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ABSTRACT

Thiz paper presents a computation nodel and itz program-
ming language, AWM ' as a result of onr pursuit of high
parallelisin and Ligh expressivity for the development of a
large scale software. By basing it on streams and integrat-
ing it with ohjects and relations. A'7{M realizes an elegant
model. natural representation and efficient execution, all at
once. that have never been done biv any other approaches.

1 INTRODUCTION

In general. the larger a problem is. the harder it is to solve,
exponentially proportional to the problem size. Our goal is
o realize 3 computation system in which large or compli-
cated problems can be solved quickly in terms of the total
amount of time spent for the designing. programming. de-
bugging. maintenance and extension. To achieve this goal.
the svstem should satisfv two kinds of requirements at once:
one is to offer natural and flexible user interfaces. including
langnages and design/program/debugaing environments: the
ather is to realize an efficient implementation. Neither nar
ural user interfaces nor efficient implementations can exjst
without any sound computation model,

First. we need & computation model that can extract max-
imum parallelism from the problem and load minimum over-
head to the architecture. and provide high level abstractions.
Furtherntore, we don™t want a model such that mixes several
paradigms. since it is hard to formalize. undersrand and re-
alize. At first. the model must be simple and uniform with a
single fundamental notion. Abstractions should be built up
haced on this notion,

In this paper. we present a computation model far com-
pletely distributed system: and a language realizing the
model, A"4M | which is chazacterized hy the following three
fearures:

& Stream-based compitation.

« (hject-oriented abstractions. and

o Nelational representation.

2 BACKGROUND

There have been many theories. models and languages pro-
posed for concurrent systems [FilmanSd].

LA UM is 2 Japanese word, derived from s Sanskrit "ahum” con.
sisting of Ahand Um. which impliss the beginning and the snd, an open
voice and a close voice. and expirativn and inspiration. This name was
given 10 symhaolize slream communication which is the basic notion of
this language

2.1 Poset-Based Modelling

Concurrent svstems are those in which there can exist in-
dependent events. Between these independent events, there
is no precedence or constraint on which one chould happen
earlier or later.

While a totally ordered set {or chain) is a set in which
any pair of elements is given some order, a partially or-
dered set {poset) is a get which may contain elements which
hiave no order. Since posets reflect the concurrent sitnation
naturally, concurrent systems have been formalized based
on posets, while sequential svstems have been formalized
based on chains. The most notable work at this side is
Scott’s lattice theory {Scott72] and information system the-
ory [Scott82].

[Pratt86] gave a formal language in which a system is rep-
resented as an algebraic formula of posets (strictly pomsets}
of events. The representation is quite descriptive for pro-
gramuming.

There are other ﬁlgebrai: approaches, called pro-
cess algebras, [Milner80, Milner8d, Winskel84, Bergstrafd,
Winkowski®T]. A process is defined to be a set of ports.
Communication between processes is hasically svachronous
and glabal time and space are assumed to exist, Twosystems
are gaid to be equivalent if their sets of linearized events are
the same. When a new svstem is added to some svstem, the
prover has to re-generate all possible chains from all events
in the existing system awd in the newly added system. This
would require an extravagant amount of computation. In
uther words, models based on the total ordering in global
time and space are weak in modularization.

In contrast. the sheaf-theoretical model [Monteiro®6] hae
high modularity. It is assumed that a gystem has a location
and any activity takes place in some location. Communica-
tion between systems takes place in the intersection of their
locations. Two syvstems are said to be equivalent if the set of
intersections of locations in one svstem is equivalent to that
in the other. The notion is clear but too formal.

The diagram of a poset is a graph.  Tetrl nets
[Peterson8l] and dataflow graphe [Dennisé9, Dennis?3.
Arvindi7, Arvind®6] are graphical representations. They are
different from each other in r!-pwﬁFnliLt.'lnn form and d:f'na:m-
itity, hut they have in common localization of functional pro-
resses and asynchronous communication which could sup-
pirt & high degree of parallelism. To keep the function-
alitv. pracedural languages [Asheroft77] which adopt the
single assignment rule [Tesierﬁ‘-?]. and functional languages
{McGraws2] have been proposed as datafiow languages.



2 BACKGROUND

I rhe daraflow model, how we realize 1/ QL monitors man-
aging soue shared resource, as the nuost typical entities e
yuiting side effects coutrary to the single assignment rule,
bael Been 2 probilent, This problem was solved by the notion
of streams [DennisT6, Arvind$2],

Thus. it s clear that concurrent systems should be mod-
eiled hased on posets. The problem s Low to represent the
ordering. Streams are the simplest media for this purpose.
The romputatioal mmiel of A"\ is based on posets and
1= represenied by streams.

2.2 Stream Computation

A stream s a chaim as 15 a st but additionally a stream
connotes svnchronization,

The notion of a stream was first introduced in [LandinG3].
as a function: {1 — element ¥ strean, that generates an
element and another stream when receiving (), where ()
miy e interpreted as the evaluation timing.  Since the
fazy eveluetion mechanism that suspends evaluvation until
peeded was introduced to realize the stream. many func
tional languages supporting streams have been designed
[[da®d. Bellors3. Broves).

G kahn's process network [G.KahnT4, G.Kahn77] was the
first artempt 1o model a distributed system using streams.
Frocesses are connected via streams. Lach process defines
relations between ifs input streams and output streams and
also has its own memorn,

2.3 Relational Programming

[Clark®1] proposed a relational language for the purpose of
pxpressing a process petwork. not by functions but by rela-
tions, This langnage provided & basic mechauism for con
current logic programnung (CLP). 1kat is svochronization-
emibedded wuification awl commitment control.  Stream
comitunicalivn was realized simply by list unification. Fol-
lowing this. several CLP iangnages [‘_-iha.]:li.]'r:ugﬁ, Clarks4,
Uealasd] have heew proposed, Their declarative nature can
extract maximun parallelism and provide high expressivity,

2.3.1 Declarativity
Dieclarativity is the property that the program contains no
constraint on the execution sequence. The following declara-
tive features of CLP froes the programmer's mind {from con-
cern about the execution sequence.
» Parallel Actions: (eals are executable in paralle]
or in any order. and their arguments can be unified in
parallel.

s Cauzal Relations:  All that relates one goal to an-
other is data dependency or cansality, that is the rela-
tionship of their argumenis,

* Asynchronous Communication: The writer goal
does not wait for the variable to bhe read. Coals wait
only when they read a variable,

Deeclarativity is one of the greatest advantages 1o he obtained

froms concureent programming, 4'I4M inherits the above
deciarative features from CLP.

2.4 Object-0Oriented Abstractions

The notion of an object [Goldbergs3] is natural. The object.
cricuted paradigin's specification of abstract computation by

neessape-passing and encapsulation promotes top-down de-
sign/programming, svstematic designing, and fexible mod-
ification and extension. Its medular programming support
by class inheritance makes the program code strikingly com-

pact,

2.5 Integration of Streams and Objects

An object or a process s the abstraction of iterative com-
putation as formalized by the fixed-point theory [Staples83.
Winkowski§7, Milner83, Bakker87]. Objects can be inte-
grated with streams naturally, just by regarding consumers
and producers of streams as objects.

In A'MM |, 2 system 5 composed of streams and ob-
jects. Computation consists of consumption and production
of streams. As long as there exist messages, computation
may proceed. When there iz no message left, this is the
completion of the computation.

In the program, each stream can be looked upon as an
object itsell. Making acquaintonce with an object is getting
a stream toward the object. ftroducing some aeguaimfance
{o another is splitting Lhe stream toward the former into two
and passing one of the two streams to the latter.

[ShapiroS3B] proposed an ohject-oriented programming
style for CLP. This stvle shows the framework of stream
communication and generation management of an object,
An object is represented as a sequence of tail recursive goals,
each of which has an interface stream to receive a message
from, and carries arguments as its internal states. A clause
i regarded as a generation of an object, a tail recursive goal
a5 the creation of & new generation. Atlempling lo program
in this style revealed severa) substantial problems as follows,
which motivated us Lo design A" WA

Semantic Representation:  Deadlock. that is the state
in which no goal is exeentable, is cansed by very tiny bugs,
surfi as misnaming and mispositioning logical variables tha
represent internal states of objects, much more often than
by algorithmic errors. To sclve large scale or complicated
problems. program representation should be more semantic
and fexible than syntactical.

AWM provides vbject-oriented abstractions, including
message passing. name association of slots, and elass inher.
itance. which will make the semantics clearer and program
modification sasier, and will also increase modularity.

Implicit Completion:  Deadlock also often occurs due
to failure to connect and close streams. In stream program-
ming. the most important things are to be sure to connect a
streamt to 1ts destination, and to close a stream. Failure to
connect does not happen so often, but stream closing is often
overlooked as it is both trivial and burdensome, We would
like to offer some linguistic support to remedy this problem.

A' UM implicitly closes open streams and connects orphan
streams to sink objects that absorh messages.

Uniform Universe:  Objects with stream interfaces and
primitive data ohjects are treated differently: the former
TequiTes stream merging, when T.||e_1.r are shared, but the latter
not. This decreases Lhe ability of wop-down programming or
program reusability, since different programs {or the wop level
must be prepared depending on the data type which might
be hidden in a lower level,
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"1{V pealizes a universal object space. There exist noth-
ing hut obiects which communicate with each other via
streatns. Primitive objects, such as integers and atoms. aiso
liave the sane stream iuterface. 5o, we can write generic
programs in a top-down manner. [Acrelss] formalizes such

infinire levels of abstraction.

Solid Abstraction: Several approaches to provide a
macro package for this object-oriented programming stvle
have been proposed [K.Kahu36]. But, svotax sugars melt at
execption time,

ANM preserves its object-oriented ahsiractions at exe
cutiom time, whicl will be o great help for debugping.

2.6 MNondeter rniniu:_','

CoTeahn s mudel was himited to deterministic {or functional)
processes, whose semantics are determined only by the pa«
raimeters appearing in the program.

Jivocksl] pointed out that a sondetersinistic process.
which may aceept either a single event or multiple serial

events {Tom a streaw nondeterncinisticallv. cannot be defined

aply B the relations hetween streams.

Nondeterminacy in Stream Merging: AW makes
this problem simple. A streapy is eplit inte two when it s
shared. so a stream eventually becomes a tree of streams as
the atount of sharing increases. At a splitting (or merging)
Joint. messages from the two branches are nondeterministi-
cally ordered, Nowndeierminacy exisis anlv in stream merging
aml abjects are deterministie,

2.7 Graph Grammar

It geueral. a langnage is defined by a grammar [Mandrialif?).

A sequential program is regarded as a string of svmbols,
A sequential language is defined by a string grammar which
rewrites ane pon-terninal symbol to another by applying one
production rule at a time.

Ip contrast. & concurrent program is regarded as a graph
consisting of verlices as processes and cdges as communi-
cation links. A concurrent language 35 defined by a graph
grammar {Ehrigi9]. which rewrites non-terminal graphs to
others by applving multiple production rules at one time.

threowskist] made clear the conespondence betwesn

derivation in a graph grammar and compuiation in a Petri
net. [Raplan®3] proposed a language which visualizes the
grapl derivation,
Derivation of WNils:  In this paper. all pictures are drawn
in A rertain manner that messages should low from right to
fefr toward the lefimost object, We define a language for
ATV L with 2 grammar which keeps this manner, so that
we can write a pregram hke drawing 2 picture.

A stream i» represented as a pair of terminals: an inlet and
an ouflel. io indicate the direction of message flow. Two
glreains are conuerted 1o be one. when the inlet of one is
commected 1o the coutlet of the other, The consumer object
holds an inlet 10 receive a message from. and the producer
ohject holds an outle! 1o send a message to. A closed stream
15 represented as nil.

The grammar is composed of expressions. which are cal
egorized into inlét, outlet and nil expressions. depending on
what they express. A method of an ohject is defined az a
set of nil expressions, which i» constructed from infet and

outled expressions. | he derivation of a ser of nil's leads 1o
the completion of computation.

2.8 Efficient Archilecture

Az mentioned earlier, the single assignment rule is essentizl
to increase parallelism. In CLF, the single assignment rule
is assured by logical variables, but logical varables can be
unified in any direction and shared by multiple readers. A
process may wait for any combination of multiple events,

First, it is so rare {and sirange} [or one process to nom-
deterministically read or write an identical variable, but the
architecture always has to prepare for the bi-directional uni-
fication of any logical variable. Some CLP languages allow
to specify variable modes. but some do not. The lack of vari-
able modes although some CLP languages do support themn,
makes 11 invisible from where tn where messages low, so Lthat
the program readability and the potential ability for epri-
mization and error-detection at compilation time decrease,

Second. garbage collection (GOC) is one of the most critical
problems to be solved for making parallel architectures prac-
tical. To increase memory usability and obtain continuous
respomse, most of the discussions have been made on real-
time GC [Colien®1, ChikayamaS7, GotoS8]. The problem of
multiple references makes this hard to realize.

The stream computation of A"V makes the architecture
simpler and more efficient.

Single Assignment and Single Reference: A siream
s consumed by a single reader and produced by a single
writer. This is the single reference single assignment princi-
ple. The single assienment raises parallelism in the program.
which can he supporied by the architecture. The single ref
erence expands the possibility of static optimization and or-
ror detection, makes GO simple, resulting in better memory
wsability,

Single Direction and Single Event:  Each object waits
for a single evenl, of either receiving & message or detect-
ing that its interface stream is closed. Nondeterminacy that
deals with multiple event wailing exists only in stream merg-
ing. The single direction single event rule makes the process
scheduling simple.

3 COMPUTATION MODEL

In this section, we define the computation model of
AWM with some interpretation for intuitive wnderstand.
Ing.

3.1 Systems
A svstem is composed of streams and objects.

3.2 Sireams

& stream i a chain which is represented as a pair (£ =}
where £ is a set of elements and = is a total order between
any pair of messages. For eq. 67 & £.ep =< € implies that
ey should be received precedeing ea.

Let ws add two additional elements: bottom L and top T,
sech that & < e < T for any € £ L.

A streann that s complemented with bottom and top is
said Lo he romplefe and represented as a pair (£, =<). where
E = £U{L. T} The bottoin L is the initial state of the
stream, undefined. It svmbolizes the existence of a consumer
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loe furged adyeef) that receives messages from the stream.
There exists onlv one ronsamer fur each stream. The top T
is the final state of the stream. nil that shows the stream is

rleved,

Production and Consumption:  We define four opera-
s on streats: send, close, receive and is_close.
A= a relation. there §s no distinerion between send and
receive and between close and is_closed.
send (N m V), receive({ N, .V 3 The least element of
streann N ds associated with message on and stream 1 s
the rest of the stream. e,

Felfpel=me N DY F={edud v & e <),
where X o= (7 <0 Y = (8, 40 s a function associat.
ing an chewent witl a message,

closel ), is closed(N): Stream ¥ is complered by nil,
ik S =0 1 =<T where § = (E=). F=Ffu (1.7}
Cperationslly. they are different: send and close instanti.
ate an undefined stream and receive and is_cloged observe
it. To distinguish their operational semantics. we specify the
stren direction by 7 for the stream where justantiation (ei-
ter aseociation or completion) takes place and A for the
stream where the iustantiation is ohserved, Thev can be re-
garded as terminale: G is a termina! to send a message oul
tooand & s a terminal to receive 5 message from. so we refer
Lo 57 as the outlet and & as the infct. as shown in figure 1.

ohjecti L)
inlet autlet nili Ty

X4 stream XV
Figure 1: Srream

Send{N¥. .Y 2) aswociates the least element of stream X
with message m.

e uL::.:-ia e VT

Y m ora

Figure 2. Message Seading
Clase (XY completes stream X by mil.

-4
A = I

Figure 3: Stream Closing

Receive(.N®,m.Y'V) observes that the least element of
stream V is associated with message ni.

Iz closed(.N2) observes that stream X je completed by ndl.

Connection:  Connecting an inlet to an outlet implies
that two orderings i a row (==} results in one ordering
=0,

Connect(XV. V') unifies stream X and stream Y are jden-

tical. e, X =17

3.3  Channels

A rhannelis a poset composed of streams (chains), which is
represented as a pair (£ <) where =< is a partial order. A

chanmel {poser) is converted to be a stream [chain) by the
following eperation.

Serialize(("® §9): Stream § is a chain of the messages
in channel €', where incomparable messages in channel
(" are nondeterministically ordered, i.e.
E=8 =3ep.eiey <28 5,60 465 €0
where = (£,<). § = (. <),
Since posets generalize chains, streams are channels. We give
the following definitions using channels.

3.4 Joints

A jeinf is an operation mapping two channels to another:
channelx channel — channel. We define two kinds of joints:
merge and appe .

Merge(X® Y2, Z9): Channel Z is the union of all messages
from two disjoint channels: X and Y'; the orderings in
XNoand ¥V are kept,je. Z2=X0Y, AnY =4

xe

Figure 4: Stream Merging
hppend (X2 V2, ZV): Channel Z is the union of all mes-
sages in two disjoint channels: X and }'; the messages
in X precede any message in 17 and the orderiugs in X
and } are kept. i.e.
Z=XUY, AnNYs=o ¥YeeXNeeYie<eelZ

Figure 5: Stream Appending

3.5 Messapes

A message is an element of a channel which is represented
as a pair (v, P} where ¢ is a2 message name and P is a tuple
of stream terminale,

A message iz called either an atomic message or a com-
pound message depending on whether P is empty or not.

Fach compound message is identified by the message
name, the number of the terminals and their directions.
Even if messages consist of the same message name and the
same number of terminals, they are different if any of their
terminale has a different direction.

Compound messages work as connectors. As mentioned
above, one channel iz connected to another when the inlet
of the one and the outlet to the otlier are given. Thus,
the sender and the receiver should specify complementary
directions for each terminal,

ExaMpLE: Message a(X® YV, Z%) has a name 2 and
three terminals: two inlets X' and 7% and one inlet Y9,
g0 this message is identified as a(A, 7. A). To receive this
message, the target object should specify receiving = message
like all'9 172 W),

Inquiry Message “Who are you?: There are several
generic messages which any object is supposed 1o receive
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andl ans=wier, Amnong thew, the most interesting oue i3 the
irgquiry message, who_are.youl Whe™ ). When an olject re-
ceives this messpge. it is snpposel to send a message to outlet
Whe., which should reflect the abjert itsell. such as an inte-
ser value for ap integer object. “Who are veul” s just a
twesmaet, o different from ane other message,

3.6 Ohjecis and Generations

Aw abject ie o chain of geoerations, whose overview is de-
picted in figure G.

oh ject .
serialize

Figure & Overview of an Object

connect

slos merge

Creation: When mestage new( X =) it sent 1o a class.
the class creates the (1 generation of an instance, by the
following operation.

New (2%, D7, 59} creates an ohject (0% which iz unde-
Jimed (L0 where & 4= a sel of streams each of which
represents an internal state or attribute of the object.

After sending an tartiotion message {initiate) to the 0-th
generation. the elass attaches a serializer which will serialize

the messages {rom the outside channel. as shown in figure 7.

Eacl generation observes the inlet of the serializer. that is

valled the jurerfac stream,

bi initiation interface
ohgect  nyessage siream
initiate

O-th gen.

Figure T: {"reation

Thers are several primifive objects, such integers {e.g. 1},
an atoms {eg &l booleans (eg ‘trus). strings (e.g.
Frhit'), classes (eg. #ferackl. and some svstem defined
ohiects, such as sink objects,

Sink Object: A sink objecs receives messages from its
interface stream and. out of the terminals contained in the
messages. it closes each outlet and connects cach inlet 1o
another sink ohject,
Routine:  The behavior of each generation is defined by
a meflnd, represented 85 & pair ¢, A). where ¢ is an coent
thal b= either receive or iz clesed, and A4 it a ser of ae-
tions which eontaing apy number of send. clese. connect,
merge. append. new and the primitive or system-defined ob-
ject creation. and one ar fewer descend defined ac follows:
Descand(S¢ifS 8% ereates a new generation Sel f2 which
i5 wrdefined (L),
A generation first waits for an event on 1ts interface stream.
When it ohserves an event, it serches an appropriate method
for the event. theu i1 takes the set of actions. as shown in
figure 5.

The actions mey be avacuted in parallel or in any order.
The streams related with the actions mav be connected inde-
pendentty. Since the generation desconding action and other

i

ohiect
n-th gen. O
Il descend
Self&
(nf1}th gen. messages senl from
4 descend the n-tl generation

~O—0O—--

messages sent from
the {n+1} generation

(n+2-th gen.

Figure 8: Succession

actions may be executed in any order, there can exist those
artipes taken by different geaerations at a time, When some
generation sends a message o ftsell, itself means the next
generation of the object.

Termination:  An object descends generations until it
receives a fermination message {'$terminate’). as shown
in figure 9. When an object receives the termination mes-
sage, it completes all the streams it holds. such as slots, and
terminates its life.

abject cut off

—
i descend

{nt+lj-th gen.o'—o—o— - -

Figure 9: Termination

n-th gen.

termination
Message

$zerminate

Lost™

3.7 Slots

An object may hold a set of stream terminals. Each slot
is associated with a slot name and accessible by the name
bevond generations. There are two kinds of stots: inlef slots
and outle! slots according to their directions. An object ac-
cesses each slot by sending a particular message 1o itself,

3.7.1  lnlet Slots

Reference: When message get_inlet{NameV, 5lotV} is
sent, the current inlet is given to the accessor and a new slot
is ereated, which holds a closed stream.

Updating: When messape set_inlet(Name¥ Slot®) ic
gent, the current infet is connected to a sk object and a
new slot is created. which associates the given inlet with the
slot name.

3.7.2 Qutlet Slots

Reference: When message get outlet{Name¥, Slat®)
is sent. the current outlet is split into two, the one is given
ta the accessor and a new slot s created, which holds the
other.

Updating: When message set.outlet{Vame¥, SlotV)
i sent. the outlet the current slot holds is closed and a new
slot is created, which associates the given stream with the
slot narme.
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3.8 Classes

Yortass s wi objeet which defiwes a sor of slor nanes, a ser
of wethods and a et of super clsses 00 inherits and creates
imeranees according to e definmion. There is no notion of
tieta classes whose instances are classos,

A class ean iherit & set of jmethods from one o1 more
Ulase inberitance expaonds 1he set of applicative
methods, hat does not create any instance for the inherited
classes. For every event, an ohjert searches for an appropri-

Classes,

ate method by traversing the inheritance tree.

4 LANGUAGE

We define a language for the computation model. with a
1\'-'l'3‘-|.1'1..'|"."|'|:] ‘-'nl'illl'll'llﬂfi .
# L bisic geammar, which represents the compuiation
maodel exactlv, and

s the ertended grammar, which introduces several exten-
sions and linguistic sepports into the basic grammar for
ease of writing compact and safe PTOgrams.

Refore explaining the details. we give two examples: Stack,

a typically ohject-oriented program. and Tree Reverse, a
highly parallel program. both written in the extended gram-
near.

Example 1 (Stack) (see figure 10

A stack holds the top of the stack. which initially points at
tire hotiow of the stack.

For message push(“Data). the stack creates a new element
and asks it to set the given data. Data. and tle turrent top.
respectively in its slots data and next. Then. the stack holds
the element after the sending as the new top.

For message pop(Data). Lthe stack asks the current top to
get the current data and next. and makes the given outlet
Next the new tup.

Method read(Data) is the same as method pop(Data)
except for that it does not update the current top.

Method test creates a stack, pushes an integer 1 onto it,
checks il 1he data by read and pop are the same.

class stack. i1}
out  top. {2
rinitiate =¥ Fbottom = !top. %)

rpush{Datal) -> felement:set(Data, top)e ltop, [{)
:popiData) -> 'toprget( Data, Next),Next= !top.(5)

:read(Data) -> ‘tep:get(~Data, Next). i8)
and. (7
clasz element. (8}

out  data,next. (%)

:set{"Data, Next) -* Datas ‘data, Nexts 'next. (i}
rget(Data,Next) -> !datam ~Data, 'pext= “Next. {11}

and. {14}
clase botiom, (13}
‘get{eos ,Next) -» fi4)
end. f15)
clazs test_stack, {16}
rrest({A==R) -3 i1
#iack push(1)iread("A) :pop("B). [18)
and. [1a)

Figure 10 Program of Stack

Example 2 (Tree Reverse) (see figure 11}

Method do (2-20) reverses each node of the given tree T Lo
obtain a reversed tree RevT. Simultaneousiy 1t obtains the
maximum Max of the leaves and sifts the leaves into evey
integers "Evens and odd integers “Ddds. If T is a leal /4-
Hhoat is the reversed tree and the maximum. 1f T is a node
{18-29). its feft and right trees are reversed,

Method test (23-24) creates a reverse object, makes it
reverse a tree {{1,{11,12}} {2,{21,22}}}. and Zenerates
a stream of the Ansvers. such as reverse:v(“R) :max:n(22)
revens ni2)n(22) tnl12) sodds:n{21) :nf1) tndat)::,
where "R is the reversed tree, {{{21,22},2},{{12,11},1}}.

class reverss. (1}
tdo (T ,RevT Max, Evens,“0dds) -> (2)
(class_of T) 7 ( {4
rinteger =» i4)

T= "RevT, T= "Max, {3)
{Tood 2==0 ) 7 { {6)
:ftrue  -» Evens:n(T) ; {7}

'false -> Odds:n(T) (8}

| I {9)
ivector =2 f1a)
T:element{0,"L), 11}
#reverse:do(L, “Revl, MaxL,Evens,0dd=), {12}
T:element (1, R}, (13}
#raverse:do(R, "Revh, MaxR,Evens,0dds), {14)

{RevE, RevL} = “RevT, {3}

{ MaxL » MaxR ) 7 { {16)

(ftrue  -» Maxl= “Max {17)

: “falee => MaxR= “Max (18}

] f19;

). (20}
end, [21)
class test_reverse. 22
Ttest - (2]
#reverse:do({{1,{11,12}F {2, 421,22}}}, i24)
“HevT, "Max ,Evens ,Odds) , {24}
Answers$l:reverse:v{RevT), (25}
Ansvers$2:max:n(Max), (26}
Ansvers$3:evens= “Evens, {27]
Answers$4:odds= "Odds, (28}
:nop{~Answers), (23}
:noplAnsvers) -» . {30}
end. (41)

Figure 11: Program of Tree Traverse

5 BASIC GRAMMAR

The basic grammar represents the computation model ex-

actly and is chararterized by the following two rules:

R1: For each stream, its two terminals: an inlet and an out-
let miust be specified in the method.

R2: Each action is represented as an expression, which de-
notes either an inlet, an outlet or nil as its result, and
expressions can be constructed according to their result
category. A method must be composed of nil expres
sions.

Missing a terminal and leaving inlet or cutlet expressions

might lead to deadlock, These rules are given for the pur



GO OHASHTGRAMMAK

pose of eompleting all the streams. ie. for promoting the
cotapletion of computation,

5.1 Class Definition

A class definition consists of a class name, super classes, siot
wane and methods as follows:
< Cless De findtians == -
class < (lassNome> Fo
[ super < Class Vi > [, e ClossNamen } 1.7
[in <Siotdemes {1, <SlotNames } 2.0 ]
[ out < St vame> {10 < St Ve } 00 ]
{ = Methads " 00 }
end ' !
e Mithals = «Fvent> V|4 |  Aetions> | ¥, < detions> }}
< dctionsz u= < NilErpressions

5.2 Stream Variahles

A variable represents a stream. which has two terminals: an

el f and an cutlet,

Inlet is a termunal from which a message is reeeived. or
which is connected to the outlet of another stream. An
inlet is specified by 2 variable name preceded by -7,
ep. TK,

Qutlet is a terminal to which a message is seat, to which the
inlet of apniher stream 15 connerted. or which is closed.
An outlet is specified by & variable name. e.g. X,

il iz the state left after an outlet 15 closed.
5.3 Expressions

Lwvents and actions are specified by expressions. An expres-
sion represents either an inlet. an outlet or nil as its result.
and i cotrespondingly named an inled erpression, an outlet
expressaan or ¢ il erpressaen, as listed i lable 1.

All pictures in this paper are drawn in 2 certain manner
that messages should flow from right to feft toward the left-
maost ohject. Expressions have been designed to keep this
MATNEL.

ExaspLE:
that messages fow from the strewms which will be merged
into siar top. to An ohject #hottom,

Expressions can be consiructed according te their result
category. Ceannection connact(X, ~Y) is represented as a
cotmbination of merge and close. fe. X = "Y¥:: |

ExaspLe: Ximl:m2 = °Y :: means that outlet X is sent
two gerial messages: ml and m2 and connected by inlet Y.

Nou-nil expressions can be specified for parameters con
tained in messagos, since they expross stream lerminals.

ExaxPLE: method test in example 1w equivalent to:

rtest(TF) =2 #stack:push{l):read( &) :popl{~B)::,

(A == B} = "TF ..

#bottom = top at () i exampls } means

5.4 Descending Action

Geperation descending is an action which can be taken in
parallel with the other artions. The following two expres-
sioms: snece ssion and ferminetion are provided to abatract
the generation descending.

Kuceession [ Erents "=3") nerges the rest of the inter-
Fare stream { Hest® ] into the lagt Self | Last7 ), as shown in
figure &,

ExaMPrLE: 'm =3 :de. Qs equivalent te;

im o> Rest | <== “Self, Self:do = “Hest.

Table 1: Expressions

[ relaf i [ :q.-nwl'uu resuld
receive{ "X,m, ¥} | ':" < Message> *=' < Oni> | < Vil>
m =Y
is_elosed("X) i < Nif»
send(X,m,”Y) <0utz 'or o Message < Chuts
I:m ¥
close(X) < Culz oy < Nil=
X
merge("X,"Y,2) | <Outx r=f ciun < Gt
Z="X ¥
append {"X,7Y,Z) | <lp> "N <lns < iz
ENTY "z
(descend("X,5) | '<==' <h> | <Mi> |
g== "}

Termination [<Evenl> -17] connects the rest of the in-
terface stream { Rest™) to a sink object, sends a termination
message to the last Self and then closes its tail, as ehowr in
figure 8. :
ExXAMPLE: rdo.
:m = Rest | <== “Sglf,6 Self:do:'$terminate’::,
##zink:nev("Rast)::.

m =] is equivalent to:

5.5 Self

For each generation, the object itself means the next gen-
eration, which is aceessed bv name S$self in same way as
tlots,

Causality on Self: A method is expanded in the top-
to-bottom. left-to-right inner-to-outer order. The order of
messages being sent to itself is determined in accordance
with the method expansion order.

1 sonding-te-sell expressions are specified as parameters
of a message Lo be received or sent. the Self referred to is
the ane just afier the receiving or just before the sending
respectively,

ExamrLe: :get{’data, 'next) -». is equivalent fo:

:get(Data, Next) -» !data= "Data, 'mext= “Next.

that is expanded in the basie grammar as follows:

:get{Data Next)s Rest | <== Belf,

Self:get_outlet{data, Data)
:get_outletinext, Next)= “Rest.

5.8 Volatile Objects

Each generation is (1) activated by a certain event and takes
some actions according to the event, and (2} descends to the
next generation in parallel. The foriner means conditioning
and the latter looping, Originally, objects were themselves
condition handlers,

If & ¢lase was defined for handling each condition, however,
many small classes would have to be defined and the program
context would be geographically scatiered intn pirces. We
introduce the notion of a volatile object, which iz defined
within a method and is realized in the obiject frameweork.

Volatile Classes: A volatile class is temporarily defined
within & method. Anv number of volatile ciasses can be
defined within a method and they can be nested, ie. in
the definition of some method of some volatile class. another
volatile class may be defined. There is no distinction between
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calvemel vliase s sl volnfde efipese - except that the {ormer
Bevve e etv conid sinr s bt the latter do net . External classes
v be aeeessed il inlierited using their external pames
b any etler classes inclnding volutile classes. by volatile
climmma Tl

ExavrLe: Method do in example 2 contains three
valatide clivsags; Sl $vlty-4) and $vi2iflr-18),
where $vi. $v11 and $v12 are tewporary names given for
explanation.

Volatile Objects: A volatile object is an instance of
simme volatile elass. and is exerutable in paralle] with its
Ul'eatar,

Creator-Bound Strean::  Each volarile object 15 given a
shivam to its creator at initiation, and can access the STreaIn
asaoutlet slot named $creator. The creator-hound streams
passed 1o maltiple volatile objects are appended according
to the wethod expansion order,

8.8.1 Creation of Volatile Ohjects
The crewtion of a volatile objeet is defined with an interface
stream and a class definition specified as follows:
< Dwnrulabde Volat ile Object Creations ro=

<foierfaces "7 < Fmmuytable Velofile ClassDe finition >
< Wetable Volatide Qbject Creafions> =

<interfaces Y= < Watable Valatile ClassDefinition=
<luterfaces = <hiz | < Ours

Volatile object rrearion expressions are nil EXpressions,

Basic: Inlet as Interface If an inlet was specified for
the <fnterface. the volarile object takes the inlet as its
interface stream,
Exavrie: A volatile object created by:
“Hunger 7 (:'true -» :eat; :'false -» :sleep)
receives a message from inlet “Hunger.

Extension: “Whe are youl 1o Qutlet  If an
outlel was specified for the <Interface>. the message
whe_are_you(Who) is implicitly sent to the outler and the
volatile object takes inlet “Who as its interface stream,

EXAMPLE: (Tmod 2 %= 0) 7 (...) s equivalent
(T mad 2 == Jiwhe_are_youlWhel::, “Whe 7 C...)

5.6.2 Immutable and Mutable Volatile Objects

There are two kinds of volatile clazses: immutable volotils
(VY elasses and mutable rolatile fMTV) elnsses, which diffes
from each other in their variable scope and relationship with
their creator, e, the $v1. $v11 and $v12 are IV classes.

Scope:  Slot names are e rmanent nmmes which are valid
outside geucrations, In coutrast. variable names are fempe-
mery meme s which are valid onlv within a generation., The
space in which a name is visible is called jts name scope.

Immutable Velatile (IV) Objects:

o Transpure st Seope: A IV ohject shares the same scope
as it creator, The same variable nanres in an IV object
#id 113 creator represent an identical stream Jchannel,

¢ Creatar as Its Next (eneration: For an IV object, the
Self and its =lots are those of its creator, j.a. §=0lf and
$creator are identieal,

IV elasses are used mainly for conditioning,

P

Mutable Volatile (MV) Objects:
o Independent Seape: Ay MV ebject has an independent
name scope. The same variable names in ap MV ohject
and its creator represent different stream /channels,

* Creator as a Slot;  An MV object is another chain
of generations, whose Self and slots are independent
from those of the creator, ie. $self is different from
fcreator,

MY classes are used mainly for looping,

Example 3 (Prime) (see figure 12)

A program for the pipe-lined prime number generator s
given as follows. where lines {73-25) defines the creation of a
miutahble volatile oliject,

class primes. {1}
iprimes{"Max, “Ps) -> f2)
igenarate(3, Max Ns), #aifr:de(3,"Ns,Ps:n(2)). (3
‘genarate( N, "Max, "Na) -»> i)
C(N+2 = “NewN) « Max) 7 ( ()
'true -> :generate(NewN, Max, Ns:n(NewN}); {5
ffalse => ¥ end ¥ {7

¥, (&)
end. 19
class sift, {18}
:de("V, Ns, “Pa) =3 {11}
S:initialize(V, Pe)= “Ns, {i2)
"5 => { out me, next, to_mext, primes: f14
dinitialize(“V, Fs) -» {14}

V= !ma, 0= !next, Ps= !'primes. {15)

ini "X} -3 {16}

(X mod 'me == 0) 7 { {17}

:'true -»> } do nothing ¥ {18)

:'false -> {18}

(tnext == 0} 7 { 20}

:'true =» ¥ there is no nert yer L (21

X= 'naxt, Ns= 'to_nert, fuz)

#zifr:de(X, “Ns, 'primes:n{X}); {23}

:"false -> !lto_next :n{X) 24}

1)) {25)

end. {#8)

Figure 12: Program of Prime Number Generator

6 EXTENDED GRAMMAR

The basic grammar is extended for the purpose of ease of
writing natural, compact and safe programs. The following
extensions are made:
* The meaning of a variable name is extended from s
stream to a channel. so that streams toward the same
object ¢en be identified only by variable occurrences.

* Non-nil expressions can he specified for actions, which
the language system will implicitly eamplete. This lin-
guistic support pretects us from unexpected deadlock.

* Macro expressions and abbreviations are provided. so
that we can write simple and COmMpact programs even
withoul paying attention to the notions of message-
passing or stream.
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6.1 Channel Variables

Here. let us thiuk of a simple example. Consulr, that is let
twa persons {8 and b8 solve some probilem (P by their own
strategy and collect their answers [ A1 each person may give
more than one answer,

(11 In case of collecting their answers in any order, for the
progranms iu the basic grammar:

reonsult (P, T&, TK, TY) -

Yisolve(PL, Al)::, Y:solve(PF2, A2)::,
F=s"Pl="FP2:i:, A= AL = "AZ ::,
fet us represent the merging joints enly by the occurrences
of outlet variahles as follows:
coensult(™F, "A, TEI, TYF ->
Y:solvelP, A}, T:sclve(P, A).

i2i In case of collecting their answers in the order that the
answers from X should precede any answer from Y, for the
program in the basic grammar:

rconsult (P, "A, "X, TY) -2

X:solve(Pi, A1)::, Y:solvel(P2, A2)::,
F="Pi="P2 ;:, A="41 N\ TA2 ::,
ler ws represent the appending joint by the occurences of
ontlet variables with ardering numbers as follows:
rconsult{°F, “&, "X, 7Y, "I} -»
Y:imolve(P, A%1), Y:solvel(P, A%2).

Cur programmers” concern is what to do an ohect, rather
thaw how to connect sireams toward it With the extention
of the meaning of @ variahle name from a stream 1o a chan-
wel, the programiger’s intention can be represented directly
Generally. a channel may be auy combination of merge and
append joinis. klins. a variable name represents a channel
which miav have the following oceurrences:

One or Fewer Inlets . which i3 specified by the variable
mawe preceded by ' egl CX

Zero or More Unordered Outlets . each of which i3
apecified only by the variable name, e.g. X. and merged
inro the inker, and

Zero or More Ordered Qutlets . each of which is spec-
ified by the variable name succeeded by *$¢ and some
ordering number, o.g, %82, and is appended according
ten Uhe number into the let,

ExampLe: channel X= “P1= “F2= -S1\ "52\ "53:: can

be represented by one inler “X. two wpordered outlets, 1's,

and three ardered outlets. X$1. X$2 and X$3. as shown in

fignre 13
x i Pl * {'F2 * ("511] MJE'SE X2

X 53 143

Figure 13 Chaunel Variahles

6.2 Implicit Completion

In stream programnting. the mos! important thing is en-
suring the closing and connecting of streams: otherwise, an
unexpected deadlork might oceur, Our programmers, how-
ever. would like to be kept away from: such detailed logic as
much as possible. The grammar is extended in both direc.
tions toward Oexibility and reliability as follows:

(11 Nom-nil expressions, that leave outletz open or inlets uu-
ronnected. are allowed to be specified for the < defionss,

[2) Non-nil streams are implicitly completed. Implicit com-
pletion inclodes: {a) amoclosing outlets, (b} autodischarging
inlets, and (¢} antotermination objects.

6.2.1 Autoclosing Outlets

Leaving oue outlel open might cause deadlock. because there
might be some object waiting for niessages sent from the
outlet, Outlets left open are ieplicitly closed. Among those
autoclused are;

{1} The result of an outlet expression, left open,

{2) The missing outlet of a chaunel,

{3} The curreat outlet slot on updating, and

{4) The outlet slots at termination of an object.

6.2.2 Autodischarging Inlets

Leaving one inlet unconnected also might cause deadlock,
because there might be some object waiting for messages
from some stream contained in some message running to-
ward the inlet. An unconnected inlet is connected to a sink
ohject. This is called discharging an inlel. Among those au
todischarged are:

{1) The result of an inlet expression, left unconnected,

{2) The missing inlet of a channel,

{3) The interface stream cut off at termination, and

{41 The inlet slots at initiation of an object.

6.2.3 Autoterminating Objects

Most objects are terminated when their interface stream is
closed. but we often fail to spﬂ‘lf}' the termination., and that
will cause deadlock. When no method for termination is
defined, the object is implicitly terminated when its interface
stpeam is closed.

8.3 Macros

Many kindz of macra expressions are provided for ease of
writing compact programs as follows:
Arithmetic/Logical Operation Maecros ,
each of which represents the outlet to the opera-
Liom result, eg. T mod 2 == O represents TorF with
T:mod(2,"M)::,M:eq(0, TorF}::.
Instance Creation Macro {"#' < ClassNomes |,
whirh represenls outlel 0bi with message new{~0kj)
sent 1o the class,
e.g. #stack represents 5 with ##stack:mew("S):: .

Outlet Slot Access Macro [ < SlotName> ),
whose semantics depends on the context,
Reference: I the maysbe-outlet field, it represents Slet
with message gat_nutlet.{h’a.ma,'ﬂlnt.},
c.g. 'data® “Data merges “Data into the current data.
Updating:  In the must-be-indet field, it represents inlet
“Slat with message set_outlat(Mame Slot),
e.g. Data= 'data makes Daza the new dats,

Inlet Slot Access Macre ("€ <SlotName>)
whose semantics depends on the context.
Heference:  In the may-be-inlet field, it represents inlet
“Slot with message got_inlet (Name,5lot),
vg. Cur= Qans connects the current ans to Cur,
[Updativg:  Tu the must-be-outlet field, it represents out-
let Slot wilh messape set_inlet(Name, Slet}.
e.g ®ana= “New makes “New thie new ans,
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€.4 Abbreviations

“Self” as Default Destinatiom:  When no destination
is specified in message sending or closing, the destination is
assuued to bo the the object itsetl, eg. nop(“Answers) in
wpxaimple 2 s eyuivalent to: $sel? cnop(~hinavers).
Updating Destination: In sending a message to a
warnedd stream. siuch as an outlet slot and the ebject itsell,
the onthen fedt after the sending is assumed to be the new gen-
eration of the destivation. ey, 'top:get(~Data, “Next) is
equivalent to: 'top:get{"Data, “Next) = !top.

7 IMPLEMENTATION ISSUES

Wa fiave implemented an experimental svsten: for A"M on
Rl o Flat GHU (& subset of GHO) ineluding its compiter
anal execution envirenment. Using this system. several ap-
plication programs are being tested Lo investigate and im-
prove the expressive power and perlormeance of A4V L Tis
debugging environment is now under develogment,

In this section. we doscribe several Duplementation issues
which are particular 1o A" MM .

7.1 lmplementation of Stream Joints

A channel consists of stream joints. If each joint were im-
plementad as a process. a great number of processes would
he created. Tor a stream prograniming language, one of the
most critical points for the performance is how 10 implement
atream Joints effeciively,

To minimize the number of processes. we took the follow.

ing strategy:

o Joint as o Veetor: Each joint is represeneted as a static
vector which consists of a tag T indicating either merge
or append. and two streams X and Y. be. Z={T,X,Y}.

o Serinhizer s m Vector Conswmer:  In front of the firet
Juint. which inrerfaces an object with the outside, a dyv-
namie process. serinlizer, s created, so there exist se-
rializers as many as objects. The serializer consumes
a nested vector according to the tag and generates s
stream.

Sice the number of joints can be much larger than that of
abjects. this strategy is very effective for performance.

7.2 Optimizations Owing to Streams

The single assignment single reference property makes sev-

eral static optimizations possible, among which are the fol-
lowing:

1. Cembining Merge. Append and Close:  1f one stream of

a joint is closed. the other stream can be wunified with

the result. e.g. merge{X,¥ 2} and close(X) leads ¥=Z,

Thus. ng wasteful joirt is created for connecting streams.

e

CShoetening Deveferenee Chains: Applying the above
elimination repeatediy might generate many transitive
unifications, e.g. %=Y, ¥=2Z, Such an intermediate vari-
ahle iike ¥ can be reduced since it i= assured that there
i# no other Y. Then. the above pair results in X=2. This

minimizes the length of dereference chain that is tra.
versed at execution time.

7.2 Implementation of Variable Name Scope

Wien IV classes defined in a method. which IV objects are
created aund which channels they access are determined at

i

execution time. In anyv case, all the related channels must
be completed. It s impractical to generate a different code
for every possible case statically. The physical code must
be minimized. Variable's scope control iz one of the most
difficult problems for stream programming languages.

Our solution js simple: whet i defermimed dynamically
should be soalved dynamically.

Scope Objects: A scope object manages name associa-
tivi: of shared variables within 2 generation of an object,
while other objects manage name association of their slots
throughout their lves. An TV object shares (holds a stream
to} the scope object of its creator. while an MV object ere-
ates an independent seape abject lor itself,

Scope objects are terminated similarly as other objects do
when its interface stream is closed. the scope object com-
pletes all the terminals it holds. ie. autocloses the outlets
and antodischarges the inlets.

Global and Local Variables: [t is not necessary to cre
ate a scope object every time an IV object is created. The
scope object is needed only when one or more variable names
are shared among the IV objects and their creators.

The compiler categorizes variahles into two: local variables
and global variables,

e Local variables are those which appear only in one ob-

ject, Their name association is statically resclved.

& {Global variables are those which are shared by more than
one object within a scope. If there exist one or more
global variables, the compiler generates codes for cre-
ating a scope object and for sending a message to the
seope object to access every global terminal by its vari-
able name.

7.4 Implementation of Primitive Objects

In the current system, each primitive object is realized as &
process which receives messages from its interface stream as
the other objects are, How 1o implement primitive objects
is another critical point for the performance. The following
mechanism, wnificetion failure handler, makes it possible to
ropresent primitive obijects as their exact values.

Unification Failure Handler: For example. the message
sending expression, X:add(Y,Z) = "NewX, is translated in
EL1 to: X=[add(Y,Z) |NawX] .

If we represent primitive objects as themselves, for exam-
ple. integer objects just as integer values, e.g. X=1, Y=2,
then the umnification 1=[add{2,2)[1] must be made tfrue.
KL1 would make such a unification fail, In order to make jt
frue, some extensions must be introduced into KLL.

For a certain goal and a!l of its subgeals, a predicate for
handling sweh failure can be specified, which s invoked iu-
stead of simple failure. It is called the unification failure
handler. The unification failure handler receives the two
original arguments of the unification. If two structures are
unified and the unification failed for certain of their elements,
then these elements are passed as the arguments to the ni-
fication failure handler. The execution of the unification
handler takes the place of that of the unification itsell

If integers must understand add messages, the unification
failure handler should have a clause such as follows:
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handier(Int, [add{Addend, Sum)lRest]) :-
integer(Int), integer{Addend) |
add{Int, Addend, Sum), Int = Hest.

Tre unification failuee Landler mechanisim is haruless to
KLl The above is defiued to be appropriate for the ex-
ceution of A’V L but users who prefer KL1 can define
another unification failure handler thar simply fails. keeping
the origiua: semantics of KL1. Therefore. it is very gen-era]
and effective for the jmplementation of primitive objects.

& Compnarisans with Other Works
8.1 Al wve. Other COOP Languages

There liave been proposed several concurrent object-oriented
programing (COOFP) langnages [Yonezawa®06. IshikawaSe,
Yokote®6, AmericaS3. Zhongs7. Hurk?]. Mast of these Jau-
gauges realize parallism by introducing & parallel mechanism
onro sequential control, Objects are runnable in paraliel. hut
tnside each object. control is sequential, Svachronous com-
muncation makess programming harder, Most of the pro-
granumer’s attention is on how to draw the execution thread
rather than on what to solve, With such rontrol dependent
programiming. 11 s hard to expeet high expressive power or
high paralielism.

AHM s most different from and superiar to these COOF
languages mainly at the following two points:
i1} Declerative Defuation: The object hehavier s defined
declarativelyv: an ohject takes actions in parallel. which are
related wirh each other only by eansality, and its comnyu-
vication is asvuchromous. Declarativity is one of the most
important clues on how fo make concurrent programming
sipiple aud practical.

2 Conditioning by Volofile Objects; Most of object-

oriented languages realize a condition handber using the
higher-order notion. cond orealion. that is the rest of a pro-
pram. Forexample. the dlock scheme in Smalltalk is to create
a Jrue object and a False object and pass the program con-
text 1o be execnted after conditioning. to both of them. The
True and False abjects must be meta interpreters that can
interpreie the given program code,

AWM realizes condition handlers in the framework of ob-
Jects. by volatile objects. The volatile object scheme neither
creates mere than one condition hander object nor requires
any meta control, soit bs uniferm in the concept and efficient
1 the execution.

8.2 A'l{M vs. Acter

The Actor model [Hewitt77A. Hewitt77B. Agha&6) is the
closest i point of view to our model. in both models, the
hasts 15 on posets. ohjects and causality. communpication is
asvochronons. and actors (objects) ean be created dyvnamd-
callv, The differsnces are as follows:
T the Actor model.

(11 The arrival order of events at an actor is uncontrollable
in the program. The svstem implicitly inserts an arbiter for
each olject. which serializes events,

i2) Addressing 1= direct. Messeges are sent directly to the
Larget actor. so The programmer must potice that an actor
should be created hefore messages are sent to it

(3] Compurarion is functional. The actar refurns the com-
putation resnit to the destination actor that s gpecified in

11

the request message as a continuation.

In AWM
{13 The ordering is explicitly representable in the program.
We can specifyv orders between multiple messages toward an
ohject, using stecamns.
{21 Addressing is indivect. A strean may be connected to i
ther the target object or another indirect stpeam sorme fomne
in the future and the connetion may happen from anywhere,
so we can send a message to any stream without making sure
if it is connected to the target object,
(3] Compuation is relational, The object defines only rela.
tinns between incoming streams and outgoing streams. which
are syvmmetric.

8.3 Streams vs. Channels

[Tribbles?] defined & channel to be a poset in contrast to a
stream which is a chain, The main purpeses of introducing
channels are the fallowing two:

(1} to regard a stream tree as a single entity,

{2} to reduce the number of serializer processes for high per-
formance.

In addition. mwuitiple writers ané multiple readers were
allowed [or one channe] and
(3] the writing order between multiple writers was controlled
nondeterministically.

(4] multiple readers were allowed to read different ehains
from a single poset,

The former (1) and (2} are well-understeod: (1) is a matter
of representation and (2) is that of implementation. We
realized {1) by regarding a variable name as a channel and
{27 by vectorizing stream joints.

However, it is hard to understand that the latter {3} and
{4) make any logical sense. In 4'2M | a channel is com-
posed of streams. Oaly single reader is allowed for each
channel and each writer holds a component stream of a chan-
nel, This makes semantics more sound and implementation
simpler.

¢ FUTURE WORK

Dy basing it on streams and integrating it with objects and
relations, A'LM has satisfied most of our requirements: el-
egancy in the model, naturalness in representation and effi-
ciency in execntion, but not well enough,

The langnage represents the model well, but is not ab-
stract enough for programming vet. More expressive power
is needed. We would like to supplement abstractions and
linguistic supports to the language.

In the experimental svstem. we utilized the parallel com-
putation and communication mechanism of KL1, including
unification and commitment control, but the basic mecha-
nism required for A'4M is much lighter. We plan to design
and develop an independent svstem that provides the ba-
sic mechanism sufficient and well-suited for A'WM by itself.
With this system. we will prove that A'2{M is practical as
much as Ele-ga,nl.
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