ICOT Technical Report: TR-386

TR-38b

FGHC Partial Evaluator as
a General Purpose Parallel Compiler

by
1. Fujita

May, 1988

(Ci1988, ICOT

Mita Kokusai Bldg 2IF 03} 456-3191— 5

’GDT 4=28 Mg 1=Chome Telex ICOT Ja7964

Minato-ku Tokvo 8 Japan

Institute for New Generation Computer Technology

FGHC Partial Evaluator as a General Purpose

Parallel Compiler

‘Hiroshi FUJITA

ICOT Research Center
Institute for New Generation Computer Technology

1-4-28 Mita, Minato-ku, Tokyvo 108, Japan

Abstract: A partial evaluator for FGHC programs has been imple-
mented in FGHC. The partial evaluator is based on UR-set with con-
straint solving and is as powerful as Futamura’s § for generalized par-
tial computation. The partial evaluator succeeded to specialize pro-
grams with an order of magnitude improvement of runtime efficiency.
Compiling programs with respect to its interpreter (Futamura’s first
projection) is the most promising application of the partial evaluator.
The compiled programs automatically obtain opportunities of parallel
execution even if the source program is written without concern of par-
allelism. In particular, functional programs like Backus' FP are easiest
to deal with, Compiling Prolog programs is also described. An Prolog
interpreter that gives all solutions for a Prolog source program iz de-
fined in FGHC. According to Layered Siream programming style, the
Prolog interpreter can attain maximal parallelism, hence the compiled

program will obtain good performance as well.

1. Introduction

Partial evaluator is used as a spectalizer for a general purpose program with partial
information given and fixed prior to an execution of the program. In particular, one of
the most promising application of the specializer is using it as a collapser of interpreta-
tion layers within programs written in meta-programming style, where the interpreter
1s specialized with respect to its fixed subject program. With regard to this, there is
an excellent relation between partial evaluation and eompilation known as Futamura's

projection [Futamura 71):

+ + -
PE(Int,Source, Target] ... First projection {compilation)
4+ -
PE(PE,Int,Com) ... Second projection (compiler generation)

+ o+ -~
PE(PE,PE,Cocom) ... Third projection (compiler-compiler generation)

This suggests that we are able to obtain a very general purpose compiler generation
tool by realizing a self-applicable partial evaluator. Toward this ultimate goal, many
researchers have been involved in developing partial evaluators within various languages.
However, to date, results are restricted to a few languages, especially Lisp [Jones 85|
and Prolog [Fujita 87 and Fuller 87), both for sequential programs. On the other hand,
research and practice of partial evaluation for parallel programs are only recent [Safra

86 and Gallagher 87| (for FCP).

On the basis of the background and several experiences with Prolog partial eval-
uation, a partial evaluator for FGHC programs has been developed [Fujita 88]. It is
written in FGHC, hence it is self-applicable in principle, although the Com and Cocom
have not yet been obtained at present. The partial evaluator is based on a set of sound
unfolding rules called UR-set for GHC programs [Furukawa 87|, and constraint solving
mechanism that makes the partial evaluator as powerful as Futamura's § for generalized
partial computation [Futamura 87).

The partial evaluation algorithm for FGHC programs is overviewed in Section 2.
In Section 3, compilation of Backus' FP programs to FGHC is described. In section 4, a
Prolog all-solution interpreter is defined and compilation of Prolog programs to FGHC
15 described.

2. Overview of the Partial Evaluator

Informaily, the essence of the partial evaluation algorithm is to collect all instances
of clauses within a given program required io solve a specified query pattern. Some
literals within an instantiated elause may be immediately evaluated or resolved with
cather clauses, other literals must remain as they are in the clause. The evaluation
or resolution of a bteral may cause further generation of more instantiated clausges. By
providing appropriate criteria for termination condition, all of the evaluation, resolution,
and instantiation of clauses will termmnate with a finite set of instantiated clauses called
residual pragram for the given program and query specification.

In the following subsections, the algorithm is briefly formulated.

2.1 Canonical Goal and Program

For the most general pattern of a query, that is, a query with distinct variables as
its arguments, we need its defining clauses within the given program in their original
form. On the other hand, if the query has static arguments, ie. non-variable term
or multiple occurences of a variable at more than one argument positions, its defining
clauses can be instantiated according to the static arguments by head unification with
the query. Due to the GHC synchronization rule [Ueda 85), this information passing is
uni-directional: from the query to the head of a clause. If the query has no remaining
variable, the information passing can be accomplished at PE-time and overhead at
runtime concerning head unification is saved. Otherwise, it is necessary and sufficient to
pass only values bound for the remaining variables at runtime. To save head unification
for static arguments at runtime, a new predicate is intraduced for the special pattern
of a query and corresponding clauses instantiated for the query.

Definition (canonical goal)

Let Q = p(t1,...,ta) be a goal. @ =P(v1,...,vm) is a canonical goal for Q if # p
and {v;}(1 <1 < m} are all the distinct variables appearing in {t;}(1 € j < n).

Example append(X, Z) is a canonical goal for append([1,2|X], [end], Z).
Definition (canonical program)

Let @ be a goal, P its program. Pg is a canonical program for P wrt Q if for any
valuation of Vars(Q)(= Vars(@)), ie. variables in Q, [Q,Pg] is equivalent under the
given semantics to (@, P].

Example Given a pair of a goal and a program for “append”:

[append{X, [end], 2],
{ Cappena([H!X],¥,2) :- true | Z=[HIZ1], append(X.¥,Z1)),
(apperd((1,Y,2Z) :- true | Z=Y) } !

a pair of the canonical goal and its program equivalent to the original is given as:

| appendix,z),
{ (append([HIX],Z) := true | Z=[H[Z1], append(X,Z1)),
(append([],2) :- true | Z=[end]) }]

Head unification (and unification in a guard) in GHC is restricted so as not to bind
variables on the query side. Several notions and notations are introduced for clarifying
this specific nature of GHC unification.

Definition {idmgu)
Let Ey and Ey be expressions, #, ¢, and 7 be substitutions. 8 is called idempotent

most general unifier (idmgu) of E; and By if

Vodr Eyo=FEyo Do =8t and 86 = 0.

Algorithm 1 (canonical query and program)

INPUT: a pair of a goal and its program, [Qq, P]
OUTPUT: a pair of a canonical goal and its program, [Qg,Pg,l

T:=¢ R:=¢ [*P,T, and R are global for function Algl. */

recursive function Algl{@)
if @ is of a builtin predicate then return ¢
else if there is @ pair, [Q,, Q:] € T such that @ is a variant of Q;
then return Q,(Q;|Q) Wara(@)
else begin
let a be a canonical geal for @ with a new predicate symbol;
T:=TU{Q,Ql}
for each (H;: —G;|B;) € P such that @ and H; are unifiable
begin
6; = (H;iQ@} lvarsiqy: L
for each B;; € B; do H;; := Alg1(B;;8;);
R:=R U{(Qigi :_G'Eil{lB_ih b ,E}H
end :
return ¢ end ;

| O‘E = A“.‘Il{Qu}i- P_r;rn =R .

Figure 1 The basic algorithm for canonical query and program

We denote idmgu of two expressions, E, and E;, as (E,|E,).
Definition (V-minimal substitution)
Let ¢ = {V; « T;} be a substitution. For any set of variables, V, o is called
Vemanimal if
VVi—=Vilnn €0 ViEVI VeV
Proposition {existance of V-minimal idmgu [Ueda 88])

For any set of variables, V), there exists V-minimal idmgu of E; and E, if expres-
sions Ey and E; ave unifiable.

We denote V-minimal idmgu of two expressions, By and Ey, as (Ey|Eq) Lv.

Now we show the basic algorithm in Fig.1 that gives a canonical query and corre-

sponding canonical program for 2 given query pattern and its program.

Algorithm 1 terminates, since there are only finite number of distinct goal patterns,
{B;;}, appearing in finite set of clauses, P. The number of pairs in T increases as a
recursive call of Algl is invoked, and T will eventually saturate with finite number of
pairs for distinet goal patterns. After that, no recursive call of Algl will be invoked.

2.2 Normalization and Unfolding

In this subsection, Rule-1 and Rule-2 of UR-set [Furukawa 87] is reformulated using
the notion of V-minimal idmgu as in [Ueda 88].
Definition (normalization or Rule-1 of UR-set)

Let 'l = (H : —G|B) be a clause, G, a set of unification atoms in G and G,, =
G\ Gy, B, a set of unification atoms in B and B, = B\ B,,.

A clause Ol = (H : =G, U Gy | By UB,) is & normalized clause for C1 if

v = UnifGoal([Idmgu(Gu) lvarsten|vars(a)

= UnifGoal([Idmgu(G. UB.y) lvare(m)vars()
= G, Idmgu(G.) | vars(m)

= Bpldmgu(Gy UBy) lvars(m

]

1@ |

where Jdmgu(U) gives the idmgu for a sel of unification goals, U, [¢)v denotes the
projection of a substitution, o, on a set of variables, V, and UnifGoal(s) gives the
unification goal(s) for a substitution, .

Definition (unfolding at an immediately executable goal or Rule-2 of UR-set)

Let () be a goal, C a set of clanses. Cé 15 a set of satisfied clauses, (.";;, a set of
candidate clauses for C wrt Q if

V(H;:~Gi|B;) € C}
dr o= I:H.lQ} anra[Q:I and QP = Q and Gig = true

and

V(H; :~G,{B;) € C,
e T = {HiIQ}li’ara{Q} arnd G;'G' ?5 fﬂﬂ

If there is no set of candidate clauses in the program P wrt a goal @, ie. PT_;, = ¢,
Q is called immediately executable.

If goal @ is immediately executable, @ is expanded to a set of don’t care nondeter-
minstic alternative goals, {B,#;}, for Cf = {H, : =G;!B;} and §; = (H:|Q) Lvarstq)-

Rule-4 of UR-set is called unfolding across guerd that is essentially case splitting.
This, of cource, is a effective rule for the partial evaluator to perform further special-
ization. However, in this paper, this rule (and Rule-3) is ommitted since the examples
deseribed later show satisfactory results only with Rule-1 and Rule-2.

—5 —

Algorithm 2 (normalized and reduced canonical program)

INPUT: a pair of & goal and its program, [Q, P]
OUTPUT: a pair of a canonical goal and its normalized and reduced
canonical program, [@0,Pg.1

T:=d¢; R:=¢;
/* P, T, and R are global for functions 4lg2, Alg2*, Alg2*, Alg2%", and

w™

a procedure, Alg21"". */

recursive function Alg2(Q/C)
if @ is of a builtin predicate then return {Q}
else if there is a pair, [@,,Q;] € T such that @ is a variant of Q;
then return '[E(Q:'Q:' vars(r}
else begin
let PE;C be a set of satisfied clauses of P wrt @ under constraint C,

P?Q /o a set of candidate clauses of P wrt @ under constraint C;
if PE;C = ¢ then return AigZ*{Q!’QPé;C}

else return AIgE‘P?{Q;’C.PE;g U PE;G)
end

Qg = Alg2(Qo/true);

if Q = {@) then Qq:= 0

else begin
let (g be a canonical goal for @y with a new predicate symbal;
end :

= R;

I

Figure 2-1 The partial evaluation algorithm

2.3 Using Constraints

So far, we are concerned only with variable binding and passing it from a query

down to subgoals. It is possible to take into account constraints other than bindings
for variables in a query. This idea and demonstration of its effects on order changing
impovement of programs have been reported in [Fujita 88]. The constraint solving for

a query is exploited within guard evaluation of a clause in Rule-2 that decides whether

the clause is satisfied, unsatisfied or candidate.

—_ G —

function Alg2*(Q/C,P{)
for each (H; :—G;|B;) € Pafc begin
8; := (H;|Q) lvers(Q)i
let (H; :—true|B;) be a clause obtained by
applyitig Rule-1 (normalization) on (H; : —G;|B;)é;;
/* (G;/C)8; evaluates to true */
B! = Alg2"(Bi/C6;)
end ;
return |, B;

function Alg2*(B/C)
for each B; € B do B := Alg2(B;/C);
return 9, B};

function AEgQ“(Q{C,PEEE)
let ¢} be a canonical goal for () with a new predicate symbol;
T.=TU{[Q,Q}
for each (H, :=G;|B;) € Pg:,c, begin
9;‘J:= {(H:1Q) lvarsi0):
G, := Red((G; A C)8;);
let Cl; be a clause obtained by
applying Rule-1 (normalization) on (I :—G-:|B,-J'||9,-;
AIEE-{—?»{&}
end
return {Q};

recursive procedure Alg2+™((H :-G|B))

B = Alg2*(B/G);

if B* = {B) then R :=RU{(H :-G|B)}

else for each B; € B* begin
let Cl; be a clause obtained by

applying Rule-1 (normalization) on (H : —~G|B;);

Alg2+(CLy)
end .

Figure 2-2 The partial evaluation algorithm (continued)

Combining all of these features, the extended algorithm to obtain normalized and

rednced canonical program is given in Fig.2-1 and Fig.2-2.

In Alg2*’, Red(C) is a function that returns a reduced set of guard goals (con-
straints) for C. The operators, || and %), denote “addition” and “multiplication” of
sets of sets of goals defined as:

Hi:'-' € E:} ’

UB: = {BIJ'| B:,'_i.' c B:} ® B: = {U H'iji

where B} = {B;1,Bi....,Bin;}

Algorithm 2 may not terminate, since there may be infinite number of distinet goal
patterns, {B}, due to application of Rule-2 (unfolding]. The number of pairs in T may
increase without limit as a recursive eall of Alg2*’ is invoked. Therefore, some extra
mecahnism ensuring the algorithm termination is required, Further dicussion 1s given
later.

3. Compiling FP programs to FGHC

In this section, it is shown that Backus’ FP programs are easily compiled to FGHC
programs by the partial evaluator, and that parallelism can be automatically attained
for FI' programs if the interpreter is written to exploit parallelism in evaluating FP
Programs.

3.1 I'P Interpreter

Backus' FP program [Backus 78] comprises a set of unary functions. No variable
is allowed in a user function definition. The domain of FP functions is either primitive
data such as integers, atomic symbols, or sequences whose elements are primitive data

or sequences, Some of the primitive functions are defined as follows:

bottom: bottom : X = 1
wdentity: 1d: X =X

true X =), Y],
equality: eg: X = { false X =[V,Z]and Y £ Z;
L otherwise,
X -1 X isan nteger;
L otherwise,
YV+2Z ifX=][¥ Z] and
times : X = {

subtract one; subl : X = {

multiphication: both ¥V and Z are integers;

1 otherwize.

where " iz the operator for function application.

FP system also provides some functionals that allow users to define composite
programs with primitive functions. Some of them are defined as follows:

Composition: (Fy*Fp): X =F :(F:X)
Construction: [Fy,... Fy]: X = { (A= XD, (B X)) S Ve (F3: X) # L

L otherwise.
. . Fp: X i (F:X)=true;
Conditional: ¢f(F, R, F3): X =4 Fy: X if (Fy: X) = false;
L otherwise,
Constant: #C:X={G X # L

1 otherwise.

[(F:X),...,(F:X,)] X=[X,,...,X, and

ToAll: QF : X = Vi (F: X:)# L;
ApplyToAll: @F: X = _ ;
[] if X =[];
L otherwise,

The above definitions are coded straightforwardly within FGHC as a FP interpreter
for apply/3 shown in Fig.3.

3.2 Compiling FP Programs
For example, the FP factorial program is given as:

det{Zact,B} :- tyuwe | B=if(eq+[id,#0],#1,times+[id,fact*subl]).
def{F,B) :- F\=fact | B=bottom.

The factorial program is compiled with respect to the FP interpreter. The result
is shown in App.l. Because of the very deterministic nature of the program, as is
the case with most of functional programs, it might be doubtful whether the compiled
code has obtained significant improvement of efficiency or not. However, it is true that
the expanded goals in the bodies of po/2 and p1/3 contribute to gain opportunities for
parallel execution. Even in the sequential execution, the compiled code runs twice as
fast as the original interpreter with the source program does.

Besides the compilation for function part, fixed information on argument part can
also be compiled (as in mized computation [Ershov 82]). For example, the next program:

def(sublall,B) :- true | B=(@subl).
def(F,B) := Fi=sublall | E=hottom.

can be compiled to & FGHC program specialized with respect to an argument pattern
of fixed length list, say [V'1, 12,V 3], as:

V1, V2, V3) = apply(sublall, [V1,V2, V3], Res)

— 0 —

apply(bottom,_, Res) :- true | Res=bottom.

apply(id, hrg,Res) :- true | Res=Azg.
applyleq, [V,V] Res) := true | Hes=true.
applyleq, [U,V3 Res) - W=V | Res=falee.

apply(eq,hrg, Hes) :- Ahrgh=[_, 1 | Res=bottem.

apply(subi,Arg,Res) :- integer(Arg) | Res:=Arg-1.
apply{subl,Arg,Res) :— noninteger{Arg) | Res=bottom.

apply(times, [%,¥] Hes) :- integer(X), integer(Y) | Res:=XsY.

apply(times, [X,Y] ,Res} :~ noninteger(X) | Rea=bottom.
apply(times, [X,Y] ,Res]) :~ noninteger(Y) | Res=bottom.
apply(times Arg, Res) :- Argh=[_,.] | Res=bottom.

apply(F1%F2,Arg, Res) := true | apply{F2,Arg,R2), apply(F1,R2,Res).

apply(if (Cond,Then, Else}, irg,Res) := true |
apply{Cond, Arg ,RC), i(RC,Then, Else, irg,Res).

i{bottom,_, _, _,Resg) i— true | Reasbottom.
i(true, Thenm,_, Arg,Res) := true | apply(Then,irg,Res]}.
i{%alse, _, Else Arg,Res) :- true | apply(Else, Arg,Res).

apply([F1|Fs] hrg, Res) - true | m(R1,Rs, Res},
apply(F1,Arg B1), apply(F=, Arg,Rs).
apply([], _,Res) :- true | Res=[].

apply(@Fn,[A1]4s] Res) :- true | m{Ri, Rs, Res),

apply(Fn, A1, R13, apply[!Fn;ls.Rsl.
apply{e_, [1, Res) := true | Res=[].
apply(€_, Azg, Res) :- argh=[1, argh=[_I_] | Res=bottem.

m{bottom, _,Hes) = true | Res=bottom.

ml _,bottom, Res) :— true | Resshottom.

m(Ri, Es, fesz) :- Ri\=bottom, Rs'=bettom | Res=[R1iRs].
apply(#_,bottom, Res) :- true | Res=bottom.

apply(#V,Azg, Res) :- Argh=bottom | Res=V.

apply(Fn, Arg, Res)
Fn=bettem, Fr=id, Fr\seq, Fal=szubl, Fni-times,
Fah=(_#_), Frh=af(_,_,), Foi=[_1_1, Fa\=[], Fo\=(e)), Fni\=(x_) |
def(Fn,Body), apply(Body Arg, Rec).’

Figure 3 The Backus' FP interpreter in FGHC

pi{Vi,v2, V3, Res) :- true | m(R1_126,Rs_126,Res), p4(V1,6R1_128),
m{Ri_171,Rs_171,Rs_126), pi(Vv2, R1_171), p3(R1_192,Rs_171), p3{V3,R1_192).

pd{V1,R1_126) :~ integer(V1) | R1_126 := V1 ~ 1,
pa{V1,R1_126} :- noninteger(Vi) | R1_126 = bottem.

p3{bottem,Rs_63) :- true | Rs_63 = bottom.
pa{Ri_B4 R=a_63) :- RI1_B4 = bottom | Rs_63 = [R1_B4].

This demonstrates clearly that parallelism can be obtained very naturally by the
compilation.

4, Compiling Prolog programs to FGHC

In this section, a Prolog interpreter is defined in FGHC. Then, it is shown that
Prolog programs are compiled with respect to the interpreter using the FGHC partial
evaluator.

4.1 Partial Evaluation of Unification

In the D'rolop interpreter, a logical variable is represented as a ground term on
FGHC level, and unification and substitution application are explicitly performed on
the interpreter level rather than implicitly on FGHC level. An enormous overhead will
be caused by the explicit unification. Henee, it i1s the erucial part of the compilation to
decompose as much unification tasks as possible to 2 bunch of FGHC primitives.

The unifier is defined as usual as shown in App.2. For example, a unification goal
in & subject program, unity(r(x!),2(y!),s), is partially evaluated to a canonical goal,
p1(8}, with the residual program for p1/1 as:

pl(&) :~ true | S=[x! - y!1.
pi{8) := true | S=[y! - x!].

where z! denotes a Prolog variable.
Further, if the umfication goal 15 followed by a minimization goal such as:
.oundfy(${x!),£(y!},5), minimize(s,[x!1,5m) ..,
and £ is not used elsewhere, the pair of goals is reduced to
. Sm=ly! = x'] ...

without leaving any residual clauses for the original goals. The resultant unification
goal will cause further specialization of sibling goals after application of normalization

(Rule-1 of UR-set).

_—11 —

solve(Q,5%0) :- true | freshVars(Q,0,01), ps(Ps,0), s(Q1/0,Ps, 51},
varsIn(Qi,QVars), minimizeSS(S1,QVars,S2), splitsSs(S2,0Vars,So,).

s{true/5i, Fs,50) = true | Fs=[], So=[%5il.
s((61,G2)/51,Ps,50) :- true | merge{Psi,Ps2 Ps),
e(61/5i,Ps1,%01), =1(G2/501 LJPE2 ,S0) .
s(G/51, Ps,Se) = Gh\=true, C\=(_,_) | f
functor{G,F,¥}, Ps=[clauses(F/N,C1s)|Ps1], s2{C1s,6,5i,Ps1,50}.

51(G/[5115s) ,Fs,50) :- true | merge(Ps1,Fs2,Ps), o(Sel,5e2,5a),
=a{G/S1,Ps1,501), =1(G/55,Ps2,502).
s1(_/01, Fs,50) :- true | Pa=[J, So=[].

s2([(H:-B}|C1s],G,Si,Ps,50) := true | merge{Ps1,Ps2,Ps), o(So1,502,56),
unify(G,E,U}, c(U,51,51), derefSubst{51,53),
s3(52,B,Ps1,501), s2(Cls,G,5i,Ps2,502).

s2({J, _+ —sP8,50) = true | Ps=[0, So=[].

s2{fail, s _+P5,50) - true | Ps=0, So=[faill.

s3(5, B,Ps,S0} :- 5\=fail ! applySubst(E,5,Bi}, s{B1/5,Ps,5c).
s3(fail,_,Fs,50) := true [Pe=[], 5a0=[].

Figure 4-1 Main procedures under solve/2

4.2 All-solution Prolog Interpreter in FGHC

The Prolog interpreter defined here gives a set of all answer substitutions satisfying

an input query. The main procedures under selve/2 are shown in Fig.4-1.

+. -
A top level query to the interpreter is selve(Query, AnswerSubsts). For example,
the following query:

?= golve(append{x!,y!,[1,2]),5).
gives a set of all answer substitutions as:

s = [[x'=01,2], y'-0O1,
[xe-{13, y'-T271,
[x-0, yi=[1,211]

The answer substitutions are collected by the recursive procedure, s/a, for every
subgoal for a query to the subject program. a/3 in Fig.4-2 combines seis of sets of
substitutions in AND-manner, whereas o/3 combines in OR-manner in a way like a
merge operator. ¢/3 combines two sets of substitutions taking care of the consistency of
the two sets of substitutions. In this implementation, </3 reconstructs a single unification
goal from the two sets of substitutions, first making a list of variables in the sets as the

a{[511|515],52,50) :- true | al(511,52,501), a{51s,52,502), o(Sel,502,5¢).
a(ll, _,58)} := true | Se=[1.

a1(si11,[s211528],50) :- true | o([501],502,50),
c{511,521,%01), ai(511,52s,502).

aif{_, 0O, So) :- true | Se=[].

offail, 52, S0) - trua | So=52.

als1, fail, So) 1= true | Sp=51.

of[fail|s1is] ,52, Se) :- true | o(515,52,50).

o{[5111518], 52, Se) :- Sii\efail | Se=[S11l501], o(51s,52,5¢1).
al51, [faills52s],50) - true | e(51,525,50).

e(S1, [521152s], Se) := S21\=fail | Se=[S52115e1], o(51,52s,5s1).
al([], g2, €s) :- true | Se=52.

o(51, 0. So) := true | Se=51,

ce(fail, _,5s) :- true | So=fail.

cl_, fail,Sc) :- true | Se=fail.

c(s1, £2,%0¢) = Sth\=fail, S2%=fail | c1{51,52,L.R), unify(L,R,5¢).

ei([v-T|81],82, L,R) :- true | L=[VIL1], R=[TIRi], c1(S1,52,L1,R1).
cei(s81, (v-T|s2],L,R) :- true | L=[V[Li], R=([TIR1], ¢2(51,52,L1,R1).
e1([], o, L,R) :- true | L=[1, R=[1.

Figure 4-2 FProcedures combining substitutions

LHS term and a list of substituted terms for the variables as the RHS term. Then, it
computes the mgu of the two list,

Source Prolog programs are given in a way shown below:

elauses (append/3,Cls) := true | Cls=[
(append (] ,x',x') := true),
(append([h!|x!],y!,[R!|z']} :- append(x!,y!,z!}]}].

clavses(X,C1ls) :- X\=sappend/3 | Cls=fail.

These program clauses are retrieved b}r issuing an clauSus(Frfd,."Ar:fy Clauses)

message to the program server, ps{quu.Hf Stream, "'-rﬁ.:r'f(;'frn.: seld), shown in Fig.4-3.
ps/2 gives an identification number to each requested clause to distinguish variables in
the clause from those in other clauses.

4.3 Suspension Control Clauses

The partial evaluator is able to detect a loop when the same pattern {variant)
of a goal as previously visited one is about to be partially evaluated, by maintaining
and locking up a table dedicated to memoing pairs of goal and its canonical goal. This

— 13 —

pel[clanses(Goal,Cls1) |Hegl ,Id) :- true | clauwses(Goal,Cls0O),
freshCls(Cls0,1d,Id:,Cls1), ps(Reg,Idi).
psl], _} = true | true.

freshCls([C11C1e] ,Id,Idn,FreshCls) :- true | inec(Id,Idl),
freshVars(C1,Id1,FreshCl1l), FreshCls=[FreshClil|FreshClel],
freshCla(Cls,Td1,Idn FreshClsl).

freshCls([], 1d,ldn,FreshCls) :- true | Idn=Id, FreshClse=[].

freshfls{fail, Id,Idn ,FreshCls) := true | Idn=Id, FreshCls=fail.

ine{C,C1} := integer(C) | C1:=C#1,

freshVars(V!,Id,VI) :- true | vI=ViId.
freshVars(T, Id,TI) :- Th=(_!} | functor(T,F,N}, Totcnuf(TI,F,N},
frashVarsi1{N,T,Td, TI}.

freshVars1(¥,T,1d,TI) :- N> | Wi:=K-%, arg(N,T,4), arg(¥,TI,B),
freshVars(A,Id,8), freshVarsi(¥1,T,Id,TI).
freshVar=1(0,_, _, _) := true | true.

Figure 4-3 Program server

mechanism contributes to ensuring the partial evaluation process termination for a class
of goal patterns: the goal of consumer type or passive type that waits concrete data,
and when recursion, arguments to the recursive call are made decreased compared to
the input data received by the goal. However, it will not work for a producer type or
active type goal, that spontaneously generates data, and when recursion, arguments to
the recursive call are made increased compared to the input data received by the goal.
For instance, a perpetual process that generates integer sequences, defined as:

integers([X1¥] K} :- true | ¥X=N, integers(Y ,s(N)).
integers(J, _) := true | trus,

15 producer type, which inerements the counter in the second argument according to a

request for the next integer value in the stream in the first argument.

In the Prolog interperter, the program server, ps/2, is a perpeiual process that
reccives program requests from the solver, /3, incrementing a counter for clause iden-
tification. A goal of ps/2 should be suspended if the request stream is unbound in
partial evaluation time. This type of suspenion control is provided by special clauses
for 'Suspend’/2, called ronirel clowses for the partial evaluator given as follows:

‘Suspend (pa((_*_},_).Com) :- true | Com=suspend.
*Suspend ' (ps(X, _docom) c= XA=(_.) | Comzaxpand,

where Name'ld denotes a variable with a print name, Name, and an identification
number, Id.

For a predicate that allows don’t care nondelerminism, even if it is passive, special
attention is required in partial evaluation. That is, the decision which satisfied clause
is committed should be done at runtime rather than partial evaluation time (altough
this strategy may be too conservative if the don’t care nondeterminism don't care the
commitment even at partial evaluation time.) For instance, we provide control clauses

for merge/3 as:

*Suspend’ {merge([], _,_),Con) :- true | Com=expand.
‘Suapand'{marga{_, 0,.),Com) :- true | Cbmﬁi:pln&.
‘Suspend’ (mezrge(X, Y,_).Com) :- X\=[J, ¥"=0 | Com=suspend.

The similar control clauses to these are provided for o/3 in Fig.3-2, since it is also a
don’t care nondeterministic predicate.

There are other possibilities that cause the partial evaluator to get swamped into
useless inifinite computation when the subject program has some recursive constructs.
In the Prolog inf.erprﬂter, in particular, s_1/4 is a critical predicate that may cause
infinite computation expanding a recursive predicate in the source program for the
interpreter. For instance, the interpreter will run infinitely opening up recursive calls
given the most general pattern of a goal, say append(x!,y!,2z!). To avoid this, however,
the mechanism using a table for memoing canonical goals will suffice as mentioned above
as {ar as append/3 is concerned.

There may be other reasons why a goal should be suspended. For each such goal
pattern, appropriate suspension control clauses should be given. In the Prolog inter-
preter, ine/2 for incrementing a counter for clause identification should be suspended,
since it is not known at partial evaluation time how many clauses with distinct iden-
tification will be used for a query given at runtime. Hence, we provide the following
control clause:

*Suspend’ (inc(_,_),Com) :- true | Com=suspend.

In reality, it is this control clause that, together with the memoing table, leads the
partial evaluatior to terminate for the Prolog interpreter with respect to its subject
PTOgraim.

Other goals may always be expanded, thus the following control clause isrp]ated at
the end.

‘Suspend’ (P,Com) := P\=Puf_,_], P\=mar5l(_._._}. Ph=o(_,_,_), Pi=inc{_,_),
% and P is not any cther goal to which control clauses are specified
| Cem=expand.

The compiled code for append/3 is shown in App.3. The code shows that many of
the subpredicates have been expanded in the body of the clause for passe, corresponding
to append/3 under solve/2, thereby obtaining significant amounts of parallelism.

5. Relation to Other Work

It is well known that partial evaluation is particularlly effective for optimizing
programs that are written in meta-programmaing style [Takeuchi 86 and Levi 86]. There
are also successful works generating compilers and compiler-compiler by self-application
of a partial evaluator [Fujita 87 and Fuller 87].

The motivation and background of the work implementing functional languages on
parallel logic languages described here are almost on the same line as those in the work on
CFL {Levy 87], where a special concurrent functional language is defined and embedded
in a concurrent logic programming environment. The advantage of our method over
Levy's is generality and flexibility in the compiling method. Levi’s method is largely
based on the hand-written translator that translates CFL programs into FCP. Although
they also uses a partial evaluator, its use is limited to a help for performing local
optimization on the translated program. On the other hand, our method needs an
interpreter instead of a translator, and the general purpose partial evaluator performs
all the tasks of compilation. Even if construction of a translater is not a very diffcult
task, it seems easier to construct an interpreter. Moreover, it bocomes far easier to
enhance compilation (translation) with additional functionalities by using flavor mizing
method [Gallagher 86, if the interpreter approach is chosen.

Several works have been reported on compilation of Prolog or OR-parallel programs
into AND-parallel logic langnages [Ueda 86, Codish 86 and Shapiro 87]. Their methods
have the advantage that the resultani programs are very efficient. However, Ueda's
method imposes rather severe restrictions on the source program, that is, predicates
must be strongly typed {producer or consumner). Codish's and Shaipro's methods allow
fairly wide class of source programs including eut. However, their compilation schernes
and execution algorithms are very specific and strongly dependent on the base language
{FCP). Compared to these, our compilation scheme is more general and flexible. Similar
partial evaluators to the FGHC partial evaluator would be constructed for other parallel
logic languages (FCP and PARLOG as well as KL /1) without serious difficulties.

6. Conclusion

A partial evaluator for FGHC programs has heen implemented in FGHC. The
partial evaluztor is based ou UR-sct with coustraint sclving and 1s as powerful as Fu-
tamura’s § for generslized partial compufation. The partial evalustor succeeded to
specialize programs with an order of magnitude improvement of runtime efficiency.

One of the most promising application is compiling programs with respect to its
(meta-)interpreter. By eliminating an extra interpretation layer, an order of magnitude
improvement of runtime efficiency can be obtained.

Backus' FP programs are easily compiled to efficient parallel programs in FGHC
with reasonable cost. On the other hand, compiling Prolog programs with respect to the
all-solution interpreter costs rather expensive (consuming much time and space}, since
the interpreter is fairly complex due to the heavy tasks concerning variable management:
unification, substitution application and so on. Further investigation is required to
make the partial evaluation more economical, as well as to achieve more performance

improvement for subject programas.

From several experiences, the author had a feeling that partial evaluation is less
effective for programs written carefully so as to exploit maximal parallelism from the
beginning, especially in Layered Stream programming style [Okumura 87). However, it
would be promising to write an interpreter using Layvered Stream and to compile source
programs with respect to the interpreter using the partial evaluator, thereby obtaining
target programs enjoying maximal parallelism.

Acknowledgements

The author would like to thank Dr. Koichi Furukawa, deputy director of ICOT Re-
search Center, and Dr. REyuzo Hasegawa, chief of First Research Lab. of ICOT, for their
encouragement. Special thanks are due to Professor Giorgio Levi for valuable discus-
sions, and Dr. Philippe Devienne for helpful comments and suggestions. Thanks also go
to my colleagues in First Research Lab. for discussions and support for implementation

environmment,

References

[Backus 78] J.W. Backus, Can programming be liberated from Von Neumann style?
A functional style and its algebra of programs, CACM 21(8) 1978

[Codish 86] M. Codish and E. Shapiro, Compiling Or-parallelism into And-parallelism,
in The Journal of New Generation Computing, 5(1) pp.45-61, 1987

[Ershov 82] A.P. Ershov, Mixed Computation: Potential Applications and Problems
for Study, Theoreticel Computer Science, (18) pp.41-67, 1982

[Fujita 87] H. Fujita and K. Furukawa, A Self-applicable Partial Evaluator and lts Use
in Incremental Compilation, in Workshop on Pertial Evaluaiion and Mized Compu-
tation, Gl Awernaes, Denmark 1987, The Journal of New Generation Computing,
Vol.& {to appear)

(Fujita 88] H. Fujita, A. Okumura and K. Furukawa, Partial Evaluation of GHC
Programs Based on UR-set with Constraint Solving, in The Fifth International

Conference Simposium on Logic Programming, (to appear) 1988

[Fuller 87] D.A. Fuller and 5. Abramsky, Mixed Computation of Prolog Programs, in
Workshop on Partial Evaluation and Mized Computation, Gl Avernaes, Denmark
1987, The Journal of New Generation Computing, Vol.G (to appear)

[Furukawa 87] K. Furukawa and A. Okumura, Unfolding Rules for GHC Programs,
ibid.

[Futamura 71] Y. Futamura, Partia! Evaluation of Computation Process - An Approach
to a Compiler-Compiler. Systems Computers Controls, 2(5) pp-45-50, 1971

[Futamura §7] Y. Futamura, Generalized Partial Computation, in A.P. Ershov, D.
Bjerner and N.D. Jones eds., Workshop on Fartial Evaluction and Mized Compu-
tation, Gl Avernaes, Denmark 1987, North-Holland, (to appear)

[Gallagher 86] J. Gallagher, Transforming Logic Programs by Specialising Interpreters,
in ECAI-86 The Seventh European Conference on Artificial Intelligence, Brighton
Centre, United Kingdom, pp.109-122 1086

[Gallagher 87] J. Gallagher and M. Codish, Specialisation of Prolog and FCP pro-
grams, in Workshop on Partial Evaluation and Mized Computation, Gl. Avernaes,
Denmark 1987, The Journel of New Generation Computing, Vol.6 (to appear)

[Jones 85] N.D. Jones, P. Sestoft and H. Sendergard, An Experiment in Partial Eval-
uation: The Generation of a Compiler Generator. in J.-P. Jouannaud ed., Rewrst-
mg Technigues and Applications, Lecture Notes in Computer Science, Vol.202,
Springer-Verlag, pp.124-130, 1985

Levi 88] G. Levi, Object Level Reflection of Inference Rules by Partial Evaluation
(extended abstract), in P. Maee and D. Nardi. eds., Warkshop on Meta-Level Ar-
chitectures and Reflection, Serdinia, 1986

(Levy 87] J. Levy and E. Shapira, CFL — A Concurrent Functional Language Em-
bedded in a Concurrent Logic Programming Environment, in E. Shapiro ed., Con-
current Prolog, Vol.1, pp.442-46%, 1957

[Okumura 87] A. Okumura and Y. Matsumoto, Parallel Programming with Layered
Stream, in The Fourth Symposium on Legic Programming, pp.224-232, 1987

[Safra 86] S. Saira and E. Shapiro, Meta Interpreters for Real, in Information Processing
&6, Dublin, Ireland, North-Holland, pp.271-278, 1086

[Shapiro 87] E. Shapiro. Or-parzallel Prolog in Flat Concurrent Prolog, in J.-L. Lassez
ed., The Fourth Internafional Conference on Logic Programming, MIT Press,
pp.311-337, 1987

[Takeuchi 86] A. Takeuchi and K. Furukawa, Partial Evaluation of Prolog Programs
and Its Application to Meta Programming, in Informaiion Processing 86, Dublin,
Ireland. North-Holland, pp.415-420, 1936

e 18—

[Ueda 85] K. Ueda, Guarded Horn Clauses, in Froc. Logic Programming "85, E. Wada
ed., Lecture Notes in Computer Science, Vol.221, Springer-Verlag, pp.168-179, 1986

[Ueda 86] K. Ueda, Making exhaustive search programs deterministic, in The Third
International Conference on Logic Programmaing, Lecture Notes in Computer Sci-
ence, Vol.225, Springer-Verlag, pp.270-282, 1986

[Ueda 88] K. Ueda, internal memeo, 1988

Appendix

A.1 FP “faclorial” Program Compiled to FGHC

p0(Arg, Res) = apply(fact, Arg, Res)

pO(Arg, Res) :- true | m{Arg Rs_82,R2_56), p6(R1_187,Rs_B2), pS{Arg,R1_187),
p2{R2_E6 RC_36), p1(RC_26 Arg, Res).

p&(bottom,Re_B2) :- true | Rs_82 - bottom.
p6(R1_187,Rs_82) :- R1_187 “= bottom | Rs_82 = [R1_187].

pE({bottom,R1_187) :- true | R1_187 = bottem.
po{Arg ,R1_167) :- Arg “= bottom | R1_187 = 0.

p2(L[Vv_82,v_93] ,RC_36) := true | RC_36 = true.
p?([U_QE,?_93]1HC_SE} = 17_83 N\= V_83 | RC_36 = fal=e.
p2(R2_B6,RC_36) :- R2_B6 \= [v2_94,v3_sa) | RC_36 = bottom.

pi{bottom,Arg,Ree} :- true | Res = bottom,
pil{true, Arg.Res) :- true | p3lirg.Res).
pil{false Arg,Res) :— true | m{Azg,Rs_208,R2_143), pe(Ri_313 Rs_208),
pTi{Arg, R2_332), po{R2_332,R1_313), p4(R2_143 Res).

p7(Arg R2_332) :- integer(Arg) | RZ_332 := hrg =~ 1.
pT(Arg,R2_232) :- neninteger(Arg) | R2_332 = bottom.

pa{[X_223,¥_223) Kes) :- integer(X_223), integer(¥_223) | Res := X_203 & ¥_223.
pa{[X_224.¥Y_224] Kes) :- noninteger(X_ 224} | Res = bottom.
pa{[X_225,Y_225] ,Res) :- nonimteger(¥_225) | Res = bettom.
p4{R2_143,Res) i— R2_143 ‘= [V2_226,v3_226] [Res = bottom.

r3{bottom,Res) = true | Res = beottom,
p3{irg.Res) :~ Arg ‘= bottom | Res = 1.

A.2 Prolog Unifier

unify(T1,T2,H6U) :- true | unify1(T1,T2,0,HCU).

unify1(VII,VII, 5i,%0) :- true | So=5i.
unifyi(ViI, T, 5i,56) := Th=(V!I} | updateS(V!I,T,5i,50).
unityl(T,V!I, 5i,50) :- T\=(V!I) | uwpdateS(ViI,T,51i,580¢).

unify1(&, B, 5i,50) :- Ah=(_1 3, BA\=(_1_} |
functor (A, FA,NA), functer(B,FB,KB), unify2(FA/NA FB/NE A, B,5i,Se).

unify2 (FA/NA,FB,A,B,51,50) :- FAJNA = FB | unify3(KA,4,B,51,58).
unify2(FA, FB,A,B,5i,5e) :- F& “= FB | So=fail.

unify3 (N A, B 53 So) - N»0 | Ni:sWN-i, arg(M,A, A1), argiN,B,B1},
unityi(Ai,B1,5i,5), unify4(N1,4,B,5m,50).
unify3{d,_,_,51,5c) :- true | Si=So.

unify4({_,_,_,fail,5e) :- true | Se=fail.
unify4(N,A,B, S5i,5¢) :- Si\=fail | unify3(N,A,B,5i,S0).

uvpdateS(V,T,5i,5¢) :- true | lockupS(V,5i,R}, updateS51(R,V,T,5i,%0).

LockupS(V, [V-U!I|_1, R} :- true | B=rvar{U!I}.
IookupS(V,[V-TI_J, R) :- Th=(_'_} | B=term(T).
lookups(V,{U-¥I_], &) :- true | m=lvaz(U}.
lockupS(V, [U-T|8i], R) := VA\=U, ¥\=T | lookup5(V,5i,R).
lookepS(_,[J, R) = true | R=pewvar.
updateS1{newvar, V,T,5i,50) :- true | Se=[V-T|54i].
updatesSi(lvar{ly), ¥,U,51,%0) := true | So=5i.
updateSi{lvar(U), ¥,T7,5i,8c) := Th=U | So=[¥-TI5i].
cpdateSi{rvar(U), V,U,8i,50) :- true | So=gi.
updateSilrvar(U), ¥,T,51,8a) := T\=U | So=[U-TIS8i].
|

updateSi{term(X), V,T,5i,5¢) := true | unify1{X,T,5i,5a).

A.3 Prolog “append” Program Compiled to FGHC

p3(X.Y, Z, Sol) = solvelappend(X, Y, Z), Sal)

PI(X,Y,2,521) :- true |
priZ,va_29), pTiY,V2_18), pTiX,vi_19),
inc(0,Tdy_318), ime(ldl_11%,I1d1_163), ps(Psi_48,Td!_183),
merge(Psi 266 Ps2_266,Psl 48}, o(Sci_ 266,502 2686,51_1),
peT(Vv3_10,Tdi_119, Sm_449), pi42{V1_19,V2_19,V3_19,Id1_119,Sm_449,U_266),
po(U_286,51_V68), derefSubst(S1_266,52_265),
po7(S2_266,Fs1_256,501_766), p48(Ps1_272,Ps2_266), p4o(Sci_272,502_266),
p132(V3_19,161_163,5m_451), p173{V1_19,V2_15,V2_19,1d1_163,5m_451,U_272),
pe{U_272,81_272), derefSubst{51_272,52_272),
poo(s2_272,Id1_163,P=1_272,501_272), plB(Va_i9 Ve_£1),
varsIn(V2_19 Vm_81,Vm_166), varsIni{Vi_19,Vm_166,Vm_218),
minimizeSS(S1_1,Vm_218,52_1)}, splitS5(52_1,Vm_218,5801,%7_1).

Due to the limited space, subpredicates for pase are omitted.

— 20 ~—

