ICOT Technical Report: TR-384

TR-384
The Design and Implementation of
4 Knowledge Base Machine Mu-X

by
H. Sakai. S. Shibavama. A. Nakase(Toshiba)
H. Monot. Y. Morita and H. lich

Mav, 1988

CH9RR. 1COT

hiita Kokusa: Bldg. 2117 i3] 4536-3191 =3

|CDT 4-28 Mhta 1-Chome Telex 1COT J32964

Mimato-ku Tokvoe 108 Japan

Institute for New Generatit;ﬂ 'éuﬁ_p;jter Technology

THE DESIGN AND IMPLEMENTATION OF
A KNOWLEDGE BASE MACHINE Mu-X

Hiroshi Sakai, Shigeki Shibayama, Akihiko Nakase
Toshiba R & D Center
Hidetoshi Monoi, Yukihiro Morita, Hidenor lioh

ICOT Research Cenzer

ABSTRACT

Within Japan's Fifth Generation Computer Systems Project, 2 knowledge base
machine named Mu-X is being developed. Although the term “"knowledge base” seems to
have various meanings, Mu-X is designed as an advanced database machine with ths
features typical to the fifth generation computer systems.

This paper shows the design considerations of the system architecture, especially of
the management software on the pa.raiicl architecture. Mu-X is designed as a software-
oriented multiprocessor system with hybrid shared memory systems. The management
software aims at' (1) effective use of the hardware architecture, (2) minimizing software
overhead, and (3) parallel processing for high throughput. These design principles are
reflected to the actual implementation and a good system performance is e.xpe_l:tnd in a

multitransaction environment.

1 INTRODUCTION

We have conducted research into knowledge base mechanisms within Japan's Fifth
Gl:n:rationr Computer Systems Project. In an intermediate project lasting four years, a
knowledge base machine named Mu-X is being developed. Although the term "knowledge
base” seems to have various meanings, Mu-X is designed as an advanced database
machine with the features typical to the fifth generation computer systems.

We developed the relational database machine, Delta, as the first step of the

research [Kakuta B5], [Szkai 86]. Its experience led us to the following conclusion: while

& shared database is useful for knowledge information processing, the relational model of
the first normal form is not sufficient. The initial idea of adopting the relational model was
that one can manage a number of facts with the same name and arity as z relation.
However, it is difficuelt to handle complex objects such as list and term in Prolog programs
eificiently in this modzl

Therefore, the basic datz type in Mu-X is the term type which includes the integer
znd string tvpe. An exizndad rzlzdonz! mode]l which is called the tzrm relational model is
ecopled so as to hoid 2 temm a5 an aimbute value [Morita B6]. Fig. 1 shows an example
which contains variables In temn stucture. In an operston over relatons, unification
between terms 1s allowed as a condition like comparison between constants, The data
dictionary describing the knowledge about relations is zlso such a relation, where the
knowledge about one relation is stored as 2 tuple and the knowledge about its attributes
forms a term structure and is stored in an attribute. The logical interface to a host machine
P8l is also represented in term structure. Therefore, 2 command may be stored in an
attribute and an attribute value may be interpreted as a command, which is an example of
extending database with procedures [Stonebraker 87).

This paper focuses on the features of Mu-X as a multi-processor database machine,

especially on its management software reflecting the parallel architecture.

2 Design Considerations
2.1 Design Goals

Mu-X 15 assumed to be used in a multi-transaction environment where high
throughput is as important as quick response. The queries within a transaction are
classified into two types; some of them require small resources like indexed database
access with high selectivity and the others require many more resources like a join
cperation.

In order to preserve the atomicity of the transactions, the three basic transaction
operations of start, commit, and zbort may be used as well as locking protocels. Locking

on a small part of a relation is necessary as that on an entire relation,

A session, an interval from the logon to the logoff of a host computer is assumed to
be a sequence of a number of transactions, In this paper, the term session is often used in
place of the term transaction. In knowledge information processing, a retrieval result may
be used as the source of another operation. Such a result should be treated as a
temporary relation, the scope of which is limited within the session.

As for the internal schema of a relation, the limitations should be loose. The tuple
size should not be resmicted by the physical pags size. The number of aimibutes of 2
relation should not restricted to & small number. Each attribute should contain varizble
length data for space efficiency. The intemal represestation of 2 term should follow that of

the inference machines in order to improve the efficiency and capability of the system.

2.2 Basic Design of Mu-X

Mu-X aimed at a versatile database system flavored with features of the fifth
generation computer systems, and therefore the quantity of software was estimated to
become considerable. So t.hc_ multiprocessor approach with hybrid shared memory
systems has been chosen.

Mu-X is designed to take advantage of the techniques which have been developed in
both the conventional software oriented database systems and the multiprocessor
database machines. Clustering on a primary key attribute and indexing on secondary keys
greatly improve the system performance in most cases. Declustering (ﬁorizontal
partitioning) of a relation and parallel processing algorithms give the system performance
proportional to the number of processors as long as the number of processors is small.

Dedicated hardware like the Relational Database Engine incorporated in Delta
[Sakai 84] was not adopted by the two reasons. The first reason is that there are so
many muscellancous operations that it seems better to achieve higher cost/effectivencss
by making all the vaned operations faster by the conventional hardware techniques i.e.
adopting the memory cache andfor incrementing the number of processors. The second
reason is that such an engine designed for the processing of large volume of data is of

little use in the typical transaction operation where only a small portion of a relation is

processed.

2.3 Hardware Architecture

Mu-X is a tightly coupled muliprocessor sysiem with a front-end processor
connected to the local area network called PSl-net and eight processing elements (PEs)
2s ilestrated in Fig. 2. A multprocessor system with a conventional shared memory is
not appropriate for parallel datzbase processing, since hezvy data trznsfer will teke place
at the shared memory, thus degrades performance. In order to resolve the problem, a
conflict-free shared memory system is incorporated in the hardware design. Mu-X has
two kinds of shared memories; one is a 2 Mbyte conventional memory with a shared bus,
and the other is a multport page-memory (MPPM) which was proposed by Tanaka
[Tanaka 84). The MPPM consists of a fixed number of memory banks (eight in our current
implementation), the controllers (one for each PE), and a switching network which
periodically changes the one-to-one connections between the FEs and the memory
banks. The switching network prevents data contention and assures constant data
transfer rate for each port, though the data access is limited to multiples of a certain fixed
size (512 bytes in our current implementation).

Each PE has a MC68020 MPU, a 2 Mbyte local memory, 2 47 Mbyte disk device, and
a 12 Kbyte dual-port memory. In our current implementation, only the data transfer
between the MPPM and the dual-port memory is supported. When the PE needs to
access the MPPM, it has to set up the parameter block within the dual-port memory $0O
as to make the controller of the MPPM transfer the data between them. It takes about
one millisecond for & PE to compiete transferring 2 Kbytes of data including the processing
time of the software. In order to transfer data from the MPPM to the local memory or the
shered memory, the PE has to transfer the data into the dual-port memory as stated
above first. And then the MPU of the PE has to transfer the data into the local memory or
the shared memory word by word. It takes about seven milliseconds in this case.

The overall architecture of Mu-X is not suitable for highly parallel needs because the

shared memory is used. However by properly use of the MPPM and the local memory, it

is expected to be useful so far as the number of PEs is less than about fifty, The MPPM
with tens of ports could be developed unless the pin count bottle-neck becomes serious.
One could equip even more PEs than the number of ports of the MPPM by connscting

several PEs to each port like a block muliiplexing channel.

2.4 Design Principles of the Software
The management softwzre running on the zbove hardware architzcrure is designed

based on the following principles.

(1) Effective Use of the Hardwars Architecturs

This principle is reflected especially in the functional distribution among the
processors and the use of the hybrid shared memory systems, the MPPM and the shared
memory. As for the functional distribution, it is expected that the performance of the
system can be improved by simply adding PEs and increasing the number of the pomts of
the MPPM. Therefore the design aims to minimize the work of the front-end processor
and equalize the work of each PE in terms of quality as describad in 3. As for the vse of
the storage, the details are described in 4.

(2) Minimizing Software Overhead

This principle is reflected in the control mechanisms for parallel processing of
database operations and the software configuration of the PE. As for the control
mechanisms, the internal commands designed for the purpose Is proved effective as
described in 5. As for the software configuration, it is designed as a single task program

which takes two roles alternately as described in 3.2.

(3) Parallel Processing for High Throughput

Parallel processing algorithms on multiprocessor database machine have been
extensively studied and implemented in order to achicve quick response [Boral 82],
[Hanson B87], [Nakamura 87], [Wilkinson B7], [Bimon 83], [Kitsuregawa B84], [Bitton
84], [Shapiro 86]. Though Mu-X adopis some of these algorithms tailored to the

hardware architecture, it still aims to achieve high throughput in the multitransaction

environment This principle is reflected in the various portions of the software and often

merged with other principles.

3 Basic Design of the Software
3.1 Distributing Functions among Processors

Bus-structured multiprocessor database systems in general have 2 control computer
and 2 number of data processors [Su &8]. The centol computsr manages trensaction
execution and the global data dictionary, translates queries from a host computer to low-
level internal commands, dispatches them to the dzta processors for execution, and
collects retrieval results from the data processors. The data processors handle IO
between the private main memories and the secondary storage devices and perform the
specified database operations.

The configuration, in such multi-transaction environment described in 2.1, seems to
have the disadvantage that the mtio between the processing power of the control
processor and that of the data processors is not changeable dynamically, That is, since
queries from host computers require similar processing power of the control computer and
various processing power of the datz processors, the control computer becomes the
bottle-neck for the system throughput in the case where most queries require small
processing power of the data processors. Although systems with severzal control
computers like DBC/1012 resolve the bottle-neck, they are not able to change the ratio of
the processing power automatically according to the tendency of the queries.

Mu-X resolves the problem by assigning each PE both the role of the control
computer and that of the data processor.

As for the first role, each PE 1s in charge of at most one session. When a host
compuler requests to create 2 session, the front-end processor seeks a free PE to be
responsible for it. The request is permitted by the front-end processor if such a PE is
found, otherwise it is refused. Therefore the number of the concurrent sessions 1S
restricted as many as the number of the FEs. This limitaticn comes from the design

principles of the software and not from the hardware architecture. During the session, the

front-end processor delivers the queries from the host computer to the related PE and
sends the responses made by the PE to the host computer. W’hcn Mu-X is operational,
the front-end processor treats the FSI-net protocols only so that it might not become the
bottie-neck.

As for the second role, each PE works just the same way as the dat2 processors

desoribed ahove,

3.2 Configuration of the Scftware of the PE

Since each PE, a single processor, has to play the above two roles concurrently, the
execution should be interlcaved with Little overhead. The software of the PEs includes the
management module and the processing module, comesponding to the two roles
respectively. This software interleaves the two modules in a simple way. Let us examine
the execution process of the mznagement module in order to find a proper way. Fig. 3
illustrates the general flow of the execution process of the management module.

At the state 81, the module is waiting for a query arrival. On the amival, its state
becomes S2.

A query, as shown in Fig. 4(a), is represented in term structure. In this example, the
result of a selection operation and the result of a join operation over three relations are
put together into a temporary relation. Here, a variable which appears in several places
relates the values stored in each place. Since the term structure is not convenient for the
management module to handle, the module wansforms it to a query tree at S2. Fig, 4(c)
shows the tree corresponding to the above query.

At 53, the module accesses the daia dictionaries to get the information about the
relations specified in the query tree and to lock the entire relations if necessary.

At 54, the module selects a part of the query tree to be processed according to the
information acquired at 83 and generates and dispatches the cormresponding internzl
commands. Fig. 4(d) shows the essence of the intermal command. As for the join
operation, besides the multiprocessor nested loop algorithm, Me-X adopts the hash

based algorithm which was proposed by Kitsuregawa [Kitsuregawa 84] and improved by

Shapiro [Shapirc 87). In this case, the join operation is processed by three intemal
commands; the first two commands request the dynamic clustering on the specified
attributes over each relation and the last command requests hash based join operation on
each pair of the corresponding clusters.

At 55, the module is waiting for the response to the internal commands.

At 56, the module reduces the query tree according to the response. Fig. 4(e) shows
the modified query trze. If the modified query tree is stll to be processed, its stats
becomes 54, Otherwise it hecomes 57,

At 57, the module generates the response to the host computer and dispatches it to
the front-end processor. Then its state becomes S1 in order to wait for the amival of
another query.

As described above, the management module generates and dispatches the internal
commands step by step as it reduces the query tree. The process seems to have the
advantage that a command which is appropriate to the situation can be generated easily in
comparison with the case the query is translated into the internal commands at once.

Following the consideration on the management module, the PE software was
designed as a single task program. That is, the control module calls the processing
module at 51, 53 (only if the lock operation is suspended), and S5. Then the processing
wodule seeks the internal commands which the PE can process and handles /O
operations to process the individual data according to the command. When there is no
such internal commands, the processing module returns and the management module
continue the execution.

In most systems, these modules are realized as two individual programs on a real-
time multitasking operating system. However, the Mu-X approach has the following
advantages. The first advantage is to minimize the task switching overhead. This is
important especially in a multitransaction environment. The second advantage is that the
dual-port memory, the /O buffer to the MPPM, can be fully shared by these modules
since the execution is separated. The third advantage is that the requested code area

becomes smaller by sharing common procedures,

4 Considerations on the Storage for Management of Information
4.1 Considerzations on the Storage

In order to achieve a good performance on the Mu-X architecture, thers are two major
points: avoidance of the access conteation to the shared memory and full use of the
MFPFPM.

In Mu-X, 2 session is relzizd to a PE as céescribed in 3.1, It has & effeci to avoid 1o
access confention to the shared memory since the knowlsdge local within a session can
be stored in the local memory of the comesponding PE. Otherwise, it would be stored in
the shared memory.

As for the MPPM, [Tanaka §4] propossd that a MPPM can be used as a shared disk
cache within a massive paraliel database machine architecture, The management software
of Mu-X, however, treats the MPPM as a fast common storage independent from the disk
devices. This is because in such & software orented system like Mu-X, the managemernt
software knows the characterisiics of each data beter than any page replacement
algorithms for disk cache systems. In the case where an overflow takes place, the
overflow portion is stored into a disk device. The MPPM is used to keep temporary
relations, the copy of the giobal data dictionary, and the new version of a page dasa which
is modified and not committed yet. The details are deseribed belowgad sumwmarized inm F g 5L
4.2 Management of Relations
(1) Temporary Relations

A temporary relation is created typically by a retrieval operation and is accessible
only within the session in which it is created. It is stored in what is called an MPPM file
so that it may be processed by any PEs,

An MPPM files is a sequence of fixed size pages (2 Kbyies in our current
implementation) aliocated within the MPPM. Contrel tables zre used to zet the required
page location within the MPPM from Gie lozicel page numbder of the MPPM file, They are
stored in the shared memory so that an MPPM file czn be 2ccessed by any PE. An
MPPM file could be used o siore a parmanen! relztion. Thus. the locking protocols and

the version managezment on ezch pege of the WPPM fiie are also realized in the control

tables. There are 256 MFPPM files available in our current implementation,

(2) Permanent Relations

A permanent relaton 15 accessed many times and is sharable among the sessions as
long as the combination of the locking protocols is permissible. It is usually horizontally
divided and stored into the disk devices. As for the declustering, it is assumed that most
relations are stored according to the hash vzlue of an attribute of each tuple, so thst 2
typical transaction concerning one relation mzy be processed by one PE. In addition to the
hash based scheme, the round robin scheme is also adopted.

Within a PE, the individual parts of a relation 1s stored in what 1s called a disk file. A
disk file is basically a sequence of fixed size pages within a disk device and can be shared
among the sessions. Control tables sre used to realize the locking protocols and the
version management on each page like the MPPM file. However, most of them are stored
in the local memory.

In an update operation, the new version of a page datz is stored into a newly
allocated page of the MPPM and the control tables are modified so that the transaction
ID, the page number of the disk file, and the allocated page address of the MPPM are
memorized. Such use of the MPFPM seems to be useful, since the stored data is often
accessed more than once. When the transaction is committed, the new version of the page
data is actually stored in the disk device, where the file management facilities of a. real-
time operating system is used.

A disk file does not support any clustering or indexing scheme in itself. This is
because such work, like a selection operation, should be done by the processing module

so that the software overhead may be totally minimized.

(3) Temporary Clusters

A set of temporary clusters are generated in 2 dynamic clustering operation. Each
cluster is stored in what is calied a bucket file.

A bucket file is stored into the MPPM like the MPPM file. The control tables,
however, are simpler than that of the MPPM file, because its use is limited. Since a

number of bucket files should be allocated and released at once, the Buddy algorithm is

— 10 -

used to realize these operations.

4.3 Data Dictionaries

Most database systems have both 2 data dictionary and directory in order to keep the
knowledge about the system. The former is for 2 friendly user interface and the latter for
the systzm efficiency. The data directory, however, is not necessary in Mu-X because the
informztion can be exwzcted efficienty from the datz dictionary. A data dictionary is

classified into two types, the local data dictionary and the global data dictionary.

(1) Loczl Data Dictionary

A local data dictionary bzlongs to 2 session and mainly keeps the knowledge about
temporary relations such as the data type, the name of each attribute, and the number of
tuples. It is stored in the local memory of the PE responsible for the session. In order to
process a query which requires access to the local data dictionary, the management

module makes its copy as & temporary relation.

(2) Global Data Dictionary

The global data dictionary keeps the knowledge to be shared among the sessions
such as knowledge about the permanent relations. It is realized as.a relation horizonwlly
partitioned across the disk devices before the startup of Mu-X. The round robin scheme is
used 5o as to equalize the volume among the disk devices. During the initialization phase
of Mu-X, a copy of the global data dictionary is made into the MPPM by the PEs. On the
other hand, during the shutdown phase of Mu-X, the copy within the MPPM is divided
horizontally and stored into the disk devices. In order to process 2 query which requires
access to the global data dictionary, the copy within the MPPM is used.

To share the global data dictionary relation among the sessions efficiently, a hash
table and a pool of page buffers with two related tables are provided within the shared
memory. The hash table allows fast access to the address of the tuple specified by the
given relation name (i.e. the page number and the offset within the page). A page buffer of
the pool holds the copy of the currently concerned page (128 page buffers in our current

implementation). The pool has the following two tables, One has as many entries as the

number of the pages of the global data dictionary. Each entry holds the page buffer
address if the page is staged in the page buffer. The other table has as many entries as
the number of the page buffers. Each entry holds the reference count over zll the
transactions and the tuples within the page. For example, assume that a page buffer holds
the page data which has the knowledge about the relations R, Q, and the relation R is
referred by three sessions and the relation Q is referred by one, then the reference count
is set to four.

When a2 PE wants to know zbout a relztion, 1t gets the page number of the copy and
the offset within the page through the hash table. Then it checks whether the page is
currently staged in a page buffer through the first table. If it is not staged, the PE must
find a page buffer the reference count of which is equal to zere and transfer the page data
into the page buffer. Cenainly such a page exists so long as the number of the page
buffers is larger than the summation of the reference counts. At last the PE has to
increment the reference count of the page buffer.

It takc.s less than 1 millisecond for a PE to get the information of a relation when the
related page is already staged, and about 8 milliseconds otherwise.

When ﬁ relation is modified in a transaction and it is committed, the information about
the relation should be also updated. The PE responsible for the session modifies the
information within the page buffer and puts the page data back to the copy of the global
data dictionary relation. '

Intent Jock protocols [Gray 76) on an entire relation are realized within the page
buffers. In our current implementation, each tuple of the global data dictionary has a 6 byte
attribute for the purpose which allows at most fifteen concurrent transactions.

In summary, the global data dictionary is stored within the MPPM when Mu-X is
operational so that it may be accessible by anv PEs. The pages having the knowledge
about the active relations are staged in the shared memory and shared among the
sessions,

5 Internal Commands for Parailei Processing of the Database Operations

An internal command requires the PEs to process a relational algebra level operation

in parallel. In order to minimize the software overhead, only one command is generated

and shared among the related PEs.

(1) PE Specific and Nonspecific Commands

Internal commands are classified into two types, PE specific and PE nonspecific ones.

A PE specific command concerns a relation stored in the disk devices and must be
processed by the PEs which own the devices. Therefore a PE specific command has an
affinity mask, a bit array which indicates whether each PE has te process it or not, A FP=
finishes the processing of the command when all the objects within its disk device are
processed.

A PE nonspecific command concemns only those relations stored in the MPPM and
can be processed by any FE. In Mu-X, the idle PEs process such a command, which helps
to balance the processing load among the PEs. A PE nonspecific command has a counter
indicating how many additional PEs can join the processing. A PE finishes the processing
of the command when there is no more objects to be processed. Note that it is possible

that some objects are still being processed by other PEs.

(2) Starting and Finishing Masks

It is important to decide whether an internal command is completed by all the related
PEs. It is not obvious because several internal commands belonging to the different
transactions are to be processed concumrently and therefore an internal command might
not be processed synchronously by the related PEs. For example, in case of a PE specific
command, it may happen that some of the PEs have already finished the processing while
the others have not even started it yet.

A starting and finishing masks within an internal command are used for the purpose.
The starting mask is a bit array indicating whether each PE has started the processing
and the finishing mask is a similar array indicating whether each PE has finished it. The
software finds a PE specific command is completed when the finishing mask becomes
equal to the affinity mask, while it finds a PE nonspecific one is completed when the
finishing mask becomes equal to the starting mask.

These masks are useful to improve the average response time of the system.

== 13_

Suppose a command requiring much processing time is being processed by a PE and there
exists another PE specific command related to the same PE requining little processing
time. If the PE could not suspend the processing of the current command, the average
response time would become worse. In Mu-X, this is avoided by interleaving the
processing of the commands within 2 PE like conventional multi-tasking systems. A PE
checks whether the processing time excesds 2 certain Iimit {1 second in our cument
implementation) on finishing the processing of each object If the time excesds the limit,
the PE looks for other PE specific command related to iwself. In case that such a command
is found, the PE can safely begin the processing of the new command by leaving the

finishing mask of the current command unchanged.

(3) An Object Counter

An object counter within the internal command is vsed to decide which PE should
process each object. For example, in & selection operation which requires the scan of a
relation within the MPPM, each page of the relation must be processed only once by an
arbitrary PE. In this case, the object counter is set to zero (the first page number) when
created. Each PE tries to get the cunient of it (i.e. the page number to be processed next)
and to increment it by one in a critical section. The CAS (compare and swap) instruction
of the MC68020 MPU is used efficiently in such a operation.

In a join operation on each pair of the corresponding clusters, the object counter
counts up the pair number,

In summary, an internal command is used to process a relational algebra level
operation in parallel. By taking advantage of the shared memory, the synchronization

armong the PEs is realized with little software overhead.

& Conclusion

The design considerations on th: management software running on the parallel
architecture of Mu-X are discussed. Three design principles of the software, (1) effective
use of the hardware architecture, (2) minimizing software overhead, and (3) parallel

processing for high throughput are reflecied to the actual implementation,

Although Mu-X is still under construction, it has just begun to process queries from a
host computer PSL. It is found Mu-X processes queries as fast as estimated under single
ransaction environment. Since the performance evaluation is considered important in such
a parallel architecture, we plan to make a thorough evaluation vsing hardware monitors as

well as software methods.

ACENOWLEDGENMENT
We would to express our special thanks to Prof. Y. Tanaka for permitting the use of

his idea concerning the MPPM.

REFERENCES

[Bitton 83] Bitton, D., et al.: "Parallel Algorithms for the Execution of Relational
Database Operations", ACM Transactions on Database Systems, Vol. 8, No. 3, pp. 324-
454,

[Date 82] Date, C. JI: "An Introduction to Database Systems”, The Systems
Programming Series, Addison Wesley, 1982,

[Gray 86] Gray,]. N., et al.: "Granulanty of Locks and Degrees of Consistency in a
Shared Data Bases”, 1976.

[Hanson 87] Hanson, J. G., Orooji, A.. "Experiments with Data Access and Data
Placement Strategies for Multi-computer Database Systems”, Proceedings of the Fifth
International Workshop on Database Machines, pp.597-610, 1987.

[Kakuta 85] Kakuta, T., et al.: "The Design and Implementation of Relational Database
Machine Delta”, Proceedings of the Fourth International Conference of Database
Machines, 1985,

[Khoshafian 87] Khoshafian, S., Valduriez, P.: "Parallel Execution Strategies for
Declustered Databases”, Proceedings of the Fifth International Workshop on Database
Machines, pp.626-639, 1987.

[Kitsuregawa 84] Kitsuregawz, M., et al: "Architecture and Performance of the

Relational Algebra Machine GRACE", Proceedings of the International Conference on

Parallel Processing, 1984,

[Morita 86] Morita, H., et al.: "Retrieval by Unification Operation on a Relational
Knowledge Base, Proceedings of the 12th International Conference on Very Large
Databases, 1986,

[Nzkemura 87] Nakamurz, H., et al: "A High Speed Database Machine - HDMY,
Proceedings of the Fifih Internationzl Workshop on Database Machines, pp.340-333,
1987,

[Papachristidis £7) Papachristidis, A. C.: "Dynamically Partitionable Parzllel Processors:
The Key for Cost-Efficient High Transaction Throughput”, Proceedings of the Fifth
International Workshop on Database Machines, pp.328-339, 1987.

[Sakai 84) Sakai, H., et al.: "The Design and Implementation of the Relational Database
Engine", Proceedings of the Fifth Generation Computer Systems "84, 1984,

[Sakai 86] Sakai, H., et al.: "Development of Delta as a First Step to a Knowledge Base
Machine”, Database Machines Modem Trends and Applications, NATO ASI Series F,
Vol 24, 1986.

[Shapiro 86] Shapiro, D. L.: "Join Processing in Database Systems with Large Mam
Memories", ACM Transactions on Database Systems, Vol. 11, No. 3, pp. 239-264.
[Shibayama 85) Shibayama, S., et al: "A Knowledge Base Architecture and its
Experimental Hardware", Proc. IFIP TC-10 Working Conference on Fifth Generation
Computer Architectures 1985.

[Su 88] Su, S. Y. W.: "Database Computers Principles, Architectures & Techniques”,
MeGraw-Hill, 1985,

[Tanzka 84) Tanaka, Y.: "A multiport Page-Memory Architecture and a Multiport Disk-
Cache System”, New Generation Computing, Vol.2, No.3, pp.241-260, 1984

[Wilkinson 87] Wilkinson, W. K., Boral, H.: "KEV - A Kemel for Bubba", Proceedings of

the Fifth International Workshop on Database Machines, pp.29-42, 1987,

16 —

Hule Relation

Head

body

Ancestor(X. Y) father{¥. Y}

Ancestor(X. Y) zother(X, Y)

Ancestor (Y. Y)

Ancestior(¥. Y)

Fiz.l Exasple of a Terr Relation

(father (%,). ancestor(Z. Y))

(Tather(%. Z). ancestor(i. ¥))

]

Fsl PSI PsI Psl
[| | |
P3l net]
Front-end
Processor
i
Shared Memory (ZMB)
I | F |
PE PE PE FE
jii%ij] jji%ij] jii%ij]
S * S¥itching Network / L
| | | |
Mesory Hemory Hemory Hemory Memory
Bank Hank Bank Bank Bank

Multiiport Page Memory

Fig.2 Hardwzre Architecture of Mu=X

The Hele of the
Control Cooputer

¥alting for 8 GQuery

Transforming the guery into
a tree structure

Accessing the data dictionary
Including the lock cperations

Gererating internal cobpands

Internal Dannandsfi"']

Internal Responses- | _
Waiting for the responses

Reducing the query tree

&)
<,
- _--.\~® Haking the response

Fig. 8 The General Flow of the Executlon Process of the Manageceent Module

Response <<--

retrieve(r(X.Y), (FOLY).Y=5): (F(X2).g(Z.1) .h(U.Y)))

{a) exasple of the query reprsented In tere structure

CeiZ.U) (hil.x)

{b} The binary structure corresponding to the guery(a)

(¢} The query tree transforsed fros the query(a)

dynamic clustering
X Z) =— (X, I)

g) —e—— gL 1)
U <2 rwon.e@

(d) essence of the internal commands

te} the reduced guery iree

Fig. 4 Exasple of the reduction process of a guery tree

Shared Mezory Multiport Page—mezory

The Area for Tesporary Relations
The area for internz! comzands and clusters
Control Tables for the HPPH file
The Area for updaie operations
The Buffer Memory Pool end
the Control tables for The copy of
the Global Data Dictionary the global data dictionary
FEQ PE1 - FET
Local Moaory “meal Momary Local Momory
Control Tables Control Tabies Control Tables
for the disk file for the disk file for the disk file
Local Data Local Data Local Data
Dictionary Dictionary Dictionary
il

Permaneni Relation Permanent Relation Permanent Kelation

RO. S0. TO RI. 8. T1
Clobai Data Dictdinary Globgl Data Dictginary Glohal Datz Dictdinary

Fig. 5 Use of the storage in Me-X

