ICOT Technical Report; TR-389

TR-3%49

Macro-call Instruction for the Efficient
KL! Implementation on PIM

by
T. Shinogi. K. Kumon. A. Hattori(Fujitsu),
A Goto, Y. Kimura and T. Chikayama

June, 1988

988, 1COT

Mita Kokusar Bidg. 21F (03) 406- 31491~ 5

|[:DI 3-8 Mila 1-Choine Telex ICOT 132964
Minato=ku Tekve 108 Japan

Ihstitute for New Generation Computer Technology

Macro-call Instruction for the Efficient KL1 Implementation on PIM

Tsuyoshi Shinogi Kouichi Kumon — Akira Hattori
Fujitsu Limited*
Atsuhiro Goto Yasunori Kimura Takashi Chikayama
Institule for New Generation Computer Technology!

Abstract

In the FGCS project. a paralle! inference machine prototype, FIM, is now being developed
based on the concurrent logic programming language, KL1. KL1-B, the virtual machine ingtrue-
tion designed for KLT, is extended for parallel execotion. Run-time type checking is necessary
im many instrucltions of KLI-B. The action of & KLL-B instruction varies very much depending
on its argument type. To enable efficient implementation of KL1-1, RISC-like instructions with
macro-call funetions are incorporated in the processor element architecture of the PIM, so that
the processor clement can usc only the best features of RISCs and high-level instruction set
cotnputers {HLICs) with micro-programs,

The FIM includes clusters connected by a netwaork. Fach cluster consists of esght processor
elements, communicating through shared memory over & common bus. The processor element
kas two instruction streams, external and ianternal. Most of external and 1nternal instructions
are commeon TISC-like instructions, which ran be executed every machine cvele nsing a four-
stage pipeline. KL1 programs are compiled into the object programs consisting of the external
instructions stored in shared memory., The external instructions include conditional macro-call
instructions. They can determine, depending on tag conditions of their register operands, to
proceed the execntion of instruction streams ar to invoke their macro bodies ol small cost,
The macro-biody js writlen in the internal instrucijons and swored in the local memory of each
processor ciement. The internal instructions can handle both the register operands and the
immediate vaiue operands of a macro-call instruction by using indirect registers,

The RISC features in Lhe processer elemenl architeclure are effective for unconditionally
executed portions both i compiled codes and in macro-bodies. The HLIC features by macro-
call instructions are suitable for implementing most instructions of KL1-B, whose actions vary
depending on their argument type. As a result, system designers can flexibly implement KL
on the PIM fully exploiting the advantages both of RISCs and HLICs.

1 Introduction

In the Japanese FGCS project, the parallel inference machine systems are heing developed hased
on a logic programming framework at 10O [3, 3], The kernel langnage, KL1, has been designed.
The parallel operating svstem is being written in KL1 as a self-contained operating system. A
parallel inference machine prototvpe, PIM. optimized 1w KLL, is now being developed, which is
planned to include 128 processor elements.

The principal aim of parallel processing is 10 increase the execution performance, so that users
will be ahle to solve large application problems. Hierarchical structure is introduced in the PIM to

“1015, Kamikedanaka, Nakahara-ku, Hawasaks 211, Japan
14-28, Mita-1. Minata-ku, Tokvo 108, Japan

connect 12% processor elements. Eight processor elements form a clugter, communicating through
shared memory over u common bus. Local coherent cache. desighed specifically for KL1 parallel
execution, is provided to enable quick shared memory access and eflicient communication within a
cluster, The clusters are connecied with other clusters by a packet switching network of multiple
hypercube. The development of a high-performance processor element is, of course, the first step
10 the target parallel inference machine,

KL1 has the features that make conventional machines unsuitable for efficient execution. Three
of these features are: (1) unification is a polymorphic operation ou, usu allv, dynamically constructed
linked data structures; (2) the execution comtext, though small, is frequently switched during
execution because of synchronizing function in KLI; and (3) single assignment feature demands
efficient memory management by incremental garbage collection.

The architecture design started from development of KL1-B [6], a virtual machine instruction
set for KL1. Experiments using KL1-B emulators found that: most instructions in KLL-B include
run-time data tvpe checks; and the action that follows the run-iime type check within a KLl
B instruction varies very much depending on the type, even though the run-time data type check
selects only a portion of them. Therefore, it is difficult 1o implement KL1-B efficiently by expanded
compiled code of RISC-Like instructions.

Focusing on the macro-call function in the processor element architecture of the PIM, this article
presents how to exploit the advantages both of RISCs and high-level instruction set computers
{HLICs): how to implement the macro-call function in the processor efement to realize both features;
and how eflicient the KL1-B instructions can be executed by the maero-call fanction,

2 KL1-B: Virtual Machine Instruction for KL1

2.1 Brief introduction to KL1

KL1 is developed based on GHC [11, 12). A GHC program is a finite set of guarded Horn cluuses
of the form:
H:—0 G By o (w2 e 2 0

where H, G, and B; are called the clouse head. guard goals and body goals. The operator, |, is
called a commitment operator. The part of the clanse preceding | is called the passive-part (or
guard), and that following it is called the active-par! (or body).

When an inpul goal, H. is given, reduction of H is tried n porellcl. and one of the rlanses
whose head unification and guard goal exccution sneeeed is selected, After that. body goals Ifjs
are execnted. This means that goal I is reduced to Bs. If unification requires the instantiation
of & variable during passive part execution, this unificalion is suspended.

KL was initially specified us flat GIC. taking efficient implementalion intlo consideration. Flat
GUC i asnbset of GHO, whicl allows oniy built in predicates as guard goals. This resiriction makes
language implementation more efficient while keeping most of GIICs descriptive power. Starting
from flat GHC, KL1 has heen extended to be a practical language introducing the features required
for the parallel aperating system design.

2.2 Basic execution mechanism of KL1

KL1-B [6] is a virtual machine language interfacing paraliel inference machine hardware and k1.1,
just as WAM [13] interfares Prolog and sequeniial machines, In other words. WL1-H represents the
abstract architecture of 1he parallel inference machine.

Continuous reduction by ereculeg

Current goal

Suspension

using suspendy Fop a goal

using proceedp Push a goal using engquene_goely

POEE —

Resumption by
active unification

Snspn nided Ena|5 Htad}r-gaa]—stack

Figure 1: Goal state transition

To build an efficient parallel inference machine, execution on each processor element must he ag
efficient as possible. Therefore, KL1-B was designed first based on sequential execution [6]. Then,
it was extended for parallel execution. The KL1 parallel execution mechanism is summarized in
the following subsections!.

2.2.1 Datla and contro] structures and execution control

Data structures or variables shared among poals are stored in a heap. A data structure called a
goal-record is used for representing a goal. A goal-record consists of its argument list, a pointer
to the compiled code corresponding to its predicate name, and some control information. The
argument list includes atomic values or pointers to variables or structure bodies in the heap.

A goal can be a ready goal (RG), a suspended goal (5G) or a current goal (CG), as shown
in Figure 1. The ready goal-records are linked into a list forming & rewudy-goal-siock. A KL1-B
instruction, proceedg ?, pops up a goal as a current goal, then reduction of the goal is initiated.

2.2.2 Execution of the passive-part

For the current goal, candidate clauses are tested sequentially by head unification and guard exe-
cution to choose one clause whose body goals will be executed. If the instantiation of a variable is
required during the execution of the passive part, the test for this clanse is ahandoned and execution
proceads to the next candidate clause. Figure 2 shows a typical KL1-B instruction {or passive part
execution. Wait constanty corresponds to a passive unification between a current goal argument,
At and a constant value, C. Label is a branch address when the unification is suspended or failed.
When a unification is suspended, the variable which caused the suspension is saved in a suspension
stack.

If no clause is selected, the current goal becomes a suspended goal by a suspendg instruction.
First. variables which cause the suspension are popped up from the suspension stack. Then, the
current goal is linked to these variables to realize non-busy waiting synchronization mechanisin
between K1L1 goals,

"An explanation of each NL1-B instruction can be found in [z, 4].
*In this article, #ach KT1-R instructinn is written with poatfix B, e, proceeds.

ward_consfenty 0 A1 LahefF
put the dereferenes result of A Lo 42
clhivek the equality between A and
if they are cqual then procesd to the next code
else if A is unmstantiated then push A7 o the suspension stack
jlmlp i Lakel

Figure 2: A KL1-B instruction: wail.eonstanig

gel_hstvalueg Ay, Ax
put the dereference resull of Arto i
if A¢ s uninsiantbialed
then if A7 is hnked by suspended goals then resume suspended gouls
At i= X and proceed to the next code
else i Avis s then do general umificalion between Xj and s
aelse Farlure

Fignre 3: A KL1-B instruction: getlisi_valueg

2,25 Execution of the aciive-part

If a clanse is selected, the hody part of thal clause is execuied. Execution of the body part consists
of two kinds of operations, active woiffeation and fody goel fork. Figure 3 shows a tvpical KL1-B
instruction for active unification. Gellist_valueg unifies a variable, 34, with 2 List pointed by Xj.
Active unification is executed on the spot. Here, suspended goals may be resumed by this active
unification. by moving the goal-records linked fram the variable tn the ready-goal-stack again. [See
Figure 1.}

The body goal fork is done by argument preparation iustroctons. sel XYY Xp, putl XA X g, fol-
lowed by an instruction for licking the goal record to the ready-goal-stack, engucue_goaly. New
variahle cells or structures mav be allocated by these instruetions. One body goal can be executed
by erccuteg without pushing it back 1o the ready. goal-stack. [See Tigure 1.) Depth-first scheduling
is adopted, here.

2.3 Incremental garbage collection by MRB

L1 is a concurrent language with no side eflects, Destructive memory assignment is, in principle,
not allowed. Therefore, naive implementations of KLT consume memory area very rapidly. so
that garbage collection would oceur freguently, The localive of memory references is supposed to
be very low during garbage collection by widely wsed schemes, so that cache misses and memory
faults would occur often. ln sequential Prolog [13]. this problem is not very serious becanse of the
backtracking feature. However, as committed choice languazes have no backiracking. an efficient
incremental garbage collection method is important in K11 hmpiementation.

Incremental garbage collection by multiple reference bit {MEBR) [2] is introduced in KL1-B
architecture. MRB is one-bit information in 2 pointer to show whether the pointed data object
is possibly referred to by other data cbjects {on- W8 or vot (of-MIER) When a data object is
pointed by a pointer with off-A7F D the corresponding memory arca can be reclabmed after reading
s conienis. Therefore, the lovality of premoay referenees can be mesed using MHB incremental

colleel sty Ar
if MRB of A1is off
then reclaim the cons cell pointed by Ad
else proceed Lo the next instraction.

Figure 4: A KL1-B instruction: collect listg

garbage collection. The MRB is also used to implement the efficient stream merge and array
aperations in KL1 programs. For example, an array element can be destructively updated when
the array is referenced by an off- MEB pointer.

The MRB is maintained in each KL1-D instruction. In addition, several garbage collection
instructions are introduced to KL1-B. The compiler detects candidate places where garbage cells can
possibly be collected, and inserts garbage collection instructions at appropriate places. Collect listp
in Figure 4 is a typical KL1-B instruction which reclaims memory area by checking the MEDB at run-
time. Memory area can be also reclaimed during dereference. Unification in KL1 produces a chain
of variable cells pointed by indirect pointers. When a variable cell pointed by an indirect pointer
with off-MRD is found in dereference, the memory area for the variable cell can be reclaimed.

2.4 Summary of KL1-B instruction features

The characteristics of the KL1-B instruction features can be summarized as follows.,

Conditional dereference: Unification instructions in KL1-B are classified as passive unification,
active unification or argument preparation [6]. Dereference iz required at the beginning of
passive and active unification instructions. In dereference, a register is first tested whether
its content is an indircct pointer or not. When it is an indirect pointer, the pointed cell
is fetched into the register, then the data type is tested again. Otherwise, unification is
performed depending on the data type.

Embedded incremental garbage collection in dereference: Variable cells pointed by an in-
direct pointer with of-MREB can be reclaimed. These cells are reclaimed in dereference.
Therefore, each dereference operation includes the MREB test and, possibly, reclamation op-
eration.

Polymorphic instructions: Many instructions in KL1-B include run-time data type checks even
afler dereferencing. For example, the active unification instruction, geilisi_valueg, in Figure 3
has one of four kinds of actions, selected by the data tvpe check: (1) when Aiis a list, general
unification is performed; (2) when A{ is an uninstantiated variable without suspended goals,
the Xi is assigned into the variable cell; (3) when A5 is an uninstantiated variable with
suspended goals, these suspended goals are resumed with the instantiation of Af; and (4)
atherwise, the unification fails.

Consequently, most instructions in KL1-B include run-time data type checks. The actions that
follow the run-time type check are very diferent.

3 Efficient KL1 Implementation by Macro-call

3.1 Alternatives for KL1-B implementation

The following alternatives can be candidates of the KL1-B implementation on the PIM:
e expanded compiled code by RISC-like instruction set
¢ KLI-B interpretation by micro program.

A RISC er RISC-like instruction sel can be execuled using short pipeline and has advantages
in kardware design cost. However, considering the naive expansion of KL1-B using low-level RISC
instructions, the static code size of compiled programs will be very large. This may cause instruction
cache misses or may increase common bus traflic in tightly-coupled multiprocessor, such as a PIM
cluster.

Local coherent cache [1] in each processor element is introduced in PIM architecture. The
cache mechanism increases the efficiency of local executlion on each processor element. It also
enables high-speed communication within a cluster. Here, reducing common bus traffic is a more
important design issue than reducing cache miss ratio [7]. The deficiency of the expanded compiled
code is fatal for snch systems. Qur software simulation found the expanded compiled code canses
the increase of the common bus traffic, so that the total performance of a cluster will seriously
degrade [7].

On the other hand, the static code size can be small in a high-level instruction set computer
{HLIC} with micro-program, such as the PSI [8]. However, the KLI-B interpretation by micro-
instructions has the following disadvantages to design a high-performance processor elemnent for the
PIM.

First, short vertical micro-instructions are not advantageous in their performance. Then, rather
torg micto-instructions may be incorporated, so that skilled designers would strive to write the
micro-program for KL1-B, Here, they would find it difficult to make full use of micro-instruction
fields. This is because the actions of each KL1-B instruction are determined by run-time data type
checks as in section 2.4,

The data type check ofien selects to proceed the next KLI-D instruction without any operations.
In addition, KL1-B includes simple instructions, such as register-lo-register mave instructions.
Therefore. when every KL1-B instruction is interpreted by micre-instructions, HLIC may suffer
from the rost of useless micro-instruction dispatching.

Here. if a processor has very efficient conditional subrontine eall function on data tag, accom-
panied by a RISC-like instruction set, the processor can use only the best features of both RISC
and HLIC. The efficient one-level subroutine call function is implemented on the processor element
of PIM by introducing macro-call instructions and internal instructions.

3.2 Macro-call function in the processor element of PIM

The processor element of PIM has two kinds of instructions, external and internal. Erternal
instructions are mainly used to represent compiled codes of user programs. The external instruction
set includes macro-call instructions. The macro-call instruction first test the data type of a register
given as its operand, then it will or will not invoke its macro-body in the internal instruction
memory (1IM) depending on the result of the test. The macro-bodies stored in the LIM are written
ininternal instructions by system designers, just as microprogram of HLIC processors.

Here, most of both external and internal instructions are common RISC-like instructions, in-
cluding K11 specific instructions. Therefare, system designers can flexibly specify the machine level
language, kL1-B, using one kind of RISC-like instructions instead of complicated micro-instructions
in conventional computlers. Considering the difliculty Lo make {ull use of long micro-instructions,
this scheme is advantageous to system designers.

3.3 Macro-call instructions and their conditions

A macro-call instruction can be regarded as a lighf-weight subroutine call or as a high-level instrue-
tion realized by microprogram. Macro-call lustructions are introduced to implement high-level
KL1-B instructions.

Tle run-time test of the type tag is a primitive operation used very often in KL1 implementation.
As discussed in section 2.4, mosl unification includes a multi-way branch based on the goal argument
type. Some Proleg machines, such as the PSI [10], have a hardware-supported multi-way branch
function. The processor element of PIM does not have suoch hardware. This is because: (1) it is
costly to adopt a hardware-supported multi-way branch to @ pipeline processor; and (2} branches
taken in run-time are based; not all possibilities are chosen by equal chances. The PIM instruction
set has only two-way tag condition in macro-call instructions and in tag branch instructions, but
various lag conditions can be specified in then.

The macro-call instruction has the form:

MacreCall if cond, Address with regy, reg;/immed;, reg;/immed;, ..., reg,/immed,,

where:
Address - Entry address of the internal instruction memory
reg;/immed; : register number for the argument of macro-call or short immediate constant
cond : ind, NotAnd, Or, NotOr, for, Notier, XorMask, NotXorMask

condition for the macro-body invocation.

A tag condition, cond, can be specified as a logical operation belween a register tag, regy and a
register tag, reg, or an immediate tag, immed. In addition, a tag-mask register can be used to
mask logical operation (see XorMask, NotXorMask). To avoid frequent update of the tag mask
register, some macro-call instructions have an immediate tag mask in their operand.

Iu the processor element of PIM, various hardware flags, such as the condition code of ALT
operation or an interrupt flag, can be accessed as the tag of dedicated registers. Therefare, these
fiags can also be used as conditions of macro-call.

3.4 Indirect registers for internal instructions

The macro-hody is specified by internal instructions stored in the [IM. The internal instruction
can specify virtual registers, called indirect registers, as its register operands. Through the indirect
registers, internal instructions can handle the operands of & macro-call instruction which has invoked
the macro.

There are two kinds of indirect registers. One is used to get the operand of the macro-call
instruction as an immediate value. The other is used 1o access the contents of the register that
is specified in the macro-call operand. Each indirect register corresponds to the operand position
of the macro-call instruction. Therefore, the operands of a macro-call can be efficiently passed to
its macro-body. In addition. a macro-body can be used flexibly by changing the argument of the
macra-call instrnction.

=1

‘ Multiple hvpercube intercluster network {optical) ———|
----- [T

E [Network inlerface E i . ! ! E lnput/output
| 1 I 11 P i 1 | node
/| PE, || PE; PEs |10t
Cache]| [Cache]l {[Cache]| | - : . .
[Cache] [Cache] " fCachd 1 10
' I [_ | . L Len ' PE : Processor element
! [Bus 1 v : [1 SM : Shared memory
1 [[} i 1
| SM - o : |)
| s E \ ! :
Cluster, Clustery Clusters Clustery;

Figure 5: PIM overview

Eacli internal instruction has an additional bit, called eoi, to specify the exiting point from
macro-body, so that the execution of macro-body van finish at any non-hranch instruction.

4 PIM Architecture Overview

4.1 PIM configuration

The paralie! inference machine prototype, P is planned to inclnde 128 processor elements. The
target processor element performance is 200K to 500K RPS?, so that 10 to 20M RPS is expected as
the total performance for practical applications. The PIM has a hierarchical structure, as shown in
Figure 5. Eight processor elements (PEs) form a cluster. communicating through shared memory
(5M) over a comman hms. 'rocessor elements within cach cluster share one address space. so
that they can guickly communicate by reading or writing shared memory. The PIVM will consist
of 16 clusters. It will be possible 1o increase the number of clusters. Processor elements are
connected with processor elements in other clusters by a mwlitiple hypercube network, Becanse
oach cluster has its own address space. inter-cluster parallel processing is performed by sending
and receiving message packets with address transformation. Each processor element lias a network
commuuication port to send and receive messages between clusters.

4.2 Processor element configuration

Fignre 6 shows the processor element configuration. The CPU has two instruction streams. one is
from the instruction caclie, and the other is from the internal instruction wemory (M}, Hopefully,
the CPU will execute an instruction at every machine cvcle using a four-stage pipeline in most
cases. The 1M is similar to a writable microprogram store. The IIM can store about 8K internal
instructions. which are preloaded by special instructions, The CPU has two co processors: a
setwork interface unit (N1T7) and a floating point pracessor unit (FPU). The CPU lLias a common
protocol to use both co-processors.

The processor element includes two caches: an mstruction cache and a data cache. The contents
of hoth cache memories are identival, They are provided to enable the CPU to feich bath data
and instructions every machine cvele. The cache consistency protocol used in PIVS is based on the

BPS: LI goal reduction per second

fid-bit data path

NIU
(network Network router
interface unit)
I
Frru l
(floating i
point unit) [i
int-addr . I
{internal
CPU int-code | mstruction
mermeTy
F 1
Instruction | Cache address
i
_t Instruction L
cache ceU
(cache
Tata cachke controller
units}

——

Common bus

Figure G: PJAS processor element configuration

63 33 a1 0

Tag free Data

Figure 7: WL1 tageed data representation

protocol described in [9] (called the Mo protocol) with some functional extensions [7]. Lock
operations are essential for implementing KLl in the shared memory multiprocessor. The PIM
cache enables a light-tweight lock and nnlock aperation hy using the rache block status. lock adidress
registers, and busy-wait locking scheme.

Taking practical KL1 implementation into consideration, 40-bit KL1 data (an 8-bit tag and
32-bit data) is necessary. Normal KL1 data is placed by 40-bit K11 tagged data in aligned 64-bit
words ? in the PIM memorv system, as shown in Figure 7. The MRB is assigned in its tag part.
Instructions and some data structures, such as strings or floating point numbers, viilize the full
capacity of 64 bits,

4.3 Registers in CPU

The processor element includes 32 general-purpose registers and 6 dedicated registors. Each general-
purpose register lias an = bit tag and 32-bit data. The dedicated registers are implemented as
discrete registers in CP1 LSL They include a condition code register, ap interrupt request register,

YAr the alternative of MED garbage collection. LRCaey reference connting) [4] ig neew beiug examined. In LRC
methed, the free three bytes in cach tagged data will be gsed as noference connt fieid

Hal

and a Lag THask]'Eg]:—it.&‘:]'. Most ﬂagﬁ, such as the condition code of }!\.LU, are pla.ced in their tag
part. These registers are specified by a 6-bit register specifier in most instructions. In addition to
the above registers, the processor element has special registers and co-processor registers.

The PIM instruction sct can nse 16 indirect registers in its register operand. Through indirect
registers, internal instructions can handle the operands of a macro-call instruction which has just
invoked the internal program code. It can represent either the immediate value or the contents of
a register specified in the operand of macro-call instruction,

4.4 Instruction set

The PIA instruction set can be classified as follows, (Appendix shows the list of principal instroce-
tions.)

4.4.1 Branch insiructions

T'he instruction set includes three kinds of branch instructions: external branch, internal branch
and macro-call. (Table 3.} An external branch instruction can be used not only as an external
instruction but also as an internal instruction. In both cases, its branch target is an external
instruction whose address is specified by a register, or the instruction pointer, with address offset.
Tnternal hranch instructions are nsed to branch within internal instructions, whose branch address
is specified by the absolute address of the IIM. Macro-call instructions invoke macro-bodies in the
IIM as in seclion 3.2,

4.4.2 ALU instructions

ALU instructions have two source registers and one destination register. (Table 4.} These instrue-
tions can be classified into three kinds: 32-bit data computation, 8-bit tag computation, and 40-bit
compntation. Mest ALU instructions can be used both as external and internal instructions. Al-
though logical operations are available for both the tag and data, arithmetic operations and shift
operations are limited to the data part.

4.4.3 Memory access instructions

Memory access instructions include the instructions for dereference and MRER, as well as the in-
structions that access shared memory with coherent cache control. {Table 5.} Each memory access
instruction reads data to or writes data from a register from or to a memory location whose address
iz specified by a register and immediate address offset. The transferred data width can be ¥, 16,
32 bits: 32 bits with an =-bit tag; or 64 bits. A new tag can be given in memory access instruction
WritewTag. Instructions to move the tag part of a register to the data part of another register, and
its reverse, are provided as regisier move instructions.

In MRE incremental garbage collection, cach variable cell or structure is allocated from a free
list and, when reclaimed, itz memory area 1s hoked 1o 2 {ree Hist. For eflicient {ree list operations,
the PUSH and POP instructions are used. PUSH can link a variable eell or a structure to the free list,
and POP can allocate it {rom the free list, in one machine cvele,

Their actions are specified a= follows.

FUSH Rs, Ra, offset: M[Ratcffset|—Rs; Rs—Ra
POF Ad, Ra, offset: Rd—HRa: Ra—M[Ratoffset)

Here, imagine £t 10 he the free list Lop pointer register, where

il

Table 1: Pipeline stages of ALU and memory access instructions

ALU operation Memory Gooess
[t | Decode Decode [regisier read (address)
A - Address calculation
T | Register read Cache aceess {address)
B | ALU [repister write | Cache access {data) / register write
POP 11, ft, -

allocates a cell to r1 from the free list pointed by £t, and
PUSH ft, ri1, -

links a cell to the free list pointed by £t from 1. The POFuTag instruction is used to give a new tag
in a pop operation. Two dedicated instructions, MRBorRead and DEREF, are provided to support
MRB maintenance during dereference. MRBorRead reads data from memaory, then sels the MRD on
in the destination register, if one or both MRBs of the address register and the fetched data are
on-MRE. DEREF is & merged instruction of both MRBorRead and POP.

The instruction set includes memory access instructions corresponding to each cache function.
Exclusive memory access instructions, LockRead and Writelnlock, are also provided. These in-
structions have restrictions on interruptions or traps, as well as they may cause fatal errors in
incorrect usages. Therefore, the use of these instructions will be limited to internal instructions.

4.5 [Execution pipeline

The processor element uses an instruction buffer and a four-stage pipeline, D A T B, to attempt 10
issue and complete an external instruction every cycle. The target of the basic machine cycle is 50
nanoseconds. Fxternal instructions are either four, six or eight bytes long, so that the instruction
buffer has a hardware aligner. Eacl internal instruction requires two additional stages, preceding
stage D, to set the internal instruction address (stage S) and to fetch the instruction (stage).
Then they are executed using the same pipcline stages, D A T B.

Tahle 1 shows the pipeline stages in both ALU and memory access inslructions. All instructions
modify general-purpose registers in the last B stage, therchby avoiding write conflicts. Internal
forwarding is done by hardware so that the result of a register-to-register instruction can be used
by the next instruction even though that result has not vet been written to the register file.

In a branch instruction to an external instruction, the branch targel instruction is fetched at
stage B in the same way as memory read instructions. Therefore. ordinary branch instructions may
cost three additional cveles to branch. Delayed branch instructions can avoid wasting the three
cycles by executing other effective instructions.

Although most tag branch instructions test their condition al stage B, macro-call instructions
and some internal branch instructions test their condition at stage A. Figure B shows the macro-
call instruction pipeline. A macro-call instruction initiates the internal instruction fetch (stage
S) at its stage D, then tests its condition al stage A 5 Therefare, even if the branch condition
i taken. a macro-call instruction costs only one additional cycle to invoke its macro hody in the
IIM. In addition. delaved macro-call instructions are provided to avoid the penalty. Return {rom
macro-call, i.e., return from a macro-body to the external instruction just next to the macro-call

"When the register for tag condition is set by a memory read instruction just before the macre-cali instruction,
the stage A of the macre-call instruction is stretched,

When the condition 15 {rue;
oA . macro-call instruetion (condition test at A)
- pexl external instruction {canceled)

I
S C D A T B : first internal instruction

S5 C D A T B :secondinternal instruction
When the condition s false:

A . macro-call instruction {condition test at A)
DA T B : next cxternal instruction
DA T B . external ins{ruction

End of macre body:
S ¢ D A T B . Internal instruction with ced
s C . canceled internal instruction
g » canceled internal instruction

DA T B nextexternal instruction

Figure 8: Macro-call instruction pipeline

wail_lisig Az, Label :
if tagi{ At) is LIST then proceed to the next code
elseif tag(4i) is REF
then put the dereference result of 4i to A
if tag(A7} is LIST then proceed to the next code
elseif A1 is uninstantiated

then push Ai to the suspension stack and jump to Label
else jump e Label

elze jump to Label

Fignre 9: A KL1-B instruction: waillisip

instruction, can be indicated by a one-bit flag: roi. The internal instruction memory has an eoi
field for each instruction. Therefore. the execution of macro body will finish with no overhead
(except for branch instructions.) {See Fignre 8.)

5 Example of KL1-B Implementation

5.1 High-level instructions using macro-call

Maero-call instruetions are nsed to implement high-level KL1-B instructions. For example, the
KL1-B instruction. weit listg, in Figure 9 first tests the data type of a given argument. I the data
tvpe is the expected LIST, this instruction finishes. Otherwise, the data type selects the following
aperation in Fignre 4,

A macro-call instrection has a condition to invoke its macro-body in the IIM. In the above
example, a macro-call instruction corresponding to wait listg is written as follows, where LIST is
an immediate tag value and acp is an alternative clause pointer register for Label

MacroCall wait_type (if) NotXorMask (with) ai, LIST, acp;

The data tvpe tag of register ai is tested first®. If the register ai has a value witli the LIST

“assume that MEB is assigned in B-bit tag field, and 1hat the Llag mask register holds a value te mask the MRB.
The vperator, NotkorBask, 18 used to test LIST trpe masking i1s MR,

12

“

MacroCall wait fype NotXorMask ai, LIST, acp;

wasiiype: JumpNotXor @rd, REF, @r2;
DEREF ptr, @r0d;
MJumpNotAnd €r0, UNB, case_unbound;
WiumpNotAnd Crd, MRP, case.mrp;
FUSH frl, ptr;
MlumpNotXorMask @r0, @41, nraai_type;

Hop (eoi);

Figure 10: Macro body for Wait listg

type, this macro-call instruction simply finishes. Otherwise, this macro-call instruction invokes an
internal routine whose entry address is specified as wait_type. Figure 10 shows the macro-body in
internal instructions at waii_type. Here, @r0 and @r2 are indirect registers corresponding to the
arguments, ai and acp, in the macro-call instruction. @d1 is also an indirect register to show the
immediate value in the second argument of the macro-call, namely, immediate tag LIST. The first
internal instruction, JunpKotXor, tests the tag of €r0, namely ai. When the tag is REF, proceeds to
the next instruction for dereference. Otherwise, it jumps out to the external instruction specified
by @r2, namely acp.

The macro-body in Figure 10 can be used for other KL1-B instructions. Assume that the
data type of a four-element vector is represented by a tag, VECT4, and that a KL1-B instruc-
tion, wail_vect{g, unifies a goal argument with a four-element vector. The macro-call instruction
corresponding to wail-vectys can be:

MacroCall wait.type (if) NotXorMask (with) ai, VECT4, acp;

5.2 Compiled code

Figure 11 shows a part of a sample compiled code: machine instructions and KL1-B instructions
for append. Here, KL1-B instructions that include dereference and unification are represented by
macro-call instructions. Ten KL1-B instructions in this example are represented by six macro-
call instructions and eight RISC-like instructions. In ordinary execution, three of the macro-
call instructions actually invoke their macro-bodies, and other threc only proceed to the next
instruction. The processor element performance estimated from the compiled code is over 600K
RPS for the append program. Note that the estimated performance includes the incremental
garbage coilection cost using MEDR.

6 Conclusion

The macro-call function for the efficient KL1-B implementatlion was discussed. The processor
element architecture for the parallel inference machine prototype, PIM, was presented. Most PIM
instructions are RISC-like instructions which can be executed in one machine cycle using four-stage
pipeline, The instruction set includes tagged architecture and MRB incremental garbage collection
support. The macro-call instructions are introduced to invoke their macro-body efficiently. The
condition of the macro-call instruction can be specified as register tag computation. The internal

13

append ([KIX],¥,2) :- true | Z = [H|22), append(X,Y,2Z).

app/2/1: MacroCallNotXerMask al, LIST, acp, waittype; Yo wait_listp af
Read al, ad, -; % read_varabley af
Read al, a&, B; % read_variableg af
HacroCallXorMask a4, REF, al, 0, readvar: %
MacreCallXorMask a6, REF, al, 8, readvar; e
MacroCallXerMask al, MRELIST,-, allsclist: 9 rewse_lisip el
Write al, a4; % wrile_valueg af
MacroCallXorMask fr1, NIL, genvar; % write.varsableg afi
WritewTag al, frl, &, REF; b
FOFwTag a€, fri, REF; Yo
MacroCall al, a3, getlistvalue; T gethistovaluey af, a%
DelayJumpNotind ce, SLIT, app/2/1; Yo erecuten append
Move ak, al; T pul_valven aj el
Move aB, a3; % puivaluey af,ad

Figure 11: A sample compiled code: Append

instructions of the macro-body ean use indirect registers to access registers or immediate value
in the macro-call instruction’s operands. As the result, the processor element of PIM has the
advantages of high level instruction set computer as well as that of RISC-like computer.

The instruction set has been specified. The detailed design of the CPU, the CCUs and the NIU
15 completed. The target of the basic machine cycle is 50 nanoseconds. The LSI implementations
of these chips, as well as the design of the processor element board, are now in progress.

Acknowledgement

We wish to thank all of the PIM research members both in 1COT and Fujitsu Limited, Especially we
thank ICOT rescarchers: Dr. K. Taki, Mr. K. Nakajima, Mr. A. Matsumoto, and Mr. T. Nakagawa,
and Fujitsu researchers: Mr. S. Arai and Mr. A. Asato, for their useful comments. We also wish to
thank Mr. H. Murano and Mr. H. Tamura in Fujitsu Limited for their help in developing the LSIs
and their useful comments. Finally, we would like to thank 1COT Director, Dr, K. Fuchi, the chiel of
the fourth research section, Dr. 5. Uchida, the general manager of Information Processing Division
in Fujitsu Laboratories, Mr. J. Tanahashi, and the manager of Artificial Intelligence Laboratory in
Fujitsu Laboratories, Mr. H. Hayashi, for their valuable suggestions and guidance,

References

(1] P. Bitar and A. M. Despain. Multiprocessor cache synchronization. In Froe. of the 130 Annual
International Symposium on Computer Architecture. pages 424=-431, June 1986,

[2] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In Proceedings
af the Fourth International Conference on Logic Programming, puges 276-2973. 1987.

[3] A. Gota. Parallel Inference Machine Research in FGCS Project. In U/8-Japan AT Symposium
&Y, pages 21-36, Nov, 1987,

i4

[4] A. Goto et al. Lazy Reference Counting - An Incremental Garbage Collection Method for
Paraliel Inference Machines —. TR 338, ICOT, 1988, (To appear in the Proc. of the Joint Fifth
International Logic Programming Conference and Fifth Logic Programming Symposium).

i5) A. Goto and S. Uchida. Toward a High Performance Parallel Inference Machine —the In-
termediate Stage Plan of PIM-. In Future Farallel Computers, pages 299-320. LNCS 272,
Springer-Verlag, 1986.

[6] Y. Kimura and T. Chikayama. An Abstract L1 Machine and its Instruction Set. In Proceed-
ings of the 1987 Symposium on Logic Programming, pages 468-477, 1987.

[7] A. Matsumoto et al. Locally parallel cache designed based on KL1 memory access character-
estics. TH. 327, ICOT, 1987,

[8] K. Nakashima and H. Nakajima. Hardware architecture of the sequential inference machine:
PSI-1L. In Proceedings of 1987 Symposium on Logic Programming, pages 104-113, San Fran-
cisco, 1987,

[9] M.S. Papamarcos and J.H. Patel. A low-overhead coherence solution for multiprocessors with
private cache memories. In Proceedings of the 11th Annual International Symposium on Com-
puter Archilecture, pages 348-354, 1984,

[10] K. Taki et al. Hardware Design and Implementation of the Personal Sequential Inference Ma-
chine (PSI). In Proc. of the International Conference on Fifth Generation Computer Systems,
pages 398-409, Tokyo, 1984,

[11] K. Ueda. Guarded Horn Clauses: A parallel logic programming language with the concept
of a gnard. TR 208, ICOT, 1986, (also to appear in Programming of Future Generation
Computers, North-Holland, Amsterdam, 1987.).

112] K. Ueda. Intraduction to gnarded horn clanses. TR 209, ICOT, 1986.

[13) D.H.D. Warren. An abstract prolog instruction set. Technical Note 309, Artificial Intelligence
Center, SRI, 1983.

APPENDIX: PIM Instruction Set

The #IM instruction set is listed in the following. Table 2 lists the notation for instruction operands.

Table 2: Notation for instruction operands

! '5;1;-&11 reqsler specifier fmmediate value -

| Ha,Hs1,Rs2 source registers imm{8/32/40) immediate constant

ir Ad destination register imtg(8) eight-Lit nmediale tag

| Ra base address register ofst{8/16/24/32) immediate address offzet
| Bt1,Re2 register for testing tag | rezefst(8) offset for return address
I H,E1,R2,..E85 argument for macro-call | taddr{18) internal memory address

[a] Branch instructions

Table 3: Branch instructions

Instruclion Dptﬁn&s h - | Comment
Lrternal branch
Jumpl ond
Delay- Ht!, RBt2/imtg, ofst Tag jump {delay)
Jump{ondIzmMask
Delay- Rt1, Er2/imtg, imtg, ofst Tag jump under immediate mask (delay] |
JumpCondé :
Delay- Rt1, Rt2, ofst 40-bit compare jump (delay) |
sHipCond Rei, Be2/imtg, imm Ceonditional skip i
Jump/Delay Jumnp Ra, ofst(32) Jumnp (delsy) i
JAL/DeiaylAL Re, ofst(24), retofat Jump and link (delay)
fnternal branch
HiumpCond
Delay- hti, Re2fimtg, iaddr Tag jump (delay)
¥ Iumpl” ond A
Delay- Rtl, Rt2/imtg, iaddr Tag jump at A-stage {delay)
Hiumpl ondImmMask
Delay- Rtl, Rt2/imtg, imtg, iaddr Tag jurnp under imediate mask (delay)
M Tump(onde0
; Dealay- Rt1, Rt2, iaddr 4f-bit compare jump (delay)
| MJumpClomda0a
Delay- R1, R2, iaddr 40-bit compare jump at A-stage (delay)
MsKipClond Rt1, Rt2/imtg Conditional skip
MIAL/DelayHIAL R, iaddr Jump and link (delay}
MIupp/DelayM Jump iaddr Jump {delay)
Cenditional macre mH__- o
MacroCail(ond Kt1,Rt2/imtg, [A3,R4,85] zaddr | Macro call
! DelayMacroCallCond el Ht2/amtg, [R3, A4 ,R5] iaddr | Delayed
| MacroCall k1, [R2,R3,R4,05,] iaddr Uneonditional macre call
| DelayMacroCall #1,[R2,R3 R4, RE,] imddr Dielaved

Note: Cond : And, Nothnd, Ur, Noilr, Xeor, NozXor, XorMask, MotXorMask

1

[b] ALU instructions

Tahle 4: ALT Instructious

Instruction “U;pcmﬂd'ﬁ Comment
LDop Rel, Rs2/imm, Rd Normal ALU operation
Dropd(Ke1, Re2/imm, Rd 40-bit ALU operation
| Shift Rs, R/imm, Rd Shift operation
AddwTag/SubwTag Rsl, Re2/imm, Rd, imtg | ALU operation giving a new tag
AddImm/LoadTmm Rad, imm{32) Add or load long immediate constanl
SextB/HW Es, Rd Sign exdtension
Top Rs1, Rsl/imm, Bd | Tag computalion
PEC Rs, Rd Prionty encode
Hove hs, R& . Tag and data Lransfer
HoveTD Rs, Rd | Move tag to data transfer
HoveDT Rs, Rd ! Move data to tag transfer
Note: [op: Add, AddCarry, Subtract, SubtractCarry, AWD, Or, Xer, NOT

Diopd0: AND4O, Or4d, Xord0, XorMask4D

Shifi: ShiftLeft, ShiftRight, ShiftleftDouble, ShiftRightDouble

Top . Teghnd, Taglr, TagXer, TagXorMask

[¢] Memory access and tag handling

Table 5: Memory access instructions

“Instruction Operanids ! Comment
Read Rd, Ra, ofst Read tag and 4-byie data
BeadB/HW,/ W/ /DY Rd, Ra, ofst Read 1, 2, 4, Sbyte data
Write Re, Ra, ofst Write tag and 4-bytle data
WriteB/HW/ W,/ DV ke, Ra, ofst Write 1, 2, 4. B-bvte data
WritewTap ks, Ra, ofst, imtg Write 4-bivie data givieg a new lag
PUSH Es, HRa, ofct Push data into a free list
POF Fd, Ra, afst Pop up data feomm a free list
POFwTag REd, Ra, efst, imtg | Pop up data giving o new Lag
| MABorBead Ed, Ra, ofst Read data with mrk OR
{ DEREF hd, Ra, ofst Pop up data with mrh O
! Direct¥Write/B/HW/W/0W Rs, Ha, ofst Write data in Direct _Write cache mode
| ReadPurge Rd, Ra, ofst Read data, followed by cache purge
‘ LeadInvalidats Rd, Ra, ofst Read data, invalidating other cache
| LockRead Rd, Ra, ofst Lock address and read data
! WritelUnlock Rs, Ha, ofst Write data and unlock address
| Unlack Ra, ofst unlock address

