ICOT Technical Report: TR-370

TR-370

Measurements and Evaluation for the Mulij-
PSI “V1 System — A Study of Inter-PE
Communication versus System Performance —

by
K. Taki

April. 1958

C198R. 1COT

Mg Rokusm Blde M F g Al 3141 - 5

“ :D I 1-7% Mita 1-Chonic Telex JCOT F1ou6s

Minate-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Measurements and Evaluation for
the Multi-PSI/V1 System

— A Study of Inter-PE Communication
versus System Performance —

Kazuo Talkt

Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, Japan

Abstract

The Mulii-PSI is an experimental parallel machine mainly used for the paralle]
software research.

A network-connected multiprocessor like the Multi-PSI has such characteris-
tics that a bottleneck of the network communication resides in the communication
processing of the processing element (PE) not in the network transfer. Measure-
ments on the Multi-PSI/V1 shows that the inter-PE processing costs around ten
times more expensive than the intra-PE processing. That is, the mter-PE pro-
cessing consumes much CPU time reducing system performance.

The relation among system performance, communication efficiency and com-
munication frequency is discussed and described into numerical formulas. Mea-
surement scale of these factors are also presented. The formula can be applied to
network-connected multiprocessors like the Multi-P5L

The real value of those factors affecting system performance are measured on
the Multi-PSI/V1 using sample programs which contains load distribution control.
Measurements complete the numerical formula which specifies the relation among
system performance, communication frequency and system work rate of the Multi-
PSI/V1. Usage of the numerical formula is also discussed in order to tune the
communication frequency of programs for low communication overhead and good

load balance.

1 Introduction

Ogne of the main research themes of the FGCS project has been the Parallel Inference
Machine (PIM). The aim is to build a parallel computer system which is an engine
for high performance knowledge information processing[3,13]. Not.only machine ar-
chitecture research but also research on parallel software is indispensable for the PIM
development and feedback from the parallel software research to the architectural
research is also necessary.

The Multi-PSI is a dedicated R&D tool to advance the parallel software research
and development[12]. The R&D results will be incorporated in the PIM system. The

Multi-PSI is a small scale parallel computer system constructed from several PSI
machines [11,7] and dedicated high speed network.
We have been developing several Multi-PSI systems:

1. Multi-PSI/V1: a prototype system including six PSI-1 machines. It began oper-
ation in 1586.

2]

. Multi-PSI/V2: e full-scale system-including 64 PSI-1I machines. The PSI-II is
a high speed and compact version of the PSI-1. The syste= will start operation
in 1088,

3. Pseudo-multi-PSI: simulators for the Multi-PSI/V1 and Mulni-PSI/V2 developed
on the PSI-I end PSI-II. They are mainly used for debugging paralle]l programs.
A simulator for the Multi-PSI/V1 began operation in 1956.

The Multi-PSI/V1 has been working as a prototype sysiez=. This paper reports a
study on the Multi-PSI/V1 system.

Much research in many areas remains to be done in the parallel software feld. We
have decided on the following research themes for the Multi-P3I system.

.o A parallel logic programming language, KL1, and its implementation
o The Parallel Inference Machine Operating System, PIMOS

».Debugging method , programming system , and measurement and evaluation
method

e Basic research on parallel algorithms and load distribution methods

Parallel application programs

From this wide range of possible research topics, we have selected several for the
Multi-PSI/V1. They have high priority or can be researched on the prototype system.
They are :

1. Detailed study of the FGHC parallel execution mechanism (FGHC is a logic
programming language giving kernel language specifications of the KL1)

2. Experimental implementation of the FGHC parallel processing system
3. Writing sample programs which can be used as parallel benchmark programs

These three are reported on the other articles[4,10].

4. Basic study of the measurement and evaluation method, especially focusing on
inter-PE (processing element) communication and the system performance

5. Parallel execution of sample programs and experimental load belancing

L3~

6. Identifying the focus of research through experience in the parallel programming
and parallel processing

This paper mainly deals with items 4 and 5.

Section 2 describes the overall structure of the AMulti-PSI/V1 and the motivation
of the research work. Secilon 3 deels with special feztures of FGHC and its parelie]
executioz mechenisms giving the basic concepts of parelle]l processing and the inter-PE
(processing element) communication in the Muld-PSL

Sectioz 4 measures and analyzes compon=at ratios of inter-PE communication time
in the Muiti-PSI/V1, such as software, firmware and hardware time. It shows that
network transmission time is neglisible and identifies time consuming items as pre-
and post processing of the inter-PE netweork communieation. Estimation for the
Multi-PSI/V?2 is also made.

Section 5 discusses the relation between sysiem performance and efficiency of the
time consuming communication processing and describes it into numerical formulas.
Scales for communication frequency and communication eficiency measurements are
also proposed. Section € describes load balancing. another factor affecting the system
performance.

Section T shows measurement results of the severzal factors dealt with in the nu-
merical formulas in sections 5 and 6. Relative communication time of the system,
commurication rate of sample programs, and average work rate of the system are
measured on the Multi-PSI/V1 using sample programs which includes the load distri-
bution control. These measurements complete the numerical formula which gives the
system performance of the Multi-PSI/V1.

Section & discusses that these measurement can be uvsed for tuning the communi-
cation frequency of programs in order to achieve good load balance and low commu-
nication processing.

2 Multi-PSI/V1 System

The Multi-PSI/V1 contains six PSI-I machines [6,11,13] as processing elements (PEs).
Each PSI-I is a full workstation including I/O devices. PEs are connected by a high
speed lattice network dedicated for the system. There is no shared memory. A parallel
execution system for a parallel logic programming language FGHC (Flat GHC) (cf.
section 3) has been implemented. The FGHC execution system is written in ESP
(an extended Prolog) which is the system description language of the PSI machine.
Network control functions are added to the ESP as built-in predicates.

The lattice network, shown in Figure 1, is connected to each PE at each intersection
or network node (black circle).

Each network branch contains independent two-way signal lines. Network com-
munication is performed by message passing. A network node has a message routing
function whereby a message is automatically routed to the specified destination PE.
The transmission data width is eight data bits and a control bit. The network interface
circuit is installed in the PSI internal bus and controlled by the PSI firmware which

is invoked as a built-in predicate.

Figure 1: Network structure of Muli-PSI/V1

The Multi-PSIis a network-connected multi-processor system in which each PE has
jts own mein memory and independent memory address space. The shared memory
architecture was not chosen because it may have a serious performance problem caused
by the memory access contention when applied to large scale multi-processor systems.
The structure of independent memory address spaces among PEs suits to divide the
garbage collection into intra-PE garbage collection and inter-PE garbage collection,
which may be a good solution for the efficient memory management in the large scale
multi-processor system. .

In the network-connected multi-processor like the Multi-PSI, an address trensla-
tion mechanism is required when a reference pointer is passed across the processor
boundary. An address in the referenced processor is converted into a global identifier
for the inter-PE transmission, and the global identifier is converted into a local address
in the referencing PE again. Address translation tables between local addresses and
global identifiers are Lept at the entrance and exit of PEs. Once a garbage collection
occurs in a PE, local addresses of logical variables pointed from different PEs may
change, whereas global identifiers won’t change. Thus, the intra-PE (local) garbage
collection can be separated from inter-PE garbage collection. -

The network-connected multi-processor structure with independent address spaces
of PEs may have good applicability for the large scale parallel computer systems.
However, inter-PE communication cost in such a structure may increase at least with
the amount of address translation overhead. That is, the inter-PE communication
may cost more expensive than the intra-PE processing. The major research interest
in this article is how much the inter-PE communication cost will be, and how much
the inter-PE communication will degrade the system performance. They are discussed
in the following sections.

3 FGHC and Inter-PE Processing

This section describes the features of FGHC parallel execution method, giving the
basic concepts of parallel processing and inter-PE communication in the Multi-PSL

3.1 Flat GHC

Flat GHC (FGHC) is a subset of Guarded Hora Clauses (GHC) [14]. It is a parallel
logic programming language similar to Concurrent Prolog [7] and PARLOG [2].
A FGHC procedure consists of a set of clauses of the form:

gu;_rd bady

where H, G, and B; are atomic formulas. E ic called the head, G; the guard goals;
together they form the guard part. B, are calied the body goals. The vertical bar { |)
is called 2 commitment operator. The guard part of the clauses conizins unifications
and calls to system predicates only.

The execution of a FGHC procedure caa be intuitively explained as follows. Exe-
cutable goals are queued in a ready queue. One of them is picked up and a procedure
whose clause head matches the goal is invoked.

After invocation, all clauses defining the procedure can run in parallel’. If some
of the clauses succeed in the execution of the guard part, one and only one of them is
(nondeterministically) selected and execution of its body part begins (the execution
of the other clauses is discarded). This is called a reduction of a goal into body goals.
Then the body goals are queued again.

The unification in the guard part cannot instantiate variables — insiead the uni-
fication is suspended until the variables become instantiated. When the suspensions
occur in all guard parts of the clauses, the goal that has invoked this procedure is
regarded as suspended. This is the basic mechanism of synchronization in FGHC.

We extend the original FGHC to include the metacall’? mechanism (2] and the
pragmas [8,1]. The former is included for ease of writing system programs.

3.2 Pragma

The pragma is designed to allow the programmer to specify explicitly how the goals
should be assigned to the processors. Body goals may have pragmas specifying on
which processing element the goal should be executed when the parent goal is reduced
to the body. Syntactically, & goal, G, with a pragma, P, is denoted by

PoeG.

Currently in our system, a pragma directly specifies the processor number”. In the
following example, the invocation of translate() will result in the first body goal to
be executed on the processor PE#£1, the second on PE#2, and the third on PE#3.

In current implementation, all guard parts are executed sequentially in literal order.
In the newest KL1 specification, metacall is called sho-en.
3n the future system, the pragma should specify the lead distribution at a more logical level.

w

Metacall

Fecord
Gozl + Cor] p——rrr ——eel Matacall
Hacard EBerard i Heeord
Metacall pa——-coe — Goal
Heecord

T

translate{PE1l) :-

PEZ := PE1+1,

PE3 := PE1+2 |
alloc(PE1)€Qinstrean(I),
allec(PE2)@2%translate(I,0),
2lloc(PE3)0Qoutstrean().

3.3 AND-tree

The AND-tree (Figure 2) maintains all goals under execution. The roots of the sub-
trees are metacalls, and the leaf nodes are FGHC goals other than metacalls. (Prob-
ably the root metacall will invake the operating system.)

A metacall is of the form

call(Goal,Result,Control),

where Goal is the goal to be executed under it, Result is the result of the call (one
of success, failure, and stop), and Control is an input stream through which control
messages (sequence of suspend, resume, and stop) pass,

The leal goals are direct or indirect descendant goals of the metacall just above
them in the AND-tree. Note that if Goal fails, the metacall does not fail but instan-
tiates Result to failure.

The metacall is used for user task control and resource management in the oper-
ating system.

3.4 Inter-PE Processing

In the FGHC programs, a user does not handle special message primitives for the
inter-PE communication, but simply writes goals with pragmas and unifications. Inter-
PE communication messages are automatically generated by the language execution
system.

There are two major message types; one concerns FGHC goal manzagement, such
as goal sending and termination reporting; and the other concerns unification across
the PEs.

When a goal with 2 pragma is executed, a message throw_goal is generated and
sent fo a specified PE. 1o tbe message, oot only constants but reference pointers may
be gent 2s arguments of the gozl.

Guard unification alweys suspends faz inetaniiating 2 value to a reference pointer
across the PE boundary. At this tize, 2 messege read_velue is sent to obtain 2 value
pointed by the inter-PE reference poizies. Waen e velue is retwrned through & mes-
sage, refurn_value, a goal suspended by 2 vnification suspension is resumed. When
& unifcation of a value with an intec-PE reference pointer occurs in a body part, &
message, unify it generated and se=t with a velue.

There are three types of inter-PE communication processing for sending and receiv-
ing these messages. They are essentizl for implementing a parallel FGHC execution
system on a network-connected multinrocessor like the Multi-PSL.

1. AND-tree maintenance: any goz! must belong to some AND-tree even if it has
been sent from another PE. AND-tree maintenance must be done both when
sending and receiving a goal. To reduce the maintenance cost and to simplify
the maintenance algorithm, the prozy-and-fosier-parent scheme is used [4].

2. Address translation: each PE has a different address space. When a reference
pointer is passed from one PE to another, the internal address of the source PE
is converted to a global identifier (ID). The address translation table between the
internal address and glohal ID is meintained in each PE, This address translation
mechanism is essential for separating local and global garbage collection.

3. Message composition and decomposition: the FGHC execution system must
compose and decompose the inter-PE communication message. The main task
is data type conversion between 40-bit intra-PE data and B-bit data sequence
for network transmission.

Processing of type 3 takes place in all message sending and receiving. 1 and 2 are
performed according to message types and argument data types. We think that these
processing cannot be removed from the execution system of an network-connected
multiprocessor system. And they make the inter-PE communication expensive. Pro-
cessing for a message often takes more time than a goal reduction indeed. This will
be discussed in later sections.

4 Inte_r-PE Communication Time

The inter-PE communication may cost more expensive than the intra-PE processing in
the network-connected multi-processor system like the Multi-PSI. This section shows
the real value of the communication cost measured on the Multi-PSI/V1, an experi-
mental prototype model. The measured cost is analyzed and component items of the
cost are discussed. The analysis is also used to estimate the inter-PE communication
cost of the Multi-PSI/V2, much improved model being developed.

PE#i network PE#j

FGHC software firmware | hardwace frmware | sefiware FGHC
execution | communication | processing | transmizsion | processing communication execution
processicg processing
=k .
- > 5 LOTOW-E ozl | > e,
! |r n gnr_".
reduciion
~ iesminate P

b

| i |

Figure 3: A network communication used in the measurement

]

. Ml
= |-\

4.1 Measurements on the Multi-PSI/V1

Inter-PE communication time was measured on the Multi-PSI/V1 for very simple
cases [5]. Inter-PE communication time on the Multi-PSI/V1 consists of three items.

1. Hardware time: real network transmission time of a message from PE#I to

PE#;

2. Firmware time: message sending and receiving control iime in firmware of PEz#i
and PE#j . The main task is putting and getting a byie sequence of a message
to/from the network interface hardware.

3. Software time: communication processing time of the FGHC execution system
just described in the previous section in different three types of processing. The
communication processing takes place in PE#i and PE#] for message sending
and receiving.

The purpose of the measurement is to determine the component ratio of these
roughly.

Measurement was made as follows. Adjacent PEs in the lattice network were used.
A simple goal was sent from PE#i to PE#j . The goal terminated at once after
one reduction on PE#j . The termination was reported from PE#j to PE#i .
Figure 3 shows a network communication used in the measurement. Total time from
goal sending to termination receiving was measured by the CPU timer on PE#i .
The time of a goal reduction was also measured. The hardware time and the firmware
time were calculated based on message sizes. Then the software time was calculated
using these measurements.

When sending a goal with one integer argument, inter-FE communication time
was measured as shown in Table 1. Ratios of each component time are also shown in
the table using a reduction time as a unit time. "Sum of software time” means the
total software time measured in PE#i and PE#j .

Table 1 shows that the ratios of hardware time and firmware time are much lower
than software time. In other words, the hardware and firmware time are negligible and

Table 1: Inter-PE communication time

" item time(ms) | ratio
one reduciion time 2.25 1
sum of herdware time 0.07 0.03
sum of Srmware time 0.22 0.10
sum of soitweare time 36.07 16.0
total time 38,32 17.0

almost all the inter-PE communication time is taken by software communication pro-
cessing such a5 address translation, AND-tree maintenance and message composition
in the Multi-PSI/V1. It should be emphasized that the communication bottleneck is
not the hardware message tranemission but the software message processing in this
system. This characteristics is assurned in considerations through the paper.

The total time is seventeen times larger than the reduction time. That is, sending
a goal and executing one goal reduction in & different PE costs much more than a
goal reduction within a PE. Most of the cost arises from the software communication
Processing.

The table shows that the software time is sixteen times of a reduction time, both of
which consume CPU time. It means that an inter-PE communication consumes much
more CPU time than a goal reduction within a PE, and the communication degrades
the system performance. The following section looks at the amount of degradation.

The software communication processing is not fast in current implementation be-
cause it is written in ESP. However the goal reduction processing is also written in
ESP. It means that the ratio of the software time cannot be decreased much even
if the firmware support becomes available for both the processing in Multi-PSI/V2.
Because both the processing can be improved in speed. The ratio between a reduc-
tion time and the software time does not depend on the PE power, but depends on
algorithms of both processing. Ratios of the hardware time and the firmware time can
vary according to the system characteristics. The ratios for the Multi-PSI/V2 will be
estimated in the following section.

4.2 Estimation for the Multi-PSI/V2

Both the goal reduction processing and the communication processing will be imple-
mented in firmware on the Multi-PSI/V2. The goal reduction speed is expected to be
around one hundred times of current speed. In the following discussion, it is assumed
that both the goal reduction and communication processing become one hundred times
faster. The hardware transmission time will be improved in five times, and firmware
speed will be the same. Each the component time of the inter-PE communication and
the time ratio is estimated using these assumptions. The Table 1 (measurements for
the Multi-PSI/V1) is rewritten into Table 2 (estimation for the Multi-PSI/V2).

Eatio of irmware time has increased much and ratio of total time increased nearly

Table 2: Estimation of communication time for Multi-PSI/V2

item time(ms) | ratio
2 reduction ilme 0.02 1
e of Rardwere time 0.01 0.5
sz of Ermware time 0.22 11
sum of sofrwere time 0.36 18
total time 0.61 31

two times. However r=2tio of hardwere time is the leest as before. Two observations
can be made from these results.

Ratio of firmware t™ne has increased, however, summation of software time and
firmware time still accounts for most of the total time. Both the software and firmware
time consume CPU time. That is, the inter-PE communication speed is still CPT
performance bound. The hardware speed is not a bottleneck as before. This charac-
teristics means that the consideration of the communication overhead made for the
Multi-PSI/V1 can be applied to the Multi-PSI/V2.

Ratio of total time in Table 2 becomes nearly iwo times of the ratio in Table 1,
and most of it is taken by processing in PEs (not by the hardware transmission). It
causes increase of the CPU time, that is, increase of the communication overhead.
The communication overhead of the Multi-PSI/V2 will be nearly two times of the
Multi-PSI/V1, in other words, the inter-PE communication of the Multi-PSI/V2 will
cost nearly two times more expensive. This estimation will be used in section 8.

5 Communication and System Performance

Inter-PE communication may degrade the system performance as shown in the pre-
vious section. This section considers the amount of degradation and tries to describe
into numeric formulas. Measurement scale for the system performance, communication
efficiency and communication rate are presented in order to make numeric formulas.

5.1 System Performance

The performance of a single PE can be measured using benchmark programs. The
unit of measurement is RPS (reductions per second). The ideal system performance
can be caleulated as

(PE performance) x (number of PEs) = (ideal performance).

The ideal performance on a real system is obtained when the load of all PEs complet ely
balances and there is no communication overhead. The system performance may
deteriorate for these reasons:

1. Communication overhead: communication processing consumes CPU time. It
makes execution time longer and decreases the RPS as a result.

2. Load imbalance: if PE loads are not uniformly distributed, the work rate of
some PEs goes down. It decreases average work rate of the system.

3. Program sequentiality: if a program has much sequentiality, PEs sometimes wai
for data avzilable with no executeble tasks but many waiting tasks. It malkes
the PE work rate lower and decreases the average work rate of the system.

In this section. it is assumed that PEs have uniform loads and programs have
much parallelism (low sequentiality). Only the communication overhead degrades the
system performance.

5.2 Communication Efficiency

Here, the commuricztion efficiency is defined as average throughpuf of the commu-
nication message processing. It is a weighted average of each message processing
throughput based on a certaln communicaiton miz in which each message appears at
a certain rate. The measurement scale of the average throughput is per second.

For ease of treatment, average communication time is used instead of average
throughput:

1

(average throughput)

(average communication time) =

The meaning of the average communication time is average processing time for a
message. the measurement scale is second.

Relative communication time based on average reduction time is more useful than
absolute time. It is the relative communication performance based on the average
reduction performance. Since the communication processing and the goal reduction
are done on a same PE, the relative value shows the communication efficiency without
depending on the PE power. The relative communication time is defined as follows.

(average communication time)
(average reduction time)

(relative communication time) =

This is mainly used in the rest of this paper.

5.3 Communication Rate

The communication rate should be defined when discussing the communication over-
head. The sense of the communication rate is a ratio between the amotint of commu-
nication processing and the amount of goal reduction processing. For ease of measure-
ment, the following definition is used.

(total number of messages)
(total number of reductions)
This definition can be used either within a PE or all over the system. For the

latter case, {otal means a sum of measurements in each PE. The latter case is mainly
used,

(communication rate) =

CPU time

communication
processing

— — —— —— S ——— S ————

goal reduction
processing

e
-

communication rate

Figure 4: CPU time against communication rate

relative
CFU time

A

2

communication
processing

goal reduction
processing

0 >

0 05 i

(communication rate)
® [re!aﬂve. cammunication time]

Figure 5: CPU time against communication overhead

5.4 Communication Rate versus System Performance

When the inter-PE communication consumes CPU time, the system performance de-
creases as the communication rate increases.

Figure 4 shows the relation between the CPU time of a PE (vertical axis) and the
communication rate (horizontal axis). Assume various subproblems which coat ain the
same reduction amount but a different communication rate. Figure 4 shows the CPU
time for executing each subproblem. When a fixed amount of reduction processing
is done on a PE, the CPU time for the reduction processing is constant (below the
broken line in the figure). However, the CPU time for the communication processing
increases in proportion to the communication rate (above the broken line) determined
by the program characteristices.

The horizontal axis is changed in Figure 5. The horizontal axis becomes

‘relative
performance =Y

A

0 L : >
(communication rate)
% (relative communicztien time)

=X

Figure 6: Relative performance against communication overhead

(communication rate) x (relative communication time)
(total number of messages) (average communication firne)
~ (total number of reductions) (average reduction time)
= (total communication time)/(total reduction time)

= (relative communication overhead)

instead of the communication rate. It is a kind of the communication overhead (time
ratio). Depending on the change, the horizontal axis may have a scale. At the point
where the horizontal axis is equal to one, the CPU time for the reduction processing
and for the communication processing are the same., The CPU time is twice the
best case (case of no communication), and the system performance is half of the best
performance.

The point, k-azis = I, corresponds to the case of an example in which a system
and a program meet with the characteristics shown in the following example.

¢ System characteristics: relative communication time = 20. That is, the average
message processing time is twenty times the average reduction time.

e Program characteristics: communication rate = 3z. That is, one message is sent
every twenty goal reductions.

Figure 6 shows the relative performance of the system. The horizontal axis is same
as Figure 5. It is calculated as b/(a + b) from Figure 5. The system performance is
also shown as a formula:

(Gy_gtem p\crfprmﬂﬂc:.} = {'idfﬂ.f pcrfarmanr_:e] . 1 -:X

where X = {cmmunicaﬁm ra.‘.e] . {TEIGHUI', communication t—:’me}

Figure 5 is a special case of (ideal performance) = 1 in this formula. The decline
in system performence can be read easily from the figure. The relative performance
of the system depends on the product of the relative communicelion time and the
communication rale.

6 Work Rate and System Performance

The system performance may decline depending on the non-unifer—ity of the load
distribution to the PEs and also depending on the program sequexztiality. Hoth are
completely program dependent in the Multi-PSI/V1*. Both the former and the latter
decrease the average work rate of the system. The system performance is specifled as
shown below when there is no communication overhead.

(system performance) = (ideal performance) - (average work rate)
--- without communication cverhead

When there is the communicetion overhead, it is rewritten as follows combining the
formula derived in section 5.4. This is the general equation specifying the system
performance.

1
14+ X

(system performance) = (ideal per formance) - (average work rate) -

vhere X = (communication rate) - (relative communication time)
-—= with certain communication overhead

The performance decrease rate is closely related to the network communication
response. When the communication response goes down, the waiting time of PEs
increases; for example, it takes more time to receive goals sent by other PEs at load
distribution, and the suspension time of a goal increases when it waits for data to
arrive from a different PE. In these cases, the waiting time of PEs increases and the
average work rate of the system goes down.

It is a future study subject to analyze the relation among the system performance
and communication response which must be considered with the load distribution
method.

7 Measurements

This section shows measurement results of the several factors dealt with in the nu-
merical formulas in sections 5 and 6. Relative communication time of the system,
communication rate of sample programs, and average work rate of the system were
measured on the Multi-PSI/V1 using sample programs which included the load distri-
bution control. These measurements give parameter values to the numerical formula
which specifies the system performance.

“The load distribution will be controlled by both the system and user programs in the Multi-PSI/ V2.
The systemn will manage the dynamic road balancing,

— 14

O] K12 U3 A4 ANS D6 7 oYL
! IDepthl

. (Y272 024 Q25 D26 027 128+ -+ Depth2
f m\z 7R AN X 7N

74/
71N

37 3 35 037 1038 - + Depth3
RERRERIRE - o

tow and gcelumn
where Queen to be placed

Figure 7: Execution tree of eight-queen problem

7.1 Sample Programs

The load distribution is entirely controlled by a programmer using the pragma in the
Multi-PSI/V1. For the measurement, two eight-queen programs are used, each of
which can change the distribution grain size of the load. Both programs are based on
same original program but use different load distribution strategies. Both programs
search all solutions of the eight-queen problem, expanding an execution tree shown in
Figure 7.

1. Program 1 : the grain size for the load distribution can be specified using the
depth of the execution tree from the root. All the nodes greater than or equal
to the specified depth are distributed to PEs. The grain size for Depthl is
approximately 1/8 of the total computation load. Depth2, Depth3, - -- are 1/(8x
7), 1/(8 x T x 6), --- each. A kind of circular distribution 5 i5s used. The
communication rate increases as the depth increases. The number of PEs can
be specified as a program parameter.

2. Program 2 : it maneges to maintain the distribution grain size uniform. The
strategy is to estimate the number of tree leaves, IV, and to distribute a lump
of N/M leaves to each PE, where M is the number of processors. N/M can
be divided by K specified by a program parameter in order to change the grain
size.

Source programs of both Program 1 and Program 2 are shown in the appendix.

7.2 Measurement Method

The following items were measured.

5S5ee the source program in the Appendix.

Table 3: PE performance

program ‘ time(sec) ‘ reductions | RPS
Programl ! ga I 38882 044k
Program2 | 105 | 38908 |0.37k

» Total execution time
¢ Those lisied below were measured for each PE

1. Number of reductions

2. Number ¢f suspensions

3. Real work time

4. Number of communication messages (for sending)

5. Number of throw_gocl messages

An OS timer supported by the PSI was used to measure the total execution time
and real work time of PEs. The number of reductions and-suspensions were counted
by adding counters in the FGHC execution system. The number of communication
messages was determined to be the number of built-in predicate calls which were
counted by a hardware supported evaluation counter in the PSL

Special attention was paid to minimize the measurement overhead, because, when
different overheads are added to the intra-PE processing and to the inter-PE process-
ing, the communication response changes and the system behaviour may also change
(especially for executing nondeterministic programs).

7.3 PE Performance

Table 3 shows the result of the sample programs executed on a PE. The number of
reductions does not contain the built-in predicate calls.

Since Program 2 has more calls of arithmetic built-in predicates than Program 1,
average processing time of one reduction increases and the RPS value decreases.

7.4 System Performance and Number of PEs

Figure 8 shows the RPS value for the execution of Program 1. The number of PEs
varied from one to six. Five lines are drawn for variations of load distribution depth,
from Depthl to Depth5. The broken line shows the ideal performance which was
calculated from (RPS of a PE) x (number of PEs).

There are two factors which degrade the system performance from the ideal value.

e Low average work rate caused by load imbalance

e Communication overhead (increase of CPU time for communication processing)

- 16 —

system Serformancc.

(K RPS
4 ideal
201 performance / Depth2
| Degth3
I Danthl
I Depth4
1.0~
Depth5
0.4}
*'JT . : : ! L e pumber of PEs

1 Z 3 4 5 6

Figure 8: System performance against number of PEs (Program 1)

The sample program has low program sequentiality which almost never reduces the
work rate.

At the point of (number of PEs)= 6, Depth2 achieves the highest performance.
The distribution grain size of the load is the largest for Depthl. It may cause the load
imbalance and may reduce the average work rate. The reason for the low performance
of Depthl is considered to be the load imbalance. On the other hand, the grain size
is the smallest for Depth5. It may give a good load balance but may cause frequent
communication. The reason for the low performance of Depth5 is thought to be the
communication overhead. That is, according to the increase of the depth, the load
balance improves, thereby improving the system performance, and the communication
overhead becomes larger, thereby reducing the performance. The overlap of these
factors is thought to give Depth?2 the highest performance. These items will be made
clear in the following subsections.

7.5 Work Rate
The work rate of a PE is obtained by

(real work time of a PE)

(total execution time) .

The average work rate of the system is an average of all the work rates of PEs.
Measurements for ngraml are pre_'sent.ed. Figure 0 shows the sum of PE work rates

sum of average

PE work rate (%) work rate (%)
Eﬂﬂi ——————————————— 100
L PES
5460 : 6 .
400 M2t
300 4 P - 50
SV |4 -
> 3
200+ 3 . 3 z
2 , | [PE2
160~) 2 -
N T 1] JPE
0 4 0

Depthl 2 3 4 5
Figure 9: PE work rate and average work rate

(% wvalue) in the left scale. That is, the % values of each PE work rate are piled on
top of one another. When all PEs achieve the masxamum work rate, the sum becomes
600%. The right scale shows the average work rate.

The work rate variation of PEs can be seen in the figure. Depending on the increase
in depth, it can be seen that the work rate variation among the PEs becomes small
and the average work rate increases.

'i".ﬁ. Communication Rate

The communication rate of Program 1 is shown in Figure 10. The definition of the
communication rate defined in section 5.3 is used. The vertical axis is the communi-
cation rate. The horizontal axis is the number of PEs. Five lines are drawn for each
depth. The highest communication rate is more than 100 times the lowest rate.

7.T Communication Cost

The relative communication time for a message is calculated in this section, as dis-
cussed in section 5.2.

Section 5.4 stated that the relative communication overhead can be obtained as a
product of the communication rafe and the relative communication #ime. However,
the opposite procedure is taken in this section. The relative communication overhead
is caleulated from the measurements first, then the relative communication time is
obtained dividing the overhead by the communication rate measured in section T7.6.

— 18 —

communication

rate
A
i -
- Depths
—_—
ok — Depthd
— - < Depth3
ot — —= Depth2
0.001F .- = Depthl
0.0007— ! J : 1> number of PEs

i 3 4 5 6

Figure 10: Communication rate against number of PEs

T.T.1 Helative communication overhead

Two factors cause the performance decrease of the system.
1. Low average work rate

2. Communication overhead

A graph of these is shown in Figure 11. It can be seen that the decline in performance
depends on the factors. The vertical axis of the graph is the relative performance
based on the ideal performance. The graph shows the case of Program] using six PEs.

The upper value of the graph shows the performance in which the communication
overhead = and the performance decrease only depends on the work rate. The value
is the average work rate measured in section 7.5. The lower value of the graph shows

the system performance (relative value) obtained from the measurements in section
7.4.

upper value = (average work rate)
(measured performance)
(ideal performance)

lower value

The difference between the upper and lower value is thought to be the performance
decrease caused by the communication overhead. The performance decrease rate can
be specified as

(measured performance)

{average work rate) .

—_ 19_

relative
performance

e atat — idezl performance

‘;'.‘\w-.:rage work rate

performance dacrease
caused by
0.5+ communication overhead
v
measured performance
(relative value)
0

Depthl 2 3 4 5

Figure 11: Relative performance based on ideal performance

The execution time increases at the rate of

average work rate).
g

(measured performance},

which is the inverse of the performance decrease rate. The communication overhead
is the increase of the execution time caused by the inter-PE communication. The
relative communication overhead is the relative value of the communication overhead
based on the execution time with no communication overhead. It can be specified as

(relative communication overhead)

(average work rate))

" (measured performance h
P

The relative communication overhead corresponding to each depth of Figure 11 can
be calculated by this equation and will be used to derive the relative communication
time in the following section.

7.7.2 Relative communication time

The relative communication time
(average communication time)[(average reduction time)

is calculated using the relative communication overhead defined in the previous section
and the communication rate in section 7.6. This value shows how many reductions
can be done during average message processing time for a message, in other words,
how much the message processing is heavier than the reduction processing.

— 20

Table 4: Relative communication time

. . mamrs

item Frograml | Program?
average 6.3 7.7
maxirnum T.4 9.8
minimiurn 5.6 7.1
samples 20 40

This formula was presented in section 5.4.

(communication rate) X (relative communication time)

= (relative communication overhead)

A formula of the relative commurication time is obtained from this and a formula
of the relative communication overhead defined in the previous section.

(relative communication overhead)

(relative communication time) = (cormmunication rate)

{average work rate) 1
[measured per formancs)

(communication rate)

The value of the relative communication time is calculated for all the depths of
the sample program and for all the numbers of PEs, from two to six. The result for
Program 1 and Program 2 is shown in Table 4.

The table shows that the message processing costs 6.3 times reduction processing
for Program 1, and 7.7 times for Program?2 on average. The difference is caused by
two factors. One is the difference of goal arguments in the throw_goal message, eight
arguments for Program 1 and twelve for Program 2. The other is the difference of
the appearance ratio of the messages. The component ratio of the throw_goal message
is 23% for Program 1 and 30% for Program 2. The throw_geal message requires the
heaviest processing.

7.8 System Performance

A formula specifying the overall system performance was derived in section 6. It is
shown again.

(system per formance) = (ideal per formance) - (average work rate) - 1T X

vhere X = (communication rate) - (relative communication time) .

The i1deal performance depends on the computation speed (reduction processing per-
formance) of the system. And the relative communication time depends on the com-
munication processing efficiency of the system. These parameters were measured for
the Multi-PSI/V1 in sections 7.3 and 7.7.2. On the other hand, the communication
rate and the average work rate are determined by the program characteristics.

Then, the system performance of the Multi-PSI/V1 is described as follows rewriting
the previous formula.

(system performance of AMulti PSI/V1 (K RPS))
1
1+ 6.3 x (communication rate)

= (0.44 x 6) - (average work rate)-
=== for program 1
(system performance of Mol PSIfV1 (K RPS))

1
1+ 7.7 x (communication rate)

= (0.37 x 6) - (average work rate)-

--= for program 2

Note that the ideal perjormance (K RPS) and the relative communication time
may vary depending on program characteristics. However, these equations are still
very useful to have a rough estimation of the system performance when the average
work rate and the communication rate can be assumed or estimated.

8 Discussions

Small grain size of the load distribution may increase the uniformity of the PE load
among the PEs and may increase the average work rate of the system. On the other
hand, it may cause high communication rate which increases the communication over-
head and reduces the svstem performance, Programmers have to control the grain size
of the load distribution in their programs in order to achieve well uniformity of the PE
load (good load balance) and less communication overhead than a certain practical
level.

The formula of the system performance in section 7.8 can be used to give a guideline
for a practical lower bound of the grain size or an upper bound of the communication
rate. When a programmer can decide the lower bound of allowable performance de-
cline caused by the communication overhead, he can obtain the upper bound of the
communication rate from the last formula in section 7.8. For an example, when the
lower bound of the system performance is 50%, the upper bound of the communica-
tion rate is 1/7.7. It is the maximum communication rate which the programmer can
handle in his program in order to achieve good load balance. According to this value,
the programmer tunes up his load distribution algorithm.

The allowable maximum communieation rate is approximately 1/7 for the Multi-
PSI/V1, at most one inter-PE communication for seven reductions, when the lower
bound of the system performance is assumed as 50%. The allowable maximum com-
munication rate for the Multi-PSI/V2 will decrease into approximately 1/2 of the
Multi-PSI/V1 which is roughly estimated comparing Table 1 and Table 2 in section
4.

Programmers have to maintain the communication rate of their programs to achieve
good load balance and low communication overhead. A system implementor may be

._22_

required to prepare & programming paradigm and a programming system which can
support a programmer writing a paralle! program with low communication rate and
well load balaace. And a programming guideline should be also presented how much
communication rate arises when a certein programming styie chosen. This i1s a study
theme to be chalienged.

9 Conclusion

A network-connected muitiprocessor like the Multi-PSI has such characteristics that
a bottleneck of the network communication resides in the communication processing
of the processing elemen: (PE} not in the nstwork transfer. The inter-PE processing
costs around ten times more s=pensive than the inira-PE processing. These facts were
shown through the mezsurements.

When the commuricetion frequency increases in the Multi-PSI, the inter-PE pro-
cessing consumes much CPU time reducing the system performance.

Measurement scale of communication efficiency and communication frequency were
proposed to handle the performance decrease in a numerical formula. The relation
between the system performance and the inter-PE communication was derived into
a formula, which could be zpplied to a network-connected multiprocessor like the
Multi-PSL

The real value of these measurement scales were obtained by the measurement on
the Multi-PSI/V1. Measurements completed the numerical formula which specified
the relation among system performance, communication frequency and system work
rate of the Multi-PSI/V1. Usage of the numerical formula was also discussed in order
to tune the communication frequency of programs for low communication overhead
and good load balance. It was also shown that the communication frequency on the
Multi-PSI/V2 (high performance model under development) had to be maintained
lower than Multi-PSI/V1.

The load balancing method, which affects the system work rate very much, was
not dealt with in this paper. It is another important research theme for the future.

Acknowledgments

The measurements was carried out by members of ICOT fourth laboratory and col-
laborating companies. The author gives grateful thanks to them. The author also
thanks the chief of fourth laboratory, Dr. S.Uchida, and the Director of ICOT, Dr.

K.Fuchi, for their advice and giving us the opportunity to do this research.

References
[1] T. Chikayama. Load balancing in a very large scale multi-processor systern. In

Proceedings of Fourth Japanese-Swedish Workshop on Fifth Generation Compuler
Systems, SICS, 1986, Also in ICOT Technical Memo TM-276.

— 25 .

[2] K. L. Clark and S. Gregory. PARLOG: parallel programming in logic. ACM
Transaetions on Programming Languages and Systems, 8(1):1-48, 1986.

[3] A. Gotou and S. Uchida. Toward a High Performance Parallel Inference Machine
~The Intermediate Stage Plan of PIM-, Technical Report TR-201, ICOT, 1886.

[4] N. Ichivoshi, T. Mivazali and K. Teki. A distributed implementation of fat GHC
on the Multi-PSI. In Proceedings of the Fourih Internetional Conference on Logic
Prograrmming. pages 257-275, 1987. Also in ICOT Techinical Report TR-230.

[5] H. Iwayama, K. Mesude et al. Connection Network Architecture of the Multi-PSI
and Its Evaluation (in Japanese). Technical Memo TM-306, ICOT, 1987.

[6] H. Nakashima. K. Nakajima et al. Evaluation of PSI micro-interpreter. In Pro-
ceedings of Compcon Spring 86, pages 173-177, IEEE, 1986. Also in ICOT Tech-
nical Report TR-142,

[7] H. Nakashima and K. Nakajime. Hardware architechture of the sequential infer-
ence machine: PSI-IL. In Proceedings of 1987 Symposium on Logic Programminyg,
pages 104-113, IEEE Comuter Society, August 1987. Also in ICOT Technical
Report TR-263.

[8] E. Shapiro. Systolic programming: 2 paradigm of parallel programming. In
Procesdings of FGCS'84, pages 458—470, 1984.

[9] E. Y. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. ICOT Tech-
nical Report TR-003, ICOT, Tokyo, Japan, January 1983.

[10] S. Takegi et al. A collection of KL1 programs, -Part 1-. Technical Memo TM-
311, ICOT, 1987.

[11) K. Taki, M. Yokota et al. Hardware design and implementation of the personal
sequential inference machine (PSI). In Procesdings of FGCS'84, ICOT, 1984.
Also in ICOT Technical Report TR-075.

[12] K. Taki. The parallel software research and development tool: Multi-PSI system.
In Proceedings of France-Japan Artificial Intelligence and Computer Science Sym-
posium 86, pages 365-381, 1986. Also in ICOT Technical Report TR-237.

[13] S. Uchida. Inference machines in FGCS project. In Proceedings of International
Conference on VLSI'87, IFIP TC-10, August 1987. Also in ICOT Technical
Report TR-27E.

[14] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Language with
the Concept of a Guard. Technical Report TR-208, ICOT, 1986.

[15] M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and S. Uchida. The Design
and Implementation of a Personal Sequential Inference Machine: PSI. ICOT
Technical Report TR-045, [COT, 1984. Also in New Generation Computing,
Vol.1l Ne.2, 1084,

- 24 .

Appendix

Sample Programs
Frogram 1 :

zodule gueeax.

:= public go/2, t/3.

go(L,K,Desth) :- true | gueen(L,Ans,N ,Depth), write_results(Ans).
t(L,§,Decth) :- true | gqueen(L,_,N,Depth).

write_resnlts([]) :- write(emd) | true.
write_results([ZI1Y]) :- write(X) | write_results(Y).

queen(0riginal _list, Answer_list,N,Depth) :- true |
queen_n(0riginal_list,[],[],Answer_list,[],6,N,Depth).

append ([A1X1,Y,Z) :- true | Z=[A]Z1],append(X,Y,Z1).
append([], Y,Z) = true | Z=Y.

queez_a([P|V],C,L,I,0,PE,N,Depth) :-
P1 := ((PE + N - 6) mod N} + 7T - ¥ |
append(U,C,NN), et_n(P,1,NN,L,L,I,X,PE,N, Depth),
allec(P1)eequeen_n(U, [P|C],L,X,0,P1 N, Depth).
queen_n([(1,[_1.7,.,1I,0,_,_,.) :- true | I=0.
queen_n([1,0], L,I1,0,_,_,.) := write(L) | I=[L[0O].

queen_1([PIV],C,L,I,0) :- true |
append(U,C,H), e1(P,1,¥,L,L,1,X),
queen_1(U, [P|C],L,X,0).

queen_1([],(_1_.1,_,1,0) :- true | I=O.

queen_1([1,[], L,I,0) :- write(L) | I=[Ll0].

¢i_n(T,D,N,[(P|R],B,I,0,PE,NN,DX) :-
T=\=P+D, T=\=P-D, DL :=D + 1 |
¢i_n(T,D1,¥,R,B,I,0,FE,NN,DX).
ci_n{T,D0,_,[PI.],.,I1,0,PE,NN,DX) := T=:=P +D | I=0.
ei_n(T,D,_,[PI_1,_,1,0,PE,NN,DX) :- T=:=P -0 | I=0.
ci_n(T,D,¥,0], B8,I,0,PE,NN,DX) :- DX > 1, DD := DX -1 |
queen_n(¥, (], [T|E],I,0,PE,N¥,DD).
¢i_n(T,D,N,[1, B,I,0,PE,NN,1) :- true | queen_i(N,[],[TIE],I,0).

ci(T,D,K,[PIR],B,I,0) :~ T=\=P +D, T=\=P -D, D1 :=D+ 1|
B ei(T,D1,¥,R,5,1I,0).

ci{(T,0,_,0MP17,_,1,0) :=T=:=P+D | I=0.

ct(T,D,_,[?1.3,.,1,0) :=T=:=P~-D | I-=0.

c+(7,p,5,0, 5,1,0) :- trze | guee=_1(¥,[I,[TIE],1,0).

ead.

Program 2 :

module gusenz.
:= public geoB/2.

go8(H,Dexti) :- true |
o1 {Depth,N,40320,Base),
quee:{[l,?,a,é,S,E,T,E],Ans,ﬁ,Eas&,Sﬂﬂﬂ,E}
A , write_results(Ans)

cul(K,N,A,B) :-
A >= H,Al := ASN,AL >= K, AL := A1/K |
B = AA.

cul(K,N,A,B) :- A< N | B

cul (K, N,4,B) :- & »=N,Al :

1.
A/N,AL <K | B =1.

queen(Original_list,Answer_list,N,Base,B,M) :- M1 := M-1 |
queen_n(1,Base,Original_list,[],0,
Answer_list,[],6,N,Base,B,M1).

aend+queen{5elf,Bnrder,List.G,L,I,D,PE,H,Ease,Hidth,Level} =
S5elf >» Barder,
E := Border+Base,
Pl := (PE+ N -6) mod B+ 7 -0X |
send_quaen(Self,E,List,C,L,I,G,Fi,H,Base,Hidth,Luvel).

send_queen{Self,Border,List,C,L,I,0,PE,N,Base,Width,Level) :-
Self =< Border |
alloc(PE)@0queen_n{Self,Border,List,
c,L,I,0,PE,N,Base,Width,Level).

queen_n(Self,Barder,[PIU],C,L.I,U,PE,H,Base,Hidth,Level} il
Self > Border |
send_queen{SElf,Bﬂrdar,[PlU],C,L,I,D,PE,H,EaSe,Hidth,Level}.

— 26

queen_n{Self,Eurder,[PlU],C,L.I,D,PE.H.Base,Hidth,Level) 1=
Self =< Border,
S1 := Width+Self |
zppend (U,C,KN),
ci_l(P,1,HE,L,L,I,I,PE,F,Eelf,Barder,Easa,ﬁid:h,Lgvelj,
gaeen_n(ﬁi,ﬂn:der.ﬂ.[PlC],L,I,E,PE,F,Base,Hidth,Leval}.
queen_n{_,_,[],[,l_],_,I,D,_._,_,_,_} .= true | I=0.
queen_n(_,_, 03,0, L,T,0, 4. »oresa) i- truE | 1={L|0O].

ci+1(T,D,H,[?[R].E,I,D,PE,HF,Self,Bcr&er,Ease,H,Lev) -
Al := P + D, T =\= Al,
A2 = F = D,T =\= AZ,
DL :=D + 1|
cl_l(T,Dl,H,R,E,I,D,PE,HH,Eelf,Bard&r,Ease,H,Lav}.
ci_i{T,D,_,[Pl_],_,I,D,PE,HE.Self,Enrder,Ea,H,Lav} -
Al := P 4+ D,T =:= Al | I =0.
:1_1{T,D,_.[Pl_],_.I.D,PE.HH.5e1f,Bur¢nr,Ba,u,Lev} -
AL :=P-D,T=:=411]1=0.
e1_1(T,D,N,00, E,I,D,PE,HH,Self,Enrder,Ease,H,Luv} =
Lev > 1,
WW := W / Lev, LL := Lev - 1 |
qpeen_n{ﬂelf,Enrder,H,I],[TIE].I,B,FE,HF,E&SE,HH,LL}.
ci_i(T,D,N,[1, B,I,D,FE,HH,Self,Eorder,Base,H,ij := true |
queen_n{ﬂeli,ﬂnrder,ﬂ,[1.[TlB],I,U.PE.HH;BaSE,H,1)-

write_results([]) := write(end) | true.
write_results([X1Y]) :- write(X) | vrite_results{Y).

append ([A1X],Y,Z) :- true | Z=[4121] ,append (X,Y,21).
append([J, Y,Z) :- true | Z=Y.

end.

