations are also reduced on-caches with finite column number (smalier
than the required storage size).

Enhancing the Locality of References: By managing free-lists last in first out,
references to reused memeory cells can hit the cache memory.

There are problems to cause the increase of cache-cache traffic, such as:

Invalidation: Since reclamation to a free-list generates a write operation, bus traffic
for ipvalidation increases because of incremental GC.

Cache-Cache Data Transfer: When one cache block consists of plural memory
celis, it can be shared by a number of PEs, because each cell can be reclaimed
by a different PE. In that case, PEs invalidate each other’s free-lists in every
reclamation and reuse of memory cells. As a result, invalidation and cache-
cache data transfer increases?.

3 Ewvaluation Procedure

The MRB-GC effect iz evaluated from the viewpoint of reduction of bus traffic.
The measurement was done through the cache simulation on the memory reference
information generated by the FGHC pseudo parallel emulator.

3.1 Cache Simulation
3.1.1 FGHC Pseudo Paralle]l Emulator

FGHC pseudo parallel emulator runs on the KL1b {8] code which is a WAM-like
abstract machine code for FGHC. The FGHC emulator provides pseudo parallel
execution of FGHC throuzh one goal reduction to be a processing granule, and
switching PE at the end of a goal reduction.

MRB-GC is implemented on the variable cells and cons cells area (heap areal,
and the data records {such as goal records) can be fully reclaimed since they can be
guaranteed to be single referenced by implementation. The FGHC pseudo parallel
emulator is set up using compile-time option GC-on {enables MRB-GC) and GC-
off (disables MRB-GC). When GC-off is set, memory cell reclamation and memory
references for reclamation are suppressed, although memory references for MRB
maintenance, which are only needed for reclamation, are not suppressed.

The test program for our evaluation is the Bottom Up Parsing (BUP) program.
The BUP program has 10 top goals, each of which parse an independent sentence
concurrently. BUP runs about 120,000 goal reductions, about two million instruction
steps and 4.4 million memory references.

*The efiect of invalidation on the hit ratio is analyzed in [4].



3.1.2 Cache Configuration

The cache simulation is applied on two cache configurations for comparison, such
as:

256 columns, 4 sets, 4 words/block: Expected to be implemented on PIAM.

16K columns, 4 sets, 1 word/block: Maximum size allowed in cachke simulator.
Tke main purpose of this confizuration is to analyze the effect of mutual in-
validation of shared cache blocks. This configuration omits swap-out by ap-
proximating the cache of infinite size, and omits sharing cache blocks which
do not hold shared data.

3.2 Measurement Items

From our evaluation of the bus cycles on paralle] execution of FGHC [10)], accesses
to heap area constitutes the majority of bus cycles. Since MRB-GC is employed for
heap area, the measurement is focused on bus cycles performed for heap zrea. The
measurement items for this evaluation are as follows.

1. Total Bus Cycles Performed for Heap Area:
Total bus cycles include memory-cache traffic and cache-cache traffic.

2. Memory-Cache Traffic:
The memory-cache traffic is affected by the size of the required storage.
Swap-in occurs at least proportionally to the required storage size, and is not
affected by the number of PEs or the size of the cache memory.
Swap-out occurs if the size of the cache is smaller than the required storage
size, never occurs in caches of infinite size.
Since the majority of memory-cache traffic is swap-in, and swap-out is usually
hidden by other bus traffic, therefore, the bus cycles for swap-in are counted.

3. Cache-Cache Traffic:
To determine cache-cache bus traffic, two kinds of bus traffic are measured.

(a)} Invalidation

(b} Cache-Cache Data Transfer
Cache-cache data transfer includes the required bus traffic for commu-
nications through shared data and the effect of mutual invalidations of
shared cache blocks. The effect of mutual invalidations of shared cache
block can be omitted by using cache configuration of 1 word/block.

4 Ewvaluation Result and Discussion

4.1 Total Bus Cycles for leap Area

Figure 3 shows the total bus cycle connt for heap area. MRB-GC reduces bus cvele
count especially for a small number of PEs., This is achieved mainly by reducing
memary-cache traffic such as swap-in. The effect of the MEB-GC on bus cvcle reduc-
tion degrades as the number of PEs increases. The major cause of the degradation

i
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Figure 3: Bus Cycle Count for Heap Area

Table 1: The Required Storage Size

PE# | GC-on | GC-off | on/ofi%
1 | 65581 ] 230830 | 28.4
2 | 65799 | 227608 | 25.8
4 | 65701 | 225255 | 29.2
§ | 66441 | 226140 | 20.4
12 | 66445 | 219366 | 30.2
16 | 66832 | 216324 | 310 |

is increase of cache-cache data transfer. For 16 PEs, about 3/4 of bus cvcle is used
by cache-cache data transfer in GC-on, while it is about 1/3 used in GC-off,

4.2 Memory-Cache Traffic

Teble 1 shows the the required storage size, this result indicates that the required
storage size is reduced to 30% by MRB-GC. The reduction of memory-cache traffic
is expected {rom the result, since the reduction of the required storage size implies
the reduction of swap-in operations for allocation of memory cells.

Figure 4 shows the bus cycle count for swap-in. This result indicates that the
reduction of swap-in is more elfective than reduction of the required storage size.
While the required storage size is reduced to 1/3 by MRB-GC, swap-in is reduced
to about 1/25 for one to eight PEs and to 1/4 for 12 1o 16 PEs. Although the
reduction of swap-in for newly allocated cells are expected only for the reduction
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that of reguired storage size, further reduction of swap-in is accomplished. This
result means that MEB-GGC reduces not only swap-in but also swap-out.

The swap-in count for GC-on increases hy multiples of 12 and 16 PEs, although
swap-in for GC-off does not show any significant change. This result indicates that
swap-out forced by other traffic (such as cache-cache traffic) increases for 12 10 16
PEs. Since the result in table 1 does not show significant diference, it iz not the
result of an increase in required storage size. In GC-off, the swap-out forced by
swap-in occurs even with & small number of PEs.

4.3 Invalidation

Figure § shows the bus cycle count for invalidation. This result shows the inval-
idation command is increased twice by MRB-GC. It also shows that the invalida-
tion command count is not affected by mutual invalidation of shared cache blocks,
since there is no significant difference between the counts for 4 words/block and 1
word /block.

4.4 Cache-Cache Data Transfer

Figure § shows the cache-cache data transfer. This result shows that the cache.
cache data transfer is increased twice by MRE-GC. The count of cache-cache data
transfer GC-on comes close to to the count of swap-in of GC-ofl (figure 4) at 16 PE.
The result of 1 word /block indicates that the communications through shared data
increases as the number of PEs increases.
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An increase of cache-cache data transfer in 4 words /block is considered a result of
mutua! ipvalidation of 2 cache block. In GC-off, the effect of mutual invalidation is
comparatively lower than in GC-on, since number of the live cells in one cache block
is considered to be fewer than that of GC-on. In addition, mutual invalidation of
{ree-list greatly increases the cache-cache data transfer, because it is very {requently
updated by GC. Cache-cache data transfer uses more than three quarters of the bus
cycles in GC-on for 2 to 16 PEs.

5 Conclusion

This paper evaluated the effect on the reduction of the number of bus cycles by
MRB-GC. This evaluation shows the importance of incremental GC for FGHC by
reducing the reguired storage size. Reduction of the required storage size not only
reduces global GC frequency but also reduces of swap-in operations. MRB-GC
reduces memory-cache traffic such as swap-in and swap-out. It is effective for any
number of PEs, vet the increase of cache-cache traffic reduces the effect somewhat
for large number PEs.

Cache-cache traffic, especially cache-cache data transfers is increased by MREB-
GC, which is mainly caused by mutual invalidation of shared cache blocks. The
problem of mutual invalidation of shared cache blocks becomes a major problem in
parallel execution of incremental GC, since incremental GC tends to increase the
number of shared memory cells in a cache block, by increasing the number of live
cells in one cache block.

Summarizing the effect of MAB-GC con the number of bus cycles:
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* MRE-GC reduces the memerv-cache traffic by reducing the reguired storage
slze.

* Increase of the cache-cache data trausfer may seriously affect the benefits of
MRB-GC in bus cycle reduction. 1t is mainly caused by an increase of mutual
invalidation of shared cache blocks.

Although the reduction of bus cycles degrade as the number of PE increases, it is
still lower than that of GC-off. Thus the total system performance can be improved
by MRB-GC by reducing the frequency of global GC.
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