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Abstract

A grammatical inference problem for simple deterministic context-
free grammars is investigated. The inference algorithm, based on the
constructive method, is given in which from two oracles for a simple
language L (one is called prefiz-membership oracle for L, the other
derivative oracle for L), the algorithm learns L in time polynomial in

the size of a minimum grammar for L.



1. Introduction

An inductive inference is, in general, recognized as a process of finding a
finite set of rules which explains given many examples. The mechanism
underlying is one of the most significant functions for supporting koowledgs
acquisition process in the various phases of problem solving we encounter, and it
is also one of the primary subjectsin .the research on machine learning.

In the context of grammatical inference, quite a faw efforts have been devoted
to developing efficient inference algorithms for the class of regular grammars or
finite-state acceptors ([An78],[Bi72),[ET72],[Is88]) and the class of context-free
grammars([KX77],[Ta82],[Ta87),[Tak87],(Sak87],[Wh77],[YoB88al). Recently,
Angluin gives a constructive induetion algorithm for regular languages which
runs in polynomial timefAn87]. The problem setting she deals with in the paper
assumes two types of oracles: One is for testing a conjecture and indicating if it is
equal to the unknown set or not, and the otheris for providing a counter-example
if not. Using these abilities successfully, the algorithm learns the canonical
acceptor for the unknown regular set in polynomial time. It seems, however, that
the latter type of an oracle is harder for users(humans) to carry out as the size of a
conjecture becomes larger. This becomes much more critical when the class of
more complicated graminars is targeted.

Talking of the grammatical inference of context-free grammars, [Cr72],(Fa83]
and [Sak37] deal with the problem setting in which the unknown grammar is
inferred from its structural examples. The user is expected to perform an oracle
which provides the algorithm with structural examples of the unknown
grammar, In practical use of the inductive inference, however, it is not so easy for
users to behave as a perfect oracle for providing structural examples, unless the
uger knows the unknown grammars.

In this paper, we present an algorithm for inferring language class called

simple (deterministic context-free) languages. The class of simple languages is,



in principle, larger than that of regular languages, and takes an important
position to develop the fundamental tools for designing and constructing parsers
or compilers.

The algorithm given in this paper, belonging to the category of constructive
induction method, requires two kinds of oracles for the target language L: the
prefiz-membership oracle(an extension of the membership oracle} and the
derivative oracle, and it learns L in polynomial time.

This paper is organized as follows: In Section 2, formal definitions needed for
discussing the problem of inductive inference is given. Section 3.1 introduces
simple (deterministic context-free} grammars and their languages. In Section 3.2
the notions of cover graph and characteristic cover graph of a simple grammar are
introduced, and a method for reconstructing a simple grammar from its
characteristic cover graph is presented in Section 3.3. Section 4 deals with the
inductive inference problem for simple languages and gives an inference
algorithm for the problem together with the complexity result. Example runs
are also provided in Section 4.3. Finally, Section 5 concludes this paper by
briefly mentioning an application to compiler construction and a possible variant

of the algorithm.
2. Preliminaries

We shall give some basic notions and notations needed through this paper. {
The reader is assumed to be familiar with the rudiments in the formal language

theory. See, e.g., (Sa73] or [HaT8] for definitions not mentioned here.)
Definition

For a given finite alphabet I, the set of all strings with finite length (
including zero) is denoted by Z*. (An empty string is denoted by e.) A language L
over & is a subset of Z*, For a stringlor word) x in T* and a language L over I,

let ¥\L={w|xw ¢ L }{L/x={w|wx e L}). Theset x\L(L/x) is called the left(right)-

.a.



derivative of L with respect to x. For any subset S of Z*, Prefiz(S) denotes the set of
all prefixes of strings in S, while by Suffix(S) we denote the set of all suffixes of
strings in 8. That is, Prefix(S) ={x| for some z ¢ Z*, xz ¢ 8 } and Suffix(8) = {z{for
someze 2% zx € S} For weI*, we simply write Prefix(w) rather than Prefix({w}).
Let Ly and Lo be languages, then the product of Lj; and Lz is a language
LiLa={xy| x ¢ L1, ¥ £ Lz}. In particular, when L is a singleton, i.2., Ly ={x}, we
wirte xLg instead af {x;Ls.

A context-free grammaris a 4-tuple G=(N,Z,P,3), where N is a finite alphabet
of nonterminals, £ is a finite alphabet of terminals such that NNZ=¢, Sisa
distinguished element of N called the initial symbol, and P is a finite set of
production rules of the form A—w (AcN, we(NUEI)*), For ¢, y €(NUZ)¥, a binary
relation = is defined as follows: x=v iff there exist u, ve(NUZI)*, A—weP such
that x=uAv and y=uwv. Let =* be the reflexive, transitive closure of =. For A
in N, A is recursive if there exists a derivation : A=*xAy, for 3x,y¢(NUI)*.

Forain N+, we define L{a)= {x | a =¥z and x¢E*}, In particular, for the initial
symbol S, a set L(S) is denoted by L(G) and is called the language generated by (=
A language is called context-free if there exists a context-free grammar G such

that L=L{G} holds.

3. Characterizations of Simple Languages

3.1 Simple Grammars and their Languages
Definition(Simple deterministic grammar/Simple grammar)

A context-free grammar in Greibach normal form is simple (deterministic) if
forAinN,ain %, a, § in N*, A—aa and A—afl in Pimpliesa=.

Note that the definition does not imply that simple grammars generate only
e-free languages. In this paper, however, our attention focuses on only e-free

simple grammars.



Example 3.1

Consider a simple grammar G=({S,A,B,C},{2,0},P.5}, where P is defined as
follows:

S—aAC, A—a, A—bAB,B—b, C—a.

Then, we have L(G) = {abrabra |n=0}, which is notregular.”

The following proposition provides preferable features of simple grammars
and languages for our purpose.
Proposition(e.g.,(Ha73])

Given any simple grammar G, there effectively exists an equivalent simple
grammar G' which is reduced and in 2.standard form, i.e., there effectively exists
a simple grammar G'=(N,I,P,8) such that

(1) LIG) = LIG) holds,

(2) for A, B in N such that A=B, L{A)=L(B) holds, and

for A in N, there uniquely exist left-most derivations : S=*xAyand A="w

(wherey in N*,x, win T*) in G,

(3) each rule of G is of one of the following forms: A—aBC, A—aB, A—a,

where AB,CinN,ainZ.

[Convention]
(1) In what follows, we consider only e-free reduced simple grammar in 2.
standard form.

(2) Otherwise stated, the derivation =* always means the left-most one.

Simple languages can be viewed as generalizations of regular languages in
the following sense.
Lemma 3.1

For any regular language R, R¢ is a simple language, where ¢ is a specific

symbol not in the terminal alphabet of R.



Proof. Let A={(Q,X,8,po,Fg) be a deterministic inite-state automaton such that
T(A)=R. Construct a simple grammar G=(N,Z"P,po) as follows: N=@Q, L' =Zu{g},
P={p—ag|d(p,a)=q}u{g—e|q¢Fo}. It is obvious that G is simple and L(G)=Re
holds.”
Definition(Transition grapn of G: Tg)

Given a simple grammar G=(N,IL,P,8), we associate with the (possibly
infiniiel transition graph Tg=(Ng, Eg, L) of G defined as follows :
(1) Ng=({aiS="xa, for some x¢Z* and a=e}/=)u{F}, wherea=c’ iff L{a)=L(a"),
(2) ForAin N, ¢,fin N*, andain £,

Eq contains Aa—2afa iff there is a derivation :

S=*zAa=xalfla, forsome xin L* and
Eqcontains A—a F i there is a derivation:
S=FrA=xa, forsomexin I¥,

where F is the special symbol not used elsewhere.

The node S is called the initial node, while F the final node. When a;—*21 ag

—A82...—3; g, (nz1)holdsinTg, we denote itby aj—21"%nay,

Example 3.2

Consider a simple grammar G=(N,ZP,S) given in Example 3.1. Then, the
transition graph T is asin Figure 3.1.
Definition (Graph isomorphism)

Let T;=(N,E;,E)Ni=1,2) be a labeled digraph. Then, T is isomorphic to Ta,
denoted by Ty = T2, if there is a bijection b from Njonto Nysuch thatfor anya,

inNjandainZ, a—apin E;iff bla)—2b(p)in Ea.

Definition (Structure graph of L : T)
Let L be a simple language over Z. Consider a labeled digraph T, =(N, E1,,
L), where N1, =U;.qN(j) and E(, are constructed by the following procedure :

{Procedure]
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Figure 3.1 Transition graph of G

step 0: let NL(0)=Newr(0)={e\L(=L)} and initialize B2
seti=1
stepi: initialize New (i) «— @
for all ¥\LL in Nawp(i-1)
do let I'y={a¢Zlxa\L= a}*
foreacha €l
do ifxa\L € Ujoo NLGI*™
then Ep«— ELU{x\L—axa\L} and Newy(i)«Newr(i)U{xa\L}
else find u\Le LFJE:B NL(j) such that u\L=xal\L
if 'L —au\L¢Eg, then Ep— EpLU{x\L —au'l}

let N1,(i) = Uj-.o NewL(j)
if NL(1)=Nrp(i-1), then halt



elseseti—i-+1land gotostepi

T1, is called the structure graph of L. When x\L—21 xa\L—22 ... —a,
xa)-an\L(n=1) holds, we denote by x'\L —uxu'\l, whereu=aj-a,. Foranyxz'Lin
NL, define Lix\L)={wix'L —w {e} }. Note that L{e\ L)=L(L)=L, L{{e}))=2, and
u\L =L{u'\L} (for ¥u) hold.

Notes

(1) 22 L{={e}), where z is one of the shortest words in L, provides the firal node
unique in TL.

(ii) T is,in general, an infinite graph.

*¥) Note that if L is simple, then a left-derivative xa'\L is also simple, and the

emptiness problem for simple languages is decidable.
**)Also note that the equivalence problem for simple languages is

decidable.[KHEE]
Example 3.3

Consider a simple language L ={abnabna [n=0}. Then, the structure graph T
is as in Figure 3.2. Note that aaa\L={e}, and for all n=0 abnallL =
aba+lab\L={hna}.0
Lemma 3.2

Let G=(N,LP,S) be a simple grammar and let L=L(G). Then, Tp=Tg

holds.
Proof. Define a mappingb as follows:
b(L)=S, b({e}) =F,
and for any u\L in N7, —{L,{¢}} b(u\L)=a, where S—uainTg.

The mapping b is well-defined, i.e., it holds that u\L.=@ implies the exisience of v
such that uvis in L, hence there exists a such thatS —uag and a—vF. Further,
suppose S —u g and S —v' a', then by the definition of the structure graph Tq,

uw\L =u L impliesa=a'.



Figure 3.2 Structure graph of L

Now, we shall show the mapping b is bijective. (Note that L{a)=u\L if S —u
a.) Suppose b(u\L)=b(uL), i.e., a=a’, where 5 —t a and 8 —v a’. Then,
L{a)=L{a", i.e., u\L=u"L is obtained. Further, let a be in Ng, i.e., 8 —ua for
some u in Z*, Then, by the definition of G, L{a}= @, i.e., u\L=2, hence ul is in
Ny,

Further, let w\L—a ua\L be in Ty, and let b{u\L)=a=AP(AcN, BeN*¥). Then,
since ua\L= &, there exists v such that uav isin L. Hence, there exists A—ay inP
such thata—2 rf and .}-'[3 —vF, thatis, S—uag and a’=7f, where b(ua\L)=a’
Thus, a —a a’, i.e., b(u\L}—a b(ua\L) holds in T¢.



Conversely, suppose b{uL)—2 b(ua\l) holds in Tg, and let a=b{u\lj-and
a'=hb(ua\l). By definition, S—ua —aa' and L{a)=%, L(a)=2. Hence,u'\L=3,

ua'\L=2 and it follows that uw'L—aua\L holds in T..Z
The following is immediately obtained from Lemma 3.2.

Theorem 3.1

Let Gi=1,2) be simple grammars. Then, L(G1)=L(Gg) hoids if and only if
T, is isomorphic to Tg,.
Proof. By Lemma 3.2, if L(G1)=L{Ge){=L) helds, then Tg, =TL= Tg..
Conversely, it is obvious that Tg, = T, implies L{G1) =L(Gg).2

Thus, given a simple grammar (= such that L(G)=L, there exists the

structure graph T, unique up to isomorphism.

3.2 Cover Graph and Characteristic Cover Graph

Now, we introduce the notion of a cover graph of a simple grammar which is
an extension of the cover tree for a finite-state automaton{Bi72], and is basiecally
due to [EDM71].

Definition (Cover graph of G: Cg)

Let G=(N,Z,P,S) be a simple grammar and T be its transition graph,
where a total order{e.g., an alphabetical order) on I is assumed. For each A in N,
let 25 ={acZ|A—aay =xq-= % ¢L*: shortest derivation}. Then, we call A—aa;
the SH-rule of A if a is the first element of Z4 in the assumed order, and a path
A—aqq—--— Fiscalled the key path for A.

Construct a finite subgraph Cg of T as follows:

[step 1] For each a in T such that S—~aaeP, extend the initial node S in the
assumed order by making son node a.( where if 3—a¢P, thena=F and F is never

extended furthermore.)



(stenij Leta=Au(Ae¢N,u¢N*) be a node created at step {i-1}. Then, takeeachain
the order created and apply the following procedure: If A does not yet appear as
the left-most nonterminal of any node craated in the previcus steps(in each step
less than (i-1)), or in the previous procedure at step(i-1), then for each a in Z such
that A—ap €2, extend o in the assumed order by making a son node Ju with the
edge labeled a. Otherwise, extend it by making a son node for only the SH-rule of
A, and at the same time, make an edge, represented by a dotied arrow labeled
La, from node a(=Au ) to u. In case of Bu=2 make an edge from A to F with the
label a. Letibei+1(i.e., increase the vaiue of i by one) and repeatstep i until the
above procedure cannot be applied to any node, or the extension of any node has
been completed.

It is easy to see that this procedure terminates in {inite time. The graph Cg
=(NG,Eq,L) is called the cover graph of G.

Let a=Ap(AeN,feN*) be a2 node of Cg which is neither initial nor final.
Then, if thereis a dotted arrow labeled L going out of a and degree(A)=2, then
such a node a is called incomplete, while if degree(A)=1, then it is called
redundant. A node in Ng—({ajazincomplete or redundant} U{F}) is called
complete.

Definition(Characteristic cover graph of G: CCg)

Let Cg be the cover graph of a simple grammar G=(N,ZP,S). Then, consider
a graph which is obtained from Cg=(Ng,Eg,I) by relabeling nodes as follows:
Let AB¢Ng—{aja:incomplete or redundant} be a complete node(AelN,peN*).
Then, relabel it with a new symbol X. For an incomplete node or a redundant
node a=Ap, relabel it with a new arrow’s label Ly,. Further, for ¥, we don't
change it, i.e., relabel it with F itself. Let Relabelg={(a,a)jaeNg, a":new label for
a}, N'g={al(e,a)eRelabelg} and E'g be the set of edges obtained from Eg by
relabeling. The resulting graph (N'g,E’g,I) is called the characteristic cover

graph of G, and is denoted by CCqg. Relabeli is called node relabeling information

- 10 -



O complete

incomplete y
radundant

Figure 3.3 Cover graph of G: Cg

for CCq. A node o' in N'g is completelincomplete) if so is a in Ng, where

(a,at¢Relableq.

Example 3.4

Consider a simple grammar G=({S,A,B,C,D},{a,b,c},P,S), where P=
{S—aSA[bCB|c, A—a, B—b, C—aDAJbCBic, D—c}. Figures 3.3 and 3.4 illustrate
the cover graph Cg and its characteristic cover graph CCg, respectively. Here,
we have Relabelg= {(8,Xs), (SA,Lxg), (CB.Xg), (A,X4), (CBB,Lg), (DAB, Xpl,
(AB,Ly,), (B,Xp), (BB,Lxy), (FF}L.O

Definition (Minimal complete subgraph : gx)

Let CCo=(N'g.E'q,Z) be the characteristic cover graph of G=(N,Z,P,3). A
path is called a-path if it begins with an edge labeled a. For each complete node X

in N'g —{F}, construct a graph gy from CCg in the following way:

-11-
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Figure 3.4 Characteristic cover graphof G:CCg

(1) find a node ¥ with the properties that (i) for all @ €¢Z, each a-path (if exists)
from a complete node X ends up at Y(Y is called the sudfinal node of gx, and the
shortest path among all a-paths from X to Y is called the key path for X), and (ii)
for all a €%, each a-path from X to Y(if exists) is the shortest one,
(2) if there is any complete node Z with degree(Z)=2 between X and ¥ on each a-
path , then relabel it with Lz (to make it an incomplete node) and link it to the
nearest node Z' by a dotted arrow, provided that a path from Z to Z' is the key path
for Z on the a-path,
(3) otherwise, if there is an incomplete node Lz between the two, then link it to
the node U by a dotted arrow, where a path from Lz to U is isomorphic to the key
path for Z.

Such a subgraph gx is called minimal complete subgraph for X.

Example 3.5

-12-



Given a simpie grammar G considerad in Example 3.4, the minimal complete

subgraphs for Xgand X are givenin Figure 3.5.

Figure 3.5 Minimal complete subgraphs

3.3 Reconstructing Simple Grammar from Characteristic Cover Graph

We ohserve that the Cqp and CCp have the following properties which assures

that the CCq together with the node relabeling information preserves the

complete information on the grammar G.

[Observation 1]

For a given simple grammar G=(N,Z P,5), let Cg=(Ng,Eg,L) and
CCo={N'g,E'q,E). Then, it holds that
(1)for any rule A—a in P, thers is a path from the initial node to the final ncde of
Cpon wmu,h the rule A—a is used at least once,
{2) for anv A in N, there is exactly one subgraph hs up to isomorphism embedded
in Cg which corresponds to the minimal complete subgraph gx, (X4¢Ng') in
CCg, where (A, X a)¢Relabelg,
(3}in each hya, an incomplete node Xa(if any) is associated with the dottied arrow
labeled Ly linking Xa to a, which means that any word in L{X) could be generated

by a path extended between the two nodes,

_13 -



{4) the existeace of an incomplete node with the label Lx in CCg implies thatof a
recursive nonterminal X in N, and vice verse,

(5) for G there uniguelv exist Cgand CCg.

[Reconstructing simple grammar from CCg]l

it is ciear that CCq together with Relabel is sufficieat for reconstruciing the
original grammar G.

Now, we shall show that from only the characteristic cover graph CCgof a
simple grammar G one can construct a simple grammar ('(not necessarily G

but) equivalent to the original grammar G.

Suppose that the CCo=(N'g,E'g,I) is given, and consider the set
N'={X'¢N'g|X": complete node } — {F}. We shall construct a context-free grammar
G'=(IN', L, Xg) as follows.

Given an X' in N such that degree(X")=2, let gx be the minimal complete
subgraph for X’. For each a in I, let py be the a-path beginning with X' and
ending with the subfinal node ¥ of gy:(ifany). Further, for each complete node X
betwean X' and Y, consider a subpath t, of p; beginning with X and ending with
Y (Note that it is possible that X=X’, which then implies that ps =t3.) We have
three cases: |
[Case 1] The edge labeled a from X goes to an incomplete node labeled Lz and
the dotted arrow from Lz links to a node Z' before the subfinal node ¥ of p, (see
Figure 3.6 (a)); Then, constructarule:

X—all,
where U comes from the label for the subfinal node Z’ of gz. (Note that X Z and U
are not necessarily different.)
[Case 1I] Either the edge labeled a from X goes to a complete node labeled Z
before the subfinal node Y, or the edge labeled a from X goes to an incomplete
node labeled Ly and the dotted arrow from Lz links to the subfinal node ¥ of p,

{(see Figure 3.5 (b)); Then, constructa rule:

-14-



[3.} tn:

Ok LZ"'"':'Z’-*""\@ —>  X—aZl

where Z"‘ Uor =Ly

l:h} :a:

a
(b)-1 ®.+@_,...._.,® —
—3  X—sal
a
0t D@ —

B

(e) ta:

® i*@ — X—a

Figure 3.6 Rule reconstruction

X—aZ.
(Note, again, that X and Z are not necessarily different.)
[Case W] The path consists of the node X and the subfinal node Y.(see Figure 3.6
(c)); Then, just construct a rule:
X—a.
(Note that in the above construction, if degree(S)=1, then we take gs as {5 and
apply the construction rules according to cases [, Il and I .)
Now, we shall show the following:

Lemma 3.3

-15-



Given the CCgq of a simple grammar G=(N,Z.P,5), let G'=(N"Z P Xgj be a

grammar constructed from CCg in the manner described above. Then, it holds

that LIG) =L{G").

(a) @

U

- —
(b)-2
@) &)™ @) > . S
Xk dk -.‘u I-*
@)l @) @)
Figure 3.7 hs and its corresponding gx,

Proof. For a complete node Aa(AcN,aeN*} in Cg, considera subgraph ha of Cg

which corresponds to the minimal complete subgraph gx, in CCgc. (See Tigure

-16-



3.7.) We show by the induction on n{ =the lengzh of a werd w ) the following claim
that for anv A in N and w in %, wis in L(A) iff w is in L{X,), leading
immediatelv o that LiG)=L{(Z"). [Base step:n =1 By definition, a rule A=—aisin
Piif thereisapath:X1—?¥Yingx, le., Xi—aisinP'. Eence, wisin L(A)iffw
isin L(X4). [Induction step] Suppose that the claim holas for each j less than n.
(Case 1) Suppose that A—aB isin P, B=*w’, and w=aw’ ¢ L*, Then, there isan a-
path in hy: Aa—3Ba—--a. Let Xy—3X;—--—7Y be the corresponding a-path
in gx,, where X;=Lygor Xp and (a,Y) ¢Relabelg. In either case, Xa—aXp is
uniguely in P'. By the induction hypothesis, since w'eL(B) iff w’ ¢L(Xg), we have
wel(A) iff weLiX ). (Case 2) Suppose that A—aBC [sin P, B=*wi, C=*wz and
w=wiwa¢ O* Then, there is an a-path in ha: Aa—3BCa—".~Cg—C--—a, Let
Na—2¥;—Y.—X;—%—7Y be the corresponding a-path in gX,4, where X1 =Ly,
or Xg, Xg=Lyx_ or X¢ and {(q,Y) ¢Relabelg Suppose that degree(B)=2 or BCa is
redundant. Then, from the way of constructing P, ¥{=Lx, and a dotted arrow
links X1 to X5, Hence, Xa—aXpXc is in P'. By the induction hypothesis, since
w1eL(B) iff wieL(Xg), and wael{C) iff woeL(X), we have weLl{A) iff weL{Xa).
Suppose that degree(B) =1 and BCa is complete, Further, suppose that a subpath
from Aa to Ca contains k occurrences of nodes with dotted arrows for some
k=0.(See (b}-1 of Figure 3.7.) The corresponding path in gxx is shown in (b)-2 of
Figure 3.7. (It should be noted that esach a-path from Aa to a contains either
complete nodes with degree 1 or nodes with dotted arrows.) In the sequence of
nodesin (b)-1 B, Dij{1=i=k)are complete nodes with degree 1, and each E{(1=izk)
is incomplete or redundant, and v; may be equal to xj+ 1(x;,vie Z%). Since B=*w,
there exist z; in L(E:) such that wi =x1dz1--xedezivi(di¢ E,2i¢Z¥). Now, from the
way of constructing P’, Xp,—diXgXg, ¢P(1=i=k) and the derivations
Xp=*x1Xp,, Xg=""i¥p,, ,(1=i=k-1) and Xg =*vXc are uniquely realized in
G'. Further, by the induction hypothesis, zi¢L(E;) (il zicL(Xg ). Hexnce, we have -
Xp=*x1dizi—xpdezvie e, i.e, Xg=*w;Xc. Since, by the induction hypothesis

woeL(C) iff woe LX), we eventually have : weL{A) iff weL{X y). [

-17-



Note. The grammar G’ reconstructed from CCg is equivalent to the original G,
but not necessarily isomorphic to G.(Ses, i.e., Example 3.6 below.)
Example 3.6

Taking, again, the characteristic cover graph considered in Example 3.4 and
azplying the procedure mentioned above, the grammar G’ is obtained: G'=
(1¥35,X4.X3.Xc, X}, {a.b,e}, {(Xs—aXs¥a[bXcXple, Xc—aXpbXcXpie, Xa—a,
Xpg—cXa, Xag—b}, X3). In fact, itis easy to see that L(G)=L(G") holds, but &' is
not isomorphic to G, O
[Important Notes]
(1) Returning to the definition of the cover graph Cg, we remember that if a
nonterminal A had already appeared as the left-most one of some node, then the
node Au was extended by making a son node for “only the SH-rule of A", From
the ways of constructing CCg and of reconstructing an equivalent grammar
described above, however, we note that the italic part above can be replaced
with the statement that “any rule A—aa, where a is in Z4", because for a
recursive nonterminal A we can recover all the information on A from the
minimal complete subgraph gx,.
(2) In the manner of reconstruction, we actually needed minimal complete
subgraphs gx, for only complete nodes X such that degree(A) is greater than 1.
This is due to the following. Suppose that degree(A) =1 (A—aaéP) and A is
recursive. Then, since by the assumption of G L(A)¥ @, there must exist a
nontermnal B such that A=*xB (3xe¢Z*), L(B)¥ &, and degres(B}=2. Further,
since A is recursive, B is also recursive. Hence, the minimal complete subgraph
gx contains all the information on A—aa. Suppose that degree(A)=1and Ais
not recursive. Let z be one of the shortest words in L(A)(¥ @). Consider a
derivation S=*xCa=*xyAd'=*xyza’ (where x, y:shortest). Then, if for all C
appearing between S and A, degree(C)=1, then the information on A—aa is
taken into the reconstruction procedure, because by definition A appears

somewhere in the subpath of ty =gy, Otherwise, there exists C such that
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degree(C) =2 and it is assured that the information on A=aaq isalso contained in

—

EXo =
Thus, we have a good reason for asserting the usefulness of the notion of CCg.
Actually, the inference algorithm we shall describe in the next section works such

‘hatit may infer the CCg for some simple grammar G generating the unknown L.
4, Inductive Inference of Simple Languages

4,1 Problem Setting

In the problem setting we deal with in this paper, the Teacher is expected to
have the following abilities on the target language L which include a special type
of membership oracle stronger than the membership oracle in the usual sense and
an oracle for equivalence checking.

Definitions(Prefix-membership oracle/Derivative oracle)

Given a (target) simple language L, Teacher is assumed to have the following
abilities:(1) the prefix-membership oracle, (2) the derivatives oracle. The prefiz-
membership oraclelPMQO) for L takes as an input a query of the form “w?" and
produces as an output a string “wx” if there is such an x that is one of the shortest
strings among all with the property that wx is in L, or “No” otherwise. The
derivative oracle (DEQ) for L takes as an input two pairs of strings (uy,v1), (ua,ve)

and produces as an output “Yes" if uj\L/vy =ug\Livz or “No” otherwise.
4.2 Inference Algorithm

We shall show that using the prefix-membership oracle for an unknown
language L as well as the derivative oracle for L, one can eventually construct the
characteristic cover graph CCg for some simple grammar G generating L. To do
so, we need to introduce the notion of a node characterization table which is

similar to the observation table used in [An87].

Definition (Node Characterization Table:NCT)
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Let Ps be a positive sample set of L. A node characterization table of L
(NCT1,) consists of three components Prefix(Ps), p-Suifixz(Psi =Suffix(Ps) - Ps,
i.e., a finite set of all suffixes of strings in Pg except for elements of P3g), and a
finite function Ty mapping from Prefix(Pg)-p-Suffiz(Ps) to {0,1} whose
interpratation is that Tp{u)=1 iff uis amember of the language L. An NCTLis
sometimes denoted by [Ps,T.]. When L is clear from the contexs, we simply write

NCT and {P5,T), respectively.

An NCT is visualized as a two-dimensional array with rows labeled by
elements of Prefix(Pg) and columns labeled by elements of p-Suffix(P3), with the
entry for row s and column e equal to Tr(s-e).

The NCTs are eventually used to construct the characteristic cover graph of
some simple grammar G such that L=L(G). Rows labeled by elements of
Prefix(Pg) are the candidates for nodes of the graph being constructed, and
columns labeled by elements of p-Suffix(Pg) correspond to distinguishing
experiments for these nodes.

Example 4.1
Let L be a simple language generated by a simple grammar G given in
Example 3.4. Suppose that a positive sample set Ps is given as {¢, bcb, bacab,

bbehb}. Then, a node characterization table (Ps,Tr]is giveninTable 4.1.0

Definitions(Base graph/Complete node/Minimal complete subgraph)

Let [P5,T] be an NCT of a simple language L over L. With the NCT, we
associate a finite graph g=(Node,Edge,L) as follows: Node= Prefiz(Ps)/=, where
u=v iff row(u) =row(v). An equivalence class including uis denoted by [u]. The
equivalence class S(={z]) provides the initial node of g, while the equivalence
class F{=[w], for wePs) the final node of g. Let [u] and [v] be in Node, then
[u]—a[v] eEdge iff 3u'¢[ul, v'e[v]s.t. vi=au. A graph g is called a base graph

obtained from [Ps,T].
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i
NE ¢ | ab |eab | b ia.:n ! bb | ebb ‘ hebb | acab
g D:G;DDGD|U 0 0
b 0o 0 001 }O0 01 1
c liﬂi_D'IJUIEIIDfD 0
ba oo 1{0 {0000 0
bb 0 {00 |00 0 {17} 0 0
be oo 0|10 0100 0
bac o1 0o folofoio0 0
bie Diﬂ;DﬂD;I'DIG 0
beh 1o 0|0 |0]0]0 0 0
baca { O | 0 [ 0 | L [0 [0 | 0| O 0
bbea o o0 | 1}lo 0|00 0
bbcka | 1 | 0 [ O | 0O (OO0 {0 ]| 0 | O

Table 4.1 Node characterization table [P3,Tr]

c_¥¥

In a base graph g a node X =[u] is complete if for any “a in £ whenever the
answer of PMO to a query “ua?" is "Yes”, the a-path from X is always contained
in g, otherwise a node X is called incomplete.

Let X be a complete node in a base graph g. Then, consider a node Y in
common on which for all a in T each a-path from X in g meets. A graph which
consists of X, Y and every other intermediate node in each a-path of the interval
is called the minimal complete subgraph for X, and is denoted by €x. The shortest
(X) denotes the shortest path from X to Y in 8% (see Figure 4.1). Thus, it should
be noted that for any complete node X there uniquely exist &% and shortest(X) for
some ¥ in g.

Definition{Lexicographic order < /First occurrence)

We define the lexicographic order < as follows: for a, in a base graph such
that S—ua, S—vf, a<p iff lglu)<lg(v) or [lg{u)=lg(v)&u<v in the usual
alphabetical order], where 1g(x) denotes the length of x.

A complete node is said to be of the first occurrence iff among all nodes whose
minimal complete subgraphs are isomorphic, it appears first in the lexicographic

order. An important note is that a complete node which is not of the first
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Node | NE | ‘ > {ab | bb | ¢ | cab | 3 | bedd | acad
S=[e] ojoqjyop 00|00} 0 | O
X;=[b] olojojo |t |]o]o] 1 |1
Xo={ba] ba ofojJojfo o r}j0o | 0 | O
X3 ={bb] bb ojofjofjofo|Joj1] 0| o0
Xy=1bc} be oj1|lojofo 0] 0] 0 0
bbeh O |1 |0} 0 |00 | 0D O 0
Xs=(bac]| bac [O O |1 ] 0O |0 ] O] O/ 0 | O
Xg=iboel| bbe [O OO | 1 |0 | 0| Q] 0 | O
c 1joflo| o |0 |0 ]| O o | o
F=[c] beb |1 |0]|0| 0|0 |0 |0 0 0
bacab | 1 | 0 | O 0 0 0 0 G‘D
bbebb | 1 | O | O | O | 0 | 0 | O 0o | 0

Table 4.2 Node Classification for [Pg,TL]

occurrence is just corresponding to a redundant node previcusly introduced in

reference to a cover graph.
Example 4.2

(1) Taking the NCT =[P35,T] in Example 4.1 as an instance, we have a base graph

g depicted in Figure 4.1.

(2) In the table 4.2, nodes(rows) are classified into 8 blocks according to their
values as row vectors : the first block represents the initial node, the last block
corresponds to the final node, and each of other blocks corresponds fo each node.
From the table, it is seen that , for instance, node X1 connects Xz with the edge

labeled a, or node X4 connects node F with the edge labeled b, and so forth.

(3) The minimal complete subgraphs x, and 8x, are shown in Figure 4.1. The
minimal complete subgraphs of nodes X4 and X; are isomorphic as digraphs with

colored edges, and X4 is of the first cccurrence, while Xg is not.
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incomplete node

@ complete node but not of the first occurrence

Figure 4.1 Base graph and minimal ecomplete subgraphs

[Ohservation 2]

ll "

From the definition of [Ps,TL], it is easily seen that (1) a row for the prefix "¢
gives the initial node 3, (2)all rows for the elements of Pg form an identieal block
corresponding to the final node F, (3) each row for each proper prefix gives an
intermediate node in the path from S to F, (4] for any column for “v” there exists
at least one row “u” such that Tp(uv)=1, i.e.,, uvisin L, (5) for any “u” in Pg and
“y” in p-Suffiz{Pg), Trluv)=1 if v=¢, Trluv)=0 if v=e. (Prefix-free property of
L.

[Inductive Inference Algorithm: IIA]

(Preliminary Assumption)



The terminal alphabet ©={aj,...,am} is fixed and the alphabetical order is
assumed. The target simple language L is also fized.
(Notation)
Ps: the set of positive examples of L obtained during the inferencs process.
COM.: the set of complete nodes of the first occurrencein abase graph,
INC: the orderad set of incomplete nodes and complete nodes of non-firss
oceurrence in a base graph, where the lexicographic order < is assumed.
[u]: an element of Node in a base graph, where 3—[uj—vF, for some vin Z*,
v({[u]): m-dimensional row vector (i1,...im) such that for 12¥jsm, ij=1 i the
answer of the query "Ltaij?" is“Yes”, and i;=0 otherwise.
Y(u): the set of “yes” answers of [u]-gueries to PMO, i.e., the set of "yes” answers
of PMO to the queries “na?” forallain I,
after(X): the word of the shortest path from X to F in a base graph.
backbone(X,a): the word w(=shortest{a)) such that w ¢Prefiz(after(X)), where
ae COM.
tail(X,a): the string z such that after(X)=backbone(X,a)z.
[DENTIFIED: the set of incomplete and redundant nodes which have been
already identified as some complete node.
BEFORE(X): the set of complete nodes appearing before the occurrence of X in
the lexicographic order in a base graph.
Now, we need some subprocedures:

(1) compatibility_checl:

Input: XeINC, acCOM

Qutput: “True” or "Falsa”

Procedure: if shortest(a) €Prefix(after(X}) and viX)=v{a],

then return “True” else return “False”.

/*Given a node X in INC and a node a in COM, the procedure checks if a is a valid

candidate for identifying X or not, whose execution always precedes that of

-4 -



“identification_check” below, i.z, the compatibility is a necessary condition for
identifiability.™/
{2) identification_check:
Input: [u]¢INC, a ={u"eCOM
Qutput: “True” or "False”
Procadure: Lepv=iail{{ul,e)v =tail([u'l,c). Ask DEG tocheckifuliv=
1LV or not;
if the answer is “Yes” then return “True”
else return “False”.
/*(iven a node [u] in INC and a node a in COM, the procedure tests if [u] is

identifiable with a or not by asking DEO.*/

(3) extend_base_graph:
Input: X ¢INC and Pg
Output: a base graph g=(Node Edge,Z) with some additional information
on COM,INC BEFORE

Procedure: make X-queries to PMO;
Ps+—Psu¥Y(X);
N eNuUPrefix(Y(X), E<Eup-Suffix(Y(X));
construct [Ps, T from Ps, N, E;
create a base graph g=(Node Edge,L) obtained from [P3,T];
let New_nodes(X) be the set of nodes newly created by
extending X;
using PMO, for all YeNew_nodes(X) check if Y is complete or
not;
COM —COMu{X}u{YeNew_nodes(X}{Y:complete of the first
oceurrencey;
INC—INCu{YeNew_nodes(X)|Y:incomplete or complete of
the non-first occurrence}—{X}, where we
suppose that INC is created so that all elements are sorted

in the lexicographic order defined above ;
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forall X ¢eINC, compute BEFORE(X];

(*Given an incomplete node X in INC, the procsdure constructs an NCT by
making X-queries to PMO, then creates a base graph g. At the same tme, it

updates the additional information on the sets COM, INC and BEFORZ(X].*/

Definition{Minimum grammar for L)
A simple grammar G is minimum for L iff L=L{G) and the number of

nonterminals of (7 is the smallest.

Notes.

(1) Remember the convention previously described : all simple grammars we are
dealing with are assumed to be in 2-standard form.

(2) For a given L, a minimum grammar for L is, in general, not unique.(Ses, e.g.,

the grammars considered in Examples 3.4 and 3.8.)

[The outline of the IIA]

We outline the behavior of the algorithm IIA. After initializing all
parameters involved, IIA first produces the minimal complete subgraph for
S(initial symbol) by calling extend_base_graph, i.e,, by making [e]-queries to
PMO and creating NCT =[Ps,T], which results in producing the first base graph g
obtained from [Ps,T1, where Ps{="Y([c])) is the set of "yes” answers of [¢]-queries
to PMO. At the same time, COM, INC, and BEFORE are computed. Suppose
IDENTIFIED=INC. Then, for each X in INC-IDENTIFIED, IIA tries to
identify X as one of elements from COM by using compatibility_check and
identifieation_check. In the process, if there exists a node X in INC which is not
identified as any of complete nodes in COM, then by calling extend_base_graph
IIA extends X to make it complete. This is justified by the fact that the existence
of an incomplete node un-identified by any complete node in a base graph implies
that the (intermediate) graph is not fully extended yet for the characteristic cover

graph relevant to the unknown language.
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...................................................................................................................................................

The Algorithm :I[A

éinitializa all parametersinvolved, Le.,
P <@, COM—2, INC—2 , IDENTIFIED <2 and N:=Z: ={g};
g:= extend_base_graphi[el,Z)
ERepeat
: /* outer while loop */
while IDENTIFIED=INC, i.e., there exists a node X in INC not
identified yetin g do
begin
take the top element X in INC-IDENTIFIED,;
/* inner while loop */
while BEFORE(X)= @ do
begin
take a¢ BEFORE(X);
if compatibility_check(X,a)="False”
then BEFORE(X)«BEFORE(X)—{a};
else  ifidentification_check(X,a)="True”
then X;:=q; BEFORE(X)+«BEFORE(X) - {a};
and IDENTIFIED«IDENTIFIEDU{X}
else BEFORE(X)«BEFORE(X) —{a};
end
if XeIDENTIFIED
then g:= extend_base_graph(X,Ps);
: end
Until all nodes in INC of g are ideatified
émake a conjecture grammar (G from cancnical cover graph g';

: Halt and output G

T et tma e ma e s e e BB R S SRS E S8 R S R S A A AR AR E R R g e neo b AR A R A NEEEA T RR RSk RR Rl

The basic idea is that ITA behaves such that it may conjecture a partial

characteristic cover graph of a minimum grammar G for the unknown language
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and consiruct the corressponding base graph step by step in exacily the same
manner as the procedurs for constructing cover graph of & dees.

As we have seen in the previous seciion{3.3), once the conjectured
characteristic graph of some simple grammar G is obtained from a base grapn,

one can construcs a gramemar G equivalent o G in the manner described above.
4,22 Correctness and Complexity of the Algorithm

Lemma 4.1(Size of characteristic cover grapn)

For a given simple grammar G=(N,L.P,8), let CCe=(N"z,E'z.L) and
t=max{lg(ws)ws is a shortest word derivable from A in G, A¢N} and m= #I,
n=#N. Then, the number of total nodes of CCg is not greater than (2t 4+ 1)mn.
Proof. By the definition of the minimum complete subgraph, without taking
account of self-loops, for A’ in N'g —{F}, a path corresponding to “Ae—2*BCa—"s
Ca—™ca” (for a¢N*) in Cg is the possible longest path in gy, which is clearly not
greater than (2t+1). Further, since CCgq contains at most n (different) minimal
complete subgraphs, the maximum length of all paths in CCgis not greater than
(2¢4+1)n. Clearly, the initial node of each minimal complete subgraph has at
most m (different) paths. Hence, the number of total nodes of CCg is not greater
than (2t+ 1'mn.O

Lemma 4.2

Given a target language L, let G be u conjectured grammar produced from [IA.
Then, L(G)=L holds, i.e., IIA infers a correct grammar G for L.
(Proof Sketch) Starting with extending the initial node S=[e], first a base
graph g which corresponds to the minimal complete subgraph for S is obtained.
Then, each node of g is examined and classified into two categories COM and INC.
As ITA proceeds, the number of nodes of a base graph g increases. By consulting
DEOQ, [IA extends incomplete nodes (i.e., introduces new nonterminals) only when
they are inevitably neccessary, which guarantees the minimality of the resulting

intermediate base graph (a subgraph of the charactsristic cover graph of some
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minimum simple grammar G for L). Here, an important soservalion is that [74
extends g in just the same manner as the procedure for construeling a cover grapn
of a simple grammar does, from which the termination of the ILA as well as the
correctness comes. (In fact, let G be a grammar for L, and m.,n, and t be
paramesers in Lemma 1.1, Then, from Lemma 4.1 and :ae incremental feature
of the algorithm, it filows that before the number of iotal nedes of g exceeds
(2t +1)mn, ITA aventually encounters a correse: base gragh g from which a

minimum grammar equivalent to G is consiructed.)

[Time complexiiy]

Let m, n and % be the parameters in Lemma 4.1. We analyze the time

complexity of the algorithm TTA as follows:
@the subprocedure compatibility check takes at most time O{mnt), since
#Prerix(after(3)) = O(mnt); @ the subprocedure identification_check is due to
the rerivative oracle DEQ, and we assume it costs a unit (constant) time; 3the
subprocedure extend_base_graph takes at most time Of{mZn4t2), because the
highest order of the time complexity of all subroutines involved in it is O(mn2t)2,
which comes from the time for the task of constructing a table [Pg,T1.

For the “inner while loop”, it takes at most O(mt) X O(n)= O(mnt). So, [1] the
first “outer while loop”, whaose primary complexity is due to O(m2n4t2) of the last
routine extend base graph, takes at most O(m2ntt2) X O(mnt)= C{m3nstd).
Further, for each execution of the body for “repeat”, the total time reguires at
most O(m3n5t3). Since the “repeat” occurs at most O(n) times, the total time for
“repeat” takes at most O(m3n5t3) X O(n) = O(m3nbt3), which eventually gives the
time complexity of the whole algorithm. (Note that the time for making G from ¢’
which takes at most O(mnt)(the size of CCg) is negligible.)

The total number of queries, on the other hand, is analyzed as follows. First,
compatibility_eheck requires at most O(m) queries. Further,

extend_base_graph requires at most O(m2n4t2) queries for its primary routine
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to extend the table [Ps,T.. Hence, for 2 it takes at most O(m2n+t2) queries, and
for [17 it takes at most O(mIn4t2) ¥ O(mnt)=0(mentd) gueries. Thus, the
number of queries required for each execution of the body for “repeat”([1]) is at
most O(m3nstd), hence totally at most O(mnsti)( = Olmandtd) X O(n)) queries ars

required.

Thus, we have:

Theorem 4.1
The glgorithm [[A learns the unknown language in time polynomial in k m, n,
and t. In particular, it requires at most polynomial number of queries in m, n, and

t, where m,n and t are parameters defined in Lemma 4.1.

4.3 Example Runs
Example 4.3

Let L be a simple language over T generated by a simple grammar G
considered in Example 3.4, where Z={a,b,c} is fixed.

After setting up the starting condition, i.e., initializing all parameters
involved, Learner{the algarithm) begins with making prefix-membership
queries for “a?”,“b?”, and “c?” in this order. Then, Teacher(the prefix-membership
oracle) responses with the answers “aca”, “beb” and “c”, respectively. So, we have
Y([e]) = Ps = {aca,bcb,c}. Then, Learner adds each element of Prefix(Y([2])) to N
and each element of p-Suffix(Y([e])) to E to construet Ty. Further, by asking for
“227” and “ba?” and receiving the answers "aacaa” and “bacb”, respectively, he
knows that nodes X, and X4 are incomplete, Similarly, it turns out that nodes X3
and X4 are complete, because for any query of the form “acx?"(xe{b,c}) or
“bex?"(xe{a,e}))  Teacher responses “No”. The base graph
g1(=extend_base_graph([e],@)) is pictured in Figure 4.2.

At this moment, we have COM={8 X3 X4}, INC={X1,X2} and
BEFORE(X,)= BEFORE(X:)= {S}. Further, since shortest(S)=e¢, c¢
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g 1| a ca b ch
S £ 0 0 0 1 0
¥ c 1 3 1 0 0 0
X a 0 011 0 0
X3 ac 0 1 0 0 0
¥ aca 1 o0 0 0 0
X, b o |lo 0o |0 |1
Xa be 0 d 0 1 Q
i beb | L | 0 0 | 0| 0D
Table T
£ |al|calb|ch! ab | cab |acab|ba| cba |bcha
= > olo|jolo]0 0 V] 0 0 0 0
F ¢ i|jof(o ;0110 0 1] 0 0 0 Q
h.¢] a glo(1{0701}] O 0 0 |0 0 0
Xa ae 0o(1|0[0{0] O 0 o |0y 0 0
F aca 100|000 i} 1] (] 0 0 ]
Xn b gloflo0oro0l1 0 0 1 0 0 1
X4 be Q1o |0y110 0 0 0 0 0 0
F beh 117901010710 0 0 0 i 0 0
Xs ba glojotltoj0y] 0 1 0 0 0 0
X7 bae o lo[0o{0q{0 1 0 I} 0 0 0
Xa haca glor0l 110 0 0 0 0 0 0
F bacab 170307010 1] 0 { 0 0 0
X¢| bo |o|ofojolol o e |0 0] 1]0
Xa bbe g|lo|loloy0ol 0 0 0 1 0 0
X4 bbeb gl(ojoi1y0 ] 0 ] )] { 0
F hbhebb {1 | O 10 |00 ] 0 ] 0 0 Q
Table Ty

Prefix(after(¥;)) and cePrefix(after(Xs)), X; and X2 are both compatible with $
Eﬁﬂmpatibﬂi‘t}'_check{]ﬁ,S}=-::ompatibilitjr_check[l{g,S}=“True"], and
backbone(X,8) =backbone(X2,S)=c¢ and tail(X;,S)=a, tail(X2,8) =b. To identify
an incomplete node X =[a], Learner asks Teacher(derivative gracle) if a\l/a=L
or not. Since the answer is “Yes”, X1 is identified as 8. Similarly, by making a

query if b\L/b=L or not, it turns out that Xg is not identified as S. Hence,

-31-



Laarner mus: extend Xg to make it complete. The answers of X2-queries to PMO
ars “bacab”, “bbebb” and “beb”, and we have Y(X3) ={bacab.bocbb, beb}. Hencs, N
is incremented by adding Prefix(Y(X2)), and E is also extended by adding p-
Suifiz(Y(X2)). Thus, an extended table T2 is obtained.(See Table T2.) Naw,
Learner asks Jor “baa®™ and “habd? to know wiether Xs=_ba] Is incomplete or

not, Since the answer is “No” for both, he knows that ¥; is complete. Similarly,

[Node Identification Result]
X1 :=5;

[Node Identification
Results]

X1:=5;

Xg:=Xy; forgz
X7:=X3;

Xg:=Ny;

Figure 4.2 Conjectured base graph

it turns out that X7 and Xg are complete but not of the first occurrence, while Xp



is incomplete. The basa graph ga( =extend base_gra ph(X2,Ps)) created at this
moment s given in Figure 4.2. We now have P5:=bPiy,bUPs, Px,={acabeb,c},
COM= {8,X2,X3,%4.X55, NG ={X1,X6,X7,X3} and IDENTIFIED ={X;!}. Further,
BEFORE(X = {Sh BEFORE(Xs) =(5X9,X3,X5}. In order to identify X5, Sis
frst selected ‘rom BEFORE(X) and its compatibilizy ie examined by calling
compatibility_check{Xs,3k Since shorzest(S) = ¢ and ¢ €Prefiz{after(Xg)),
¥s=0bb] is compatible with 8. Therefore, the idencifiability is checked by
calling identification_check(Xg,3). (Note that backbone(Xg,3)=c¢ and
tail(Xa,8)=1bb.} Since bb\l/bb=L, the subprocedure returas “No”. We now have
BEFORE(Xs)={X2,%3.X35}. In a similar manner, Learner tries the alternative
possibility for the compatibility as well as the identifiablility of X2 to Xs, and
this time X is successfully identified as X2 because bb\L/bb=b\lJ/b holds. We now
have IDENTIFIED ={X,Xs}. (Note that Xj is clearly not compatible with X3
and although Xs is compatible with Xs, degres(Xs)=degree(X5), hence X5 is
dropped out. But, all these are out of question in this case.) Similarly, for X7,X3
¢INC —IDENTIFIED it is seen that X7 and Xg are identifiable with X3 and X4,
respectively. Now, since INC =TDENTIFIZD heds at this moment, gatting out of
the outer while loop, Learner produces the conjectured grammar G from its base
graph gz given in Figure 4.2. The setof rules of Gis:

§—aSX;bX2Xy

¢, X3—a, Xy—b, Xs—cX3,

¢, Xo—aXsbXaXy
and the inference process terminates. The conjectured characteristic cover grapn
g’z and minimal complete subgraphs involved in g'2 are given in Figure 4.3.0
Example 4.4

Consider a language L generated by a simple grammar G =
({E}{id,*, +.,()}1L,P.E), where P={E—+EE|+EE|(E){id}. A language L is the set of
all arithmetic expressions using operations “#” and “+". (Note that axpressions
are represented in the prefix notation, and *id”, denoting the identifler, is a

terminal symbol of G, The corresponding simple grammar in 2-standard normal
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Figure 4.3 Conjecture graphs

form generating L is Go= ({E,K}, {id,*,+,(,}}, (E—+*EE |+ EE| (EK|id, E—)}E).)
Here, the set {id,(,*, +,)} is assumed to be an ordered set (in this order).
Now, after initializing all the parameters involved, Learner begins by

making a prefix-membership query “a?” for each symbol a in {id,(,* +.)} in this

.14 .



order. Since the Teacher answers “id”, *{id)", “siaid", “=idid", and “No",

respectively, Learner creates a table Ty which gives a base graph g in f{alor

igure 1.1 Now, wea zave Pz =TY([e])={id, (id}, *idid, --idid}. Further, by asing

P:F

for “(=7" and “#(?" and receiving the answers “(xidid)" and “*(id)id", respectively,

Laarner kaows that X; and Xz are incomplete. Similarly, it turns out that X3 is

alreadv complete, Decausa answers to the gueries of the form “(idx?", for
1

z¢did,[,*, =}, are all"No",

180

e

At this moment, we have Pg:=PsuU{*(=idid)","=id)ia"}, COM={8,Xz}, anc
INC={X1,X2}. Eince shortest{S)=“id" and “id"e¢Prefix(after(X1)) and
“id"e Prefiz(after(Xa)), Xi{ =[(]) and Xz(=[*] or [+]] are both compatible with S (,
while neither is eompatible with X3). Further, tail(X1,38)=")" and
tail(Xs,8)="id". So, by asking DEO if (L) =L or not, Learner identifies X; as 5.
Similarly, since #\L/id =L holds, X2 is also identified as 3, leading to a conjecture
of the characteristic cover graph g’y in (b) of Figure 4.4. Thus, a grammar with
the set of rules:

([S—*SS|+SS|(S)

id}

is eventually produced, and the inference process terminaties.s

5. Concluding Remarks

We mention a direct but useful application of the inductive inference of
simple grammars. Tt is well-known that a certain type of syntax for programming
languages is defined by context-free grammars, and a numerous work on parsers
or compilers for the languages has been reported. Among nthers, several methods
for automatically generating compilers (more precisely, parsers) are discussed.
However, the methods proposed so far take as an input a grammar specifying the
target language and produce as an output a parser for the language. In contrast
to this, our schema for automatically generating parsers is much more
“sutomatic” in the sense that no grammar is necessary and only the knowledge

about the target language is required for the prafix-membership oracle and the
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MNode characterization table: Ty

derivative cracle. A diagram for generating a parser from example sentencas is
pictured in Figure 5.

We have presented an inductive inference algorithm for learning simple
grammars in which Teacher s expected to play a role of some kind of oracle more
than membership oracle, called prefix-membership cracle. It should be noted that
the minimality of the answer string from the oracle plays a significant role, and
the discussion based on the similar idea is found in [KK 78], We believe that the
prefix-membership oraecle is much easier for users to perform, compared with
other problem settings (like an oracle for providing counter-examples in [An 87] or
structural examples consistent with the correct unknown grammar in
[CR72],[Fa83],[Sak87]), and is more adequate in the practical applications.

It may be possible to consider a variant of the problem setting and of the
algorithm diseussed here, For example, the prefix-membership oracle could be
replaced with the usual membership oracle at the sacrifice of the increase in the
number of gueries. Further, as in [An 87], we could employ a problem setting

based on the use of queries and counter-examles([Yo88b]).
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Figure 5 A diagram for compiler-compiler

Finally, it should be remarked that the extension of the algorithm

presented here to the inference of the larger class of gramumars ( such as “strict



T

detarministic grammars” or “LLik) grammars” [IZa781) is important as well as

interssting, and actually we are now working on it.
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