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Abstract

This paper deseribes a logical framework for hypothetical reasoning. Hy-
pothetical reasoning is a kind of non-monotonic reasoning, which is desirable
to have when dealing with incompiete knowledge in problem solving, making
hypotheses for this type of knowledge, with which we can infer the kinds of
formula that hold based on the different kinds of hypothesis. Two different
aspects of hypothetical reasoning, which are abductive reasoning and consis-
tency maintenance, are formalized in the unified model theory. The paper
also shows that the semantics for default logic can be partly incorporated in
the model theory. In this simple and clear logical framework for hypothetical
reasoning, truth maintenance systems that have been widely used, but lack
model-itheoretic semantics, can be analyzed theoretically,. While all models of
sets of beliefs are maintaimed by de Kleer's ATMS, only one model of some
set of beliefs is selected by Doyle's TMS. These results show that hypethetical
reasoning is an important subcase of default logic for which efficient theorem
proving techniques exist.
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1. Introduction

Iz the real world. we are often forced to draw some conclusion even I complete
informasion is not available in problem solving. This inference may have to anticipate
the possibility of later revisions of heliefs, An approach ro this kind of nen-monoionic
-exsoning that has been pursued to use in pracrice is seen in the deld of ifruth man-
temance syusterns (TMSs) such as Doyle 790 and [de Kleer 38]. Alrhouch TMISs zave
heen widelv used as non-monotonic reasoning systems. there has been litile formal -e-
search on them. Because ther lack clear sexmantics. TMSs have not heen well defined
or undersiood in comparison with non-inonoionic logics.

The motivation of this research was to ‘ormalize reasoning systems with incomplere
knowledge, shat is. to clarify model-theoretic semanties of such reasoning systems. One
example of this research can be seen in the cleuse management system (CMS) [Relter
i de Kleer 37, which simply formalizes de Kleer's assumption-based TMS (ATMS). We
propose an alternative approach for reasoning with incomplete knowledge, in terms of
hypothetical ressoning, which is more general than the CMS. Hypothetical reasoning
is desirable when dealing with incomplete knowledge in problem solving, and it makes
hypotheses for this tvpe of knowledge, with which we can infer what formulas hold
based on what hypotheses. In this paper, firstiy, two different aspects of hypothetical
reasoning are shown, and are then represented in a simple logical framework, where
Reiter's default logic [Reiter 80] is shown to be incorporated. Secondly, the model
theory for the ATMS and Doyle’s TMS are presented, based on this logical framework.

2. Utility of Hypothetical Reasoning ..

When we know a formula, p 3 ¢, we can say that if p is assumable, ¢ holds under
assumption p by hypothetical syllogism in traditional logic. In hypothetical reasoning,
these assumptions (or hypotheses) given by a problem solver are not guaranteed to be
always true. Typical uses of hypothetical reasoning are broadly classified as follows.

1. Consistency maintenance in knowledge bases

In constraint satisfaction, when we select from alternatives but there is not enough infor-
mation to select one, we assume one and process reasoning further from there. Because
assumptions and formulas derived from them are not guaranteed to be true, if & contra-
diction occurs in the reasoning process, we must remove the original assumptions and
select other ones instead. This type of reasoning is sometimes called assumption-based
reasoning. Typical Al systems with this mechanism are implemented as TMSs, which
maintain the consistency of knowledge bases, so that they can deal with contradictions.

2. Abductive reasoning

In model-based reasoning, when an observation of a system’s behavior is found, we
want to know hypotheses that explain the observation with knowledge of descriptions
of the system and devices. This type of reasoning is called abductive reasoning, and in
engineering, can be applied directly to diagnostic reasoning such as the theory formation
in [Poole 36]. When the specifications are given as observations, it can also be applied
to design such as the resolution residue in [Finger & Genesereth 33].
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Formal theories are studied mainly in abductive reasoning, such as {Poole 36) and
Relter & de Iilesr 3T However, consistency maintenance mechanisins are pursued
algorithmically rather than theoretically. We suggest that bosh types of hypotleiical
reaconing chould be undersiood in the same meodel theory. that is. the latter caze can
be analvzed in she zame way as the former. These swao 33pes of hyoothetical reasoning
simply correspond fo diferent aspects of the zame logical ramework.

3. General Formalism

This section considers a model theory for hypothetical reasoning. First. reason-
ing rom knowledge is formalized. Then we show a logical framework for supporting
hyopotheses wolch sancuon given propositional well-formed formulas. The framework:
corresponds to a model theory for abductive reasoning. Next, reasoning from beliefs is
formalized within the framework. This formalism reilects the property of consisteney
mainrenance and it 1s compared with Reiter's default logic.

3.1 Supporting Hypotheses

Let [/ be a set of finite propositional symbols, and L be a propositional language
with U7 and logical connectives, and the set of well-formed formulas (wffs). ! An
interpretation, I. of I is defined as an element of 2V such that for each a € I, o is
supposed to be assigned to true, The relation, “E" (C 2V x L), can be defined in
the usual way. Let M € 2Y be an interpretation and W be a set of wifs in L, then
the faet that M satisfles W is defined as M = @ for all &« € W. In this case, we say
that M is a model of W. W is said to be satisflable if it has at least one model. The
set of all models of W is denoted as MOD(W). We say that for a wif, « € L, W
entails o {written W = «), if for each model, M € MOD(W), M = a holds. A theory
of W (denoted Th(W)) is a set of wifs closed under entailment. Finally, we say that
M e MOD({W) is a minimal model of W iT M' € MOD(W) and M' C M only if
M =M.

Definition 1. A set of premises, ¥, is a satisfiable sct of wifs. A set of knowledge of T
15 defined as Th{Z). A wif, w € L, is knowledge of T Z = w. O

Definition 2. A wff, d € L, is indefinste with respect to D 1ff £ k= d and & & =d.
A set of all indefinite wils with respect to I is denoted as DM AX gy ? A set of wifs,
Lixy, is a set of hypotheses with respect to U iff Digy is a subset of DM AXr). A set
of wifs, Ep, ., is an environment of D¢, iff Epys, € 2Pz, We denote a pair of & and
Epy, as (T, Epe, ). In the subsequent discussion, we omit the subscript “(z)" in D or
DMAX when they are clear in the situation, and we simply say “indefinite wif” or “set
of hypotheses”, omitting “with respect to T". [

1 While we uze the propositienal language, L, to make the discussion clear, all concepts in this paper
can be extended to have a subset of the first order predicate caleulus (FOPC), where it is assumed to
be function-free and cach formula is assumed to be universally quantified, 'I'he sat of all ground atomic
fermulas in FOPC corresponds to 5 defined ahove,

? Theindefiniteness of Definition 2 is more general than that of [Minker 82], where the indefinitensss
is determined not by all models but by muntmal models.



Definition 3. Les w be a witin L. A wit. d £ D, is & supporung aypothesis for w owih

respec: fo T, D0 U

hoids, The set of ail suoporting avypotheses Tor w with respect to (2, D) is denoted as
= = FI iy i
SMANZ. D w).

Proposition 1. Suspose that o = SMAYIE. D w). Then. (1) T L {d} is satisdanle.
P =T L ]

B Rl gy [N
and o) S - qdy =W

Proposition 2. i1} [{ T = 1w, then for any D € QDMAN S AX{T. D,w)=D.
2y weDiHwg SMACIT. D owl.
3wl SHANE. DWAY  w)=0. [

Intnitively. d € SMAX(TZ, D.w) is a supplementary wif with which w is entailed
bv T. keeping consisiency with I. Given w, the computation of a set of supporting
hypotheses for w with respect to (I, D) corresponds to abductive reasoning. ° We
should pay attention to the principle of persimony, that is, such supporting hypotheses
are to be minimal as follows.

Definition 4. Let w be a wif in L. A wif, d € D, is a minimal supporting hypothesis
for w with respect to (T, D) iff

de SMAX(S,D,w) A -3d' € SMAX(T,D,w). (d#d A dDd).

The set of all minimal supporting hypotheses for w with respect to (T, D) is denoted
as SMIN(Z,D,w). I T = w, then SMIN(E,D,w) is denoted as 7. [J

Note that for each d € SMIN(Z,D,w), MOD({d}) is maximal (in terms of set
inclusion) in SMAX(Z, D,w). To analyze the properties of SMIN(T, D, w), we define
the set of all models of & that satisfy at least one hypothesis in an environment, Ep,

as follows.

M(T,Ep)® |) MOD(ZU{e}) .

eelp

Proposition 3. (1) M(Z, SMIN(Z, Dw)) € MOD(E U{w}). (2) fwe D, then
M(T,SMIN(E, D, w)) = MOD(E U {w}) = MOD(Z) n MOD({w})). O

Theorem 4. M{Z,SMIN(Z,D,w)) = M({Z,SMAX(Z, D, w)). O

Theorem 4 shows that only from SMIN(Z, D, w), all models of ¥ that contain at
l.-15t one hypothesis in SWAX(E, D w) can be computed.

¥ In [Poole 86| and [Reiter & de Kleer 87], the requirement for each hypothesis, d, is only its
eonsistency with Z, Le, Ep—=d. Our definition with the indefiniteness is more restrictive. The difference
arises when d is knowledge of Z. It is of course not problematie that some knowledge is contained 1n
0. HMowever, the aim of abductive reasoning is to obtain hypotheses that explains an observation when
it cannot be derived from ©. Therefore, indefiniteness is cssential in hypothetical reasoning.



Theorem 5 {monotenicity of supporting hypotheses). Let D and D' be two sets of
hGvpotheses. I D S D', thea M{Z.SMIN(Z. D, w)) € M{Z.SMIN(Z. D' w)). [

Example 1. Suppose that T is a ser of premises, and that I and Da are two sets of
hvpotheses. as “ollows.
T=f{a2ca b ariZ g, —g}
Dy =a, b
I = {tl, b.ooawd aTh oo ba .:}
Irom this, the Zoilowing zets of supporiing Dypotheses can be anrained.
SHWANIZ. Dy er=SMIN(Z. Dy e} = {a. U}
SMAYXIZ. Dyej={a. b, aVvd ¢ bic}
SMINZ.Dae)={avh c}
SMAX{Z. Do bacel={b bac}
SMINIZ. Dy baey={b} [

Remarks (on the comparison with the CMS). The above definition of a supporting
hypothests, s, can be roughly compared with the notion of a ‘support’, =g, of the CMS in
{Reiter & de Kleer 87]. In the CMS, however, all wifs have to be translated to the clausal
normal form and some or all ‘prime implicants’ of a set of clauses, ¢, are considered so
that SMIN(Zs, DM AX e, ¢) for any clause ¢ is computed, where DM AX¢ is the set of
all indefinite clauses with respect to Zs. We focus only on model-theoretic semantics,
and our formalism with any wifs is more general than one with the clausal normal
form. For example, our formalism naturally provides minimal supporting hypotheses
for conjunctive observations such as SMIN(Z, Dy, b A c) in Example 1. Moreover, we
deal with indefinite wifs not by DM AX but by the set of hypotheses, D, which is all
that is needed to construct a set of supporting hypotheses for any wif. Since D) is given
in our formalism, the sets of beliefs can be constructed from £ and environments of D,
and they can be characterized in terms of ezfensions in default logic in Section 3.2. [

3.2 Beliefs and Extensions

One technique for efficient computation of SMIN(E, D, w) for a wif, w € L, can he
considered 1o be a mechanism to keep dependencies or the original assumptions with w
in TMSs, as stated in Section 4. Therefore, the above formalism for abductive reasoning
can also be a basis for a model theory of consistency maintenance, as follows.

Definition 5. Suppose that Ep is an environment of D such that ZU Ep s satisflable.
A set of beliefs of (2, Ep) (denoted B(Z, Ep)) is defined as TRH{Z U Ep). A wif, w € L,
is a beltef of (L, Ep)if w e B(Z, Ep). O

Theorem 6. Let w be a wif in L, then.

(1}if wisabelief of (5, Ep) and d € D whered D d' and d’ = Aeepy & @18 a supporting
hypothesis for w with respect to (T, D), and

(2} if d is a supporting hypothesis for w with respect to (£, D), then for each environment

Ep of D where Ep contains d' such that @' 3 d, w is a belief of (2, Ep). [

Theorem 6 gives a bridge between consistency maintenance and abductive reason-
ing. Theorem 7 shows that MOD(B(Z, Ep)) decreases monotonically as Ep increases.
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Theorem 7 (model monotoniciiy of b t'uutl.e=es} Lev d 2 D, and E. E' be two
envirommen:s ol . Suppose that T .L'. TUZJq{dland TUE atlsi-.',able,

S HEd 2 E chen MODIBITE S ld} )= MODIBIZT.EYy = MO =d}i.
P2 HE S E'. ihen J.-IE}E'-'B{"" NS MODMBIZ.EY. T

Remark. The monotonicity with -espect to premises does not hold. Suppose ikhat
T« Ep is satisfuble. When a new premise p is added to ©. T U {p} U Fp might not be
satistiable. Tlhen. we should discard some hypotheses from Zp to obtain satisSabilitr

of the new set of vellels, which mizht not nave fewer models than the previcus one.

A ser of arpotheses. D is very closely reiated 1o a restiricted case of a set of normal
dejauits in default logic ‘Reiter 30]. For each 4 £ D. d corresponds to the consequen:
ol @ nerinal default of the form :Md /d. We now define a fixed point operator V) as
follows:

NMiz p)(S) L BT {ddeD. ~d £ S}

Definition 6. An eztension of (Z, D) is the fixed point of N M|z py, that is, S is an
extension of (Z,0) if NMigpy(S)=5 O

All results of normal default theories in default logic are applicable to our for-
malism. I[n particular, the property of semi-monotfonicity corresponds to the result of
Theorem 7. Let £, be a maximeal environment in 20 obtained by repeatedly applying
each hypothesis as long as the set of beliefs is satisfiable, then B(T, EY,) is an extension
of (£, D), where MOD(B(Z,Ep)) is a minimal set of models in 2MYP(E), This result
corresponds to the semanties for normal default theories in [Etherington 87].

Example 2 (closed world assumption). The closed world assumption (CWA) in [Re-
iter 78] says that if ¥ does not entail an atomic formula, p, then —p can be assumed to
be true. In our model theory, the CWA can be characterized as:

Dewa ® {~p | peU and pe DMAX g ).

Then, the set of all models of all extensions of (T, Dow a ) is equivalent to the set of all
minimal models of . This result is an alternative form of the generalized closed world

assumption (GCWA) in [Minker 82
4. Truth Maintenance Systems

The logical framework for hypothetical reasoning subsumes various TMSs. This
section shows how the general formalism is related to TMSs, especially to de Kleer's
assumpiion-based TMS (ATMS) [de Kleer 36] and Doyle’s non-monotonic justification-
based TMS (JTMS) [Doyle 79}, which are two different kinds of representative TMSs.
In the following discussions, we distinguish the ATMS from the JTMS mainly by how
the knowledge base is maintained in terms of the model theory. While all models of all
extensions of (Z, D) are maintained by the ATMS, the JTMS selects only the current
model of sume set of beliefs of (T, Fp) reflecting some ‘intended meaning’.

Definition 7. A node is defined to be associated with each atomic formula in U, 2
assumption is an indefinite atomic formula with respect to ©. We denote the set of all

—f —



assumptions as AMAX. A justification is a wit of cthe form:
ay A A A=dL AL AST, D ow,

where m.n 2 0. and ;. 3; [called E"’I-uECEI’.":E'i-ﬂ-SJ dt:'u.:-i.e atomic formulas in [, and w
{cailed conzequent! denates an atomic J;:nr*uum inl or L ';msat,uj Note that any clause
can be transformed 1o a fustification. A justification s called monotenic iff it contains
=o nezaiive antecedents le., n = 0} A monotonic jusiilcation whose consequent s
_ i3 called nogood. A iuetiScation is called non-monoionie iff it contains at least one

serative anteredent (Le.. n 2 11 A ser of premises. T, is ziven as a satisfiable set of

juszifications. We allow for muitiple justifications for one singie node, w. [J

4.1 de Kleer's ATMS: Keeping All Extensions

The AT)S maintains a concurrent representation of all sets of beliefs by labeling
each atomic formula with all minimal supporting hypotheses. In other words, the ATMS
keeps all models of all extensions of (I, D). In the ATMS, T is given as a set of
monotonic justifications, and a set of assumptions, AS, is given as a subset of AMAX.
Then, in our general model theory, the set of hypotheses, I, is defined as follows.

DY (d]d=/\a Ac2", and de DMAX 5 }.
atc.d

For each node w, SMIN(EZ, D,w) (called the label of w) is maintained. A set of all
nodes in a set of behefs of (£,4) (A € 279) is called a contex? in the ATMS.

We can generalize the above characterization of the ATMS with our formalism.
For example, © can be extended to have any non-rflonotonic justifications, any clauses,
or even any wifs. In particular, the generalization of ¥ from Horn clauses to general
clauses is equivalent to one with the CMS [Reiter & de Kleer 87). The following results
give a characterization of the generalized ATMS.

Theorem 8. Suppose that &, AS and D are the same as the above definition, except
that I is given as a set of any wifs. Let w be a wif in L.

(1) The set of all extensions of (£, D) is equivalent to the set of all extensions of (E, AS).
(2) SMIN(E,D,w) # ¢ iff w is a belief of some extension of (Z, AS).

(3) SMIN(Z,D,w) =T iff wis knowledge of £. [J

[n the ATMS, the computation of all extensions of (T, AS) is called interpretation
construction. By the property of semi-monotoniciiy of Theorem 7, each hypothesis can
be treated independently. Therefore, interpretation construction ean be done simply by
applying one assumption after another and ignoring some assumptions, if the ultimate
set of all premises, I, is explicitly available. However, T is usually defined implic-
itly. Because of the global property of T, if & grows, then the environment taken into
account deereases. To avoid redundant computing during interpretation construction,
dependency-directed search (DDS) is utilized with the ATMS.

Example 3. Suppose that £, and I, are {wo sets of premises, and that A5, and A5,
are two sets of assumptions. Let D; and D2 be two sets of hvpotheses for AS; and AS,,
respectively, given by the previous definition. From



“i={avd afhc> . e>g; and
- : I # k]

A5y =41 4 el
we can obtain SMINV(T,. D00 = feb. In this case. we have two extensions of
(T, A5 0 te. 3% {abh and BT, [a.e} . Then. the following premise is added o
¥,.and T- is createq as

T.=5 0 f Ahec Tl }
Sizea T2 = —r o2 no longer indefinita. Therelore. tom

_-153 = {51 - { C}.
we now obtain SMINVIE, D gt = 3. There iz only one extension of (T, 4521, 1e.

o . =i
Bl_.:.{r'l. Iph

4.2 Doyle’s TMS: Selecting One Model

The JTMS focuses on only one model of a set of beliefs at a time. In our model
theory, 1t is implicitly assumned that there are all models of every possible set of beliefs,
Therefore, the JTMS is interpreted as an extended reasoning module for the logical
framework for hypothetical reasoning, whose task can be characterized as to determine
one current model. v, € MOD(Z), where T can contain non-monotonic justifications.
Then, (1) a node w is ‘believed’ (or is labeled in) #ff w € 7., and (2) a node w is
not ‘believed’ {or is labeled out) if w & +.. The principles to determine +, reflect the
{ollowing ‘intended meaning’ of cach justification.

{1} = iz causal: For each in node, w, there exists a justification, j € £, whose conse-
guent is w, and all antecedents of 7 are satisfied by ¢, that is, all nodes of positive
antecedents are in and all nodes of negative antecedents are out;

{2) ve is well-founded: Intuitively, for each in node, w, w does not depend on itself, or
syatactically, there cxists a non-circular proof of w within I

First, we consider only principle (1), that is, the case that +. is a cansal model.
Although a causal model 1s not always a minimal model. when ¥ is a set of monotonic
justifications, =, coincides with a minimal model of Z. However, the minimality is not
sufficient for non-monotonic justifications.

Example 4. Suppose that T=1{a, aA b 2Dec}.

MOINE) contains three models My = {a,b}, M2 = {a, ¢}, M3 = {a,b,c}. The ATMS
allows for all these models, and the GCWA considers two minimal models, M} and M.
The JTMS selects the only causal model, M2, as ., because b has no valid reason to
be ‘believed’, while ¢ satisfies the causality. * [J

Even the causality 13 not enough sufficient for the JTMS to satisfy the ‘intended
meaning’ of the justifications. The causality selects a subset of MOD(X) more widely
than the JTMS notion when there are circular justifications. ®

Y In [Morris 87], the umidirectional property of the justifications of the JTMS is syntactically shown
to solve the multiple extension problems in default logic. From our model-theoretic point of view, this
property correspends lo the cawsalily

7 This was fgured aut by a personal communication with Michael Reinfrank.



Example 5. Supvose that S ={alb =2 2ec —02d alal

* has rwo causal fand minimal) models, M) = {a.3} and Ma = {c.d}. However. in M.
the causaiity of u is vbtained by a justification. 2 = a. which is tautoiogical and should
be ignored. Therefore. ouly Ms reflects the ‘intended meaming'.

Te analvze the weil-ioundedness we define a priority relaifon wiih respect fo min-
‘mality as follows: for each justification except nogoed. (1) negasive antecedents tend
10 be mere minimized than conseguent, and {21 positive antecedents tend w De 1o less
minimized -han consequent. We say that a model i& well-founded i it satisies 2 non-
cireular sriority relation and that a model is admissidie i iv is causal and weil-founded.
Iz Zxample 5. as M- is well-founded, it is admissible. but M is not.

Remarks. The semantics for admissibility is closely related to the perfect model seman-
tics for she sérafified deductive databases in [Przymusinsii 36]. A model M is preferable
to M' i for each @ € M — M, there exists 3 = M — M such that 3 is more minimized
than @. A model M is said to be perfect iff there is no model preferable to M. Note
that every perfect model is minimal and that there may be no perfect model of T. In
Example 5, My is preferable to M, and M, is perfect. [

Thesrem 9. A perfect model of T is admissible. [

The truth maintenance process of the JTMS involves finding an admissible model
from the set of all models. Whenever new justifications are added to &, the process is
repeated. If a nogood justification is added te I, an admissible model might not be
obtained and DDS will be provided with the JTMS. In this case, the JTMS switches
the set.of beliefs (called belief revision). Syntactically, DDS produces some extra justi-
fications and adds them to ©. From the model-theoretic point of view, belief revision
corresponds to choosing some model from the set of models of a new set of beliefs.
We need a criterion for belief revision; intuitively, this is done by minimszing the set
difference between the previous model, v, and the new possible model of Z.

4.3 Assumption-based versus Justification-based

The construction of the ATMS is more straightforward than the JTMS in the model
theory for hypothetical reasoning. The ‘brave’ character of default logic, where each
extension is treated as an acceptable set of beliefs, is very close to the notion of allowing
for all models of sets of beliefs in the ATMS. A major problem of the JTMS is that the
algorithm and the data structure are too complex, and as a result, the formal analysis is
very difficult. Our formalism for the JTMS is much simpler and clearer, and it appears
to give one natural way of interpreting the JTMS as an extended rcasoning module for
the ATMS, so that the current model is selected from all models of sets of beliefs.

However, there is a significant difference between the ATMS and the JTMS. While
the ATMS can have an explicit set of assumptions, A5, the JTMS impliciily defines
AMAX (and/or Dewa). ® Therefore, the role of a set of hypotheses in the JTMS

B If we could specity a set of variable propositions, the resulting JTMS would e very close to the
extended closed world assumption (ECWA) in [Gelfond ef sl 86].



= less important tnan in the ATAS. The spirit of the JTMSE lies in the “intended
meaning o such as the causaity and the well-Toundedress) of the justifications. =0 tha:
ihe =unectead model can be obtained.

5. Conclusion

Thls paper presented a logical ramework for aypothetical reasoning, which formai-
izes rezsoning srstems with incomplete inowledge. The model theory was saown o
be the unifed formauism for Soth anductive reasoning and consisiency maintenance in
inowiedre hases. The kev idea is shas dypotheses are treated as indefinite wiis, making
it possible to telate ihem o resinicted cases of normal defaults. The paper also de-
seribed the formadisin Jor TAMEs in our model theory for hypothetical reasoning, These
results siiow thal nypoibhetical reasomng 15 an important subcase of default logic for
which efficient theorem proving techniques exist.
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