ICOT Technical Report: TR-377

TR-377
A Principle of Query Transtormations
in Deductive Databases

by
N. Miyazaki, H. Haniuda{ Okt).
K. Yokota and H. ltoh

May, 1988

Colgss 100T

Mita Rokusai Bldg, 21F A =510 = 5

H :D | 4-25% Mita 1-Chame Telex 1COT 197964

Minawo-ku Tokvao 108 lapan

Institute for New Generation Cbmputer Technology

A Principle of Query Transformations
in Deductive Databases

ICOT TR-377
(May 1988 Revised Sep. 1988)

Nobuyoshi Miyazaki*, Hiromi Haniuda*,
Kazumasa Yokota** and Hidenori Itoh**

* Oki Electric Industry Co., Ltd.
*#*Institme for New Generation Computer Technology

Abstract

Several methods that ransform queries to their equivalents in order to improve the
performance of bottom-up approach have been proposed for recursive guery processing.
This paper discusses the foundation of query transformations. First, the role of the
query transformations is discussed and the concept of goal equivalent transformation is
introduced. Goal equivalent transformation is a transformation that preserves the answer
to a query but allows the change of the least models of the database. Because the least
model of the database is computed by bortom-up approach, the performance can be
improved by changing the size of the least model.

Next, ways o obtain smaller least models are discussed, and a conceptual
procedure called clause replacement is proposed. Examples of procedures, which are
applications of clause replacement using fundamental principles of first order logic such
as resolution and subsumption, are shown. They include procedures called Horn clause
transformation (HCT) by partial evaluation, HCT by substitution, and HCT by
restrictor. Properties of these procedures are compared. The relationships of these
procedures with other methods such as the distribution of selection and the magic set
are discussed, and it is shown that the clause replacement is a common foundation of

many transformation methods.

1. Introduction

Many methods for recursive query processing have been proposed. Summaries
are found in [5] [13], and several newer methods have been proposed [6] [18] [23].
Because these methods are based on different concepts and techniques, itis difficult to
recognize their logical relationship and to compare their performance. Banciihon et al.
[5] compared performance of several methods in terms of the size of the intermediate
results and found three influencing factors to the performance.

(1) The amount of duplication of work.
(2) The size of the set of relevant facts.
(3) The use of unary vs binary intermediate relations.

There are two major approaches to recursive query processing; top-down
approach based on the procedural semantics (SLD semantics) and bottom-up approach
based on the fixpoint semantics [5] [10]. The typical bottom-up methods is the naive
evaluation proposed in [3] and other literature. It computes the least fixpoint of the
database by an iterative procedure. Although this method is well suited to apply
techniques developed for relational database, its performance without improvement is
not good because it computes possibly large fixpoints and the iteration involves a lot of
duplication. Hence, several methods have been proposed to improve the performance of
the bottom-up methods. There are mainly two ways for the improvement; improvement
of the execution algorithm, and rewriting of rules before execution. Methods such as
cemi-naive and differential method are examples that follow the first way [2] |3]. These
methods contributes to improve the first factor of the performance, 1.€. the amount of
duplication. Examples of rule rewriting are Aho-Ullman [1], magic sets [4] 115] [171,
counting and reverse counting [4], Alexander [14], Kifer-Lozinskii [9], generalized
magic sets [6], generalized counting [6] [16] magic counting {18], algebraic approach
[7] and Homn clause wansformation [11]. These rewriting methods contribute to improve
the second influencing factor to the performance, and some of them also contributes

other factors.

The object of this paper is 1o try to find common logical foundations of query
transformations. This paper uses clause notation, and uses a term query transformation
instead of rule rewriting to emphasize the similarity to the program transformation.
Principles of query transformations are discussed and a conceptual procedure called
clause replacement is proposed. Some transformation procedures are shown as
examples of application of clause replacement, and properties of them are compared.

Several other methods are also compared to these procedures.

2 Preliminaries and Basic Concepls

Itis assumed that fundamental concepts of logic programs in [10] are known,
Definition 2.1 (Notations)
clause: A clause means a definite clause in this paper. It is denoted h;-B where h is an
atom and B is a conjunction of atoms. A clause is also denoted <k B> where h is an
atom and B is a set of atoms. The latter notation is possible because the order of atoms
in the body is meaningless.
model: A model means the least Herbrand model. It is also the least fixpoint.
prd(X): A predicate or a set of predicates of X. If X is an atom, prd(X) is its predicate.
If X 1s a clause, prd(X) is its head predicate. If X is a set of clauses prd(X) is a set of
their head predicates.
Cu(P.X}and Cy(P,X): Let P be a predicate or a set of predicates and X be a set of
clauses. Cy(P,X} and C,(P,X) are maximum subsets of X whose elements have
predicate P or elements of set P in their heads and bodies, respectively.
=1 A = B means B is a logical consequence of A. Here, A is a set of clauses and B is
a clause.
--, 2 : setdifference, and set inclusion.]
Definition 2.2 A deducrive database (DDB) is a finite set of clauses. An extensional
database (EDB) is a set of ground unit clauses, and an infensional database (fDB)isa

set of other clauses. Thus, DDB = IDB v EDB. []

We assume prd(IDB) mprd(EDB) = @ without loss of generality, because a DDB
can be easily transformed to satisfy this conditon by adding predicates and clauses. The
algorithms in this paper work correctly with a liutle maodification even if this assumption
is not used.

Definition 2.3 A query is denoted by a goal which is an atom. Let g’ be a ground
instance of g. Then, the answer of the query is the set G = (g1 DDB= g'}. (]

Note that the definition of the goal with an atom does not practically restrict the
expressive power of the query, because the goal with a conjunction of atoms can be
mapped to a goal with an atom by adding a clause to the DDB. The following
proposition is based on the property of the least model [10].

Proposition 2.1 Let DDB, G and M be a deductive database, its answer for goal g,
and its least model, respectively. G and M may be infinite sets if functions are used in
DDB. Letg be a ground instance of g. g'e G iff g'e M, [

The above definition is the basis of the bottom-up approach. The semantics of the
deductive database is also defined by SLD resolution, and it is known that the SLD
semantics is equivalent to the fixpoint semantics. The SLD semnantics is the basis of the
top-down approach.

Next, additional concepts used in subsequent chapters are defined.

Definition 2.4 A dependency graph of the DDB is a tuple [N,E]. Here, N is the set of
predicates in the DDB, and E is a set of edges of the form (p.q) that means p appears in
the head of a clause and ¢ appears in its body. The transitive closure of edges, i.e., a
path relation, is denoted —*. A predicate, p, is within reach of a predicate, 1, iff
r—»*p. A clause F is within reach of a predicate, r, iff r—*prd(F). =

Definition 2.5 Let P be a set of predicates such thatpe Pandge Piff p »*qgandg
—* pin the DDB. A component of the DDB is the set C,(P,DDB), i.e. the set of
clauses having elements of P in head. A predicate belongs to a component iff it appears
in heads of clauses in the component. An atom belongs to a component iff its predicare

belongs to the component. W

Definition 2.6 Let N and M be components of the DDB. N is a lower component of
M iff there exists a predicate, p, of M and a predicate, g, of N such that p —=* q. The
relation lower defines a partial order. M is an upper component of N iff N is a lower
componentof M. B

Definition 2.7 Let B and C be clauses (or formulas). B is more general than C iff
there exists a substitution, @, such that C = B0, B is less general than Ciff C is more
general than B. B is a varianr of C iff B is both more general and less general than C.
We meat variants as if they are the same. For instance, {a(X,Y), a(V, W)} = {a(X. Y)}].
The least generalization of aloms whose predicates are the same is an atom C which is
more general than these atoms, and there is no other atoms which are less general than C
and more general than these atoms. u

Definition 2.8 A clause <r,R'> is a sub-clause of <r,R> iff R' is a subser of R. Let B
and C be clauses. B subsumes C iff there exists a sub-formula of C that is less general

than B. It is obvious that if B subsumes C, then {B} = C. .

3 Query Transformation
3.1 The Role of Query Transformations

The role of the query transformation 1s to obtain a query form that can be executed
more efficiently than the original form by subsequent execution algorithms, How can we
achieve this improvement? Because bottom-up methods compute the least model, if we
obtain a smaller least model its computation is more efficient than the computation of the
original least model.

This situation is explained as follows. When some arguments of a goal are
bound, the top-down method computes a certain subset of the least model by restricting
the search space in order to obtain the answer, The bottom-up method computes the
whole least model in order 1o obtain the same answer. Query transformations can ch ange
the least model without changing the answer. Thus, the bottom-up method combined
with query transformations computes a smaller least model than the original model, and

this combination is almost equivalent to the top-down method in terms of what it

computes. This situation is illustrated in Figure 1. The effect of the improvement is
largest when the original least model is infinite and the transformed one is finite. Further

discussion on the relationship of the bottom-up methods and top-down methods are

found in [23].

-
-

Query,

: '[f‘ansfn_rmatic-n
[
ll , v qu:::‘!-llu'.
model e model
Top-down : Bottom-up : Query transformation
SLD semantics Fixpoint semantics + Bottom-up

Figure 1 The role of query transformation

Let us consider effects of changing the least model to the performance factors in
Chapter 1. If a transformation eliminates some clauses in the extensional database, the
effect 1o the second factor is obvious because the set of relevant facts must be included
in the transformed result. However, a transformation usually changes only the
intensional database. In this case, changing the least model means changing the size of
intermediate relatdons. Hence, if we obtain a smaller least model, there are ways o
reduce the size of set of relevant facts used to compute the intermediate relations in
subsequent bottom-up computanon.

Once a smaller least model is obtained, the improvement of other factors can be
realized by improving execution algorithms [2] [3] or further ransforming the query [4]

[18].

3.2. Equivalent Transformations

This section discusses principles of query ransformatons.

Definition 3.1 A query transformarion is a mapping from the set of DDBs to itself.
Definition 3.2 Let DDB and DDB' be deductive databases and their answers for a
goal g be G and G' respectively. DDB and DDB' is geal equivalent with respect 1o g
iff G = G'. This is denoted DDB =, DDB".]

The relation "=," is an equivalence relation.

Definition 3.3 Let f; be a transformation that is dependent on goal g. fp 18 a goal
equivalent transformation with respect to g iff for any DDB, f,(DDB) = . DDB.
n

The concept of goal equivalence is weaker than the concept of equivalence used in
program transformation of logic programs where the equivalence of least models is
usually required [21]. The latter may be called model equivalence. Query
transformations that are essentially model equivalent have been proposed [19]. Simple
examples of model equivalent transformations are elimination of redundant clauses and
tautology clauses. In this paper, equivalent iransformation means Roal equivalent
rransformarion if not specified otherwise.

Definition 3.4 Let f; be a transformation and DDB' = f,(DDB). Let answers of DDB'
and DDB for g be G' and G respectively. T, is complete with respect to g iff G' = G for
any DDB. f, is sound with respect to g iff G o G' for any DDB. o

A sound and complete transformation is an equivalent transformation.

The amount of EDB is considercd large in a deductive database, Moreover,
predicates in EDB can be handled efficiently by relational database techniques. Hence,
clauses in the EDB are not usually transformed in query transformations. This fact gives
the following definition.

Definition 3.5 An equivalent transformation fg is called a Horn clause iransformation
(HCT)if it does not change clauses of the EDB.]
The concept of HCT is essentially a generalization of equivalent transformation in

relational databases [22], because a goal combined with an IDB corresponds to a query

in the relational database. Let us consider ways to obtain query transformations that
improve the performance of the successive execution. As discussed in the previous
section, we can improve the performance by changing the least model to a smaller least
model by a transformation. To achieve this effect, some information of the database
must be discarded, i.e., some clauses of the database must be eliminated. However,
simply discarding clauses usually results in inequivalent databases. Hence, some
information contained in the discarded clauses should be preserved by adding other
clauses. This consideration leads to the concept of clause replacement.
Definition 3.6 Let S be a set of clauses and DDB = F forevery Fe 5. LetE be a
subset of DDB. A clause replacement is a transformation that maps DDB to (DDB -- E)}
S, |

The following proposition is obvious.
Proposition 3.1 Clause replacement is sound with respect to any goal. n

Clause replacement can be used as a guiding principle to obtain various query
transformations, because it has following propertes.
(1) Clause replacement is sound. Only completeness is required in order to obtain an
equivalent transformation. Moreover, sometimes soundness is sufficient.
(2) Clause replacement reduces the size of the least model.
(3) Fundamental concepts such as resolution and subsumption in the first order logic
are known to obtain logical consequences.

Three transformation procedures are shown in the following chapters as examples
of equivalent transformations based on clause replacement. One procedure is based on

resolution and the other two are based on subsumpton.

4. Horn Clause Transformation by Partial Evaluation (HCT/P)

This chapter discusses a transformation based on the concept of resclution.
Definition 4.1 Let p be a predicate and C be an element of Cy(p,DDB). Let C be a
resolvent of C and F e C,(p.DDRB) on p (by the most general unifier). Clearly, {C] v

Cy(p,.DDB) = C'if C'exists. Let S be a setof all such C's. A clause replacement by

reselution is a transformation that maps DDB to (DDB--({C]--({C}~ C;,(p.DDB)))) w
S. |
Note that the result of the transformaton is {DDRB--{C} }JuS if C is not an element
ot Cy(p,DDB) and 1s DDBuUS otherwise. The concept of a clause replacement by
resolution is similar to the unfold ransformation proposed in [21].
Proposition 4.1 A clause replacement by resolution is an equivalent transformation
with respect to any goal except for the one having predicate symbol p.
Proof The transformation is sound by proposition 3.1. The completeness can be
easily shown by comparing SLD trees of DDBand DDB. =
Because prd(IDB) ~ prd(EDB) = @, Cy,(p,DDB) = Cp,(p,IDB) if p € prd(IDB).
Hence, the following procedures can be defined based on clause replacement by
resolution.
Definition 4.2 A clause replacement procedure res(p,/DRB):
res(p,IDB); /* p is a predicate. */
R:=
for every pair C, e Cy(p.IDB) and C;, ¢ C,,(p.JDB) do;
R = R w [resolvents of Cy, and C, on p};
end;
IDB' := (IDB -- (Cy(p,IDB) -- Gy (p,IDB))) U R;
return [DB',
end.]
Definition 4.3 Partial evaluation procedure p_eval{g tDB,T):
T is a given set of predicates called a terminal predicate set.
p_eval(g IDB,T);
IDB":=IDB -- {clauses that are not within reach of g};
repeat ;
select p such that p e (prd(IDB") -- T -- {prd(g)}) :
IDB" := res(p,IDB");

until no such p;

IDB' := IDB' -- [clauses that are not within reach of g};

return [DB';
end. |
Proposition 4.2 fi(DDB) = p_eval(g,IDB,T) « EDB is an HCT if it terminates and
Toprd(EDB).

Proof p_eval is the composition of clause replacement by resolution and the deletion
of clauses which are not within reach of g. Because the deletion is an equivalent
transformation, p_eval(g, DDB,T) is equivalent transformation by propositions 4.1.
Because T = prd(EDB), p_eval(g,DDB,T) =, p_eval(g,IDB,T) « EDB =

HCTs can be obtained by properly giving the terminal predicate set, T. An HCT
given by this procedure is called an HCT by partial evaluarion (HCTIP). In principle, the
number of elements of T should be as small as possible while assuring the termination
of the procedure. The termination is guaranteed by selecting at least one predicate for T
from each cycle in the dependency graph. The model after HCT/P is smaller than the
original model, because some predicates are eliminated by the transformation. Queries
can be simplified using HCT/P. For instance, a non-recursive query can be reduced to
one that contains only predicates in the EDB except for the goal predicate. It is also
possible to express a query only by self-recursive clauses (i.e., a predicate in the head
appears in its body) and non-recursive clauses. The following simple example illustrates
how HCT/P works.

Example 4.1
aoal: p(X.Y)
IDEB: p(X,Y):-pl{X,Y)
piX, Y)-q(X,Z),p2(2,Y)
gX,Y)-p(X,Y)
pl and p2 are elements of prd(EDB). |
It is easy to see that q can be eliminated. The result of
p_eval(p(X,Y),IDB, (p.pl.p2]) is:
pIX,Y)-pHX,Y)

10

p(X.Y):-p(X.Z).p2(Z,Y).

Properties of HCT/P and its variations are discussed in [11]. The application of
HCT/P to optimization of multiple queries is found in {20]. The resolution may be
regarded as a generalization of substitution of the relational algebra expression for a
(intermediate) relation symbol. A similar procedure is proposed for function-free
recursive queries expressed by relational algebra based on the this algebraic substitution

in [7].

5 Horn Clause Transformation by Substitution (HCT/S)

This chapter discusses a transformation procedure based on subsumption.
Definition 2.8 of subsumption involves two concepts, substitution and sub-clause. This
chapter deals with substitution,

Definition 5.1 Let C" be a clause obtained from C by ground substitution of
variables, Clearly, {C) = C'. A clause replacement by substitution is a ransformation
that maps DDB to (DDB--{C})w {C']. []

Because this ransformation is sound by proposition 3.1, an HCT is obtained by
considering the completeness of the ransformation. First, a procedure that transforms a
component 10 1ts equivalent is defined.

Definition 5.2 A clause replacement procedure Comp/S(p,Camp);
Comp is a component, and p is an atom of the component
Comp/S{p, Comp};
I:i={ph D:={}; Comp":= {};

repeat;
select ge I;
C:={

for every C & Comp such that prd(C) = prd(qg) do;
if (head of C)8 = q then C':=C'w {C8);
end;

Comp' := Comp' w C"

11

S := {atoms of the component which appear in bodies in C'};
D:=Dw g}
I := {the least generalizations of atoms in 1w S WD) - D;
until [= {];
return Comp’,
end. n
Comp/S always terminates, because there are only finite number of atoms that are
more general than an atom and atoms in | become more general in each loop. Comp/S
may generate redundant clauses which are less general than other clauses. These clavses
can be easily eliminated.
Proposition 5.1 Let Comp' = Comp/S(p,Comp). Let E be a subset of DDB whose
elements are in lower components than Comp. For any E, Comp'VE =, CompuE
Proof Soundness is clear by proposition 3.1. The completeness is proved by
inspecting the SLD tree of DDB, because for every subgoal in the tree which belongs o
the component there exists a more general atom used for the substitution in Comp/S.
=
An HCT is recursively defined using Comp/S.
Definition 5.3 A transformation procedure HCT/5(g DB);
HCT/S(g IDBY; /* gis an atom. */
Comp := The component of IDB 1o which prdig) belongs:
IDB' := Comp/5(g,Comp);
for every directly lower component Leomp of Comp in IDB do;
for every atom p of Lcomp that appears in a body of Comp’ do,
IDB' := IDB' w HCTS(p, Leompw lower components of Leomp in IDB),

end;
end;
return IDB';
end.]

The result of HCT/S may include redundant clauses that are less general than other
clauses. They can be easily eliminated during or after HCT/S. The following proposition
is obtained from proposition 5.1,

Proposition 5.2 {(DDB) = HCT/5(g,IDB) w EDB 15 an HCT. [|
The following example illustrates how HCT/S works.
Example 5.1 (ancestor)
Goal: ancestor{taro,hanaka)
IDB: (r1) ancestor(X,Y):-parent(X,Y)
(r2) ancestor{X,Y):-parent(X,Z),ancestor(Z,Y)
The EDB includes clauses for the parent. =
The IDB has only one component. The first loop in Comp/S generates following
clauses.
(rl)" ancestor(taro, hanako):-parent(taro, hanako)
(r2)" ancestor{taro, hanako):-parent(taro,Z),ancestor{Z hanako)
Because ancestor{Z,hanako) is more general than ancestor{taro,hanako) it
continues 1o generate,
(r1)" ancestor(Z, hanako):-parent(Z, hanako)
(r2}" ancestor(Z, hanako):-parent(Z,Z1),ancestor(Z 1 hanako)
The procedure terminates with above 4 clauses. The first couple of clauses can be
discarded as redundant, and the final resulr are the second couple of clauses. The result
shows that equivalence is preserved by the substitution of the second argument, but not
by the substitution of the first.
Example 5.2. (common ancestor)
Goal: comm_anc(X, taro,jiro)
IDB: (r3) comm_anc(X.Y.Z):-ancestor{X,Y).ancestor(X,Z)
ancestor and parent are same as the above, | |
This IDB consists of two components: [{comm_anc),{r3}] and
[{ancestor},{rl,r2}).

First, HCT/S transforms r3 o

13

:-:-mm_anc{)c.mm,jiro]:-am:ﬂmnrr(}E.mm],anccsmr(x,jim}
by Comp/S. This is goal equivalent to the original clause. Next, HCT/S applies
COMP/S to the component of ancestor with two atoms, ancestor(X,taro) and
ancestor(X, jiro)
The result of HCT/S(ancestor(X, taro), {r1 I2})is:
ancestor(X taro):-parent{ X, taro)
ancestor(X taro):-parent(X,Z) ancestor(Z, taro).
The result of HCT/S(ancestor(X jiro), [£2,£3)) is:
ancestor(X jiro):-parent(X,jiro)
anuestor[}{diroj.'-p&rent{X.E},ancesmr{Z,jim}

The result of HC I'/S(comm_anc(X,taro,jiro),IDB) is the collection of these five
clauses,

HCT/S is a generalization of the distribution of selections for non-recursive
querics expressed by rclational algebra and for transitive closure [1]. Note that the
distribution of selection (by constant) is always possible for non-recursive queries, but it
may not be possible for recursive queries as shown in example 5.1, Similar procedures
were proposed in [7] for simple function-free recursive Queries expressed in relational
algebra, Similar effects can be obtained using a rule/goal graph [9]. HCT/S is the most
general of these procedures because it does not restrict DDBs 1o Datalog, and because its

output is a set of clauses and can be combined with any other procedures.

6 Horn Clause Transformation by Restrictor (HCT/R)

Another transformation based on the subsumption is discussed in this section.
Arguments of atoms are usually not shown in this chapter. Hence, an atom whose
predicate is r is also expressed as r. The basic idea of this transformation is as follows,
Because a clause <rR> subsumes <r, {r*JuR>, the latter is a logical consequence of
the former. Hence, a transformation that replaces <r,R> by <r, {r*JuR> is a clause

replacement.

14

Definition 6.1 Let § be a subset of prd(DDB) called a restricted predicate ser. Let r*
be a newly introduced predicate that corresponds to r € 8. The arity of predicate r* iy
the same as the arity of predicate 1. Let us consider a ransformation consisting of two
Sleps.

(1) Insert clauses whose heads have such r*s. This is an equivalent ransformation.

{2) Replace all clauses in DDB as follows:

Let C be a clause <r,R> in DDB, where r 15 an atom and R is a set of atoms. If
prd(r)e §, replace this clause by a clause, C'= <r, {r*}UR>, where r* is an atom and
arguments of r* are the same as those of rin the head. If prd(rje S, C is the same as C.

The second step is a clause replacement and is sound with respect to any goal.
Predicate (or atom) ris called a restricred predicate (or atom) and predicate (or atom) r*
is a restrictor predicate (or atom). A restrictor predicate (or atom) may be simply called
a resirictor. C'is a restricted clause and a clause whose head is a restrictor is a
restrictor clause. If this transformation is an HCT, it is called HCT by restrictor
(HCTIR). u

Let us discuss conditions for restrictor clauses to make this transformation

equivalent. Let DDB’ be the mansformed result. First, consider a restricted clause
<g {g*)uR> where g=g'0 for goal g. If DDB=g*#, the clause is considered to be
essentially equivalent to the original clanse, <g’ R> with respect to g. This consideration
gives the following definition.
Definition 6.2 Let g be a goal. Suppose prd(g) is an element of a restricted predicate
set, 5. An inirial (restrictor) clawse 1s defined as a unit clause that consists of g* whose
arguments are the same as g. If prd(g) is not an element of S, there are no inital
clauses. |]

Next, consider restricted clauses, <p,{r}uP> and <r,[r*}UR> where pe S and
re 5. Their resolvent is <p,[r*}URUP>. The resolvent of the original clauses is
<p,RuP>. If DDB'=<r* P>, we get <p,PURUP> from <p,{r*}URUP> and this is

logically equivalent to <p,RUP>. Thus, we obtain the following definition.

15

Definition 6.3 Let C' be a resmicted clause, <p,{r)uP>, where 1 is a restricted atom
and P is a set of atoms. Let P' be a subset of P. A candidate equivalent restrictor clause
(CERC) C* is a clause <r* P> where the arguments of atom r* are eguivalent to those
of rin C". If there are more than one atom in C' whose predicates are the same, a CERC
is defined for each atom. |
One more concept, acyclicity, is necessary to guarantee the equivalence, because
the discussion for definition 6.3 may involves tautological cycles.
Definition 6.4 A CERC set corresponding to a restricted clause, C', is the set of
clauses obtained by selecting a CERC for every restricted atom in the body of C. A
relation "—" is defined for each element C* of the CERC set as follows. If p* =
prd(C*) and a restricted predicate, r, is in the body of C¥, then p—r. Here, a predicate
that appears more than once in the body of C' is treated as if each instance has a different
predicate. A CERC graph is a directed graph obtained by collecting all these relation
instances of elements of the CERC set. A CERC set is acyclic iff its CERC graph does
not have a cycle.]
For instance, consider a restricted clause, t :-r*,p,q where p and q are restricted
atoms. A possible CERC set corresponding to this clause is
pr-r¥g
g*.-r*.p.

This set is not acyclic because its CERC graph has a cycle as shown in Figure 2.

P q

N~/

Figure 2 An Example of CERC Graph

The following CERC set corresponding to the same restricted clause is acyclic.

prirtg

q¥-T™,

16

The next proposition gives a sufficient conditdon for an HCT.
Proposition 6.1 Let DDB be a deductive database. Let DDB’ be a set of clauses that
consists of restricted clauses defined by definition 6.1, an initial clause defined by
definition 6.2, and all elements of acyclic CERC sets each of which comresponds 1o a
diffrent restricted clause defined in definition 6.4. Then, DDB =, DDB",
Proof (sketch)
Soundness is clear by proposition 3.1 because the first step is equivalent and the
second step is sound.
Completeness is proved by comparing SLD trees of DDB and DDB' as follows.
The roots of these trees are g. If for every node in the DDB tree there exists a node in the
DDB' tree that corresponds to that one, then every success node in DDB has its
cormesponding success node in the DDB' tree and the mansformation is complete, This
can be proved by using mathematical induction to show that every subtree of DDB'
whose root has a restrictor predicate has at least one success branch. The condition of
acyclicity is necessary to give a computation rule in the SLD refutation. []
Example 6.1 The goal and the DDB are the same as example 5.1, -
Let the restrictor set be {ancestor}. Restricted clauses are,
ancestor(X.Y') :- ancestor*(X, Y),parent(X.Y)
ancestor{X,Y) :- ancestor*(X,Y),parent(X,Z),ancestor(Z,Y).
The initial clause 1s,
ancestor*(taro,hanako).
A CERC set that has maximum number of atoms in body is
ancestor*(Z,Y) :- ancestor*(X,Y),parent(X,Z).
Because this CERC set is acyclic, the set of above five clauses is equivalent to the
original IDB with respect to ancestor{taro, hanako).
Example 6.2 The goal and the DDB are the same as example 5.2,
Let the restrictor set be [ancestor,comm_anc). Restricted clauses are,
comm_anc(X,Y.Z)-comm_anc*(X.Y Z).ancestor(X, Y), ancestor{X .7}

ancestor(X,Y):- ancestor™(X,Y),parent(X,Y)

17

ancestor(X,Y):- ancestor*(X,Y),parent(X,Z),ancestor(Z,Y).
The initial clause is
comm_anc® (X taro,jiro).
The following is the CERC set, which have maximum number of atoms in bedy,
corresponding to the first restricted clause.
ancestor*(X,Y):-comm_anc*(X,Y,Z),ancestor(X, £}
ancestor* (X, Z):-comm_anc*(X,Y,Z)ancestor(X,Y).
Another CERC set corresponding 1o the third restricted clause is
ancestor*(Z.,Y) :- ancestor*(X,Y),parent(X,Z).
The first CERC set is not acyclic. A possible acyclic CERC set is as follows, although
there are other alternatives.
ancestor® (X, Y):-comm_anc*(X,Y,Z)
ancestor* (X, Z):-comm_anc*(X,Y,7Z).
The modified set of CERCs, restricted clauses and the ininal clause is equivalent to the
original IDB,

Although the transformation given above is conceptually simple, it may not be
very useful in practice because usually the resulted set of clauses is not bottom-up
evaluable [5] even if the original set is. The result of example 6.2 shows this problem.
Because the initial clause contains a variable, the first argument of comm_anc* may take
any value of Herbrand universe. Moreover, the first argument of ancestor* has the same
problem. Hence, the least model of this clause set may be large, and the usual bottom-up
method can not handle this clause set. There are two ways to solve this problem. One is
modifying the bottom-up algorithm to enable 1o handle this kind of vanables. The other
is modifying the mansformation. The latter is discussed below.

The principal problem is that the restrictor have free arguments. The problem can
be solved by reducing the number of arguments of the restrictor. The concept of
adornment used for the magic set [4] is useful to this modification. Let us consider an
adorned version of restrictor called partial restrictor. A partial restrictor is denoted r*-o/f

where b/f is a sequence of "b" and "f" and called an adornment. Informally, "b" stands

18

for bound and "f" stands for free. The length of the adomment is equivalent to the anty
of corresponding predicate, 1. The number of argument of r*-57 is the number of "b"s
in its adornment, and the positions of "b"s indicate which argument of r* remain for
bl

Definitions from 6.1 to 6.4 can be modified using partial restrictors instead of
restrictors, and proposition 6.1 also holds for the modified transformation. This
modification also contributes to improve the third influencing factor to the performance
in chapter 1. The details of the modifications and how to obtain an optimal
transformation algorithm are discussed and an optimal algorithm is given in [12].

The result of modified HCT/R for example 6.1 is the same except for the
attachment of adornment "bb”. A possible result for example 6.2 is as follows.

comm_anc*-P%(taro jiro)

ancestor*-M{Y):-comm_anc*-Mbh(Y 7)

ancestor*~(Z):-comm_anc*- MY ,Z)

ancestor*-M(Y):-ancestor* ™(Y) /* mav be eliminated because this is tautology.
*/

comm_anc(X,Y,Z):-comm_anc®-PEY ¥} ancestor{X,Y),ancestor{ X,7)

ancestor(X,Y):- ancestor*-B(Y) parent(X, Y}

ancestor{X,Y}:-ancestor*-(Y') parent(X,Z),ancestor(Z,Y).

HCT/R works correctly for any type of query, including mutually recursive
queries. Algorithms similar to HCT/R have been proposed in the literature, Examples
are magic sers (MG) [4] [15] [17], Alexander | 14] and generalized magic sers (GMG)
16]. It is easy to sce that these methods satisfy the condition for HCT/R, i.e., the
condition of (modified) propesition 6.1, with litde or no medification. MG gives the
same (sometimes shightly different) result as HCT/R, although it can be used only for
special types of querics such as linear or nested queries. The GMG can be used for a
broader class of queries, and its result is similar to the result of HCT/R. The principal

difference between GMG and HCT/R arc as follows.

19

(a) The guiding principle of GMG is the concept of sideways information passing (sip)
which is based on the procedural semantics. The guiding principle of HCT/R is clause
replacement which is based on the declarative scmantics. These two represent two
complementary views of query transformations.

(b) Syntactically, adomment of both resmictor and restricted predicates is essential in
GMG, while adornment is not essential but is used o improve HCT/R. Adomment of
restrictor predicates is discussed in this paper. The restricted predicate can also be
adorned in HCT/R by modifying the definitions. However, adornment of restricted
predicates results in larger least models, and its effects on performance need more
discussions.

(c) The separation of the transformarion from the execution algorithm is more complete
in HCT/R. Henee, the condition for HCT/R in proposition 6.1 is the weakest one so far
known.

(d) A method, generalized supplementary magic set, was proposed to further improve
the GMG. The same improvement can be easily applied to HCT/R. The concept of sip

also leads to the counting method, but clause replacement does not.
7 A Comparison of Horn Clause Transformations

This chapter discusses some properties of HCTs discussed in previous chaprers.

First, the logical relationship of HCTs is shown in Figure 2.

20

@use Replacement

Subsumption
(Substitution)

Resolution
(Partial Eval.)

Subsumption
(Restrictor)

Figure 3 Relationship of Horn Clause Transformations

The performance gain by HCTs may be as large as several orders of magnitudes
depending on algorithms, the contents of DDB, and the goal [5]. HCTs change least
models by changing the database different ways. The changes of the database by HCTs
are as follows.

(1) They eliminate clauses which are not within reach of a given goal.

(2) They eliminate clauses which are within reach of the goal but do not conmbute o
the answer.

(3) They eliminate predicates, and thus reduce the number of predicates.

(4) They propagate constants in a goal or clauses, and thus ransform clauses to less
general clauses.

(5) They inwoduce new predicates that can restrict the computation space using
constants in a goal or clauses during the successive execution phase.

These changes always result in smaller least models except for the last one. The
last one does not always guarantee smaller models because introducing new predicates
results in larger models. However, the gain is usually much larger than the loss. Each
HCT changes the database differently, HCT/P performs changes 1, 2 and 3. HCT/S
performs changes 1, 2, and 4. HCT/R performs changes 1 and 5.

21

Change 1 is performed by every HCT. Change 2 is obtained by HCT/P and
HCT/S. However, change 2 by HCT/P is smaller because it does not propagate
constants, If there are many constants in the clause heads, change 2 by HCT/S can be
very effective.

Change 3 by HCT/P results in smaller least models. However, if there are many
clauses that have same head predicates, change 3 increases the number of clauses in the
database. This may result in inefficient computation even if the least model is smaller.

Restricting computing space using constants can be performed either by the
change 4 (HCT/S) or 5 (HCT/R). Change 4 is possible only for special cases and
change 5 is always possible as illustrated in examples 5.1 and 6.1. However, if change
4 is possible the performance improvement by it is larger than by change 35, because
change 4 does not introduce new predicates. An interesting example of this situation is
the comparison of the results of example 5.2 and 6.2.

The (modified) result of example 6.2 is shown below excluding the tautology clause.
comm_anc*-®8(taro jiro)
ancestor*-M(Y):-comm_anc*-Pb(Y Z)
ancestor*_(Z):-comm_anc*-PhY 7)
comm_anc(X,Y,Z):-comm_anc*-P(Y Z),ancestor{ X, Y).ancestor(X,7Z)
ancestor(X,Y):- ancestor*-(Y),parent(X,Y)
ancestor(X,Y):-ancestor*-®(Y) parent(X,Z),ancestor(Z,Y).

The least model of this clause set is larger than the one obtained for example 5.2
by HCT/S. Hence, HCT/S is more effective than HCT/R for this example. The above
result of HCT/R may be improved by applying HCT/P, because partial restrictors are
not recursive. By applying HCT/P to this clause set, we obtain the following set of
clauses which is same as the resulr of example 5.2.

comm_anc(X taro,jiro):-ancestor(X,taro),ancestor(X jiro)
ancestor(X taro):-parent(X ,taro)
ancestor{ X taro):-parent(X,Z),ancestor(Z, taro).

ancestor(X,jiro):-parent{ X jiro)

22

The above discussions are summarized in Table 1.

It is concluded from Table 1 that there is no single HCT which performs all
changes discussed above. Because each change has its advantage, it is not possible to
obtain ideal optimized result for all queries by a single HCT. This fact indicates that a
combined use of HCTs is more effective than a single HCT. It also indicates that
algorithms similar to HCTs discussed in previous chapters can be improved by
combining them with other algorithms. If we can neglect the wransformation cost, the

possible best combination is as follows.

Table 1 Comparison of HCTs

ancestor| X, jiro):-parent{ X 2),ancestor(Z,jiro).

i anges | 2 4&5
HCT/P O | A
HCT/S O | O AN
HCT/R O O

(1) Apply HCT/P to simplify a query.

{2) Apply HCT/S.

(3) If there remain constants that cannot be distributed by HCT/S, then apply HCT/R.
(4) Apply HCT/P again to eliminate inessential restrictors.

More detailed comparisons and experiments are necessary to obtain the best

method.

8. Conclusions

This paper discussed principles of query transformations, and proposed a
conceptual procedure, clause replacement, as a principle. Clause replacement improves
the performance of query processing by reducing the size of the least Herbrand models.
Three ransformations, HCT/P, HCT/S and HCT/R, were shown as examples of clause
replacement. The relationships of other methods with these transformations were
discussed, and it was shown that several methods such as the simplification of queries,
the distribution of selection, and magic set can be reformulated and generalized using the
concept of clause replacement. A comparison of HCTs indicates that combined use of
HCTs is desirable to handle various type of queries. Because both input and output of
HCTs are sets of definite clauses, it is easy to combine these methods to obtain
oplimized form of a query.

There is an important class of query transformations, i.e., counting and its
variations, which is not discussed in this paper. Because these transformations are based
on magic set and generalized magic set, they can be considered as further
transformations of the result of HCT/R, However, definitions of equivalent
transformations must be extended to deal with them, because they use supplementary
arguments.

The database is restricied 10 a set of definite clauses in this paper. Query
ransformations can be also applied 1o stratified databases that allow negative literals in
the clause body. Generalization of HCT/P and HCT/S for stratified databases is
straightforward, because they can preserve the structure of queries. However, direct
extension of HCT/R may result in a non-stratified database. Hence, the semantics of
query ransformation must be extended to generalize HCT/R.

Query mansformations are used as part of query compilation in the KBMS PHI
system in the FGCS project [R]. HCT/P and HCT/S were implemented although the
implemented algorithms are little different from HCTs in this paper, and HCT/R is being

implemented.

References

24

[1] Aho, A.V. and Ullman, J.D., Universality of Data Retrieval Languages, 6th ACM
POPL, 1979.

[2] Balbin, L., and Ramamohanarao, K.A., A Generalization of the Differential
Approach to Recursive Query Evaluation, JLP, Vol. 4, pp259-262, 1987.

[3] Bancilhon, F., Naive Evaluation of Recursively Defined Relations, in (eds.) Brodie,
et al., On Knowledge Base Management Systems, Springer, 1985.

(4] Bancilhon, F., et. al., Magic Sets and Other Strange Ways to Implement Logic
Programs, 5th ACM PODS, Mar. 1986.

5] Bancilhon, F. and Ramakrishnan, R., An Amateur's Introduction to Recursive
Query Processing Strategies, ACM SIGMOD, 1986.

[6] Beeri, C. and Ramakrishnan, R., On the Power of Magic, ACM PODS, Mar. 1987.
[7] Ceri, 5., et. al., Translation and Optimization of Logic Queries: The Algebraic
Approach, 11th VLDB, Aug. 1986.

[8] Itoh, H., Research and Development on Knowledge Base Systems at ICOT, 12th
VLDB, Aug. 1986.

[9] Kifer, M. and Lozinskii, E.L.., Filtering Data Flow in Deductive Databases, ICDT,
1986.

110} Lloyd, L.W., Foundations of Logic Programming, Springer-Verlag, 1984,

{11] Miyazaki, N., Haniuda, H. and Itoh, H., Horn Clause Transformation: An
Application of Partial Evaluation in Deductive Databases, Trans. IPSJ, Vol. 29, No.1,
I988. (in Japanese).

{12] Miyazaki, N., Yokota, K., Haniuda,H., and Itoh, H., Horn Clause
Transformation by Restrictor in Deductive Databases, [COT TR-407, 1988,

[13] Nishio, S. and Kusumi, Y., Evaluation Methods for Recursive Queries in
Deductive Databases, J. IPS Japan, Vol. 29, No. 3, 1988, (in Japanese)

[14] Rohmer, 1., Lescoeur, R., and Kersit, J M., The Alexander Method, New
Generation Computing, Vol, 4, Ohmsha and Springer, 1986.

[15]) Sacca, D. and Zaniolo, C., On the Implementation of a Simple Class of Logic
Queries for Databases, ACM PODS, 1986,

25

[16] Sacca, D. and Zaniolo, C., The Generalized Counting Method for Recursive Logic
Queries, ICDT, 1986.

[17] Sacca, D. and Zaniolo, C., Implementation of Recursive Queries for a Data
Language Based on Pure Hom Logic, ICLP, May 1987.

[18) Sacca, D. and Zaniolo, C., Magic Counting Method, ACM SIGMOD, 1987.

119] Sagiv, Y., Optimizing Datalog Programs, ACM PODS, 1987.

[20] Sakama, C. and Itoh, H., Partial Evaluation of Queries in Deductive Databases,
WS on Partial Evaluation and Mixed Computaton, 1987,

{21] Tamaki, H. and Sato, T, Unfold/Fold Transformations of Logic Programs, 2nd
ICLP, 1984,

[22] Ultman, 1.D., Principles of Database Systems, (2nd edition) Chapter 8, Computer
Science Press, 1982,

[23] Vieille, L., From QSQ towards QoSa(): Globa! Optimization of Recursive Queries,

International Conf. on Expert Database Systems, 1988,

26

