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ABSTRACT

This paper describes a learning method for building
knowledge bases. There are two types of knowledge
acquisition svstems that extract knowledge from
human experts: interactive and non-interactive.
This paper describes a non-interactive knowledge
acquisition system that acquires knowledge from a
bhuman expert by observation. It learns strategies
that the human expert uses to solve problems and
makes logical rules from temporal sequential data.
The learning method of the knowledge acquisition
system is interpretation based learning (IBL), which
uses advance knowledge in the learning process.
The IBL has two subsystems: an interpretation
system and a learning system. The interpretation
system translates real world information to internal
rule form. The rule maintenance system generalizes
and specializes knowledge. In this paper, the
interpretation system and pre-processes of the rule
generalization are introduced.

1 INTRODUCTION

One major problem in building expert systems
is removal of the knowledge acquisition bottleneck,
Knowledge acquisition systems, usually interactive,
have been developed to solve this problem. Each
interactive knowledge sequisition systems has an
interview sub-system that can access a human
expert directly to ask for necessary information
about the job. This type of system is called an
active knowledge acquisition system (AKAS) Boose
B4j[Boose B7)[Taki BT][Kahn 85]. There are many
cases or situations in knowledge acquisition
environments, Sometimes, the human expert is too
busy to answer questions that are asked by the
interview system, In this case, knowledge is
acquired by observation only, by a passive

knowledge ascquisition system (PEAS)[Teki 58a).
This type of system cannot ask the human expert
any guestions. The AKAS obtains symbolic data
interactively from the human expert, data that can
be translated into internal form easily. But the
PEAS obtains both symbelic data and numerical
data, sc it must extract the numerical data and
translate it into symbolic data, The PEAS must
build a knowledge base inductively from
observations only. Most inductive learning
systems treat examples, which are represented in
their internal symbelic form. The systems reguire
many positive and negative examples. However,
most examples that can be obtained from
observaticn of human expert operations are positive.
One learning system acguires knowledge from
positive examples only; the explanation based
learning (EBL) system [Mitchell 85)(Mitchell 86],
which extracts knowledge effectively using advance
knowledge: domain theory and operationality. The
EBL learns goal concepts, which are constructed
according to the domain theory, However, the EBL
treats symbolic examples which are deduced from a
domain theory, but it does not treat real world
information directly, The PEAS must treat real
world information and have an effective learning
mechanism. We are developing 2 FPKAS |, called
interpretation based learning (IBL) that uses
advance knowledge, The IBL has two subsystems:
an interpretation system and & learning system. The
interpretation system translates real world
information to internal rule form. The learning
system generalizes and specializes knowledge. The
following sections discuss the interpretation system,
its advance knowledge, and pre-processes for the rule
generalization. This paper does not deal with details
of the rule maintenance svstem[Talki 88¢].

2 IBL OVERVIEW
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Ir this section, the charncteristics of the observation
gnd the IBL [ramework are shown.

2.1 Observation Environment

The IBL can obzerve the actions of human experts
and the situations in which those actions occur as
shown in Figure 1. Normally, this symbolic
information is translated from dats extracted by
sensors. Therelore, the IBL must be able to
interpret the sensed data as internal symbeolic
representation data. Knowledge of an expert is
formed inte rules from szituation and aetion
information.

2 | Human |.
expert {

.

Object of observation

Situations

Actions

: . :
| Object of |
|

Figure 1 Observation overview

2.2 Interpretation and Learning System

The TBL system consists of tweo subsystems: an
interpretation system and a learning system. The
interpretation system interpretes real werld
icformation into an Internal knowledge form
eccording to advance knowledge. As & natural
language processing system uses its dictionary to
understand natural langnage sentences, so the
interpretation system uses advance knowledge to
translate real world knowledge into its knowledge
representation. The learning system consists of &
pre-generalization system and 2 rule mainienance
svstem, The pre-generalization system eliminates
noisy information from acguired koowledge
according to advance knowledge. The rule
maintenance system specializes rules in order to
eliminate rule contradictions, and generalizes rules

by induection. Figure 2 shows the interpretation
system and the learning system,
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Figure 2 IBL system overview

3 OBSERVATION PROBLEMS
3.1 Interpretation Problems

(1) Problem of dividing sensed data

Sensed data i= continuously collected at every
sampling or when a sampling trigger is detected.
Sensed data is temporal sequential data. To
symhbolize series data, the IBL divides the data into
parts. If senzed data contains some ambipuity,
there are many weays of dividing it. Therefore, the
IBEL must have knowledge to reduce the number of
alternatives. The results of dividing data must be
matched with internal symbolic concepts. The
cause of ambiguity in sensed data {s sensor
capacity. The sensor has a limited capacizy to
detect and it detects unwanted neise. Figure 3 shows
how to make sitnation data. In Figure 3, parameter
1isdivided into three parts. Parameter 1 has three
values (a, b and ¢). If parameter 1 changes critically
in these three walues, it is easy to divide it.
However, penerally, parameter 1 does not always
change in steps (it can be a middle value betwesn a
and b) but slides from one value to another
continucusly. Therefore, itis difficult to decide the
points of change of parameter 1. If more detailed
changes are considered, parameter 11is divided inte
more parts, gnd the IBL obimins more detailed



situation information. In this case, the IBL must be
able to handle many concepts related to dividing
eriteria; it must have knowledge that divides sensed
data into useful level gramules correspending to
internal concepts.

Situations v v

F1

P2

Periodl

Ferind2

Periodd Periodd

Situationl =(Pl=a,P2=d)
Situation2 =(Pl=a, P2=e)
Situationd =(Pl1=hb,P2=¢e)
Situationd =(Pl=¢,P2=e)
Situationi =(P1=pli,P2=p2i,
#Pl=apli, /P1=rpli,....)

Figure 3 Data division and situation
generation

{2) Problem of symbolizing divided data

MNormally, fragments of sensed data are transiated
into two kinds of information : svmbels and
parameters with values, A parameter consists of a
parameter pame and it value. Generalized
parametric representation has a range of its value
inztead of an instance valuoe,

Example I: The human expert measured register
5 with wvoltage-tester 1. The tester detected I mV.
The expert changed register 5.

Symbolic data: Voltage-tester =voltage-tester 1,
Register=regicter 5
Parametric dote: Voltage = 3mV

Rule-Expression :
use{Veoltage-tester =voltage-testerl),
deteet(Veltage = 3mV, Hepister=registers)
— change(Register=registerd).

H.Taki 3

To symbolize the sensed data, the [BL must mateh
real data with internal symbolic coneepts. In
example 1, voltage-testerl matches the concept
"Voltage-tester”, registerd matches the concept
"Register”, and the real voltage matches "Voltage",
In this case, the JBL containe concepts of "Veoltage-
tester", "Hegister” and "Veltage™. If the IBL has
only concepts of "Tester”, "Device” and "no-
voltage(-5 mV = no-vollage = 5 mV)", the symbolie
expression is changed as follows:

Example 2:
Symbolic data: Tester=voltage-tester 1,
Device=register 3, no-voltage (=3 mV)

Rule-Expression ;
use(Tester =voltage-testerl),
detect{no-voltage, Device =register 5)
— change{Device =registerd).

Exemples 1 and 2 show different interpretation
results under different coneept sets. The IDL must
have appropriate concept sets of the target demain,
Cenerally, a concept consists of some sub-concepts.
In Figure 3, =z situation copizins two parameters,
There iz other information in this example,
combination information of temporal variable
data, which can be thought of as differentiation
and integration information. The necessity for
higher-order differentiation depends on the target
domain. The IBL must have internal symbolic
concepts, internal concept sets, and internal
parametric definitions as advance knowledge.

3.2 Mule Generalization Problems

Sumetimes, there are ambiguities and noise
(useless information) in the sensed data. The [BL
must be able to handle various meanings in the
ambiguities in building a knowledge base.
Generally, thiz noise is very harmful. It makes
acquired knowledpge too specific,

{1} Problem of combining situations and actions

At certain times, there is some causality between
situsiions end actions in the hurnan expert’s tasks,
The I[BL makes rules from these situations and
actions, However, there is some noise in these
rules, The IBL must select appropriate situations
and actions, and must combioe them carefully,
Because normally there is a time delay in the
causality. Figure 4 shows noise reduction
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examples. The first example has siluation noise.
The situation changed, but the action did not
chanpge, and the situation returned to its criginal
state. Therefore, 5 must be noise, Inthe same way,
the second example shows action neoise. Aj may be
noise. The IBL must have a noise reduction
mechanism using noise detection heruristics.

Situations ’{5 8i ? e S

Actions

Situations

Actions

Af may be noise, because S0 i3 the same and Af refurns (o
Ai
Figure 4 IBL system noise reduction

(2} Problem of eliminating unnecessary informetion
The IBL chserves all situations at the same time, sa
it hasspecial rules for all obeerved situations. The
IBL must have a function which choozes only
suitable situations related to actions, Exumple 3 is
a special rule with an unnecessary situation.

Example 3:
Situation information:
{It rained, and
the cutput voltage of the amplifier was too
low.)
Hetion informaticn:
{An expert changed an output transister.}

Generated rule:
(Weather = rain)
& (Amp-output-voltope = low)
— (Change Amp-outnut-transister)

Thiz result is too specific to be used in real amplifier
maintengnce, because the weather iz not related
to amplifier maintenance. Therefore, the IBL
must choose situations related to actions, IS hasto
make the following rule (example 4.

Example 4:
Generated rule:
{Arnp-output-voltage = low)
= (Change Amp-output-transistor}

Generated rules are checked with domain
knowledge which contains relations between
gituations and actions in a target domain. This
method is a sort of pre-generalization from the poipt
of view of generalizing situations. The IBL must
have symbolic concept relations to make
appropriaie rules.

{3) Problern of rule mainternence

Generally, a learning sysiem obtains general
knowledge from more special instances by induction
The rule maintensnce system contrels the
generalization level to keep rules from over-
generalizing, It also maintains conflicting rule pairs
that implicate inconsistent results, If the concept =t
gs pdvence knowledge is not enough to interprete
real werld information correctly, ithe rule
muintenance system cannot maintain rules, In tais
case, the rule maintengnce system must reconsiruect
a pew concept set and new translation koewledge for
interpretatisn, The interpretativn system interprets
old instances again.

4 INTERPRETATION & LEARNING

This scetion describes an interpretation-based
learning system and explains the learning flow and
mechanism,

4.1 Learning Input and Output

Examples are given as samples of an expert's jabe.
They are temporal sequential data, They contain
the problem-solving strategy knowledge of the
expert. The IBL learns problem-solving rules. The
following examples show input and output.

Example 5: Input conlents

Scnsing parameters at time t0 pl(t0), p2(t0), ...,
ot}

Values of the parameter: numerical data, symbel or

logizalvalues,

Exzample . Cutput contents
Implication rules: B1&582&...5] — al&al&...am
An expression Siti=1, .., {) iz a variable with =



range.

An expression ai(i=1,..., m)is a function with one
or more variahles.

The variables of the action part are shown as
Aili=1, ... kL

Variable and range:

The values of wvariables {Si/Aj) are numerical
values, symbals, or logical values. The variation of
the range of a variable, V, i3 shown as follows:

Equality: V = pumber/symbol/logical values

(For examples, true/false)
Upper limit: ¥V = number-1
Lower limit: V 2 number-2
Upper and lower limits:
number-2 = V = number-1
A sub-set: V C {symbel-1, symbol-2, ...}

4.2 Learning Strategy

There are six learning steps in the IBL. Figure 5
shows an overview of this flow and advance
knowledge.

Step I Dividing sensed data

Sensed datn consists of many parameters. FEach
parameter hias temporal variable values. The THL
checks the wvalue change of each parameter, and
divides data in the time scale.

Step 2: Matehing sensed data with infernal concepis
Here, data iz separated into symbelic concepts
and parameter instances. Symhbolic concepts are set
as situations and actions.

Step 3: Reducing noise in situations and actions
There are some relations between situations and
actions. Therefore, action data that isindependent
of situations must be neise. In the same way,
gituation data that is independent of actions must
also be noise,

Step 4: Making symbolte rules

Fules are made to combine situations and actions. A
rule consists of an “if-part” and a "thea-part”.
Situations match the if-part, and actions matceh the
then-part. Sometimes, generated rules also have
useless information as example 1 shows. So the
relationships between situations and aetions in all
rules must be checked, and uwnnecessary situaticns
or gctions must be removed.

Step & Optimizing values of parameters
M purmnuterhas an inﬁtﬂﬂnr_'e '.'a]ur-: ar.-l:i B range af

n
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Figure 5 [EL system structure

its value. This instance value is colleeted from
sensed data. It is only one example, so it must be
generalized and optimired to chang it into the mean
or typical value,

Step 6: Generalizing rules and parometer data by
multiple examples

The TBL learmns rules and parameter ranpges from
step 1 &0 step 5, at which it ebtaine one example.
The IHL aequires other kneowledge frem  other
examples, then checks and compares rules with the
same form. If their actionz are the same, the two
situations are reformed into 2 more pgeneral
situgtion. The ranges of parameters are also
generalized. For example, 8 parnmeater consists of
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"Voltage" as a symbolic name and "0V % Voltage
= 15 V" as the range of its value. A new example
brings the IBL a new range of 1ts value, that s, "3 V
= Vpltage & 20 V", IBL makes & new parameter
which contains "Voltage" as the name and "0V &
Voltape = 20 V" as the range of its value.

5 ADVANCE ENOWLEDGE

Ooe of the most important components of learnic g
systermns is advance knowledge a5 o concept bias and
a background theory. Advance knowledge contrals
the learning flow; it limits and stimulstes the
knowledge acquisition system to induce knowledge
from examples. lp the EBL, thers are two types of
advance krnowledge: domazin theory and
operationality eriteria, Demain knowledge attempts
to explain the examples. If an example iz implied
from the domain koowledge, it is explained snd
the EBL recognizes it asg 2 positive example. An
example is given to the EBL system as a goal
concept, so it leerns how to comstruct the goal
concept from  domain kpowledge. Operationality
knowledge controls the generalization level of
explained kaoowledge. It limits generalization of
thal knowledge, There are two learning steps in
the EBL. The first step is the explanation step lo
cheek whether an example is pesitive or net. und
the second step is the generalization step to
generalize Lhnowledge. The IBL uses advance
knowiedge as a dietionary to itranslate real world
knowledge, to generalize gequired rules , and to
specialize ranges of values in these rules.

3.1 Domain Concept Knowledge

Ore type of domain concept koowledpe i5 aturm
level concepts and relations between them. Atom
level eoncepts mean symbolized situations and
actions, parameter expressions, and ranges of the
rarameter values. Ansther type of domain
concept knowledge is relation kpowledge, which
contains relzticns between symbolic concepts.
Each concept has a range of itz value, This
information i1s nsed for parameter generalization and
optimization, it iz a peneralization limit. The range
depends on the target domain,

Example 7t Symbolic concepts
Symbolic concepts: registers, capacitord
Parometer expressions: Voltage, Time-delay

Exumple 8: Range knowledge of concepts
Farameler range: 0V = Voltage = 12V,
Imh = Ampere 8 Z 1A,
in logic circnits, the voltage range isfrom 0V o 5
V. Thisrange is (0 Vor 5 Vin the logical meaning.

5.2 Concept Relation Knowledge

Helations between concepts may be positive (such as
sume class concepts and positive relativity),
negative {such as contrary relativity), no relations,
or equations.

Example 9: . Concept relations (ahout force feedback
robot cantrel)
Fositive relations:
pair (Movement direction, Velocity vector)
in position control
Nepative relations:
pair (X.axis velocity, X-axis pressure)

Note: If the robol’s grip touches a wall, a tactile
sensor deteeis pressure in the opposite direction to
which the senzor is maving,

MNo relations: pair (K-axis velocity, Y-axis pressure)
Eguations: Veleeity 3 = Velocity 5/2.0

5.2 Interpretation Knowledge

Interpretation knowledge is used for translating
sensed data into symbolic concepts and parameters,
It also contains dividing knowledge for sensed data
because divided data must be matched with
internal concepts,

Example 10: Dividing knowledge:
IF | plitihpliti 4+ 1)} 2 el,
THEN divide parameter pl atti.
IFplitikpaisi| & g1,
THEN divide parameter pl aty-1.
el and gl erespecial knowledge for dividing data,

Symbolizing knowledpe (translation knowledge):
IF {1 = plifrom ti to tj) £ {2,

THEN plifrom i to tj) is a concept, "X,
IF pllfrom ti to 4} = 13,

THEN pltfrom ot s a coneeps, "Y',
The range of “X" is from {1 teo f2. The value of "Y" is
3.



& PRE-GENERALIZATION

This section deseribes how to make and optimize
rules for pre-processing of learning. It describes the
induction method, noise reduction and relation

check.

6.1 Rule Generation

Situations and actions are extracted each time,
They are represented by symbolic expressions and
parameters. The IBL makes implication rule sets
from situations and actions to select a good set of
situations as Figure & shows. Temporal
information shows & sequential rule evaluation
flow, Rulel(ti), which is made from situations and
actions that occurred at time ti, makes 2 new
environment which matehes situations of
rule(ti+ 1), Therefore, the IBL adds situations
made by actions of role(ti) to the situations of
rule(ti + 1) shown in example 11.

» Subsetof situations

Setof actions

Set of situations

Figure 6 IBL induction

Example 11:. Rule generation considering temporal
information
Sitwations: 51,52 and 83 are ocbserved at time t14+ 1.
81 = symbol-1,0 = 82 = 15and 83 = symbol-2.
Actions: al is done by the human expert at time
ti+1,
The parameter of "al" iz Al, and Al = 20.
Actior of rulefti}: al i1s done.

Generaled rule'ti +1}:
S1& B82& 53 & side-effect of a2 — al(Al =
200,

HTak: 7

in context (31 =symbal-1,0 = 52 £ 15
and 53=symbal-2)

6.2 Noise Reduction

Eeal noise is caused by sensors and errors made by
human experts. This noize must be removed as it
is unnecessary data in expert jobs. For example, in
spite of & sensor detecting a situation, a human
expert zometimes does not react to that

situation. That situation information is useless
data. The IBL detects this noise as shown in
Figpure 4. Situations and actions are causally
connected, so data that have no causality must be
removed.

6.3 Concept Relation Check

Asshown in example 3, sensed data contains most
concepts of the target domain. Therefore,
generated rules contain unnecessary situations in
their "if-part”. Each situation must have some
causality which depends on the target domain; this
causality iz dealt with as the concept relation
knowledge. The IBL uses this concept relation
knowledge to reduce the amount of unnecessary
information.

6.4 Generalization and Specification

In one learning process, only parameters are
generalized or optimized. However, structures of
rules are not generalized in one observation, but by
multiple examples.

(1) Specialization for ranges of parameters

Range expressions are shown in example 12
They show the generalization eriteria. Strictly
speaking, range information contains a lower case
and an upper case. The lower case is used for
parameter generalization and the upper case
for parameter specialization.

Example 12: Hange specialization
Lower case (narrow range 3 EVE 4
Upper case (wide range) :1 =V =5
Acquired range: 0.5 = V = 3.5
Optimum rapge: 1 = VS 4

The lower limit of value "V" must be more than 1
and less than 3; therefore, the acguired range is
changedta"l = V = 3.5". The higher limit of value
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"WV must be more than 4 and less than §, so the
acquired range is translated inlo "1 = V = 4%,

If an acquired range is within the limits of a lower
case, it must be rewritten as a lower case. If itis
beyond the ¥mits of an upper case, it must be
rewritten as an upper case. A range of an instance
is peneralized or specialized in order to fit it into a
range between the upper case and the lower case. 1t
becomes an optimized range asshown in Figure 7.

Specialization _

Instance bound

"»  Lower case

Generalization

Figure 7 Range optimizaticn

{2} Generalization: by multiple examples

There are many rules in cne expert {ask, However,
general rules and specizl roles are mixed in the
task. Taking other expert tasks into consideration,
some of the same rules are extracted. Both old and
new rules have some differences from each ctner,
To use these differences, rules can be generalized.
We explain the generalization of the IBL for each
difference.

Case 1: There are ne symbolic differences in the i
parts between new and old rules, and each then-part
is the same. However, the values of the new
parameters of the ifparts are éifferent from old
cnes. The IBL generalizes the rapges of sitwation
parnmeters.

Case 2 There are symbolic differences in the if-parts
between new ard old rules, but each ifpart is the
same. The IBL applies the logical-OR operator to
these if-parts and makes a new rule.

Cage 3: There iz no differgnce in the ifparts but the
new then-part is different from the old one. The IBL
applies the logical-AND operator to these then-parts
and makes & new rola,

{3y Hule maintenance

Some causes lead toinconsistent situations in «
knowledge base, Scmetimes, the human expert
makes mis-operations. Local errors of these mis-
cperations can be eliminated by the noise reduction
heuristics. In order to detect non-local errors include
backtracking processes, the learning svstem
searches the expert's recovering processes., Then it
elimingtes non-appropriate knowledge made from
mis-operatiens. If advance knowledge is not enough
to interpret the real world, then non-correet
knowledge may be acquired. In this case, the rule
maintenence system does not always maintain rules
eusily: it reformsz the new concept zet end Dew
translation knowledge., The interpretation system
must re-interpretat.

7TOBJECT MODEL

Humen expert knowledge is learned from situaticns
and aciioms inductively. A form of acguired
knewledge is an implication rule (situationg —
actions ). These agticrs are made by the human
expert eccording to situations. These actions lead to
next situations in an object of the expert job.
Therefore, ar ‘mplicaticn form (actions == next
situations ) represents a sub-model of the chject. The
IBL cen alse obtain the sub-model of the object. If 2
detoil model (such ps dewpn knowledge) of the object is
Tiven, we can hkoew & coverage of aequired
knowlzdpe ta compare the detail model and the sub-
model,

8 CONCLUSIONS

The IBL learnz the human expert's problem
solving knowledge by observation. It consists of the
interpretation system and the learning system. In
this paper, this interpretation system, its advance
krnowledpe and the pre-generalization mechanism as
a sub-system of the learning system are described,
The IEL systern acquires knowledge iz logieal form
and the range information of the values in logica!
rules. Tt cannot obtain general rules from  one
chservetion, butit has a function which opiimizes
parameter ranges. In order to acquire general
lenowiedge, multiple task examples are given to this
sysiem. A snhsel of its fonctions was developed for
a rohet skill acguizition system [Taki 835), and it
was proved thst the major functions of this
svstem  pre useful for skill ecquizition by
shzemvation o inat svstem., We belleve that it is



also useful toextractnotonly theskills but also the
knowledge of human experts. This paper does not
deal with the treatment of alternative
interpretations {translations) and the rule
maintenance mechanism. The TMS [Doyle 79] and
ATMS[de Kleer 86) mechanisms are useful to
maintain the aeguired rule base. Acquired
knowledge is a logical form, so  the partial
evaluation techmigues in  logic programming
[Fujita 87] are useful for these rules to reform
effective rule sets.
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