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Abstract: This paper discusses the remaining problems of partial evaluation,
comparing competitive partial evaluation to expert programmers who are able to
iinprove programs very effectively. Two case studies of medium size examples are
presented to show how to obtain maximal speedup and global control of partial
evaluation respectively. These studies are expected fo suggest the direction of

future research towards everyday-use partial evaluation.
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1. Introduction

We belong to a growing group of scientists working towards a situation where

partial evaluation enables average programumners to exhibit an ahility equal to



those of expert programmers. The approach is based on a fine combination of

partial evaluation and meta programming.

Meta programming is z strong paradigm for software development, because
of ite conceptual clarity., It has been said thal meta programs aie inefficient
because of layers of interpretation. However, it is now known that the problem
can be solved by partial evaluation of meta programs with respect to object
programs')?). We are in a position where it is natural to expect partial evalua-
tion to be a competitive tool against expert programmers and to replace skilled

Programiming.

However, these statements are somewhat optimistic. In some cases, partial
evaluation succeeds in deriving programs as efficient as those written by expert
programiners, but usnally it needs human interaction, that is, the assistance
of cxperts in partial evaluation. This implies that we need partial evaluation
expertise instead of programming expertise. ]Ei:ec;ently, several researchers have
tried to automate partial evaluation®). However, there remain some questions to

be solved to make partial evaluation a practical tool.

The first question is on the degree of speedup obtainable by partial evalua-
tion. There are many examples where expert programmers improve programs by
some order of magnitude, utilising specificity inherent in a given problem very ef-
fectively, Can a partial evaluator, which is concerned mainly with specialisation
obtain the same degree of speedup as that obtained by expert programmers? If

it cannot, what enhancement for partial evaluation is needed?

The second question is on global control of partial evaluation. A more

roncrete statement is:



Is the result of partial evaluation guaranteed to be the most efficient or

the best program in some sense?

Usually, the result of partial evaluation is given to users in an ad hoc manner.
Its quality depends on the strategy embedded in the partial evaluator and the
quality of human interaction if it is semi-automatic. A competitive partial eval-
uator needs to be automated so that any programmer can utilise it easily. It
is also necessary for such systems to assure the quality of a resultant program.
Otherwise, a programmer is in danger of obtaining many useless programs. To
provide such assurance, it is essential to introduce measures which enable the
comparison of two programs. These measures should be reflected in the global

control strategy of partial evaluation.

These are fundamental problems independent of programming languages
and applications. This paper discusses these problems using Prolog. The first
problem is discussed in Section 2, where it is assumed that it is diflicult to obtain
maximal speedup for a given problem by simple partial evaluation. The least
enhancement which provides the expected improvement is investigated. Section

3 is devoted to the discussion of the second problem.

2. How to Obtain Maximal Speedup

For a Prolog program, partial information is usually given as partial instan-
tiation of arguments in a procedure call or assertions of facts, By unfolding the
instantiated calls or those calling the assertions, the substitutions are propagated

up or down through shared variables. Some of the instantiated calls may be to-



tally solved, others may be made residual calls which are suspended to be opened
up.

However, the improvement of the efficiency of the program obtained by par-
tial evaluation, which is derived by only substitution propagation and procedure
call reduction (unfolding), seems to be ].imitéd to some degree in many cases
where further improvement is possible by utilising the specificity of known data,
fucts and the strucure of the subject program. What can we do to achieve max-
imal speedup in such circumstances by partial evaluation as the core technique?
To explore the solution to this problem, a case study is presented in the following

subsections,

2.1. Production System — A Case Study

Production system is widely used in state of the art expert system shells. It
is an inference system for a set of forward chaining rules using an iterative algo-
rithm. The system holds a rule memory (KM ), which stores a set of rules, and
a working memory (WM), which stores elements that are added to or removed
from it dynamically during an execution. Its execution algorithm is simply an

iteration of the following three steps:
(1) Match the current WM with the LHS of the rules in RM.
(2) Select one of the matched rules (conflict resolution ).
(3) Fire the RHS of the selected rule.

It is implemented easily in Prolog as in Fig.1, and is called preduction engine.



exec is the main loop of the engine, which moves an initial state of WM, wso,
to its final state, win, iterating one_cycle. one_cycle performs a single iteration of
the three steps described above. match collects all the rules matched with WM
using the setor* primitive, obtaining the conflict set, cs. matens picks up a rule
from KM and passes it to mateh?, which in turn checks all the patterns on the
LHS of the rule using match3. match3 performs case analysis for a pattern on the
LHS, which is annotated with + if it is expected to exist in WM, or - if it 1s
expected not to exist in WM. mateha succeeds if pattern X matches an element in
WM, otherwise it fails. The detail of select is omitted; however, it is assumed
that its complexity does not depend on the size of RM. fire executes all the
commands on the RHS by iterating firei. fire1 despatches commands according
to the annotation on element X, + when x will be added to wx, - when X will be
removed from wH. The details of add and remove as well as match4 are omitted,
for they are dependent on the data structure of wM, which is irrelevant to the

following discussion.

An execution of the naive implementation of the engine is very inefficient.
The inefficiency is caused mainly by match procedure, which has two sources of
redundancy. One is that it scans the whole RM, checking all pattcerns on the
LHS of rules for each iteration (matcht), without taking acount the fact that there
may be common patterns. The other is that it scans the whole WM, checking
all its elements against the LHS of rules for each iteration {matchs), without

taking acount the fact that there may be some elements whose successful match

* setot(A,P,S) 'mn.lputes all solutions for & satisfying condition P with the

resultant list of solutions s, if at least one solution exists. Otherwise, it fails.



is unchanged since the previous iteration. The order of computation in the nasch
procedure is O( P x W), where P is the sum of the number of all the LHS patterns

in the rule set, RM, ie.:

P=3|LHS|

BM

and W is the number of elements in WM. Usually, P is about linear with respect
to the number of rules, R = | RM |, and the average number of LIS patterns
in a rule is given as = | LHS | = P/R, which is very likely to be bounded by

some constant, A,

2.2. Inferential Ability

When a rule set 1s given, RM 1s fixed during an execution of the production
engine. Therefore, the engine can be specialised with respect to the rule set by

partial evaluation. For instance, suppose that the following rules are given.

rule([+expr(X,Y+Z),+expr(Z,0)] => [-expr(X, Y+Z},+expr(X,Y)]).
rulel (+expr(X,Y+2),+expr(Z,03] => [-expr(X,Y+Z},+expr(X,0)]).

First, the matcht procedure is specialised as:

matehl{{[+expr (X, Y42) ,+expr(2,0}] => [-expr(X,Y+I),+axpr{X,¥)1),
WM) :-
matchd (expr (X, Y+Z), WM,

matehd (expr(Z,0), WH).

matehl(([+expr(X,Y*Z), +expr(Z,0}] => [-expr(X,Y+I),+expr(X,0)1),
WM} -
matchd (expr{X,T=Z), WM,
matchd (expr(2,0), WM).

Since wH is unknown until execution, matchd is not evaluated any more.



Experiences in partial evaluation shows the difficulty in fully utilising infor-
mation that is partially known, because, there often are many obstacles which
stop the information flow, and make partial evaluation ineffective. For instance,
suppose that (p(X,Y),¢(Y, Z)) is being partially evaluated and X is partially
instantiated at this point. Then, p will possibly be partially evaluated without
instantiating ¥ at all, and there may be no chance of g being partially evaluated.
However, more can be done. If a domain or type of ¥ is infered from the given
X, ¢ may be partially evaluated further. This is possible by introducing certain

inferential capabilities into partial evaluation.

Now, in our case, although select cannot propagate the information from
match to fire through the ¢s and RES, the enhanced partial evaluator can infer
the possible form of RES which will be output from select, ie. any RHS of rules

in RM. Thus, fire is specialised as:

fire{ [-expr(X,Y+Z),+expr(X,¥)], wHO, wHil) --
remove({expr(X,¥+Z), WHMO,WMi),

add (expr(X,Y), WHi,WM1).

fire{ [-expr(X,Y+Z),+expr(X,0)],WH0, wWMil) -
remove(expr(X,Y*ZI), WHMO,WHi),

add{expr(X,0), WHi, WH1).

The specialised match1 and fire procedure will have as many clauses as the given
rules (B = | RM |) respectively. This will be a reasonable number even if R is

ten thousand or more,

Thus, matchi and fire are specialised with respect to the rules in a reason-

able size, and overhead of interpretation of each rule is removed by enhanced



partial evaluation. However, P, the number of LHS patterns tested in the matcx
procedure, is not reduced at all, and the speedup thus achieved is only ¢ x P,
where ¢ is the constant which is determined by units of computations including
head unification and opening up of a procedure eall. Accordingly, the complexity
has been improved now, from O(7 x P x W) to O((7 —¢) x P x W), where 7 is the
unit time to process one pattern on the LHS, and v > ¢. That is, the complexity
is still linear with respect to the number of patierns, P, which in turn is linear

wrt. the number of rules, R(= P/P).
2.3. Eliminating Redundant Calls by Factoring

A possible source of special speedup in the production engine is the redun-
dancy of re-execution of common pattern matching among different rules. In
our example, matchd(expr(Z,0),WH) will be executed twice in a cycle, once for the
plus_o rule, and once for the times_o rule. This common call can be factored out

as in the following code:

matchi(RAule ,WM) :- matchd(expr(Z,0),WM), matehi_1i({Bule,Z,WH).

matchil_1{{[+expr(X,Y+2), +expr(Z,0)] =>» [-axpr(X,V+Z),+expr(X,¥)]1],
7 ,WM) i

matehd(axpr (X, Y+Z), WM.

matehi_1(([+expr(X,¥+Z}, +expr{Z,0)] => [-expr(X,¥+I),+expr(X,011),
Z,WH)Y i~

mateh4lexpr(X, Y+2), WM.

Note that an extra argument, z, is added to make the split patterns of a LHS in

a rule consistent with respect to the shared variable, .



Now, suppose that goal P is just being partially evaluated in a clause body
of (H:—@,P,...), where @ has been suspended to be expanded and made
residual. Then, ¢} can be uti].%aed as a constraint for P. When P is expanded
by some clause such as (P:— @, R,...), §J is solved and eliminated from the
expanded code as the trivial consequence of the constraint. This somewhat

context sensitive cxtension of partial evaluation is denoted as:
peval(P,Q, R)

which reads that R is the result of partial evaluation of P in context . This
1s viewed as a kind of logic dependent partial computation introduced by 4), or

partial evaluation with constraints®),

This suggests the following transformation. First, a new definition

(Prew : — Q, F)

is added for P, all of whose defining clauses share @ in their bodies, and all
occurrences of P in the program are replaced by P,... Second, P is partially
evaluated with the constraint Q. Then, all occurrences of Q in the clause bodies
are eliminated from the residual clauses for P. This transformation can be

formalised and justified as the goal replacement rule defined in 6).

Using this method in our example, procedure calls for common pattern
matching are factored out from the LHS of the different rules. If there are many
common patterns, and they are factored out by the method in an appropriate

order, a good resultant code will be obtained in a form something like a well



formed decision tree. This further improves the performance of the naive imple-
mentation of the production engine. The complexity of mateh, and hence that of
exec, becomes O((r — ¢) x P' x W) where P’ is the number of patterns to be
tested in a cycle after factoring and P' < P, In the worst case, P' = P, that is,
there is no common pattern to be factored out from the different LHS of rules
in RAf. At the other extreme, although it is not realistic, where all of the rules
have a common LHS, the complexity would become O((7 — ¢) % B x W), ie. it

would become independent of the number of rules, K.

2.4. Reorganisation of Iterative Structure

So far, some enhancement of partial evaluation has made it possible to obtain
further speedup derivable from the specificity of the given problem. However, it

still fails to obtain order of magnitude speedup.

Now, looking into the semantics of the program, it should be noted that the
tire process is viewed as a generator and the match process as a tester. Therefore,

it is expected that, by placing match immediately after fire, some shortcut from

fire to match may be made, which may contribute to further speedup. This will

be realised by the tentative expansion of exec as:

exec({WMD,WMn) :- one_cycle(WMO,WM1),
ene_cycle(WMi WMZ),

exac{WHZ, WHn).

and, further expansion of the two one_cycle calls as:

exec(WMO,WNn} :- match(CS1, WMD),

select{CS1,R1,WHO),



fire( Ri,WHO,WHi),
match{£52, WM1),
salect(C52,R2,WML),
fire( R2,WM1,WHZ),
exec({WM2,WHn).

At this point, by unfolding the first fire call with its specialised clauses
already obtained, the specialised exee procedure is obtained. Note that, in a
body for each of the specialised exec clauses, the effect of the first fire can be
propagated to the second matech call through wii. If it is known that the firing
of r1 inhibits the next firing of a rule, R2, in cs2, say, because R1 removes an
element which is required to match a pattern in R2, then such a code sequence
corresponding to the firing of 11 followed by B2 can be discarded. Moreover, it is
often the case that the number of commands on the RHS of a rule which causcs
changes in WM is bounded, and the number of changes in matching conditions

during cousecutive two cycles is also bounded. Thus, there may be chances to

reduce the computation in the mateh which follows the specialised fire.

To make the main procedure, exec, utilise this fact, the well known un-

fold /fold program transformation® can be applied as shown in Fig.2.

In Fig.2, tire_match is a compound procedure including a shortcut from fire to
match. The new procedure, axeci, replacing exac, is the reorganised main loop of

the production engine, and iterates fire_match instead of match and fire.

After further optimisation, the complexity of fire_match will become linear
with respect to the number of changes for matchable patterns after the firing of

the last rule, which is bounded by p, i1e.:

A(P'xW)x | RHS | < p



If the complexity of each iteration of exec1 is dominated by that of fire match,
instead of select, its order becomes O(p), which is constant with respect to R,

the number of rules. Thus, super lincar speedup’ is achieved.

2.5. More Than the RETE Algorithm

A RETE like algorithm®) is commonly used to improve efficiency of the
production systems, OPS5 and its descendants. With this algorithm, a set of
production rules is transformed into a network which can be viewed as a kind
of compiled code of the rule set (Fig.3). WM is distributed in the network as
separate local memories. In its execution, a stremmn of tokens, each of which is
affixed by a flag indicating whether it is to be added to or removed from WM,
is input to the network, and a set of firable rules (a conflict set) is output from
the network. Then, one rule is selected from the conflict set, and fired in the
next iteration (Fig.4). The RETE transformer and the RETE network driver 1s
defined once and for all; however, a RETE network must be reconstructed each

time the rule set is changed.

What if partial evaluation (Fig.5, Fig.6) is used in place of the RETE Al-

gorithm?

If the full possible speedup obtainable from the specificity of the problem
iz achieved and a fully optimised production engine with respect to the given
rules is obtained by enhanced partial evaluation, it will be a rival of the RETE

Algorithm.

Another advantage is gained if partial evalnation is adopted. That is, a

partial evaluator will be partially evaluated with respect to a production engine,



obtaining a kind of compiler that inputs a set of production rules and outputs the
specialised production engine (Fig.7). Furthermore, incremental compilation®!
may be applied effectively (Fig.8), since the knowledge aquisition process is in-

cremental in nature. This is diffieult using the RETE algorithm as it is.

3. Global Control of Partial Evaluation

3.1. Spectrum of Differently Specialised Programs

In general, partial evaluation can be regarded as a sequence of atomic trans-

formations such as the following:
(1) Unfolding a call by a body of its definition

(2) Introduction of a specialised predicate (p,) for a call with partial input

(p(..a.))
Pal..) : =p(..a..).
and replacing the call by a new call

r Py e = oy Pal)y

(3) Specialisation of the body of a newly introduced predicate definition (this

can be represented as a combination of (1) and (2))

There are several control issues. The most famous is prevention of loops.
Other immportant issues are the order of calls to be partially evaluated and selec-
tion of residual calls. Existing partial evaluators have some strategies about thesc
issues. So far, we have developed three partial evaluators for Prolog programs,

which adopt the following control strategies.

— 13 —



Pevall)
Loop detection is automatic. If aloop is found, the call is kept untouched.
A user must notify Peval of calls to be residual. The notification can be

done hefore partial evaluation or incrementally at run-time.

Automatic PEY
The system consists of two stages, the analysis stage and the transforma-
tion stage. At the analysis stage, it exiracts several items of information
by abstract interpretation. These items include cross references and safe
recursive calls (safety means that a call is guaranteed to terminate). At

the transformation stage, all non-recursive calls and all safe recursive

ealls are unfolded.

Self-applicable PEY)
The program is intended to be self-applicable. No loop detection mech-

anism is provided., A user must notify the system of calls to be residual.

Among the control strategies, the specification of residual calls most influ-

ences the final form.

Let us look at an example. Suppose we have the following program.

ancestor (X,¥) =  parent(X,Y).

ancestor(X,Y) := parent{X,Z), ancestor(Z,Y).

The data given is the following set of clauses.

parent(ai, ail}, parent{ai, al2).
parent(ail, aiii). parent{ail,a112}.
parant(ail ai2i). parent({all,al22}.



ancestor{al, aiti).

ancestor(all aiil).
ancester(al, =111).
ancestor{al2,ai2t}.

ancestorf{al, al121).

One of the possible specifications gives instructions to expand all calls, The

following program is obtained as a result.

ancestor(al, ai2).

ancestor{all,al12),
ancestor{al, al12).
ancestor(al?,al?22).

ancester{al, al22).

The result is a set of unit clauses. It is much larger than the original one. If

the number of the parent relation is N, then the result has O(NlogV') clauses,

Another possibility is unfolding of calls to the parent relation only. The

following program is obtained,

ancestor(al, all). ancestor{al, al2).

ancestor(all,aiii). ancestor{all,ali2).

ancestor{al2,alzi). ancestor{alZ, al23).

ancestor(al, Y) t=  ancestor(alil, Y).

ancestor(al, Y) ;= ancestor(alz, Y).

ancestor(all,Y} 1=  ancestor{alili,Y).
ancestor{all, Y} ;- ancestor({alil2,Y).
ancestor{al2, Y} ;= ancestor{alzi,Y).
ancestor(ai?,Y) t=  ancestor{al2a ¥Y).

Furthermore, depending on the number of times recursive calls in the body
of the ancestor are unfolded, a series of differently specialised programs may be

obtained.

In this way, given a program, there is a spectrum of differently specialised

programs, each of which corresponds to different specification of residual calls.



Peval and Self-applicable PE allow a user to specify residual calls. In these
systems, given such specifications, partial evaluation is rather straightforward
transformation. This is the same even in automatic PE, although such speciiica-
tions are generated automatically based on an embedded criterion at the analysis

stage.

However, specification of residual calls is not a trivial task and its foundation
is not clear. In our experience with semi-auto partial evaluators (Peval and seli-
applicable PE), trial and error are required to obtain good results. But how do
we know that one result is better than the other? To answer the question, first

it is necessary to formalise a measure used in comparing the two programs.

3.2 Comparison of Two Specialised Frograms

° There can be several measures, and two programs might be compared multi-
dimensionally. The following measures seem to be used by expert programmers

when evaluating a program.

(1) Efficiency estimated by, for example, the number of calls, number of redun-
dant computations, and possibility of optimisation by compiler, especially

clause indexing and tail recursion optimisation, is good in the case of Prolog.

(2) Code size is a critical factor because partial evaluation may cause its com-

binatorial explosion,
(3) Number of distinct predicates.

(4) Possibility of application of special optimisation techniques such as those

mentioned in Section 2,



Let us look at an example. We use a bottom-up parser’) of context free
grammar (CFG). An original program is a pair of two programs. One is a

bottom-up interpreter of CFG rules (a meta program).

goal({P,Q),50,5) :- geal(P,50,51), goal(Q,51,8).
goal(c,s,s1) :- diet(F,5,52),1ink(F,C) derive(F,52,C,51).

derive(F,s,F,5).

derive{F,52,C,51) :- relei{({Lemma <= (F,Rest))),link(Lemma,C],
goal{Rest,52,53) derive(Lemma,53,C,51).

derive(F,52,C,51) :- rule2({{Lemma <= F}),link{Lemma,C},

derive(Lemma ,52,C,51).
1ink(C,C).
1link(F,C) :- rulel{{Lemma <= (F,_))),link(Lem=na,C).
1ink(F,C) :- rule2({(Lemma <= F)},link(Lemma,C).

dict(F,[XI58],8) := rulel{F <= [X1)}).

rulei((A <= (B,C))) := rule(f{a <= (B,C))).
rule2{(h <= B)) := rulel{A <= BY) N+(B=({_,_ 20, \+(B=[_1).

The other is a set of CFG rules (an object program).

rule{i{s <= (np,vp))}}. rulel{np <= (det,n})}).
rula{{vp <= vi)). rule(l{vp <= (vi,mpl}}.
[girll}).

rule{(vi <= [walks])}). rule({vt <= [likesl)).

rule{{n <= [boy])). rule{fn <

rule{(det <= [al)). rule({{det <= [thell).

Several possible specialisations are presented in this subsection. The first
result is the same as that presented in the previous paper'). It is obtained

by inhibiting unfolding of calls to dict, link, goal, derive. The program has

essentially the same structure as that of codes generated by the BUP translator,



which was written by expert programmers and directly translates CFG rules into

a Prolog program'®),

Result A:

dict(der, {alal . A). link(4, A).
dict(det, [thelal,ad, link(det,np).
diet{n, [boylAl,A). link(det,s).
dictln, [girllial,.a). link(np, s).

dict{vi, [walksial,A). link(vi, vp).

dict{vt, [likes|A],A). link({vt, vp).

derive{A, H,A,E}.

deriva{det,A,B,C) := link(np,B),goal(n, A,D),derive{np,D,B,C),
derive(np, A,B,C) :- link(s, B),goal(vp,A,D),derive(s, D,B,CJ,
derive(vt, 4,B,C) :- link(vp,B),goal{np,A,D) derive(vp,D,B,C).
derive(vi, 4,B,C) :- link{(vp,B), derive(vp,4,B,C).
goal((A,8),C,0) :- goal(a,C,E),goal(B,E,D}.

goal(a,B,C) 1= dict(D,B,E),link(D,A), derive(D,E,A,C).

In the case of automatic PE, the following result is obtained by unfolding

all calls except goal according to the embedded strategy.

Result B:

goal(s, [afB].C) := goal(n,B,D}, goal{vp,D,C).
goal(s, [thel|B],C) := goal(n,B,D), goal(vp,D,C).
goal(np, [a18],C) := goal(n,B,C).

goal(np, [thelBl,C) := goalln,B,C).

goal(n, [bey|E],B).

goal(n, [girll|sl,B).

goal(vp, [walks|B] ,B).

goal(vp, [Like=18],C) := goal(np,B,C).

If everything is unfolded, then the following extreme program is obtained.



Eesult C:

goalls, [a,boy,valks], ).

goal(e, [the,boy,walks],[0).

goal(s, [a,girl,#alks], [0).

goalls, [the,girl,walks], ),
goal(s,[a,boy,likes,z,boy], O).
goal(s, [the boy,likes a boy]l . [0).
goal(s, fa,girl, likes, a,boyl, [1].
goal(s, [the,girl,likes,a,boy],[1}.
goal(s,[a,boy,likes the boyl.[).
goalis, [the boy,likes, the,boyl, ).
goal(s,[a,girl,likes, the,veyl , [1].
goal(s,[the,girl,likes, the,boy]l, [0).
goal(s, [a,boy,likes,a,girl]) ,[1}.
geal(s, [the ,boy,likes a,girl] ,[1).
goal(s,[a,girl,likes,a,girl], 0.
goal(a, [the,girl,likes,a,girl],[1).
goal{s, [a,boy,likes,the,girl] , [1).
goal{s, [the,boy,likes,the,girl], [1}.
goal{s,[a,girl,likes, the,girl],[1).
goal(s, [the,girl likes, the,girl] , [0).

This is a set of all legal sentences.

Another possibility is presented below, where goal and dict are kept un-

touched.

Resgult D:

dict(det, [al4],4).
dict(det, [thelal,a).
dict{n, [boy|A],A).
diet{n, [girll|4l,A).
dict{vi, [walks|al,4i).



dict{vt, [likes|al,al.

goal{np,B,C) :- dict{det,B,E), goal{n, E,C).

geal(s, B,C} := dict(det,B,E), gealln, E,D), goal{vp,D,C).
goal(vp,B,0) :-  dict(vi, B,C).

goallvp,B,C) :- diet({vt, B,E), goalinp,E,C).

Result A can be characterised by the fact that the code size of derive is the
same as that of the given CFG rules. It is a good property because the code size
of the result is always bound by that of the given data. The code size of result
C is equal to the number of legal sentences. This partial evaluation is good for
toy rules, but is not realistic. B and D extract legal chains of rules and discard
illegal ones. B enumerates legal chains until it reaches terminal categories such
as n, det, vi and vt. C expands terminal categories further into individual words.
Thus, D has more codes than A and B has more codes than D. D is more efficient
than A, because legal chains of rules are already constructed in D while A must
generate them at run-time. D may benefit from the optimisation technique of
collecting common predicate calls mentioned in Section 2. For instance, suppose

we have two clauses:

goal{np, B,C) :- dict(det,B,D), goalin,D,C).
goal{np, B,C) :- diet(det,B,D), goalln,D,E}, goal{rel_s,E,C).

Then these can be transformed into:

goal(np, B,C) :- dict(det,B,D), goal(n,D,E), goal{npi,E,C}.
gealinpi,B,B).
goal{npl,B,C) :- goal(rel_s,B,C).

Automated partial evaluation, which competes against expert programmers,

must take these multi-dimensional comparisons inte consideration. However,
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their evaluations change when the measures change. Results also change when
data (CFG rules) changes. Thus, there is no fixed strategy of partial evaluation
which is always guaranteed to generate the best result. Therefore, what is re-
quired in compeiitive partial evaluation is the flexibility of being able to respond

appropriately to given data and measures.

3.3 State-Space Analogy

Qur approach to realise competitive partial evaluation is stepwise speciali-
sation where, at each stage, a result of specialisation is evaluated by the given
measures and analyzed to find out whether there is room for additional special-

isation which improves the current result.

The framework is analogous to the state-space search. Here, a state and an
arc connecting two states correspond to an intermediate result and an atomic
transformation. There can be several arcs from one state, which correspond
to more than one possibility of transformations, A state iE.i evaluated multi-
dimensionally by the difference between its intermediate result and an original
program. One dimension corresponds to a measure. For each atomic transforma-
tion and each dimension, a primitive difference is defined. For instance, unfolding
a call is defined as decreasing the number of calls by one and increasing code size
by, at most, the number of clauses defining the call. The difference between two
programs with respect to one dimension is calculated by integrating the primi-
tive difference of atomic transformations, the sequence of which transforms one

to the other,
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Partial evaluation can be viewed as a search for an optimal state with respect
to the given evaluation function, starting from the original program. For state-
space search, several search strategies are known. The one we are considering 1s

the best first search. Its skeleton is as follows:

Input: Fp: an original program. S: A set of programs. Termination condition
specified in terms of the evaluation function.

Qutput: Specialised program satisfying the termination condition.
(0) Let S be {F}.

(1) Select the best program, P, from § based on the evaluation function. (If all

candidates have been tried, then backtrack to the last choice point (1}.)

(2) If P satisfies the termination condition, then it is returned. Otherwise, go
to (3).
(3) Enumerate possible atomic transformations, I}, ..., T, to P and apply them.

Let R be a set of resultant programs which are not worse than P.

(4) If R is empty, then backtrack to (1). Otherwise, replace P in 5 by R and
go to {1).
As an example, the state-space view of the BUP example discussed previ-

ously is shown in Fig.9.

In Fig.0, a directed arc indicates the possibility of transformation. State
E corresponds to the program optimised by clustering the same computations.
[X,Y] labelling an arc means that the number of distinct predicates and the
number of clauses increase by X and Y, respectively. If we adopt these rather
static measures, result B will be obtained as the best result.
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4. Conclusion

This paper presented two problems in competitive partial evaluation, max-

imal speedup and global control of partial evaluation.

To solve the first problemn, we showed the enhancement possible for partial
evaluation obtaining further speedup utilising the specificity of a given problem.
Three techniques were presented, optimising a simple production engine as an
example. The first is the inferential ability to derive information that can be used
to specialise more parts of a program, where it is not very obvious that the naive
'E can derive and use such information. The second 1s the factoring of common
calls of procedures, thereby eliminating a number of redundant computations.
The third is the folding transformation which merges the generator (fire) and
the tester (match), and reduces the search space greatly at partial evaluation
time. The partial evaluator thus enhanced can improve the naive implementation
of a production engine close to that given by the RETE algorithm. Moreover,
partial evaluation is better than the RETE algorithm in its generality and in the

possibility of extraadvantages in compilation and incremental compilation.

The second problem seems to be implicitly recognised by all scientists in
this field. However, the foundation of evaluating the results of partial evaluation
is not clear, and hence no scientific result has been obtained yet. In fact, there
is a large spectrum of possible results of partial evaluation and there is a big gap
between partial evaluation and expert programmers with respect to the ability of
evaluation of programs. Our approach is to intraduce a global framework which
can view and control all possible partial evaluations. We consider that within

this framework we can guarantee the quality of results of partial evaluation.
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exec{WHO,WHn)

exec(WH, WH).

ane_cycle(UHQ,Wﬂljl

match (S, WH)

matchl{ (LES=>RES) ,WH)

match2([XJLES],wWH)
match2{[],_).

mateh3(+X,WH)

match3(~X WM}

matchd (X, WMD)

select (0S5, RES,WH)

fire{ [X|RES] ,WMO,WHR)

tire{[], WM, WM).

firel{+X ,WHD,WH1)
firel(—X, W40, WH1)

add (X ,WMO ,UH1)

removalX,WHO,WH1) :

one_cycla(WHO WN1}, exec(WH1,WMn).

match(CS, WHOD,
select(CS, RES,WMO),
firel RES,WMO,WML).
setof{Rule,matchl{Rule WH) ,CE].
rule(LES=>RES), match2(LES,WM).
match3(X,WH), match2 (LES,WH].
matchd (X, WM},
“matcha (X, WM).

{ I matches with an element inm WM }

{ select RES of a rule in CS

taking acocunt WH }

firet(X, WMo WM1), fire{RHS,WM1, WHn).

add{X,WHo WHi) .

remove(X, VMO, WML,

{ add X to WMO cbtaining WMi }

{ repove I from WHO obtaining WM1 }

Figure 1 Production Engine



cxec{W0,W2) :- one_cycle{Wo, Wi}, exec{W!,W2}.
one_cycle(Wd Wi} :=
match(C,¥d), select{C,R,WC0), fire(R, W0, Wi).

]

| unfold ..... one_cycle(WO, W1)

v

exec(W0 W2) := matenw(C,W0), select(C R, WD), fire(R,WO,Wil,

exec(Wi, W2).

|

| define ..... execi(R,WO W2) :- fire(R WO ,¥W1),

I exec{W1 W2},

| fold ....... exsc by execl
exec(W0,W2) i- match(C,W0), select(C,R,W0), execl(R,W0,V2).

execl (R, WO, W2) = fire{R,WO,¥W1), exec(W1,W2)}.
|
| anfald ... eennnriniosannnnns exec{W1,W2),
v
execi{R, WO ,W2) :— fire(R WO, W1},
match(C,W1), select(C,R2,Wi1), fire(R2,Wi, Wi, exac(Wi, W2).
|
| fold by ... execi(R2, W1, W2) = fira(R2Z,W1,Wi), exec{Wi,W2)},
1
v
execi(R,W0,W2) - fire(R, WO, W1},
match(C,Wi), select{C,R2,W1), execi{R2, Wi, W2},
|
| define ... fire_match(R,C,WO,W1) :- fire(R,W0,Wi), match{C, Wi}.
I
| fold ..... execl by fire_match
¥
axeci{R,W0,W2) := firs_match(R,C,WD,W1)}, select(C R2,WL],
execi{R2 W1, W2).

Figure 2 Reorganising Iterative Structure



R: production rules
N: RETE network
T: RETE transformer

T:R— N

Figure 3 The RETE transfermation

Ng: RETE network in ininitial state
No — N, Nu: RETE network in final state
D: RETE network driver

j D:NUHNﬂ

Figure 4 Driving the RETE network

R R: production rules

E: production engine

Eg: specialised production engine wrt. R
PE: partial evaluator

PE:Ex R— Eg

Figure 5 Partial evaluation

E = ER




WMy, — WM,

Eg Eg: WMy — WA,

Figure 0 Execution of the specialised production engine

2 PEg+R+— Ep

1° PE: PE = E — PEg

Figure T Compiler generation and compilation

I, i R;

E ";: ER: ';. ER:-FR!
FE %= | PEE FE
PE
I

Figure 8 Incremental compilation
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Figure @ State-space view of BUP example
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