ICOT Technical Report: TR-371

TR-371
Load-dispaiching Strategy on
Puarallel Inference Machines

by
M. Sugie. M. Yoneyama.,
N. Ido and T. Tarui{Hitachi)

May. 1988

CI988. 1COT

hiita lokusa Bldg S1F (R J3R=3181 -5

|(: DT 478 Mia 1-Chome Telex 1COT]52964

AMinato=ko Tokve 108 Japan

Institute for New Generation Computer Technology

Load-dispatching Strategy on
Parallel Inference Machines

M.Sugie, M.Yoneyama, N.Ido and T.Tarui
Central Research Laboratory, Hitachi, Ltd.
Higashi-Koigakubo, Kokubunji, Tokyo 185, Japan

Abstract- Load-dispatching strategies are proposed for a parallel inference machine
prototype, and their performance are evaluated by the simulation based on the loosely-
coupled cluster model, using 6-queens benchmark. Sender-initiate concept is
appropriate to the bunch layer of a paralle! inference machine prototype, The strategy
in which the cluster with maximum ready goals dispatches a goal to the cluster with
minimum ready goals brings the lowest load-dispatching rate limit, but it is not
expected to realize stable performance at real program execution, since it covers too
narrow load-dispatching rate region. The strategy in which the goal dispatch target
cluster is determined at random and then this goal dispatch is aborted on the condition
that the dispatch target cluster has more ready goals than the dispatching cluster or on
the condition that the dispatching cluster has fewer ready goals than the threshold
brings the second lowest load-dispatching rate limit and is expected to realize high
performance stably at real program execution. More than 70% averaged utilization is
achieved in the region that the load-dispatching rate is higher than 5%. It is confirmed
that 0.54 of the maximum performance of a parallel inference machine prototype can

be achieved by applying this load-dispatching strategy.

INTRODUCTION

The Fifth Generation Computer Project has developed knowledge/information
processing systems based on a predicate logic programming language [11,[2],[3]. The
hardware of these systems has been dubbed an "Inference Machine”. In the project’s
initial stage, not only sequential architectural inference machines were developed, but
also various parallel architectural concepts were proposed and evaluated [4],[5],[6]. That
project is now in the intermediate stage. A parallel inference machine (PIM) prototype
composed of about 100 processing-elements is being designed for the target language
EL1[7].

The main research themes of PIM are parallel processing overhead and processing-
element utilization, since the same ideas can be applied to inference processing itself as
have been developed for sequential inference machines. Both processing-element
utilization and parallel processing overhead depend on load granularity. Generally, the
utilization becomes larger as the granularity becomes finer. If a fine load granularity is
designed, it will be easy to get high processing-element utilization, but difficult to reduce
parallel processing overhead. Utilizati.nn depends on the load-balancing feature of
parallel systems as well as the granularity. Parallel logic programming languages such
as KL1 have a suspend/resume processes feature for concurrent process control [10]. This
feature causes much parallel processing overhead. Therefore, the PIM prototype load
granularity is of a coarse design. The load-balancing feature is an important research
theme for improving the pmnessiné—element utilization.

Several load-balancing methods have been proposed [E],[Ej, in which load dispatch
targets are determined dynamically by selecting the processing-element with minimum

load. Once the processing-element with minimum lead is determined, all processing-

elements prepare to dispatch loads to that processing-element. In case there is some time
delay between load status detection and modification, load concentration on one
processing-element occurs and this load concentration degrades the performance of the
PIM prototype [11].

This paper investigates load-balancing features of the PIM prototype, especially the
load-dispatching strategies based on the sender-initiate concept. Several strategies
which are discriminated by load dispatch conditions and targets are discussed from the

granularity limit point of view.

CONCEPT ON SYSTEM ORGANIZATION AND LOAD BALANCING OF A PIM

PROTOTYPE

Parallel architecture is a promising means for improving processing ability. However,
to improve this ability efficiently, program localization of closely related sequences
should be considered whenever possible.

KL1, the PIM prototype target language, has suspend/resume processes feature. This
feature makes it possible to express concurrent process control flow explicitly in
programs, but causes much burden on inference machine processing ability. Therefore,
occurrences of suspenéiunfresumptinn should be reduced at the program execution time.
In some cases, simple depth-first process activation scheduling can reduce occurrences of
suspension/resumption. That is to say, when a process is activated, those causes which
would suspend that process are eliminated by past process activation. Even in parallel
architecture’s case, implementation of this sort of scheduling is important, since process
suspension/resumption would be too great a parallel processing overhead.

In order to reduce ocurrencces of suspension/resumption, namely, parallel processing

overhead, such a hierarchical structure as is shown in Fig. 1 is useful for the PIM
prototype. Hardware/software investment in PIM prototype components should have the
following priority order: processing-element (bottom-layer component) — cluster of
tightly-coupled processing-elements (2nd-layer component) — bunch of loosely-coupled
clusters (3rd-layer component) — integration of bunches (top layer).

The alternative is 2 uniform nonhierarchical configuration. An unegual-length
network such as & mesh or hypercube can implement a uniform configuration with 100
processing-elements, In this case the only way to reduce suspension/resumption
overhead using program localization is to make a group of neighboring processing-
elements. To achieve high processing-element utilization, this group of neighboring
elements must be dynamically modified to avoid assigning too much capacity for too
little work. This would cause too great an overhead burden.

Current technology makes it possible to construct a PIM prototype with 2-layer
hierarchy [7]. The bunch of loosely-coupled clusters would be the top layer. It could
consist of about 10 clusters coupled loosely through some sort of equal-length network
such as a crossbar. The cluster can consist of about 10 processing-elements coupled
tightly through shared storage and caches.

In the PIM prntnt};pe configuration, parallel processing overhead and processing-
element utilization are much more significant in the bunch layer than in the cluster
layer, because about 10 processing-elements are coupled tightly through shared storage
and caches in the cluster layer, Inside the cluster, load balancing could be achieved by
frequent communications between processing-elements, and occurrences of
suspension/resumption could be reduced by process activation scheduling using a

common ready process queue stored in the shared storage. In the bunch layer, clusters

communicate by sending/receiving messages. Communication between clusters should
be restricted since such a communication would cause an overhead burden.

There are two basic concepts on dynamic load balancing, nemely, receiver-initiate
and sender-initiate ones. In case small number of processing-elements are installed in a
PIM, receiver-initiate method is efficient, because there is no waste communication.
However, this method is not appropriate for a PIM with large number of processing-
elements, because too many request channels are needed. The receiver-initiate method
could be appiled to the cluster layer of the PIM prototype.

Assuming & PIM with 1000 processing-elements, it would be composed of about 100
clusters, Therefore, the receiver-initiate method cannot be applied to the bunch layer.
Considering the future organization of a'PIM, the sender-initiate method is introduced to

the bunch layer load balancing of the PIM prototype.

LOAD-DISPATCHING STRATEGY

In the bunch layer of the PIM prototype, it is intensively requested to avoid waste load
dispatch so as to reduce occurences of suspension/resumption. To avoid waste load
dispatch, there are two useful ideas, namely, to anticipate the clusters which may need
load dispatch (idea A) and to stop load dispatch under bad situation (idea B). The
following four load-dispatching strategies are examined.

strategy A : The cluster to which goals are dispatched is determined at random.

strategy B : The cluster to which goals are dispatched is determined by
selecting the cluster with minimum ready goals.

strategy C : The cluster to which goals are dispatched is determined at random

and then this goal dispatch is aborted on the condition that the

dispatch target cluster has more ready goals than the dispatching
cluster,
strategy D : The cluster with maximum ready goals dispatches a goal to
the cluster with minimum read goals.
Strategy B is a realization of idea A, strategy C is a realization of idea B and strategy D is
a realization of both idea A and B, respectively. Strategy A is not an intelligent one, but
it is examined to evaluate the performance of strategies B,C and D.

Goal dispatch should be aborted on the condition that the dispatching cluster has few
ready goals. The goal dispatch under this condition may make the dispatching cluster
idle. Such a bad goal dispatch can be avoided by aborting goal dispatch on the condition
that the dispatching cluster has fewer ready goals than the threshold. Strategies
(strategy B’ and C') in which this idea and strategy B and C are combined are also
examined.

At KL1 program execution time, the initial guery is assingned to one cluster and
created new goals are dispatched to the other clusters, Therefore, utilization of clusters
can be improved by dispatching more goals in the initial stage of program execution than
in the medium and final stage. Strategies (strategy B” and C”) in which this idea and

strategy B and C are combined are also examined.

SIMULATION

To achieve dynamic load balancing, load-dispatching strategies in the bunch layer of

the PIM prototype have been examined by the simulation,

Simulator

Simulation has been made on the hardware simulator of PIM-R [11] on which an
interpreter for KL1 is implemented.

Fig. 2 shows the hardware simulator erganization. It is composed of 16 single board
microcomputers (zbbreviated as SBC) using MC68000, local storage, shared storage and
Micro VAX II, which works as a supervisor.

As for bunch layer simulation of the PIM prototype, the cluster of processing-elements
is simulated by SBC and the network through which the clusters are connected is
simulated by the shared storage. According to the purpose of this simulation, namely,
bunch-layer simulation, detailed structure and operation inside the cluster is not
simulated. On the simulation, SBC works like a single processing-element with high
performance,

In this hardware simulator, the event-driven method is employed so as to eliminate
the idling time during simulation. Concerning the timer, the simulator does not have a
TOD (Time of Day Clock), which uniformly manages time over the whole system, but it
does have a software timer in each cluster simulated by SBC. The timer count renews by
adding a certain value every time a transaction of anyone of several functions is
executed. When messages are sent to other clusters, network delay time is added on the
timer count, and this value is attached to the sent message to indicate the arrival time.
The cluster which receives the message controls the timer count by comparing this
arrival time and its own timer when it accept the message. On the simulation, all data

measurements and some operations such as queue controls are based on the cluster

software timer,

Conditions

The simulation assumes the following:
(1) 16 clusters are coupled through a collision free, equal-length network with
sufficiently large throughput.
(2) The cluster has a sufficiently large input/output buffer and waiting time, due to the
input/output buffer overflow not being taken into account.
(3) The cluster's sending and receiving message overhead is 10 % of reductions in case of
4 clusters and the 4-Queens benchmark (adjusted by using parameters).
(4) OR-clauses are tried sequentially in head unification.
(5) A new goal is dispatched to clusters when AND-fork occurs in the clause body.

(6) Built-in predicates are not dispatched to other clusters.

Hesulis

The relationships between utilization and granularity on the PIM prototype composed
of 16 clusters have been measured and the above-mentioned load-dispatching strategies
have been evaluated from the granularity limit point of view.

Fig. 3 shows normalized processing time in strategy A,B,C and D as a function of the
load-dispatching rate for 6-Queens benchmark. The normalized processing time is
defined as the ratio of the processing time in case of plural clusters to the processing time
in case of a single cluster. The load-dispatching rate is defined as the ratio of all goals
dispatched to other clusters to all reduced goals. Granularity is expressed by this rate,
namely, as a reciprocal of the load-dispatching rate. Parallel processing overhead
dominates the processing time in the high load-dispatching rate region and utilization
dominates the processing time in the low load-dispatching rate region.

Here, let us introduce the following form to the normalized processing time.

normalized processing time =
(number of clusters) X (averaged utilization)
+ {1 + (paralle] processing overhead)}. -----(1)
Figures 4 and 5 show the parallel processing overhead and the averaged utilization,
respectively, as a function of the load-dispatching rate.

It is shown in Fig. 4 that the parallel processing overhead is expressed by two straight
lines with different gradients, namely, with large gradient in the low load-dispatching
rate region and with small gradient in the high load-dispatching rate region. Such an
optimization is introduced into the KL1 interpreter on the simulator as could reduce the
communication beween clusters by storing those values in a cluster which are
instantiated in other clusters and sent to the cluster through messages. Once such values
are stored in the cluster, no more communications are needed to get them. In the low
load-dispatching rate region, so few variables are shared beween clusters that the above-
mentioned optimization is not effective and parallel processing overhead is expressed by
the line with larger gradient than that in the high load-dispatching rate region.

In Fig. 4, dots which express data measured in strategy D deviate from the straight
line. This is due to the simulation mechanism. On the simulator, strategy D is
implemented by dispatching a goal to the dispatching cluster itself so as to abort goal
dispatch on the condition that the dispatching cluster does not have maximum ready
goals. This implementation can realize aborting goal dispatch to other clusters, but
cannot eliminate overhead of sending and receiving messages. This causes large
overhead in spite of low final load-dispatching rate. Such an overhead can be removed by
deremining goal dispatch before preparing a message and avoiding sending a message on

an inappropriate condition. In Fig. 4, parallel processing overhead in strategy C is larger

than those in strategy A and B. This is also due to the implementation of aborting goal
dispatch on the simulator.

Fig. 4 suggests that the load-dispatching rate should be limited to up to 5 % if the
parallel processing overhead is designed to be permitted within 0.3.

1t should be noted that startegy C brings higher performance than strategy B. This
indicates that strategy C can eliminate more waste load dispatch than strategy B.
Strategy D brings the highest performance, but the load-dispatching rate is limited to be
low in this strategy. In strategy D, each cluster checks load distribution at reduction
intervals and dispatch a goal on the condition that it has maximum ready goals.
Therefore, goals cannot be dispatched at a higher rate than once per 16 reductions. On
the contrary, plural of clusters have chances to dispatch goals at the same time in other
strategies,

Figures 6 and 7 show the averaged utilization, as a function of the load-dispatching
rate in strategies B' and B” and in strategies C" and C", respectively. As shown in those
figures, the four strategies improve the performance, but strategies B’ and C’ bring

higher performance than strategies B" and C”,

DISCUSSION

In the bunch layer of the PIM prototype, it is intensively requested to keep load
granularity coarse so as to reduce occurrences of suspension/resumption. Therefore, the
load-dispatching strategies should be evaluated on the point how low the load-
dispatching rate can be, keeping sufficiently high utilization. In Table-I, are shown the
load-dispatching rate limits that are defined as the load-dispatching rates which give 70

% utilization in each load-dispatching strategy. As shown in that table, strategy D brings

the lowest load-dispatching rate limit. However, too narrow load-dispatching rate region
can be covered by this strategy. In order to realize sufficient performance stably at real
program execution, high utilization should be kept in wide load-dispatching rate region.
In strategy D, 2 little too low load-dispatching rate causes much performence
degradation.

Excluding strategy D, strategies B' and C’ bring the lowest load-dispatching rate limit
and can achieve about the same performance. In these two strategies, however, strategy
C is expected to realize more stable performance at real program execution, since the
performance differnce between strategies C and C' is smaller than that between
strategies B and B’, The difference between strategies B and B’ and between strategies C
and C' is to abort goal dispatch on the condition that the dispatching cluster has fewer
ready goals than the threshold. In sytrategy B’ and C’, performance depends on the
threshold and there exists the optimum threshold for each application program. Figures
6 and 7 show that strategy C' has less threshold dependency than strategy B’ and that
strategy C’ realize more stable performance than strategy B

Here, let us estimate the performance of the PIM prototype. From Table-I, the load-
dispatching rate can be reduced to 5 %. From Fig. 4, parallel processing overhead
becomes 0.8 on the condition that the load-dispatching rate is 5 %. By substitution of 16,
0.7 and 0.3 into number of clusters, averaged utilization and parallel processing
overhead, respectively, equation (1) gives us normalized processing time as 8.6, which is
more than half of the maximum performance. Assuming that the cluster performance

equals 1 MLips, the performance of the PIM prototype becomes 8.6 Mlips.

CONCLUSIONS

Several load-dispatching strategies based on the sender-initiate concept were
proposed and evaluated in the bunch layer of the PIM prototype. The strategy in which
the goal dispatch target is determined at random and then this goal dispatch is abotred
on the condition that the dispatch target cluster has more ready goals than the
dispatching cluster or on the condition that the dispatching cluster has fewer ready goals
than the threshold brings the lowest load-dispatching rate limit and is expected to
realize stable performance in the wide load-dispatching rate region. It is confirmed that
more than half of the maximum performance of the PIM prototype can be achieved by

applying this load-dispatching strategy.

ACENOWLEDGEMENTS

The authors would like to thank Dr. Shun'ichi Uchida, ehief of 4th ICOT Laboratory
and Dr. Tsuneyo Chiba, head of the 8th Department of Central Research Laboratory,

Hitachi, Ltd., for their puidance and support.

REFERENCES

[11K.Fuchi and K.Furukawa, “The role of logic programming in the fifth generation
computer project,” New Generation Computing, OHMSHA Ltd. and Springer-Verlag,
1(5):3-28, 1987

[2)K.Nakashima and H.Nakajima, “Hardware architecture of the sequential inference

machine: PSI-II," Proceedings of 1987 Symposium on Logic Programming, pp.104-

113, San Franciseo, 1987
[3]1K.Taki, “The parallel software research and development tool: Multi-PSI system,”

France-Japan Artificial Intelligence and Computer Science Symposium 86, Oct. 1986

_11.

[4] N.Ito, M.Sato A Kishi, E.Kuno and K.Rokusawa, “The architecture and preliminary
evaluation results of the experimental parallel inference machine PIM-D,7
Proceedings of the 13th Annual International Symposium on Computer Architecture,
June 1986

[5] K Kumon, H.Masuzawa, A.Satoh and Y.Sohma, “A new parallel inference method
and its evaluation,” COMPCOM Spring 86, pp.168-172, IEEE Computer Society, San
Francisco, Mar. 1986

[6] R.Onai, H.Shimizu, K.Masuda, A.Matsumoto and M.Aso, “Architecture and
evaluation of a reduction-based parallel inference machine: PIM-R,” LNCS 221,
Springer-Verlag, pp.1-12, 1985

[7] A.Goto and 8.Uchida, “Toward a high performance parallel inference machine - The
intermediate stage plan of PIM -,” Future Parallel Computers, LNCS 272, Springer-
Verlag, 1986

[8] S.Sakai, H.Koike, H-Tanaka and T.Motooka, “Interconnection network with dynamic
load balancing facility,” Transaction of Information Processing, vol.27, no.5, pp.518-
524, (in Japanese), 1986

[9) K.Hiraki, S.Sekiguchi and T.Shimada “Load scheduling mechanism usig inter-FE
network,” Transacﬁﬂn of IECE Japan vol.J69-D, no.2, pp.180-189, (in Japanese), 1986

[10] K.Ueda, “Guarded horn clauses: A parallel logic programming language with the

concept of a guard,” TR 208, ICOT, 1986

(11] M.Sugie, M.Yoneyama, and A.Goto, “Analysis of parallel inference machines to

achieve dynamic load balancing,” Proceedings of International Workshop on

Artificial Intelligence for Industrial Applications (to be published in May, 1988)

—12

[12] M.Sugie, M.Yoneyama, T.Sakabe M.Iwasaki, 5.Yoshizumi, M.Aso, H.Shimizu and
E.Onai, “Hardware simulator of reduction-based parallel inference machine PIM-

R,”LNCS 221, Springer-Verlag, pp.13-24, 1985

usijouny o so posysesao Guiseoosd

os O

8104 Bbuyziodsip o

(%) 2301 Buyojodsip
ov 0z

8lipdog ¢7buyg

5104 Bulyojpdsip jo uonouny b so swyy Buisssoolg ¢ Big

(%) ejca Buyoyodsip
) [

ol [68 or
_ : : _ 000 z : M L
sussnb—g:wolboud i i
[suanypuos] ll
S T S P, e U BB = GIUOIBOI e L -—|ad
. _F ® _”n.._u:._ﬂ.._n.um Joann .u......_..,...hl. i_u ..|u._
1 i A i LY - e ™ 2 1 o
: : a pam ! (1]
! < e et : .ﬂ 8
.......... . —_— oo w- _".l. oLo 8
o I 2
i a i I o
i o i i [-
! “. ! 3
e . S I ¢ .0 TN L P 0.£Bapans. i Aese @
i O AEsjcsys -k in ABajons _
i g fBajosys ..o g Abajons ! -0 i
v ABsjons —y Y A500aE | —e i
! 1 i 0EE i : 'L

JoiRnws € o wesSeip y3oiq aiempiey By

i (L) .h lAild 10} a4nianags |exylielay | By

: mWﬂ%.h Emm_“mmwﬁ _"_ juawa|3 bussazoug 1 34

__ | ﬂrfﬂo._ auamﬂul|_ | __ saypung jo uonaiBajul
g _._ 1 "_ $1235N[2 o Yaung
sjeubig |oauc sng (€207 004G e . o saassann QF
512ufis |0JIU0T SNE USWILIST GO0ET N8 00083 el B . .
abeioyg - F ﬁaﬂw_wwwm__ . - .
paiRys 2 UGGY 00089 | BldD 9 9 o_

sng me_._
(AR5 X)) —]
FreLaly|
v | B

0°G 5%

59

g0t

(%) I =ed

st Aunyedsip

]

3!

W Adayerys

sj04 Bulymodsip jo uvonouni © SO UCHOZIRN
(=) @04 Bujysiodsip
oc 0T

quui] apes dugnedsiq [-2[qEL

o5 o ol o.n_“__._n
" I []
susanb—guosbad

SUOIpUOD 1
S —. _u “_ i SUURTOTON PR 1R
‘g Abajosys | —m 4
8 Abajone =k !
ORI - Y1 %~) 1+ ¥ | 1R : hl Az
by Absjonys | —e i
. i
]
— ._. O s 1.y
vy
. . B Ak
B = = o il e e e ST
. : : oo'h

g'bi4

uonozZIRn

ayos Bulyojpdsip jo uonouny o SO UORBZINN
(%) @ypJ Bupyojpdsip
[y 0

L'Bid

0% oF gl [+ I
T I _ | oD
sussnb—giwoibold _ "
[sueiypuas]
. m P — ." N oLo
m..“__ Abajone [
__u Abejodye - m:..“
[T | .L.H-u__h..._._ﬂ..“. oo .m._
iy ADbajone | -
! m 2
. =]
050
: Doy |
el
ayos Buiyoyodsip jo uopouny © so uepozynn G4 _
ajo4 buiysjodsip
0% O oL QL]} Emd._u

: _
Bussnb—gwoiboud
[sueonipuna]

arg

g ABayons | —w c
in ABRjoJiE ==k =
I W.m..h_m_ SYOILE i Do _ ore H
Y AEBI0ILE | ——n h \mn
! “ g
]
i -
RS ...::.....W.n...........l.... __ e o] 00
. s 4 1
o e wanea .__.“_'.l..l..wul.zflun...ﬂl..rn_.«f.:h_\ﬁ wl
i : : o'k

