ICOT Technical Report: TR-392

TR-392
Methods for Parution of Target Systems
in Qualitative Reasoning

by
K. Sakane, M. Ohki, J. Sawamoto
and Y. Fujii

June, 1988

1988, 1ICOT

Mita Kokusar Bldg, 21F {13 456-31091 -5

“ D I 4=28 Mita 1=Chome Telex 100T 132964

Mimato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

METHODS FOR PARTITION OF TARGET SYSTEMS
IN QUALITATIVE REASONING

Kiyokazu Sakane, Masaru Ohki, Jun Sawamotol, Yuichi Fujii

Research Center
Institute for New Generation Computer Technalogy
Mita Kokusai Bldg. 21F, 1-4-28, Mita
Minato-ku, Tokyo 108 Japan

ABRSTRACT

This paper proposes two methods for partition of
target systems in qualitative reasoning and
discusses their effect on the efficiency of execution.
One of the problems of qualitative reasoning is that
it cannot deal with large target systems. We propose
two methods of partition to solve this problem: (1)
partition of variables acearding to the independence
af each component, and (2) partition of a system by
the field of applicable rules. Then we formulate the
computational complexities of two reasoning
processes (propagotion and prediction) for two types
of cualitative simulators {gualitative modeling type
and gualitative process theory type). We estimate
the effect of the partition methods from the viewpoint
of computational complexity, Finally, we describe
the conditions under which the methods reduce
computational complexity.

1 INTRODUCTION

Recently, there have been many reports on
research related to qualitative reasoning [deKleer
84)[Forbus 841, and [Nishida 87]. However, we
found some problems in them. One of the biggest
problems {s that gualitative reascoing cannet deal
with large target systems, because large CPU time
and 2 large memory are needed to simulate the
behaviar of such systems. The reason is that almost
all currently available qualitative simulators aquire
the systermn behavior as a whaole, A few researches are
related to partition of & system by time-scale
[Kuipers 87, Tanaka 88]. They notices only the
difference of time-scale of behavior among variables

1) Current Address;
Computer Works, Mitsubizshi Elestric Corporotion
325, Kamimachiya, Kamakura, Kanagawa 247 dapan

to structure a complex syvstem hierarchically. When
we conzider a large target system that conmsistz of
many parts or subsystems, we divide it into some
subsystems using heuristics about the structure or
properties of the system, We consider the behaviors
af all subsystems and inteprate them to infer the
behavior of a whele system. Le this case, the method
of partition by time-scale is not sufficient. Partition
methods corresponding to such heuristics are
necessary.

Assume a target system which consists of many
parts that have close interactions between internul
components and only weak interactions with
external components. We predict the behavier of
each subsystem independently, ignoring external
circumstances other than the input state, Because
we have heuristics in which each subsystem can be
trested as a functional like component that responds
to the ioput state. Assume ancther target system,
each of whose components is designed and operated
sccording Lo the rules of a dilferent physical field (for
example, electronic circuit, thermodynamies,
electrostaties, and guantum mechanics) to satisfy a
different function. If we know this, we only need to
consider the behavior of each subsystem noticing
rules in the specified physical field tu infer the
behavior of the whole system. Becaunse there is little
interaction between the rules of the different
physical fields.

According to the above heuristics, we propose twa
methods for partition of target systems:

(1} A method that partitions the variables
according to the independence of each compogent.

(2) A method that partitions o system inlo
subsystems by restricting the field of applicable
rules,

These two methods reduce the number of
variables andfer rules io be comsidered

simultaneously and modularize each subsystem
functionally. Therefore boih methods have the
following advantages.

{1} Computational complexity is reduced.

(9) These methods give good support in compiling
simulated results of each modularized subsystem.

Here, we focus on the reduction of computational
complexity. The effect of the two partition methods
with this viewpoint changes according to the type of
target system and simulator, It is very important to
clarify some conditions for their application.

Section 2 explains the partition methods. Section
3 formulates the computational complexity of two
reasoning processes (propagation and prediction) for
two types of gualitative simulators (the qualitative
modeling (QM) type such as [Kuipers 84], QSIM
[Kuipers 85)], and ENVISION [deKleer 84], and
gualitative process theory (QPT) type such as
GIZMO [Forbus 84], QPE [Forbus 88), and Qupras
[Ohki 881). Section 4 cstimates the effect of partition
methods with computational complexity, From this
discussion, section 5 summarizes the conditions
under which the partition methods improve the
efficiency of qualitative reasoning. Section 6 shows
an example of application of the partition method.

2 METHODS FOR PARTITION OF A
TARGET SYSTEM

This section explains the two partition methods of
targel systems.

(1} Method for partition of variables according to the
independence of cach subsystem

If & target system consists of loosely connected
parts, the whole system can be partitioned inte
subsystems corresponding to the parts. First, the
parts which satisfy following condition are searched,
That is, there are close internal interactions between
physical variables in the same part, and there is ne
relationship between variables in different parts
except for a small number of inputs and outputs.
Such parts are collected as subsystems of the whele
system. All variables belonging to only a part are
assigned to the subsystem as internal variables.
Eack external variable, that is, an output from one
part and/or an input to the other, is shared by both of
these subsystems as a commmnon variable.

The behavior of each subsystem is simulated as
response to the input states. Each subsystem
communicates its simulated results to others
through common variables. Beczuse the number of

variables are reduced that a simulator has to deal
with simultaneously, the problem we poased is solved.

(2) Method for partition of o sysitem by the field of
applicable rules

If there are some restrictions on the fields of
dominant rules for each part, the whole system can
be partitioned into subsystems. Each subsystem
consists of the parts whose fields of dominant rules
are identical. Because the kind of objects to apply a
field of rules is restricted, the kind of objects in each
subsystem should also be restricted. The simplified
model is constructed ignoring rules of other fields.
Because the rules of other flelds have little effect on
the hehaviar of the subsystem, a simulator acguires
it with this simplified model toc get a good
approximate solution. Because the number of rules
to be considered simultaneously are reduced, the
problem we posed is solved.

However, these partitions are not usually
effective. Sections 3 and 4 estimate the actual effect
with the computational complexity when the above
two methods are applied to the currently available
gualitative simulators,

3 FORMULATING THE COMPUTATIONAL
COMPLEXITY OF CURRENT SIMULATORS

This section formulates the computational
complexity of the current simulators. Curreat
qualitative simulators are roughly classified in two
types: QMtype and Q@PTtype. In both type of
simulators, gualitative behavior is simulated by two
processes, propagation and prediction, in turn. We
formulate approximately the computational
eomplexity of the propagation and prediction process
of QM-type and QPT-type simulators according to the
algorithms of [Kuipers 84] and Qupras [Ohki 83]
whose reasoning processes we know well. This
discussion helds generally with many gualitative
simulators.

3.1 Formulating the Computational Complexity
of GM-type Simulators

In QM-type simulators, variables and constraints
which express system dynamics are given and fixed.
In computational complexity estimation, we use
notations as shown in Table 1.

(i) Propagotion Process

QM-type simulators use all constraints in a model
in the propagsation process. The simulator

Table 1 MNotation in the Reasoning Process by
QM-type Simulator
Whele Partitioned
model miode]
Mumber of subsysiems 1 W
Far each subgysiem:
Size of a database il NW+d
Number of consiraints M MW

Mumber of variables changing with time Ny Na'W

d: number of common variables in each ﬂuhﬁ}'ﬂtﬂ‘m

ey cosb ol solving conslraint

cy: coskof predicting the next qualitative state of o variable

cg: cosl ol checking Lhe consistency of a colleetion of candidates
of all iz

Fizg) enndidates of gualitative value of z; at the next time

Y average number of condidotes in Nzl

propagates values of determined variables to
undetermined variables through constraints. The
simulator iterates thiz procedure until all variables
in a model are determined. In the worst case, all M
constraints are referred N times, until all N
variables are determined. At least they are referred
once, We introeduce & new parameter H, which is the
degree of iteration to refer each constraint. The
computational complexity of the propagation process
1 eNpressed as:

CPy = coMNH

{2} Prediction Process

where 0=H<1 [1]

In prediction process, for each variable changing
with time, 7;, candidates of qualitative value at next
gualitative lime, [{z;), is generated. Tiz)is acquired
by finding the most neighboring limit points of the
current value in the quantity space of z;. Then, every
collection of all changing variables in the nexi slales
is checked for consistency. The cost of prediction is
represented as:

CDy = ¢ Ng + co ¥z 2]

3.2 Formulating the Computational Complexity
of QP T-type Simulators

(1} Knowledge Representation and Generation of
Instance Rules

Gupras is similar to GLEMO (see APPENDIX),
Basic representations of Clupras are objects and
rules, In Qupras, physical variables are expressed as
attributes of closs objects, Constraints among objects
are expressed as relations of template rules. Each
cinss object and template rule has conditions that

have to be satisfied for them to be active., Fach
ternplate rule has a list of objects that have to be
active before the rule is applicable. Instances for
each class object and values for some attributes are
given in the initial states.

At the beginning of the reasoning process, the
simulator instantiates each template rule. The
simulator generates instance rules for every
collection of instapce objects that satisfies the
specification of the cbjects in the template rule [see
Fig. 1). We use the simple model shown in Table 2.

F Template rule K Pl Class ohjest A

(Ohjects

Instance ebjects
0BJ ay, =~ ,0Bd a8

£Class A

iE}B.J ¥ I EClazs B
-] Class object B L
Conditipnsg 1

Instance objects

Equatiens, Inegations
OB by, e LOBJ by,

v

Relations
Constrainis

instantiate OR) x & OB v

H -”-"‘----n_--
i

| Instance rule g ! | Instance rule My E

= =
Objects I Ohbjects

[CIB.I a1 ICJ'BJ b ! IUEJ am |013J Bn |

Conditions Conditions
Helations Reiationg

M': Bumber of instance rules generated
M=mgM1 X1 =mXn

Fig. 1 Generation Process of Instance Rules from
Template Rules

The number of instance rules generated for all
template rule is:

M=35KE? (8l
(2} Propugation Process

In the Qupras propagation process, the foliowing
procedure, exactly like forward chaining of

production rules, is iterated until no new active
process or object is found,

For each instance rule,

if all objects in the rule are active and all
applied conditions satisfy constraint propagation
laws,

then the simulator solves all constraints in
relations using constraint propagation laws.

We classify all instance rules into two groups:

(G1) The antecedent of the rule in this group is not
satisfied until a propagation process ends; the
gimulator only checks the antecedent at each
iteration of referring the rule.

{G2) The antecedent of the rule in this group is
satisfied; the simulator checks the antecedent and
propagates qualitative values through the
constrainis in the consequent.

Although a large number of instance rules are
generated for each general template rule, only a few
of them actually become active. Using the notation
cshown in Table 2, we formulate the taotal
computational complexity in the propagation process
as follows:

CPa = ¢35 K%E + cyFp [4]

{3y Prediction Process

Because the quantity space is not declared
explicitly in Qupras, the limit points of each variable
are expressed in the applied conditions of rules and
objects.

For each variable changing with time, z;, the
simulator finds the neighboring points of the current
value from applied conditions of rules that contain
objiz;). Diz;) is selected from the neighboring points
using state transitivn laws.

When we use the simple model shown in Table 2,
the number of the instance rules which contain obj(z;)
is Kx 1. Then the I'(z;} acquired for all z; are checked
for consistency. By the same token, we obtain the
following eomputational complexity in the prediction
prucess as well;

CDg = Ne-cs-K-L + cg'YHZ {5]

4 EFFECT OF PARTITION METHODS ON
THE COMFPUTATIONAL EFFICIENCY OF
QUALITATIVE SIMULATORS

This section estimates the effects on the
computatiooal efficiency of qualitative simulators by
the partition methods. Section 4.3 investigates the
meanings of some formulae,

Table 2 Notatien in the Reasoning Process by QPT-type Simulator

Partition of Partition by
Whele model inslance objecls applicable rules
Number of subsystems 1 W W
Foreach subsysiem:
Number of template rules B=1lir 3 S = (DWW el
Number of class objects J J JW+e
Number of applicabic templote rules for each object 1 I D
Number of instances in each object closs K W =+ K
Number of instance ruoles in the propagation process
In group Gy Ep—~5Hi Ep'W-S-(K/W+{)2 Ep""W-3"KI?
In group Gz Fg Fp'fW Fp"i
B umber of iterations of referring rules R R R™
N umber of variables changing with time Kz Nz W Mg W

o number of objects referred inpach template rule: r=2

e number of connion class objects belonging 1o some subsystems

£ number of common instanece objects belonging to some subsystems

I number of difTerent felds of physical rules

5 coat of ehecking the activities of objeets in a rule and verifying whether ell conditions in &8 rule are satisiied

247 cost of solving constraints in relations of a rule
abj{z}: instance object that has z; as an attribute

ez cost of searching the neighboring peints of current value of 2; in conditions of a ruie plus

acgquiring Iizgl by fillering the reighboring points

4.1 Effect of Partition Methods for QM-type
Simulators

Repnuse connections between variables and
consteaints are given and fixed statically in a domain
model of @M-type simulators, the partition of
variables partitions constraints to be applied to the
variables, vice versa. Therefore, & whole model is
partitinned into same set of subsystems by the two
partition methods,

(1) Propagation Process

Consider an equally partitioned maodel as shown
in'l'able 1 and assume inequality [6]. We obtain the
compatational complexity of the propagation process
using the partition method from the equation [1] as
follows:

d < N/W (€]
CP;' = ep-M-NHWH 7]
Agzumption {6] means that each subsystem has
far fewer inputs and outputs than its internal
variables. #As H becomes greater, the effect of the
partition methed for the reduction of computational
complexity becomes more effective,

{2} Prediction Process

Similarly, we estimate the computational
complexity of the prediciion process as follows:

CD)' = e Ny W)W + cp [YT2WW 18]
Because the right-side of formula [B] is equal to
that of [2], the computational complexity of the
prediction process cunnot be reduced by partition
methods alune,

4.2 Fffect of Partition Methods for QPT-type
Simulators

A domain maodel for QPT-type simulators is
partitioned into different sets of subsystems by the
two partition methods. We define two kinds of
equally partitioned models as shown in Table 2. The
instances of each elass object are distributed among
subsystems ovenly by the method of partition of
variables, It does not restrict the field of applicable
rules in each subsystem. The partition by rules
restricts the field of applicable rules in cach
subsystem. This restriction zlso restricts the class
ohjrcts in each subsysiem and reduces the number of
iemplate rules applicable to a class object. However
instonce objects are not partitioned.

4.2.1 Partition of Instance Objects

(1) Propagation Process

Consider the first equally partitioned model in
Table 2, and assume two inequalities, [9] and [10].
We obtain formula [L1].

f < K/W 19
R <R {10]
CPy' = cgSK-RYW + cq Fy [1]

The meaning of assumption [9] is egual to that of
[6]. Assumption [10] means that the iteration
number are not increased by application of the
partition method.

The first term in the right-side of [11] is the sum
of the cost of checking activities of all objects and the
cost of verifying the truth of applied conditions
throughout a propagation process. This term is
reduced 1/W times due to the reduction of the number
of instance rules generated®, The second term shows
the cost of solving constraints in all active rules. It
does not decrease if the number of total active rules,
Fp', is oot reduced.

(2) Pradiction Process

We alsu estimate the cost of the prediction process
under assumption [9] as follows;

CD;' = Nz-es K- I'W + ez ¥M2 [13)

The first term in the right-side of [12] is the cast of
collecting I'(zj) from the applied conditions of the
rules which contain abj{z;}. This term is reduced 1/W
times due to the reduction of the number of instance
rules containing obj(z;), However we have the second
term pot reduced by this partition method, if the
number of changiog variables Nz does not decrease,

21 The Lrst terin in the right side of [11] s proportional to
the number of instance rules gemerated. The number of
ingtance rules generated far sach subgystem is approximately
S4HAWY undor the assumption (9], The total number of
ingtance rules generated is W-S-(EUW)? [=5-K* W), That is,
it is reduced 1YW times by applying the partition method.
Therefore, the term is reduced 1'W times by the partition
meLhocd

R

4.2.2 Restriction of Applicable Template Rules
for Each Class Object

(1} Propegation Process

Conzider the second equally partitioned medel in
Table 2, and assume inequalities, [13] and [14], just
like [9] and [10]. We derive the following relations.

e < JIW [15)
R"=R {14]
CPs" = e S KLR"YD + r..er" [15]

In this partition, the first term is reduced 1/D
times in the same way as the first equally partitioned
madel, but again, the second term dees not decrease.

(2) Prediction Process

We also estimate the cost of the prediction process
as follows;

Cha" = Ng-cg l-ID + ¢o YNz (18]

Again, there iz a term not reduced by partition
method alone.

4.3 Investigation of the Meanings of Some
Formulae

4.3.1 Assumptions for Obtaiuing Lhe
Computational Complexity to Be Reduced

Assumption [10] that requires the iteration
pumber not to be increased, derives the sufficient
condition that a domain model should not have
feedback loops,

Consider an example of a model shown in Fig, 2a,
A whale model is partitioned into two subsystems by
our partition methed. A feedback loop between the
two subsystems iz generated by the partition (see
Fig. 2b). There are some dependency among
variables in the above two models. Assume that the
simulator refers constraints to propagate variable
values in the sequential manner,

In the simulation as & whale (Fig. 2a), the
simulator determines the values of % and y in order
in the first step, and use the y value to determine the
rest of the variable values in the next step. However,
the partition (Fig. 2b) causes a redundant
computation. Becaose subsystem A determines the x
value and wastes time in trying to determine
variable values other thap x in subsystem A without
input value ¥ in the first step, then subsystem B
gbtains the ¥ value, finally subsysterm A determines

A whole system Subsystem A

. x: determined .| . i = determined :

: ceseagessmens el : T R et

* i H g SErEESSssidpimssastrrREsEiirrrens

5 s et SO iy =mm=ew i

HE S P ! ‘fiﬂihcr variables © jaes

T y is determined . j - .

T oabalewcost il :
e ? Subsystem B :

T TTTRP. PSRRI A . o H }F:
¥y -] el [t X *y : | 1

¢ visdetermined

*;ﬂl}ler variables :
o TR A |y ataloweost

“““ * . dependency among variables
s+s:::me 1 order of the propagation process

Fig.2b Propagation fora
fora Whole System System Partitioned into
without Feedback Subsystems with a

Loop Fecdback Loop

Fig. 2a Propagation

the rest of the variables from the y value in the
second step of propagation,

This is caused by the feedback loop in the
structure, The same conditions are derived from
assumption [13].

4.3.2 Terms Unreduced by the Partition Methods
io the Propagation 'rocess

The existence of terms not reduced by our
methods in the propagation process requires the
expression of rules ta be more general.

Let us assume an appropriate size domain model
(see Fig. 3} to estimate the effect of the ratio of the

Fig.3 An Example of a Domain Model to be

Partitioned

I=1lhd=10r=2 R=1, ag=n4

S=lJdir =50, K=10=50 W=1-=5

o= FplSKES:01—=0.8

a: ratio of the number of active rules ta
the tntal instanee rules

second term in the formula [11). That is, the costs, c3
and cy are equal. Both the cost of verifying a
constraint and the cost of sclving a constraint are

much larger the cost of checking activities of abjects
in a rule. Because they need a massive search in the
list of propagation laws or heavy computation like
the SUP-INF method [Eobert 77].

We introduce & new parameter, @, which is the
ratio of the number of active instance rules to the
total instance rules. We plot the computational
complexities of the propagation process in Fig. 4,

[t]

o1 20 3 40 50

Number ef instance objects of object class K

Computational complexity in propagation process
CPot [eg-105)

Fig.4 Evaluation of the Computational
Complexity of the Propagation Process of
the Model Shown in Fig. 3

moving o and W as parameters, From this result, we
conelude: (1) The reduction of computational
complexity becomes greater, as & becomes smaller.
In this appropriate model, if a is less than 10 %, then
the computational complexity, CPg', is nearly
inverssly proportional to the number of partitions,
W. {2) The magnitude of computational complexity
reduction increases sharply with the increase of K. I
the number of active instance rules for an instance
object is not changed by the increase of instance
objects, then an inerease in K causes u to decrease,
Therefore, the reduction of CPy' is more accelerated.

As the range of objects to which & template rule is
applicable becomes wider, the ratio of instance rules
which is active, a, becomes smaller. That is, the
partition method has & strong effect. The same

eondition is needed for partition by rules to be
efficient,

4.3.3 Terms Unreduced by the Partition Methods
in the Prediction Process

Mote that the term, c2-¥YNZ, in equations [8][12],
and [18]is not reduced by partition methods. Even if
en is much smaller than costs ¢; and ¢g, this term
increases sharply according to the increase of Nz
Unless Ny is reduced, system partition alone cannal
reduce computational complexity in the prediction
process. Because the propapgation process is
performed for each candidate of state which is not
filtered put in the consistency check, the total cost of
simulation may diverge exponentially without Nz
decreasing.

5 CRITERIA TO APPLY OUR METHODS

This section summarizes the criteria to apply the
methods proposed in section 2 with the propagation
process and prediction process.

5.1 Criteria to Apply the Method in the
Propagation Process

If all of the following three conditions are
satisfied, our methods of partition are applicable to
the system and reduce the computational complexity,

(1) Use of QPT -type simulators

The reduction of computational complexity is nol
so remarked in QM-type simulators, Because the
numbers of constraints and wariables used for
simulation are fxed, the reduction of computational
complexity is due to only the reduction of iteration
number to refer each constraint, NH, In addition, H
in equation [7] for GM-type simulators is usually
much less than 1.0,

The methods are useful for QPT-type simulators,
because the first terms in equations [11] and [15] are
reduced to 1/W and /D times, respectively. The
reduction of computational complexity is caused
mainly by the reducticn of the number of tutal
instance rules generated. Therefore, we mainly
investigate QPT-type simulutors,

(2} Application ta larpe systems withou? feedback
loops consisiing of relatively independent subsystems

Assumplivas, [9] and [10], are required to reducs
the eomputational complexity of the prepagatisn
process to the degree expressed as {11]. Assumrption

[9]is the condition that each subsystem has far fewer
inputs wnd outputs than its internal variables, For
large target systems consisting of relatively
independent subsystems, this condition is satisfied
usually, Assumption [10] requires the target system
tu have no feedback loop, &3 discussed in section
4.3.1. This condition is not very difficult to fulfill in
many artifacts, because dataflow in them is usually
planned to flow in one direction.

(3) Expression of rules in a general form

As discussed in section 4.3.2, the expression of
rules must be more genernl for the effect of our
methoeds with the reduction of computational
complexity in the propagation process to he more
powerful,

5.2 Criteria to Apply the Method in the
Prediction Process

As investigated in 4.3.3, although assumptions
[9] and {13] assumed to derive [12] and [16) are easily
satisfied, the existence of terms not reduced by our
partition methods is critical. Some knowledge about
the grder of changing is needed to decrease Ny,

Fortunately, the partition methods have also
advantages with acquiring this kind of knowledge.
When the simulator simulates the svstem behavior
as a whole, only the knowledge with the order of
changing among variables is available. However, it
iz very rare in practice that sufficient knowledpe is
given to specify a variable to be changed first. When
the system is partitioned into subsystems by the
partition method, the knowledge with the order of
variable changes among subsystems is also
availabled. This knowledge is likely to be known,
even il the orders of changing among variables are
not known. For example, (a) variables in subsystem
A are known to chanpe fester than variables in
subsystem B, (b) subsystem A is known to be shle to
fallow up subsystem B, and so on.

If this knowledge is given, cendidates of variables
to change are reduced and the computational

3 The partition method by time-scale [Huipers 877,
[Tanaka BB] partitfons the target system using the
knowledge with the order of changing ameng veriables, Cur
partition method wses the order of variable change among
subsystems. These two kinds of knowledge are
approximately independent. Therefore the availability of
these two kinds of knowledge changes with the propertics of
the larget svstem,

complexity in the prediction process is very much
reduced,

6 AN EXAMPLE OF THE APPLICATION QF
THE PARTITION METHOD IN
QUALITATIVE REASONING

Here we show that the computational complexity
of prediction process can be reduced by the partition
method using an example system (Fig. 5). The

R et] o -

Alternating Rectifier

current generator

beystem-A Subsystem-B
¥ @ abecissa olconducter v @ terminal voltage
C*: projection of C on axisy of capacitor
u o velosiiy of O q : capacitor charge
: aeceleretion of O ip : capacitor current
€ output terminal vellage Ig: resistance current

1.Current generator 2. Rectifler
e = Mz+ylxb (a)e = v_{Dq'.ode: onl (ble < v { Diede: off)

éy =u dq = ig =i

du=a in=e—=v ic= —ig

a = My=(v} ig = Mg+ie) ig = Mg+ie)
v = Mg+ig) q=>0

d :qualitative derivative ol a variable
Mg+ Mz=:functional relations of monetonie increase and
decrease

Fig. 5 Example of a Target System where the
Partition Method Is Effective

system consists of two subsystems, an alternating
current generator (subsystem A) and a rectifier
{subsystem B). As above mentioned, the partition
method is equally effective to the QM-type simulator
and QPT-type simulator on the computational
complexity of the prediction process. We construet o
model of this system for & QM-type simulator to
make the representation simple,

We have following heuristics: subsystem A is not
affected by subsystem B; subsystem B follows up the

changes of states in subsystem A, and variables in
subsystern B depend on the input e determined by
subsystem A, Using this knowledge, the variables
and constraints are partitioned into two subsystems
by our partition method. The behavior of the whole
system is simulated as follows. First, the behavior of
subsystern A is simulated over an appropriate time
interval independently (see Fig. 6a). Then the
behavior of input e simulated in step 1 is given to
subsystem B. The response behaviar of subsystem B
is simulated for each state of input e independently
(see Fig. 6b).

{a) Behavior of the alternating current generalor

G gutpute

(b} Behavior of the rectifier (rosponse to input el

ihpu'.:a_"‘ T
e LN
'.i i ---_-‘_‘—‘——u-__r"
A Eati - ety
12 03 &5 6 T8 910
+ L7 A \{3:] 7 IS il
_ . P — , e R _-I_._..,
IR o g
“\4)}/“‘\
o — L b
123 4 8 6 ___.i.8 &5l0
+ L Ly e 11

Fig. 6 Simulated Behavier of an Alternating
Current Generator and a Rectifier System

In this example, candidates of the nexl state
generated in the prediciion process are reduced,
because the behavior of each subsystem is separately
simulated ignoring the order of chanpges ameng
varinbles in the different subsystems. For example,
in the simulation as a whole, qualitative state at
gualitative time interval, t=0:2,t3), hos & variables
chanpging with time. & out of the 8§ variables have
multiple candidates of next gualitative values. The

state has 96 candidates of the combinations of next
gualitative state. In the simulation of subsystem B
using the partition method, the same state has only 4
variables changing with time and candidates of next
states are reduced to 8.

The total cost of propagatien process throughout
the simulation is reduced due to the decrease of
candidates of next states generated. However the
computational complexity of eack propagation
process in @M-type simulator cannot be reduced.

T CONCLUSION

This paper propased two methods for the partition
of target systems of qualitative reasoning: (1)
partition of variables according to the independence
of each subsystem, and (2) partition of a system by
the field of applicable rules. They are based on
heuristics about the structure and properties of the
system, These methods are efficient for enhancing
the computational efficiency of qualitative reasoning
under the following conditions.

(1) Conditions for application to the propagation
process

{a) Use of QPT-type simulators

(b Application to large systems without feedback
loops consisting of relatively independent
subsystems

{c) Expression of rulesina general form
{2) Conditions for applicolion o the prediction process

{a) Use of the order of variable changes among
subsysteme

Consequently, it is clear that our metheds of
partition are good supports in simulating the
gualitative behavior of large target systems,

There are still remaining problems. One of them
iz that our methods eannot deal with systems with
feedback loops. To eliminate this problem, the
simulator must control the order of propagation
among subsystems utilizing some methods, far
example; (1) least commitment method, and (2}
method where the propagation process of each
subsystern should be triggered by the determination
of input variables,

In future study, cur methods must be useful for
compiling the simulated results of each subsystem.
Each subsystem is furctionally modularized, because
the two methods puriition o system into relatively
independent subsystems. The simulated resulls are

compiled as a funection that responds to input states
and generates output values to other modules.

ACKNOWLEDGMENT

We weould like to thank to researchers of the Fifth
Research Laboratory at ICOT for their valuable
comments and diseussions. Our thanks must also go
to Dr. K. Fuchi, Dircetor of the ICOT Research
Center, who gave us the opportunity to conduct this
research in the Fifth Generation Computer System
Praject.

REFERENCES

{deKleer 84] Johan de Kleer & John Seely Brown,
Qualitative physics based on confluence, Artificial
Intelligence 24, pp.7-83 (1584)

[Forbus 84] Kenneth D. Forbus, Quelitative Process
Theory, Artificial Intelligence 24, pp.B5-168 (1954}

[Forbus 6] Menneth D). Forbusz, The Qualitative
Process Engine, lineis Univ. UTUCDCS-R-86-1288
(Dee, 1986)

[(Kuipers 84] Benjamin Kuipers, Commonsense
reasoning about causality: Deriving behavior from
structure, Artificial Intelligence24, pp.169-203
(1384)

[Kuipers 85) Benjamin Kuipers, Qualitative
Simulgtion of Mechanisms, MIT LCS TM-274 (1985)

[Kuipers 87} Benjarin Kuipers, Abstraction by
Time-scale in Qualitative Simulatior, Proceedings
AAAL-BT, pp.621-625(198T)

[Nishida &7] Toyoaki Nishida, Qualitative Analysis
of Discontinuous Changes in Simple Pulse Circuits,
Journal of Japanese Society for Artificial
Intelligence, Vol.Z, No.4, pp.501-510 {in Japanese)
{1987)

[Ohki 88] Masaru Ohki, Towards Qualitative
Physics, ICOT-TR-221 (1988)

[Eobert 77) Hobert E. Shostak, On the SUP-INF
Method for Proving Presburger Formulas, Journal of
the Association for Computing Mackinery, Vol 24,
No.d4, pp.529-543 (Qet. 1977)

(Tanaka 88] Hiroshi Tanaka, Temporal-hierarchical
Qualitative Reasoning and its Application to
Medicine, Proceedings of Logic programming
Conference '88, pp.11.17 (1985)

APPENDIX Differences Between GQupras and
the Simulators Based on @PT

Qupras is similar to the simulators based on

qualitative process theory (QPT), GIZMO and QPE .

10

All of them aim to solve high-level physical
problems. There are some differences of the
knowledge representation between them: (a) In
Qupras, static relations and dynamic physieal laws
among objects are described in the unified form of
template rule, "physics”. (b) Quantity space is not
described explicitly in Qupras. (c) Qupras handles
physical variables quantitatively as well as
qualitatively,

Tuble 3 compares the terminology of knowledge
represeatalion between Qupras and the simulators
based on QPT.

Table3 The Comparison between Qupras and
QPT with the Terminology of Knowledge
Representation

Qupras qQFT

Rules to express static Physice Individual view

relations amoeng objects

Rules to express dynamie Physics Physical process
changes of objects
COihjects to exist before the Objects Individuals

rule is applicable
Conditions far the rite

to be active
Comsiraints{functional)
Constraints(derivative}

Conditions Precnditions &
QuantityConditions

Relations Relations

Relations Influences

