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Abstract

This paper presents a formalisin of nonmonotontc reasoning. Nonmonotonic rea-
soning is a form of human reasoning for a situation where we are forced to make some
decision even if there is not enough information. In such a situation, we nsnally use our
belief to support any lack in the knowledge. However, when the current belief is found
to be false, we must revise the belief in order to keep consistency. In this paper, we
formalize nonmonotonic reasoning focusing on the belief revision process.

In our formalism, initial belief is represented directly. Unlike the current formalisms
such as default logic or circumscription we can express the belief without any extra
inference rules or special axiom. The only constraint for a belief is that it must entail
knowledge. Then, we define a belief revision strategy called minimel belief revision.
Minimal belief revision minimizes the difference between the previous belief and the
new belief so that what was true in the previous belief remains true in the new belief
as far as possible.

This paper discusses why belief revision must occur when belief does not entail
added knowledge, presents a proof theory and model theory for minimal belief revision
and shows that minimal belief revision performs some kind of nonmonotonic reasoning,
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1. Introduction

In real life, we are sometimes forced to draw some conclusion even if there is not
enough information. For one solution to those situations, we use our helief (or hypoth-
esis) to complement unknown information. However, since the results from a belief are
not logically true, they must be defeated if they are found to be false. Such reason-
ing is called nonmonotonic reasoning and has been formalized by various researchers
[McCarthy80, McDermott80, and Reiter80)].

Roughly speaking, current formalisms such as circumseription [MecCarthy80], non-
monotonic logic [McDermott80] and default logic [Reiter80] add special axioms or define
extra inference rules to incorporate the idea that an unknown fact is assumed to be false
unless it is explicitly known to be true. The special axioms or extra inference rules can be
regarded as producing methods of plausible belief from the current knowledge. If more
knowledge is added, a different belief is produced by those axioms or extra inference
rules,

This paper presents another formalisin of nonmonotonic reasoning. Qur approach
of formalizing nonmonotonic reasoning is different from those formalisms in the following
points,

(1) A behef is represented directly as a plausible hypothesis without any extra inference
rules or special axioms. If no conclusion is derived from incomplete knowledge, a
belief is used to complement unknown information. The only constraint for a
belief is that it must entail knowledge; in other words, it is a detailed hypothetical
description of knowledge to supplement a lack of knowledge.

{2) A belief is directly revised when moare information is added. Since a belief has a
hypothetical character, it is not always true. Therefore, if & belief does not entail
added information, it must be changed to satisfy the above constraint. This process
of change is called belief revision.

This paper investigates a special strategy of belief revision called minimal b'efz't_,f
revision and shows that this strategy performs some kinds of nonmonotonic reasoning.
The idea of minimal belief revision is that default rules are first defined as belief, and
if any counter-example is found, the belief is changed so that the counter-example is
treatcd as an exception to maintain consistency.

For example, suppose that belief for flying birds is expressed by the following:
Yx(bird(z) D fly(z)).
The above belief expresses directly that every bird flies. Even if we only know bird(A),
we conclude fly(A) as a consequence of the above belief. However, if we find - Fly(A)
in addition to bird(A), then the belief must be changed to keep consistency. However,
we do not want to throw away the above belief completely, but we still want to believe

that any bird other than A flies. The minimal belief revision strategy performs such
revision and changes the above belief into the following:

Vr(z # A =Ve(bird(z) O fly(z))).
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This belief revision is nonmonotonic, because from the previous belief, we can derive
fly(A) if we know bird(A), whereas from the new belief, we can no longer derive fly(4).

This paper first discusses the relationship between knowledge and belief, then shows
the proof theory and model theory of minimal belief revision and some examples of
nonmonotonic reasoning with it.

2. Monotonic Knowledge and Nonmonotonic Belief

This section shows why belief revision must occur when belief does not entail added
knowledge. Let x and 8 be a set of knowledge and a set of beliefs respectively. [Hin-
tikka62] requires knowledge and belief to satisfy the following relation:

kT3,

which means that if an agent knows p, he also believes p. In this paper, knowledge and
beliefs are represented as logical formulas. Let knowledge and belief be formulas of K
and B. The above requirement can be expressed as follows:

BEK,
which means that B entails X T .

We also define that knowledge is monotonic. Following Hintikka, we regard knowl-
edge as a subset of truth, and therefore, knowledge increases monotonically. However,
since we regard a belief as a set of plausible hypotheses, a belief must be nonmonotonic
if we keep consistency of belief. For example, suppose that the current knowledge con-
tains neither a nor —a and the belief contains . Then, if -« is added to knowledge, the
belief must contain it because of the above requirement. However, the simple addition
of —a to the belief leads to a contradiction. Therefore, in this case, o in the belief
must be retracted in order to maintain consistency. Therefore, when new knowledge
is added, a belief must be revised so that it contains new knowledge and is satisfiable.
This process is called belief revision.

A strategy on how to change belief is needed since there are many ways of changing
the belief. The next section concentrates on one particular belief revision strategy
called minimal belief revision. Minimal belief revision is a strategy by which differences
between the previous belief and revised belief are minimized.

3. Minimal Belief Revision

The main idea of minimal belief revision is that we compute the differences between
a model of previous belief and a model of new knowledge, and choose pairs of models
where the diference between models is minimal. As a result, what was true in the
previous belief remains true in the new belief if it is not contradictory to the added
knowledge.

t Note that circumseription and default logic satisfy this requirement, because both
produce a belief including an initial axiom.
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We explain the idea with the following example. Let knowledge K be identical to
T, which denotes a true proposition, and belief B be identical to p A ¢. Then suppose
that &, which is equivalent to —p V —g, is added to knowledge K; we must revise belief
because B & K A «. Let the new belief be NB. NE must entail K A @ by the above
requirement, that is, a set of models of N B must be a subset of the following set:

{{ =P q}r {Pr ""E]H {ﬁPr _'q}}r

which is a set of all models of K Aa (a model is represented as a set of the propositional
constants and negation of propositional constants that are true in the model).

First, we compute the difference between each model of B and each model of
K A . In this case, we compute the differences of ({p, ¢}, {-p,q}), ({p.¢}, {p,—¢})
and ({p, ), {~p,a}) which are {p},{g} aad {p,q) respectively (the difference set is
represented as propositional constants which have different truth values for each model
in the pair). Then we select pairs whose differences are minimal in terms of set inclusion,
that is, ({p, ¢}, {-p,q}) and ({p,q},{p,~¢}). Then the new belief, NB, by minimal
belief revision is the disjunction of all those models of knowledge in the above pairs,
that is:

(mpAg)V(pAm—g)
While new knowledge has a model of {=p, =g}, NB does not have it. This is because

what was true in the previous belief remains true as far as possible by minimal belief
revision. Thus, either p or ¢ (not both) remains true in the new belief.

We generalize this idea to knowledge and belief expressed in a first-order language.
In the following subsections, minimal bhelief revision is defined in a second-order lan-
guage. In a second-order language, we can use predicate variables and function variables
in addition to object variables. Predicate variables vary over predicates and function
variables vary over functions. In addition, we use predicate constants such as T for
true, F' for false and = for equality, and logical connectives such as @ for exclusive-or
and = for equivalence.

We also give the model theory of minimal belief revision for a second-order language.
A structure, M, for a second-order lanpguage consists of a domain D, which is a non-
empty set, and an interpretation function such that every n-ary function constant, F,,
1s mapped onto a function from D" to D (written M[F,] and every n-ary predicate
constant, P,, is mapped into a subset of D™ (written M[FP,]). N-ary function variables
range over any function from D™ to D, and n-ary predicate variables range over any
subset of D™, < t;,....,t, > denotes an interpreted tuple where #y,....,{, are terms.
If Po(ty,....,tn) is true in M, this fact is expressed as < #;,....,t, >p€ M[P,]. A model
of a second-order sentence is any structure, M, such that every formula in the set is
true in M.

3.1 Proof Theory

Let B(FP}), K(P) and a(P) be first-order sentences whose predicate constants are
among those of P = py, ..., pa, and B(FP) = K(P). B(P) is the current belief and K (P)
is the current knowledge and a(F) is the added knowledge.



We define a minimal revised belief, NIB{FP), with respect to (K(P), B(P)) and
af P) as follows,

daf

NB(P) ¥ 3Ps(B(Pg) A K(P) A a(P)A
~3PR3P(B(Pg) A K(P') Aa(P') A (Py, P') < (P, P))) T

where

(1) Pg is a tuple of predicate variables ppi,....,ppn which have the same arities of
P1s---y Pn respectively, and Pg is also a tuple of predicate variables p'p ..., pl,
which satisfy the same condition as Pg, P’ is a tuple of predicate variables pi, ...., o},
which also satisfy the same condition as Pg,

(2) and B(Pg) is a sentence obtained by substituting predicate variables of Pg for any
occurrence of corresponding predicate constants in B(P), and B(Pg) and K(P')
are sentences obtained in a similar way,

(3) and (Pg, P') < (Pg, P) is an abbreviation of:
(Pg, P') 2 (P, P)A~((PB, P) % (Pg, P')),
where (Pg, P') = (Pp, P) is an abbreviation of:
Vx((P1 (%) @ p1 (X)) D (pB1(X) @ Pa(X)) A A
¥x((Plaa(x) @ pu(x)) D (pEn(x) & pa(x))).

(P, P') = (Pg, P} means informally that the difference of extensions for Py and
P' is less than the difference of extensions for Pg and P. IV B(P) expresses informally
that there is some tuple of extensions for Pg which changes minimally into a tuple of
extensions for P.

3.2 Model Theory

Let B(P),NB(P),K(FP)and a{P) be the same sentences in the above proof theory,
and let Mg and M}, be models of B(P), and let My and MY 5 be models of K(P) A
a(P). We define a partial order relation, =, over pairs of models. (M5, My 5) =
(Mg, Mpg)is defined as the following.

(1} Mg, My, Myp and M}, have the same domain.

(2) Every constant and function receives the same interpretation in Mg, M3, Myp and
My g

(3) The following statement is true. (We write < x > as an interpreted term in Mg,
Mg, Myp and M}, g, because it receives the same interpretation in all of those

models.)

T Since this definition of minimal revised belief is expressed in second-order language,
we may need to restrict language so that the new belief can be defined in first-order
language. A technique similar to [Lifschitz85] could be used.
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Vx((<x>€ Mp[pm|® < x>€ Myglm]) O (< x > Mg[m|® < x > Myg[pi])IA...A
Vx((< x >€ Mp[pa]® < x >€ Myglpa]) D (< x >€ Mpp.a]® < x >€ Muya[p.))).

This ordering means that the difference of extensions of each p; in M} and Mg
is not more than the difference of extensions of each p; in Mg and Myp.

A mantmally different pair, (Mp,Myp), with respect to B(P) and K(P) A o P) is
defined as the pair of models for B{P) and K(P) A a(P) respectively such that there
is no pair, (Mg,Myg), such that (Mp, Myg) % (Mp,Myp) and not (Mg, Myg) <
(M, My p).

A minimal revised model, My g, with respect to B(F) and K(P) A «(P) is defined
as the model such that there exists Mg such that (Mg, Mypg) is a minimally different
pair with respect to B(FP) and K(P) A a(P).

The relation between the proof theory and the model theory is as follows.
Proposition 1. Let B(P), NB(P), K(P) and a(P) be the same sentences in the proof

theory. Myg is a model of NB(P) iff My p is a minimal revised model with respect to
B(P) and K(P) A aP).

This proposition means that any result derived from N B(P) is true in all minimal
revised models.

As shown by the following propesition, if added knowledge is consistent with the
belief, a set of models of the new belief 1s a maximum restricted set of models of belief
so that any model in the new belief entails added knowledge.

Proposition 2. Let B{P), NB(P), K(F) and a{P) be the same sentences in the proof
theory. If o P) is consistent with B(P), NB(P) = B(P) A «(P).

The proofs of the above propositions are found in the appendix.

4, Examples

The previous formula of a minimal revised belief, N B(P), can be translated into
the following form:

3Pg(B(Pg) A K(P) A a(P)A
VPRYP'((B(Py) AK(P') Aa(P') A (Py, P') % (Pp, P)) > (Py, P') = (Pp, P))),

where (Pg, P') = (Pg, P) is an abbreviation of:

Vx((Pg1(x) 8 P)(x)) = (pBr(x) & pa(x))) A ..A
. Fx{{pfﬁn{x} & P:i.{x]} = {PHn[x]‘ & Pnix”}-

The above formula is used in the following examples.
The first example shows a propositional case.

Example 1:



P=pgq

B(P)=phg,
K(P)=T,
a(P)=-pV g

B(P) and K(P) are the current belief and the current knowledge respectively and a(P)
is the added knowledge. Then the minimal revised belief, N B(P), is defined as follows.

NB((p,q)) =
3ppdgn(
pa Age A(—~pV ~g)A
VeeVeave'Ve'((
P Mg A(=p'V —g)A
((Pg@p') D (pe @ PN
(ggeq¢)D(ga®q))) D
((Fa®p)=(ps®p)A
(g ®d') =(gr®q))))

In this example, each propositional variable varies over F and T. Each tuple of the truth-
value assignment for {pbq%,p',q’j makes the conditional part of the second conjunct
false except (T,T,1T.F), (T,T,F,T) and (T,T,F.F). Then the above formuls is reduced
to:

Ips3ga(
pe Age A(—pV —g)A
(g ® ¢) D (pr = p))A
((ps @ p) D (28 = q))).

Then, each tuple of the truth-value assignment for (pg, ¢p) makes the above formula
false, except (T,T). Then the above formula is reduced to:

(=pV=g) A(pVq),
which is equivalent to the result in the previous section.
The second example shows inference from the belief.

Example 2:

P=5bf
B(P) = Vz(b(z) > f(z)),
K(P)=T,

a(P) = b(A).

B(P) expresses that every bird flies, and o P) expresses that 4 is a bird. In this case,
af P) is consistent with B(P), therefore, the new belief, NB(P) is B(P) A «{P) by
proposition 2. Beliel, that A flies, can be derived from the new belief. This example
shows that if the added knowledge 1s consistent with the current belief, we can infer
normal results from the current belief and the added knowledge.



The next example shows treatment of the counter-example to the belief which was
discussed in the introduction.

Example 3:

P=bf

B(P) = Vz(b(z) D f(2)) A b4),
K(P) = 4),

a(P) = ~f(A).

B(P) expresses that every bird flies and A is a bird, and a(P) expresses that 4 does
not fly. In fact, B(P) is the new belief of example 2. Then the new belief is defined as

follows.

NB((b.f)) =
b3 fa(
Vz(bg(z) D folz)) Abe(A) AB(A)A—FAA
VbV FpVb'Y S ((
Vo (bp(z) D fp(z)) A bp(A) A B'(A) A f(A)A
Vz((bp(z) @ ¥ (=) O (ba(z) @ b(z)))A
Va((fp(z) @ f'(2)) 2 (fal=) © f{z)))) O
(vz((bp(z) & ¥'(z)) = (bp(z) ® b(z)))A
Vz((fp(e) @ f'(2)) = (felz) @ f(2))).

Let blp(z) and fg(z) be identical to bg(z) and fg(z) respectively and let ¥'(z) be
identical to bg(z) and let f'(z) be identical to fr(z) Az 3£ A.

Then the left-handside of the last conjunct of NB((b, f)) becomes as follows:

Vz(bg(z) O fal(z)) Abs(A) Abs(A) A ~(fa(A) A A# A)A
Vz((bs(z) @ ba(z)) D (ba(z) & b(z)))A
vz((fe(z) & (fel(z) Az £ A)) D (felz) @ f(z)))

We can easily see that all conjuncts except the last are true, assuming ¥z(bp(z) O fp(z))
and bg(A4). Concerning the last conjunct, it is reduced to:

(1) when z = A4,

(f(A)@ F) D (fe(4) & f(A)

which is true assuming fp(A) and - f(A);
(2) when z #+ 4,

(fe(z) & fa(z)) O (felz) & f(z))

which is true.

Therefore, the left-handside of the last conjunct of NB((b, f)) is true, assuming the
other conjuncts of NB((b, f)). Thus, we can derive the following from NB((b, f)).

3bg3fe(
Vz(bs(z) D Fa(2)) A ba(4) AB(A) A ~f(A)A
Vz((bp(z) @ ba(z)) = (bu(z) @ b(z)))A



vz((fa(z) & (fa(z) Az # A)) = (fa(=) 8 f(2)))).

The second conjunct from the last is equivalent to Vz(bp(z) = b(z))} and the last con-
junet is equivalent to =f(A) AVz(z # A D (fp(z) = f(z))).

Therefore, the above formula is reduced to:
IbpIfe(Vz(b(z) D f(z)) ABA)A-f(A) AVz(z # A D (fr{z) = f(z))))

Since we can derive Vz(fp(z) D (z # A D f(z))) from the last conjunct, we can derive
the following from the above formula:

Vz(b(z) D (z # A D flz))) A b(A) A~ f(A),
which is equivalent to:
Vz(z # A = (b(z) D f(=)))-

While f(A) was true in the previous belief, we can no longer derive f{A) from this
new belief. Thus, this example shows nonmonotonicity of minimal belief revision. And,
from the new helief we can still show that every bird except A flies. This is an effect
of minimal belief revision.

5. Related Research

5.1 Formalisms of Nonmonotonic Reasoning

The current formalisms of nonmonotonic reasoning try to define extra inference |
rules or axioms to produce belief. Default logic [Reiter80] uses special inference rules
called defaults and circumseription [McCarthy80] adds special axioms to the knowledge.
However, if we wish to represent a belief that every bird flies, then we cannot express this
belief directly but must modify it to match special mechanisms of the above formalisms.
In default logic, we must present the above belief by using extra inference such as:

bird(z) : M fly(z)
fly(z)
In circumscription, we must introduce special predicate ab to express the above belief

S
Va{(bird(z) A —ab(X)) D fly(z)),

and minimize ab. However, 1n our formalism, belief can be represented directly as:

Va(bird{z) D fly(z)).

We use a kind of minimization technique adopted in circumscription to formalize
minimal belief revision. However, while circumseription minimizes predicates to produce
a belief, minimal belief revision minimizes the difference between the previous belief and
the new belief.



5.2 Truth Maintenance System

In a sense, the formalism in this paper can be regarded as a generalization of the
truth maintenance system [Doyle79), because the TMS uses hypothetical contexts which
correspond to models of belief in our formalism and performs belief revision. However,
while the current TMS can only manipulate propositions (or ground sentences), our for-
malism can manipulate any arbitrary sentences. Moreover, TMS uses only one context
at one time, whereas we can use multiple contexts at one time because a sentence for
belief expresses a set of models.

5.3 Database Updates

In the database community, there have been several reports on research on se-
mantics of updates. For example, [Fagin83 and Kuper84] define minimal updates of
syntactic formulas in databases. However, they do not give a model theoretical anal-
ysis. Moreover, the previous contents in the database can be updated, whereas in our
formalism, hypothetical belief is distinguished from true knowledge and only belief can
be changed by belief revision.

6. Conclusion

This paper presents a formalism of nonmonotonic reasoning by direct representa-
tion of belief and belief revision. Belief is defined as a detailed description of knowledge
so that it entails knowledge. Belief revision occurs when belief does not entail added
knowledge. This paper concentrates on a particular belief revision strategy called min-
imal belief revision. Minimal belief revision treats the counter-example for the previous
belief as an exception in order to maintain consistency. It also keeps what was true
in the previous belief as far as pessible, This paper presents the proof theory and the
model theory for minimal belief revision. However, since the proof theory is presented
in the second-order language, it is not computable in general. We must investizate some
useful subset of first-order sentences to make minimal belief revision computable.
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Appendix Proofs of Propositions

Proposition 1. Let B(P), NB(P), K(P) and af P) be the same sentence in the proof
theory. Mng Is a model of NB(P) iff Myp is & minimal revised model with respect to
B(P) and K(P) A a(P).

ng?cgﬁppuse that Myp is a model of NB(P), but for every model, My, of B(P),
(Mg, Mnp) is not a minimally different pair with respect to B(P) and K{P) A a(P).

I other words, for every pair (Mg, My g), there is a pair of models (Mg, M}y g) for
B(P) and K(P) A o P) such that (Mg, My p) < (Mp, Myp) and not (Mg, Myg) <
(Mz, Myp).



Thﬂl'ﬂfﬂrﬁ
Vx((< x >€ Mplp® < x >€ Myplml) D
(<x>€ Mp[p1]® < x >€ Myp[p1])) A A
Vx{(< x >€ Mplpa]® < x >€ Myp[pa]) D
(< x>€ Mp[p,|® < x >€ Myg[pa])),
and

|

Vx((< x >€ Mp[m]® < x >€ Myg[p]) 2
(<x>€ My[ml® <x>€ Migm]))A..A
¥x((< x >€ Mp[p.]® < x >€ Myg[p.]) O
(< x > Mp[pa)® < x > Myglpal)))-

Let Myg[pp:| = Mp[p;)(1 £ i € n), where pp; is a predicate constant which
is not in P. Then since Mp = B(P), Myp &= B(Pg), where Pg = (PB1s ey PEn)-
Similarly, let Mnp[ph,] = Mplp] and Myp[pl] = Myplp), then Myp = B(Pg)
where Pg = (p'gy, - Pn )y 2a0d Myp = K(P') Aa(P) where P' = (p}, ..., p}).

And since
Wx({{< x > Myplps @ <x>e Myplpl]) 2
(< x> Myg[pm]® < x> Myg[p1])) A..A
Vx((< x >€ MnB[Pp.]® < x >€ Mna[p,]) D
(< x >€ Myg[pral® < x >€ Muyglpa)),
and
(
vx((< x >€ Myplps)® < x> Myam]) D .
(< x>€ Mna[ps 8 < x> Myg[pl])) A...A
Wx((< x >€ Myglpga)® < x > Myglp.]) 2
(-'f.,' X > Mﬁa[ph,,]& <X =g MNE[P;]]]L
by substituting My g[pai] for Mg[pi](1 < i < n), Myg(pl,] for M}[pi], and My g[p}] for
M glpi] respectively in the above statement, for any tuples of extensions, Pg, satisfying
B(Ps), there exist Py and P' satisfying B(P}) and K(P') A a(P') respecively such
that MNB |= (PETPF} - {PH,P]

It contradicts the fact that there exists Py satisfying B(Pg), such that
Mg = ~3Pp3P'(B(Py) A K(P') A a(P') A (Py, P') < (P, P))

(4) Suppose that My p is a minimal revised model and My g = VPg({B{Pg) AK(P)A
a(P)) 2 dPg3P(B(Pg)AK(P')Aa(P') A (Pg, P') < (Pg, P))).

In other words, for any Py satisfying B{Pg), we can take Py and P’ such that
B(Pg) A K(P') Aa(P') A(Py, P') < (P, P).

Then since Myg = (P, P') <{Fg, P),
¥x{(< x >€ Mya[ph, ]9 < x >€ Myrlpi]) O
(< x> Muyglpml® <x > Musp])) A n
¥x((< x >€ Myp[ps.]® < x >€ Mya[p,]) D
(< x >€ Myp[ppa]® < x >€ Myg[pa))),



and
=
Vx((< x >€ Myp[pp1]® < x >€ Myg[pm]) D
(< x>€ Mpglplg, )@ < x> Myg[pi])) A ..A
Vx((< x >€ Myp[peal® < x >€ Mygpa]) D
(< x >€ Mnp[pe,]® < x > My3a[p,])))-

We take Mg, Mp and Myp such that they have the same domain as Myp, and
every constant and funetion receives the sane interpretation in Mp, Mp and M5 as
in Mypg, and the interpretations of predicates of P in Mp, My and M5 receive the
interpretations of predicates of Py, Py and P’ in My g respectively.

Since Mns |= B(Pg) A B(P4) A K(P') A a(P'), Mg |= B(P), M}y k= B(P) and
Mip k= K(P) A alP).

And since
vx((< x >€ Mglmle < x > Myplm]) D
(< x>€ Mp[p|® <x>€ Myglpi])) A A
Vx((< x >€ Mg[p.]|® < x >€ Myglpa]) O
[{ X >E MH[]J,,]EE <X >E MNH[p“]}},
and
—:[ 1
Wx((< x > Mg[m|® <x >€ Myplpil) D
({ X >E Mﬁ[m]@ < X >E M:;;B[p]”j Mo
wx((< x >€ Mglp,)® < x >€ Myg[p.]) 2
(<x >& Mp[pa]® < x >€ My p[pn]}}),
by substituting Mg[p:](1 < i < n)for Myglpail, Milp] for Myp[pp;], and M}, plp;] for
My g[p!] respectively in the above statement, for My p and any models Mp satisfying
P(B), there exists a pair of models (Mg, M}, p), satisfying P(B)} and K(P) A o P)
respectively such that (M5, Myg) = (Mg, Myp) and not (Mp, Myg) = (Mg, My g).

It eontradiets the fact that My g is a minimal revised model. QED

Proposition 2. Let B{P), NB(P), K(P) and a(P) be the same sentences in the proof
eory, If a(P) is consistent with B(P), NB(P) = B(P) A a(P).
$O8E be any model of B(P) A a(P). Since B(P) k= K(P), M is a model of K(P) A
a(P). Let us consider a pair of models for B(P)} and K(P) A o(P), (M,M). It is
a minimally different pair because for any pair of models of B{P) and K(P) A a(P),
(M, M), (M,M) < (M',M"}, that is there is no pair of models (M, M"} such that
(M, M") < (M, M) and not (M, M) < (M, M").

If M is a model of K(P) A a(P), but not B{P) A a(P), we can show that it is not
a minimal revised model. Suppose that it is a minimal revised model. Then there is
a model of B(P), M’, such that (M, M') is a minimally different pair. Since M is not
a model of B(P), M and M' are not identical. Let M" be a model of B{P) A a{F).
Then (M",M") 2 (M, M") and not (M, M") 2 (M",M") because M and M' are not
identical. It contradicts the fact that (M, M) is a minimally different pair. Thus, M is



not a minimal revised model.

Therefore, a set of all models of B(P) A & F) is equivalent to a set of all minimal
revised models, that is, a set of all models of NB(FP). In other words, NB(F) =

B{P) A alP). QED
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