ICOT Technical Report: TR-355

TR-355

Toward Mechanization of Mathematics

by
K. Sakai

Muarch, 1988

C1988, 1COT

hita Kokusal Bidg, 211 (3 406-3151 - &

|[:DT 4-28 Mita |- Chome Telex ICOT 132964

Minato-ko Tokyvo 108 Japan

Institute for New Generation Computer Tre.&rihnn:mh::rgyF

Toward Mechanization of Mathematics
— Proof Checker and Term Rewriting Svstem —

ko Sakai
ICOT Research Center
1-4-28, Mita. Minato-ku, Tokvo 108, JAPAN

ABSTRACT

This paper describes a proof checker and a termm rewrit-
ing system generator developed by ICOT in consultation
with its working groups. Currently in [COT, a new pro-
gramming environment is designed as a typical applica-
tion of these system. The proof checker supports us in
inference on logical connectives and the term rewriting
system generator in inference on equality for verifving
program correctness in such a new environment.

1. Background

1.1 Programming Environment

(Quite some time has passed since we began to be warned of the soft-
ware crisis. A lot of ideas have been suggested to overcome this crisis
and a lot of effort has been devoted to research in softwarc engineering
and mathematical theorv of programs. However, the crisis seems to be
getting more and more serious.

One of the main reasons for this situation lies in the great variety of
programming styles. The area covered by a single approach is quite
restricted, even if it is very effective. Depending on applications, char-
acteristics of programs differ remarkably and, therefore, so does the
knowledge required for programming. Moreover, programming in the

broad sense consists of a lot of stages such as analysis, design. imple-
mentation, documentation, and maintenance. The knowledge required
in each stage is different.

Operating systems (OS) are the first programming aids available to
ordinary programmers. Since an OS is aiming at general users of a
compuier svsiem it has a highlv Zdexible design. The edizor is the mos:
successiul of the utilizies an OS is equipped with. in the sense thar it
is designed as a general ool addressing a common activity of computer
users. The secret of this success is that attention is devoted to the
activity of making text without reference to applications or the stages
of programming mentioned above.

However, OSs viewed as programming environments have a lot of short-
comings because of their generality; there is little room for incorporating
tools especially useful to programming.

1.2 Correctness of Programs

An ideal programming system would help in making correct programs
rapidly. The essence of such a system is the measure for program cor-
rectness. A nalve method conventionally employed to make sure that a
program is correct is to run the program and test whether it produces
the expected result. Though this method is very simple and general, it
is far from efficient or reliable.

Some compilers and interpreters are equipped with debugging facilities
such as tracers to make debugging more efficient. However, ordinarily,
debugging bv these methods is not called “program verification”, since
they provide no guarantee of the universal correctness of a program even
if it is tested hundreds of times on different data.

The term “program verification” usually means to verify the correctness
of a program statically by logical inference instead of running it. In this
case, what a program has to do is represented separately. We call it
the specification of the program. Whatever verification methods are
adopted, the correctness of a program requires that it behaves in the

way the programmer intended. In this sense specification is the starting
point for discussing correctness of programs. Some researchers claim
that specification or verification is useless. Of course, if specification
were more difficult than direct implementation. it would be no help for
us in writing programs. Programming in the broad sense also includes
analvsis and design as we mentioned before. so correctness of programs
involves a lot of factors. Indeed. the problem as stared above merelv
means correctness of implementations.

Correctness of algorithms on an abstract level is much more important,
though in most actual cases it is checked manually (usually by math-
ematical methods). A computer-aided svstem to verify correctness is
even more important during algorithm design, since debugging tools
like tracers are fairly effective in the implementation stage. The most
essential part of programming is the process of reducing abstract rela-
tions between input and output to detailed procedures with concrete
data structures. The programming svstem would be of little use if it

supported us only in the process of generating actual programs from the
detailed procedures.

1.3 Programming and Theorem Proving

When we consider programming in the broad semse, we find it very
similar to problem solving in mathematics. This similarity is illustrated
in Fig.1.

i . . . I
| Requirement Specification - Program

_— I

[
{: Mathematical Problem Theorem Proof

—

Iig.1 Correspondence between Programming and Theorem Proving

Programming begins with requirements; what we want computers to
do. Af first such requirements are seldom rigid. A lot of conditions are
gradually clarified in the design process, and the details are often left to
the common sense of the programmer. The first step in programming is

to convert vague requirements into rigid specifications. Abstract data
structures are usually determined at this stage. Ease of programming
depends to a great exient on the data structures. We are very often
obliged to change the data structure hecause of serious problems that
arise during implementation. Several recently developed programming
languages provide us with abstract data types to represent data at this

abstract level naturally.

The stage described above exactly corresponds to the stage in mathe-
matics where a given problem is formalized and converted to a theorem

(or a conjecture). We need formal definitions for many concepts to write
down a theorem (or a conjecture), which correspond to abstract data

structures in programming. Ease of proof very much depends on the

definitions and we often change the definitions when we find that proof
is difficult.

The biggest difference between programming and theorem proving is
that programs as final products are most important in programming,
while theorems as basically intermediate products seem much more im-
portant than proofs in mathematics. However, this difference is not
essential. In fact, a program whose specification we did not know would
be useless, and a theorem (or a conjecture in the precise sense) without

proof could not be acknowledged as true.

The above similarity suggests that technologies cultivated for program-
ming can be appropriated for theorem proving and vice versa. Based on
this observation, we implemented a proof checker for linear algebra and
a term rewriting system generator, aiming first at mathematical activity
such as theorem proving, but then at programming. We believe that this
approach will make significant contributions to the fifth generation com-
puter system (especially to the intelligent programming system), since
mathematics has a history of more than 2,000 years, whereas compiiter

science is only 40 years old.

2. Proof Checker

2.1 An overview

Automated theorem proving. or automated deduction. has undersone
a quarter of a century of research and development and is today one
of the oldest areas in artificial intelligence. Many interesting theorem

provers and proof checkers have been implemented [Gorden T8, Ketonen
83. Trybulec 85, Shanker 83].

Most of them are devoted to onlv “formal” proofs without gaps. When
proofs to be checked are not stated “formallv”, the “informality” causes
different kinds of problems not encountered in the systems dedicated to
formal proofs, and hence deserves serious investigation which has vet
to be undertaken. A proof checker for informally stated proofs has to
fill possible gaps of inference occurring between proof steps. There are
very often wide gaps. For instance, if a given proof consists of only a
conclusion, the proof checker has to have virtually the same capability
as a completely automated theorem prover to check it. In addition,
the proof checker should have some facilities for acquiring knowledge of
proofs and theorems to achieve user-friendly and efficient proof checking.

A proof checker for informal proofs need many functions such as auto-
mated reasoning and knowledge base functions for mathematical theo-
ries. There may be cases in which a cerfain mechamsm for inductive
inference, or inductive learning, based on the knowledge base is neces-
sary in addition to that for deductive inference. Hence, it is extremely
difficult to construct a practical and powerful theorem prover or proof
checker, where the word “practical” means to handle informal proofs.
Continuing efforts will be required to resolve the difficulties facing us in
making a proof checker that is a good assistant or an efficient aid for
education.

The perspectives of knowledge information processing will provide a
powerful approach to such a proof checker, since it will be considered as
an inference and computation (or ratiocination) system coupled with a

certaln knowledge base. This approach will play a fundamental role in
thart it will:

(1) Give cues to formalization of inductive theory.

(2} Be able to clarify relations between various propositions and meth-
ads.

(3) Help to clarifv mutual relations between mathemarical theories.
and

(4} Provide a new approach to metamathematics, that is, a metathe-
ory not confined to a single particular mathematical theorv, but a
theorv about multiple correlated mathematical theories.

2.2 the CAP project and the CAP-LA system

The final goal of the computer-aided proof (CAP) project is to con-
struct a general proeof checker incorporating a large amount of knowl-
edge common to working mathematicians, with various utilities such as
proof editor, pretty printer (with two-dimensional display), and sym-
bolic manipulator of mathematical formulas.

As a matter of fact it took a lot of effort to implement even a simple
proof checker. A formal language had to be designed for use in writ-
ing theorems and proofs. A lot of facilities for intelligent handling of
mathematical proofs were implemented; proof editing facilities for math-
ematical text with complex structures; proof checking facilities to verify
correctness of proofs; and knowledge base management facilities to store
and retrieve, and maintain the consistency of, many definitions, theo-
rems and proofs. Many experiments on computer-assistance for solving
mathematical problems are now underway to develop an ideal interface
for man-machine collaboration on such activities.

The first prototype of our proof checker is dedicated to linear algebla,
the most familiar branch of college mathematics. We selected a text-
book for a freshman course and designed a formal language for writing
all theorems and their proofs in the book. The language and axiom sys-
tem is based on Gentzen's natural deduction system (NK) with some

additional inference rule. This proof checker is named CAP-LA and the
language is named PDL (Proof Description Language).

The first version of CAP-LA consists of the following four main modules:
1} Svstem controller.

) Proof editor.

-

I

L

{
(
(3) Proof checler. and
(4} Knowledge base manager.

e

The system controller controls the other modules of the system and pro-
vides a man-machine interface. The proof editor is a structured editor
dedicated to mathematical proof and has special knowledge about the
syntax of PDL. It includes a browser editor. The proof checker is a
kernel module of the system. It controls general knowledge of logical
inference and special knowledge of linear algebra and checks whether a
given proof is correct or not. The checker also contains a term rewrit-
ing system to check equality of terms. The knowledge base manager
contains various kinds of systematically organized knowledge such as
definitions, theorems and proofs (checked or not) in the form of terms.
It retrieves information necessary for proof checking, inserts new infer-
ence rules for following proof steps upon cowpletion of checking, and
checks the consistency of the stored knowledge. A sample session with
the CAP-LA system is given in Appendix 3.

2.3 PDL

PDL was designed for the CAP-LA system and over 90 percent of the-
orems and their proofs in the text book mentioned above have been
written 1n it.

PDL will play a central role in the man-machine interaction. PDL
should facilitate reading and writing every mathematical proof, and
at the same time meet the requirement that every written proof in it
be convertible into machine-readable format for further use in proof
checking. Moreover, PDL requires rich expressive power sufficient to

represent various kinds of mathematical proofs. We selected Gentzen's
natural deduction svstem (NK) as its basis. since it seems to reflect
the process of human intelligence incrinsically. and we preferred to have
logical completeness for our system. Appendix 1 lists inference rules in
NEK with their counterparts in PDL. Many inference rules not in the
original NK are necessary to develop mathemartical theories, and each
of them also has its counterpart in PDL.

The basic policies underlining the first version of PDL are as follows:

(1) The syntax of PDL includes the proof templates corresponding to
the inference rules of NK.

(2) It should be a strongly typed system in which all elements are
typed. The user should be able to define new types with parame-
ters. Tvpes are handled in the same way as other logical formulas.

(3) Constants (such as integers and 0-vector), function symbols, and
variables are not distinguished syntactically. All the bound vari-
ables must be bound explicitly by a quantifier. The user should be
able to define new constants and function symbols. Constants and
free variables are logically handled in the same way.

(4) The user should be able to use conjunctions, adjectives, and adverbs

naturally in a proof.

(5) The user should be able to specify the inference to be applied at
each proof step or to skip checking.

(6) The system contains some special knowledge about linear algebra.

Vectors are to be considered as one-column or one-row matrices.

The syntax of PDL will not be detailed here, since it is very easy fo un-
derstand. Appendix 2 shows simple theorems and their proofs described
in PDL.

2.4 Proof checking subsystem

The proof checking subsvstem is the kernel of the CAP-LA svstem.
Proof texts input via the proof editor are converted into proof trees for
proof checking. The proof trees are examined by testing whether each
step obevs the inference rules. If the proof includes logical equivalences
or equalities. they are checked by the term rewriting technique. that is.
whether both sides of the equality in the formula can be rewrictten into
the same term. Term rewriting is investigated by another system. which
we will discuss later in detail. The checker also has specific knowledge
on finite sumimation > . finite product []. and so on. Once a theorem
has been proved it is converted to a rule ready for use in the proofs of
succeeding theorems, and registered in the theory knowledge base.

In proof checking, backward reasoning is mainly performed at each in-
ference step. For example, given an inference step

D E F

. :
it is first checked whether or not there exists a strategy to prove &
when D, E, and F are proved. If not, it is checked whether G is verified
or not by applying rules in the environment where D, E, and F are
proved. After checking 7, the system inserts it in the knowledge base
and creates the new environment for checking the next inference step.
Control is ttansferred to the term rewriting module when a formula with
equality must be checked. After retrieving possible rewriting rules from
the knowledge base, the term rewriting module tries to apply the rules
to the terms on both sides of the equality sign, and tests whether the
two terms become equal by this reduction.

2.5 Further plans for CAP projects

We are currently experimenting with a new system, which should be
naturally called CAP-QJ, to describe some metamathematical theorems
and proofs in QJ [Sato 83, Sato 84]. A compiler and an interpreter for
the programming langnuage Quty are scheduled to be implemented. This

new checker is closely related to the intelligent programming svstem we
mentiond in the previous section. which aims to derive programs from
proofs. Given a constructive proof for a formal specification written in
QJ. a realizability interpreter derives a realizer as an executable part of
the proof. that is. a program. The realizability interpreter is also now
under experimentarion.

We recognized from the experience of the first version CAP-LA thar
PDL can be used to express not only linear algebra but many branches
of mathematics. We also found that the performance of proof checking
1s efficient. Design of the second version of CAP-LA has already begun
with the followings features:

2.5.1 PDL
(1) Extension to higher order logic.

(2) Generic types or type variables, with which users can define more
natural tvpe hierarchies.

(3) User-defined proof templates and extraction of proof templates
from checked proofs.

(4) Suppression of long, repetitious, and tedious proof by admitting
“similarly”, “..." and so on in a proof.

(5) A lot of syntax sugar so that a user can write theorems and proofs
easily.

2.5.2 Proof Checking
(1) Combination of forward and backward reasoning.

(2) Type inference and type checking for proof checking.

(3) Utilizing conjunctions, adjectives, and adverbs in a proof to improve
efficiency of proof checking.

(4) Checking higher order theorems or metamathematical theorems.

2.5.3 User Iuterface

(1} Two-dimensional display of 3, []. matrices. etc.. using a bit-map
display.

{2) Fullyv interactive proof checking.
(3) Stepwise refinement of a proof by collaboration with the system.

(1) Detailed error messages and help messages for the novice user, and
more natural English and Japanese proof forms.

3. Term Rewriting System Generator (Metis)

Manipulation of formulas is the most onerous part of mathematical ac-
tivity bv ordinary researchers. In general, it includes deep and com-
b

plicated inference processes involving equality, “=". We implemented a
svstem called Metis as an efficient support tool for this kind of inference.

A set of rewrite rules is called a term I‘&WTitiﬂ.g svstem or TRS. The
theory of TRSs has a wide variety of both theoretical and practical
applications. It provides models for abstract data tvpes, operational
semantics for functional programming languages, and inference engines
for automated theorem proving with equality.

A TRS is called complete if it is terminating and confluent. Metis
generates a complete TRS from a set of equations automatically, semi-
automatically, or interactively. It is also an experimental tool with the
various functions needed for the study of TRSs.

3.1 Preliminaries

We assume the reader is familiar with the following concepts [Huet 80]:

(1) Terms, ground terms, occurrences, subterms, substitutions, uni-
fiers, and most general unifiers.

(2) Reduction (or rewriting) by a TRS. Termination and confluence of
a TRS. Irreducible forms of a term with respect to a TRS.

- 11 -

(3) Eguational theories and word prodlems.

(4) Superposiiions, critica! pairs and the Knuth-Bendiz completion pro-

cedure Inuth 70, Huet 81},

In what follows. we will denote the set of function svmbols bv F, the
set of variables by V, the set of all terms constructed from F and V
bv T{F, V). and the set of all the ground terms constructed Tom F
by T(F). The notation cls! denotes a term with s as its subterm. In
this notation. cf] represents the conmtext where the subterm s occurs.
Therefore, ¢{s'] denotes the term obtained by replacing the occurrence
of s in ¢[s] with s'. Similarly, we will use the notation ¢[sy,...,s,] to
represent a term with s;,..., s, subterms, and ¢fs],..., s}] for the term
obtained by replacing each s; in ¢[sq,..., s,] with s;. Substitutions are
denoted by the greek letter #, possibly with subscripts and primes.

One step of reduction is denoted by = and the reflexive transitive clo-
sure of =, i.e. several steps of reduction (possibly no steps), by =. An
irreducible form of ¢ is denoted by tL. If R is a terminating TRS, then
every term f has an irreducible form t|. Moreover, R is confluent if and
only if the irreducible form t| is unique. In this case, the TRS R is said

to be complete and the irreducible form ¢} is called the normal form of
L.

We use the svmbol ~ for equations in an equational theory, and the
symbol = is taken to mean svntactical identity. Let E be a set of
equational axioms. T(FE) denotes the equational theory axiomatized by
E. i.e. the least congruence including E.

Given an equational axiom system £, the Knuth-Bendix completion
procedure is well known as a method to find a complete TRS R such
that t; =~ to in T(E) if and only if £, | = ta} with respect to R for any
two terms #, and f». It is obvious that such a TRS can be viewed as an
algorithm to solve the word problem of T(E).

The kernel function of Metis is the completion procedure, significantly
improved with better capabilities and operability by the incorporation
of manv new facilities. It has a lot of functions needed before, during,

- 12 —

and afrer generation of TR3s. For example, Metis can provide us with
several kinds of ordering me:hods of terms, but the user can orient an
equation with little knowledge of the ordering methods. and obtaiz an
appropriate rewrite rule that does not violate termination of the TRS. If
the equation cannot be oriented to either direction. Metis offers the user
several kinds of recipe. It manipulaies inecuations as well as equations
and provides special handling of asscciative-commurtative operators in
the completion procedure.

Several characteristic features of Metis will now be described. Appendix
4 lists several Metis execution examples.

3.2 Well-founded ordering of terms

As can be seen from the above description. a key point of the completion
procedure is ensuring termination of a TRS. The standard way to assure
termination of a system is to introduce a well-founded order on the
objects of the system and show that the operations in the system always
reduce the objects with respect to the order.

Well-founded orders < on T{F,. V) with the following properties are
usually used on TRSs. '

(1) If t; < to, then 8(#;) < 6(ts) for any substitution 8.

(2) If t; < to, then ft;] < cfta].

Property (1) is called stability and (2) monotonicity. If there is a mono-
tonic and stable well-founded order on T(F, V') such that [> r for every
rule | — r, it is obvious that the TRS terminates. There has been a
lot of research on such ordering methods, such as the well-known Der-
showitz recursive path ordering [Dershowitz 82]. The original version of
the recursive path ordering is defined on the set 7(F') of ground terms.
Here, however, we extend the definition to the set 7(F, V') of all the
terms.

Let < be a partial order on the set of function symbols F. The recursive
path ordering < of T(F, V') is then defined recursively as follows:

(13 For a variable v, there ars no terms ¢ such that ¢ < v.

(2) For a non-variable term t = g(¢..---.f,) and aterm 5. § < T if
and only if

(2-1 there exists j such that s < ¢; or

(2-2) 5= f(s1,-"+,3m) and s; < t for all { and

(2-2-2) f=goand (s1,-**,5m) Z (t1,+++,ta), Where ¥% is the multi-ses
ordering [Dershowitz 79] induced by <.

In (2-2-2) of the above definition, adoption of the multi-set ordering is
not always necessary. If the function symbol f is varyadic (i.e. takes an
arbitrary number of arguments) and the order of the arguments does
not affect the value of the function (for example, 3 and [] representing
finite summ and product), the multi-set ordering is probably the most
reasonable. However, if the function symbol f has a fixed arity, the
lexicographic ordering is more suitable in many cases. There may even
be cases where the kachinuki ordering [Sakai 85] is the most appropriate.

Metis can handle any of these three versions of the recursive path or-
dering, namely multi-set, lexicographic, and kachinuki. The user can
employ arbitrary combinations of them, function by function. As long
as the lexicographic order is applied only to function symbols of fixed
arity, any combination defines a monotone and stable well-founded or-
der on T(F, V). Moreover, if the underlying order < on F is total and
the lexicographic or the kachinuki ordering are emploved for any func-
tion syvmbol, then it is a total ordering on the limited domain 7(F) of
the ground terms, a very important property as we shall see later.

Metis converts axioms to rewrite rules [— r such that | > r. Metis
allows the user to define the underlving partial order < on F incremen-
tally during the completion procedure. If the user knows little about the
above ordering method, Metis can suggest what ordering is needed on F
in order to orient an equation to a certain direction. Thus, when both
are possible, the user just has to decide which direction an equation
should be oriented to.

_],1__

3.3 Associative and commutative operators

The weakest point of the Knuth-Bendix completion procedure is re-
vealed by equations that cannot be converted to rules without violating
the termination of the TRS. The most typical example of such axioms is
the commutative laws. such as A+ B ~ B+ A. Encounter with such an
equation causes unsuccesstul stop in the procedure. Metis has several
countermeasures to deal with this situation. The general measures wiil
be described later.

It 1s clearly the commutativity of operators that is the main source of
the above failure. In many cases, commutative operators are also asso-
ciative. Metis has a specific countermeasure effective only against the
commutative laws combined with the associative laws of the same op-
erators. A function svinbol is called an 4C-operator if it satisfies the
associative and the commutative law. Metis is equipped with an al-
gorithm of special unification for AC-operators (called AC-unification)
devised by Fages [Fages 84] and can execute the AC-completion proce-
dure based on Peterson and Stickel’s principle [Peterson 81].

For example, if Metis is told that + is an AC-operator, then the axioms
A+B~B+Aand (A+B)+C >~ A+ (B + C) are acquired implicitly
and AC-unification and AC-reduction are activated for +. Thus, Metis
can generate 0+ Y + (=(X +Y)) = (=X) 40 as a critical pair between
the same two rules (—.X) + X — 0 by AC-unification, since

0+Y +(—(X+Y) = (- X))+ X +Y+(—-(X+Y)) = (-X)+0.

If it has the rule 0 + A — A, the above critical pair 1s reduced to
Y+ (—-(X+Y)) ~ —-X by AC-reduction.

As shown in the above example, an AC-operator is supposed to be a bi-
nary function syrmbol and Metis allows us to use infix notation for binary
function symbols. Inside Metis an AC-operator is treated as if it were
varvadic. For example, the term t,+---+1, is converted to +(f,,...,%2)
with a varyadic function symbol +, in whatever order the operator + is
applied to the arguments. The multi-set ordering is assumed to be the
ordering method for AC-operators unless otherwise specified, since the

- 15

above treatment makeas it the most reasonable ordering. as mentioned
above.

3.4 Orientation-free rules and S-strategy

There exist many equations other than commutative laws which can-
rot be converted to terminating rules, The approach of incorporating
special unification aigorithms for such equations has been studied sys-
tematically bv Jouannaud and Kirchner [Jouannaud 8§4].

A simple trick to handle non-orientable equations is introducing a new
function symbol. For example, if the equation A% ~ 4 x A cannot
be oriented to either direction, a new function symbol sgquare is intro-
duced and the problematic equation is divided into the two equations
A? =~ square{d) and A x A ~ square(A). Now Metis can continue
the completion procedure, since both equations can be oriented left to
right. This technique seems to be too simple, but the effect is worth
implementation [Knuth 70, Sakai 84].

A more radical remedy for such equations is the adoption of orientation-
free rules. This remedy is called the unfailing completion procedure
[Hsiang 85, Bachmair 8]. Metis is equipped with an extended version of
the unfailing completion procedure called S-strategy devised by Hsiang
and Rusinowitch [Hsiang 85]. The S-strategy has enabled Metis to ma-
nipulate not onlv non-orientable equations, but also inequational axioms
as well as equational axioms.

The S-strategv can be viewed as a kind of refutational theorem proving
technique for systems of equations and inequations. Before introducing
the S-strategy, we will extend the concepts of reduction and critical pairs
and introduce the concept of extended narrowing and subsumption. Let
us fix a monotonic and stable well-founded order < on 7(F, V).

A term t is said to be reduced to another term u by an equation [>~ r (or
r = [}, if t = u and there exists a substitution # such that ¢{f()] = ¢ and
¢[@(r)] = u. This reduction is called ertended reduction (by an equation)
and denoted also by t = u.

16—

Let Iy ~ ry (orry = 1) and [o = ra {or ro == [2} be equations. Let s
be a non-variable subterm of I such that [, and s have a most general
unifier . Let o = ¢fs]. If 8({1;) 2 #(ry) and 0(i3) £ §(r»). then the pair
8(ciri]) =~ 8(rs) is called an eztended critical pair between [, =~ r; (or
ri==) and Is ~ ro (or rp o)

If everv rule [— r has the property that [> r. the above definitions are
natural extensions of the ordinary reduction by a rule and the ordinary
critical pairs between rules. For exampie, if [= r, the condition that
t = u in reducing ¢ to u weakens the rewtite power of the equation [~ r
exactly to the same level as that of the rule [— r. since < is stable
and monotonic. Similarlv, if [> r; and [» = ro, the set of all extended
critical pairs between equations I; ~ r, and [lo =~ ry is equal to the set
of all critical pairs between rules {; — r; and [, — ro.

Let [; = 7y (or ry ~ [;) be an equation and Il % ro (or ro % o) be
an inequation. Let s be a non-variable subterm of /o such that [, and
s have a most general unifier §. Let Iy = ¢[s]. If #{l;) £ 8(r1), then
the inequation #{c[ri]) % #(r2) is said to be narrowed from Iy % rq (or
ra 9% ls) using) ~ ry (or rp = 0;).

An equation ¢ ~ u is said to be subsumed by other equations [} ~ r; {or
ry = 11), .., In =1y (or 1y == 1), if there exists a substitution 6 such
that c[8(l;),...,0(lp)] = t and ¢[f(r1),...,0(r,)] = u. An inequation
t % u is said to be subsumed by another inequation ! 2 r (or r £ 1), if
there exists a substitution ¢ such that #(!) = ¢ and 6(r) = u.

Unfailing completion is a modified version of ordinary completion em-
ploving extended critical pairs and extended reduction instead of the
ordinary ones; and the S-strategy can be viewed as the unfailing com-
pletion with refutation by extended narrowing.

Suppose that a system of equational and inequational axioms is given
together with an equation or inequation to be solved (called the target
formula). The S-strategy is the following procedure:

Step 0: Set E to be the given axiom system plus the negation of the
target formula (Skolemized if necessary). Set R to be empty.
Go to Step 1.

Step 1:

Step 2:

Step 3:

Step 4:

If £ is empty. the current value of R is a complete set of
equations and inequations deduced from the axioms and the
negation of the target formula. in the sense that neither new
equartions nor new inequations can be derived. Since R is also
consistent. the target formula cannot be deduced from the ax-

ioms. If E is not empty, go to Step 2.

£

Remove an equation ¢ =~ u or inequation ¢ 2% u {called the

ruling formula} from E. Go to Step 3.

If the ruling formula is an equation, move all the equations
[~ r and all the mmequations [% r from R to E such that
either { or r is reducible by the ruling formula and remove
all the equations subsumed by the ruling formula from R. If
the ruling formula is an inequation, remove all the inequations
subsumed by the ruling formula from R. Go to Step 4.

Append the ruling formula to R. Construct all the extended
critical pairs and all the narrowed inequations between the
ruling formula and all the equations and inequations in R.
Append them to E. For each equation ¢ =~ u or inequation
t 22 uin E, find irreducible forms ¢| and u| with respect to
equations in R. If there is an inequation ¢ % u such that ¢]
and u! are unifiable, then stop. A confradiction is detected
and, therefore, the target formula is deduced from the original
axiom syvstem. Otherwise, let the new E' be the set of equations
t| >~ u] such that t] # u] not subsumed by any equation in
R and inequations t| 2 u| not subsumed by any inequation in
R. Go to Step 1.

The unfailing completion differs from the S-strategy only in that it docs

not treat non-ground inequations. If the ordering < is total on the

set T(F') of all ground terms, the S-strategy is logically complete and,

therefore, so is the unfailing completion.

REFERENCES

[Bachmair 86] Bachmair., L., Dershowitz, N., and Plaisted. D.A.: Com-
pletion without failure, private communication (1956

[Barendreg: 34] Barendregt, H.P. The lambda calculus:Its symrax and
semanrics, Studies in Logic and the Foundaticns of Mathematics
103, North-Holland, revised edition [1284)

[Dershowitz 79] Dershowitz, N. and Marna, Z.: Proving termination
with multiset orderings, Communications of the ACM 22 (1979
465-467

[Dershowitz 82] Dershowitz, N.: Orderings for term-rewriting systems,
Theoretical Computer Science 17 {1982) 279-301

[Fages 84| Fages, F.: Associative-commutative unification, Tth. Interna-
tional Conference on Automatic Deduction, Lecture Note on Com-
puter Science 170, Springer (1984) 194-208

[Gorden T9] Gorden, M.J., Milner, A.J., and Wadsworth, C.P.: Edin-
burgh LCF, Lecture Notes on Computer Science 78, Springer (1979)

[Hilbert 39] Hilbert, D. und Bernays, P.: Grundlagen der Mathematik
II, Springer (1939)

[Hindley 86] Hindley, J.R. and Seldin, J.P.: Introduction to combina-

tors and A-calculus, London Mathematical Society Student Text 1.
Cambridge University Press (1986)

[Hirose 86] Hirose, K.: An approach to proof checker, Lecture Notes on
Computer Science 233, Springer {1986)

[Hsiang 35] Hsiang, J. and Rusinowitch, M.: On word problems in equa-
tional theories, private communication (1983)

[Huet 80] Huet, G. and Oppen, D. C.: Equations and Rewrite Rules: a
survey, Formal Language: Perspectives and Open Problems Aca-
demic Press (1980) 349-403

[Huet 81] Huet. G.: A complete proof of correctness of the Knuth-Bendix
completion algorithm, J. Computer and System Science 23 {1981)
11-21

[Huet 82] Huet. G. and Hullot, J-M.: Proofs by induction in equational
theories with constructors. J. Computer and Svstem Science 23
(1982) 239-266

[Jouannaud 84} Jouannaud, J-P. and Kirchner. H.: Completicn of a set
of rules modulo a set of equations, 11th ACM POPL (1984)

[Ketonen 83| ICetonen, J and Weening, J.5.: EXL — an interactive proof
checker, user’s reference manual, Department of Computer Science,
Stanford University (1983)

[Knuth 70| Knuth, D. E., Bendix, P. B.: Simple word problems in uni-
versal algebras, Coruputational Problems in Abstract Algebra, J.
Leech (ed), Pergamon Press, Oxford, (1970} 263-297. alsoin: Auto-
mated Reasoning 2 (Siekmann and Wrightson eds.), Springer (1983)

[Lang 83| Lang, S.: Linear Algebra, Addison-Wesley, 2nd edition (1983)

[Ohsuga 86] Ohsuga, A. and Sakai, K.: Metis: a term rewriting system
generator, RIMS Svmposium on Software Science and Engineering
(1986)

[Peterson 81] Peterson, G.E. and Stickel, M.: Complete sets of reduc-

tions for equational theories with complete unification algorithins,
J.ACM, vol 28 (1981) 233-264

[Sakai 84] Sakai, K.: An ordering method for term rewriting systems,

TR-062, ICOT (1984)

[Salkai 85] Sakai, K.: Knuth-Bendix algorithm for Thue system based
on kachinuki ordering, TM-0087, ICOT (1983)

ato 84] Sato, M. and Sakurai, T.: Qute: a functional language base

S 84| Sato, M. and Sakurai, T.: Qut functional language based
on unification, Proceedings of the International Conference on Fifth
Generation Computer Systems (1984) 157-165

— 20—

[Sato 83] Sato. M.: Typed logical calculus, TR-83-13. Department of
Computer Science, University of Tokyo (1983)

[Shanker 83] Shanker, N.: Towards mechanical metamathematics, Jour-
nal of Automated Reasoning, 1 (1283) 407-434

[Tryvbulec 83] Trybulec, A. and Blair. H.: Computer assisted reasoning
with Mizar, IJCAI'835 (1985) 26-28

Appendix 1. Proof Description Language (PDL) for Linear Algebra

1.1 Logical connectives

caatradisticn L [contradictisn)
A\ = {negation’
3 A land)
[W {or)
-> and <- ~— {if ... then ...}
<=2 + (...if and only if ...}
11 v (for all)
some =2 (for some)
some! =! (there exists only cne ...)
- = (equality)
{...18 of type ...)
if A then 5 else ¢ if-then-else function

1.2 Mathematical predicates

=g < (less than or equal to)

< < (less than)

>= > (greater than or equal to)
> > (greater than)

1.3 Primitive types and type constructors

sca scalar

mat matrix

nat natural number (0-origin)
seq(r) sequence of 75

parm permutation

m..n integer from m to n

22 —

1.4 Primitive functions

cal_siza{x:ma%}nat
row_size(a:aat)inat

(a:mazli:1..z0l_sizela),

{maz{i:i..n:za3, J:1..m:zat>

flr.j)isca) imas

leng=h{s:seq{r)) :nat
(7:seal(r)[i:i..lengsa(o)]):r
(sea{i:i..n:nat}kf(i):7):seq(r)
domain(p:pern) :nat
sga{p:perm):sca
id(n:nat):pera

inv(p:perm) :pernm
(p:perm=g:pern):perm

(sum{i:m..n}f(i1):5ca) :sca
(sum{i:perm<m>}f{i):3ca):3ca

(prod{i:m..nkf(i):s5¢ca) :5ca
(prod{i:perm<m>}f(i):sca):sca

23

column size of & matix

row size of a matrix

iement of a matrix

funciicnal defnition of a marsix

length of a sequence

elemens of a sequence

functional definirion of a sequence
domain of a permutation
signature of 2 permutation
identity permut ation

inverse of a permutation {~1)

composition of permutations (o)

finite indexed sum ¥

finite indexed product J]

1.5 Proper NK rules and their variants

1.5.1 =, L rules

S1

sizca

assuma A :

| H i
) s . !

cantradictiaon

end_sinca

S16

A

since

assuma Y4

contradiction

end_since

52

EEES :h. EERY

VA
hence contradiction

— 24 —

1.5.2 A rules

E :
L '
| S A
| o= E A =
| . FIE; B
|1 ! haoce A& 0
I -
S5 1A B ALB
! A[B] hence A[J]
]
. s 5
Sa* A, - An :
| Al f*'-. = .l"‘t 4!1 .'ln
I hence A& --- 24,
Ii Sé* 1_11 -'""- e -"‘"- 14-11 -{1& T &-r'lrl
A; hence A,

=

1.5.3 Vv rules

o
(=]

AlF
he=ca Al S

AlE
hencz C
since divide and conguez

| case A

e

| case B

C

end_since

(o

since divide and conguer

case A4

C

alsa

c

end_since

i

| S5+ 4, A

E | henca ;] - |4,

! |

1 -

| TS B |

! i ohanze C :
I

: gince dirvida and congusr |

i cisa 4

3T

C

cass oy

C

end.sinca

C

sinca divide and conguer

cagse A; |

Q.J

case A,

alsa

-

end._zinca

R

=3

1.5.4 — rules

1ry
¥l

[Be-A}

5- :
| 1—3 =
I end_since
A-»B [Be<-4]
59 A— B A :
B A
henca B
Ak oo BAL-2H
[B{""_-ll.t e &_-j.ﬂ]
['41]' T [-4n] sinca
Sa* : assume A;,...,4n |
B !
Ay Ao nA,—= B E
end_since
Ak oo EAL-B
(Be-d:k -+ &4,]
SOl A A4, B 4 An :
B 4
Ap
hapnca B

zs

1.5.5 = rules

A<->8
sinca

! enly-iZ_pars
| assuzme A4

B

B A
=S | if_pars
‘ assume B

A

and_since

: : A<-»B
S11 A—~B A5 :

B[A] A(B]
hence 5[4

1.5.6 ¥ rules

Hereafzer, we adopt bolcface lerters for representing sequences of n symbols {or combi-
nations of simbois). For example, a and =x : t deaote 2;,...,aq and Sxy ity ... Sxac:
tn, respectively.

ali{z ¢z} F
la: f} siacs ;
N . | let a:t be ardiirary |
512 Ala) = |
Yzt Az) Ala) I
end.since
: : all{z : t}A(z)
513 | Yr:t A(z) a:t :
Afa) a:t
hence A(a)
all{x:t}A4(x)
(a:t] since
. let a:t€ be arbitrary
: :
S12* Afa) :
Yx ot A(x) Ala)
end_since
: : all{x: t}A(x)
S13* Vx:t A(x) a:t :
A(a) a:t
hence Ala)

t a does not occur in the assumptions and the consequence of the proof figure and
is a new free variable in the proof in PDL.

t a do not occur in the assumptions and the consequence of the proof figure and
are new free variables in the proof in PDL.

1.5.7 = rules
: . Ala) :;
S14 Afa) a:t i
henca somaiz ::irAdiz) .
.'LS'?U Szt Alx) some{z : tFA(z)
- Alez i ¢ A(x)) let a:t be such that A(a)
: : Afa)
S14* Ala) a:t :
dx:t AI[':{:I a-t
hence some{x:t}rd(x)
+ : : '
go0* 3x it Alx) some{x : t}A(x)
- Alex -t A(x)) j let a:t be such_that A(a) N
t ez :t A(z) is the notation introduced by Hilbert [Hilbert 39] to represent an

object z satifving A(z) if there exists. a is a new free variable in the proof in

PDL.

ex : t A(x) is the notation to represent a sequence of objects x(= z1,...

' &n)

satifying 4(x) if there exdsts. a is a sequence of new free variables in the proof in

FDL.

1.5.8 rules for other logical cannectives

.I.

scma!ldz : t}.—l{::,l

since

axistazca

[AB)p 4 A
atelle
1 : . a:t 1
U1 ;]
A(a) a:t b=c | unigquness
3zt Alz) i | let b,c:t be
‘ such_that A(b), A(e)
I h=2¢
end.since
: lz ¢t Ax) .
ome!{zr :t}Alz
U2 Alez i t Al{z)) A V{y: tHAW) L =)

—y=cz:t Alz))

let a:t be such_that Afa)

b or ¢ does not oceur in the assumptions and the consequence of the proof figure

and is a new free vanable in the proof in PDL.

@ is a new iree variable in the proof in PDL.

A

-4

A then 5 else ¢ t

5 = if

t=1if A then

=if 4 then s alse ¢

t alea ¢

1.5.9 Other useful rules

.i.

E..J..]_I.a_!] e i.'lu;i,a]:!:a . t}

E‘E,:'

TxtiAx A A Anix — Bix

EALIx! -» BixD

let a:t ba such that 4yia;,...,dnia;

512: a.ll'[K H t}'::‘i.]_{:{\& LR
T since
S8+
|
! | Bla)
end_since
513%
+ -
so= Ai(a)
-'Lu{:a:.l
a:t

a do not oceur in the assumptions and the consequence of the proof figure and

Wxct[A (x) AL A An(x) = Bix)] Ai(a) .- A (a)

Bla)

all{x:t}(d{x)&k +--

hence Hla)

EAn(x) -> DB(x)

are new distinet {ree variables in the proof in PDL.

1.5.10 Axioms and definitions

| | axiom
Al | A is a mathematical axiom | A
! | end_axiom
D13| ¥x:tldix; is dedned as Bix!] i let Ala:tj:<->Hla)
TR tlAx] A o Ada{x)— | les fla:t):=g(a)
D2 fix) is defined as g{x)! | <= Aj(alk oo Edn{a)
| Zuncsion
. . 1
[a: t][di{a)] - [Am(a)] i fla:t):t
: ¢ assume A;(a),....Adn.(a)
t Sty : ¢t B(a.y) attain Bla, f(a))
D3 Wt Agix) A A Ar(X) — : :
f(x) is defined as such y < ¢ | some! {y : t}B(a,y)
that satisfies B(x, y)] : -
end function

1 A is a new predicate symbol.

t fis a new function svmbaol.

1.6 Rules for equality

I F1t a=4a f a=a
5 |
22 a=} ! a=3
| h=a | hence b=a
i | E E
' a=h
E3 a=12% b=c¢ :
a=c b=c
hence a=c¢
: a=bh
E4 a== Ala) :
A(b) Ala)
henca A(h}
E5 a = ﬂ=lr3
Hal = D) hence t(a)=t(b)
E6 a=b awb
Afa) « A(h) hence Af{aj<->:4(h)
ay = a) ty(ay)=ta{aa)
_— ti{a1) = t1(a})[= t2(az)] a2 =a :
? : -tn-_I[ﬂﬂ.—‘l]'
t1(a1) = tn(an) =ta(an)
! =ﬂ‘rl 1'1.1{(,11]":-:'."1.2{{1'3}
.'1.1lir11:l — A4 Iiﬂ:'l:I[E A'l.';[ﬂzjl] iy = El-rz H
E6*

Ar(ar) & Adnlaq)

<=>An_1{dn-1)
<=>An(an)

.- 35 —

1.7 Rules for natural numbers

all{m:aazrA(m)

| i
|
| I since induction on m |
i | base E
nnatllding] i __]_;m
T : stat
N1 4i0) Ain = 1) i let n:mat be arbitrary
¥m : nat A(m] [ind hyp-is A(n]]
! | Aln+1)
Ii end.since
E [: nat|[vm : natm < n = A(m)]
f :
‘ Aln)
Yk :nat A(k)
all{m:nat}td(m)
: since
N2 course_of _values_induction om m
let n:nat be arbitrary
[ind hyp-is all{m:nat}(m<n->A(m))]
i :
| A(n)
end_since

Sk :nat Al

pz:nat A(z) :nat A A{uz :nat A{z))
AY{m:nat}{m < uz:nat Alz) — —A(m))

4

somelk:natiA(X)

let n:2at be mizizum such that Aln)

n does not accur in the assumptions and the consequence of the proof figure and
is a new free variable in the proof in PDL.

pz : nat A{z) is the notation to represent the least natural number z satifying
A(z) if there exists.

1 nat 1 nat
n=0VIim:natin=m+1 n=n+0=04+n
l:nat n:nat m:nat n+l<m-+! n:nat m: nat

n<m n+m=m<+n

n:nat m:nat n<m+1 n:nat m:nat [I:nat

n<mVn=m (r+m)+l=n+(m+i)
n:nat m:nat n:nat m:nat

Slinatin<iam=<l) A:nat(l<nAl<m)

ninat m:nat l:nat n<m m<| i nat omo:nat
n <l nemVn=mvyvVvm<n
m : nat m:nat n:nat m<n nEm
-(m < m) L
m:nat n:nat m<n n<m m:nat n:nat m=n n<m
L m=n
m : nat l:nogt n:nat m:nat n<|
0<m m+n<m+l

— 37 —

1.8 Rules for 3 and J]

2] L sualA(DF) = sua{A{iirgli) |
: E{y:aduct{,-l{i}}:[i] = sroducs{A(i) g(i)] [
. Fin) = gin) isi:.ca .
lp-z_ Eﬂ;} = Eg() i let 7 be arbitrary such that A(n) |
[P:_] Alad Alx} : i
3 arnl r E
R N Jl'l,'.‘l__l‘:;'ln:l i
fiiy =Tl eH |
Ali) A() | |ead.siace i
[A(n)] LsualA(}F(E) = 0 |
: [product{4()}f(z) = 1! .
; L since
P2 Zf (2)=0 let n be arbitrary such that A(n)
{PET] ALY : |
) contradiction]
[[r =1 |
Aff) and_since
Aln :
SO
: : hence sum{A(I)}f(i) = f(k)
' Alk) n=k [hence product{A(:)}f(i) = f(k)]
F3 z fli)y = fik) since
[P37] Ali) let n be arbitrary such that A(n) |
[1‘[£6) = £(8)
LAGi) n=x
and_since

t n does not occur in the assumptions and the consequence of the proof figure and
is a new free variable in the proof in PDL

— 38

1.

sun{d(£}F7{:) = 0

[[fe)=0

Ali]

[A(n]] siace
. :- | lat n Se arhiftrasy such thas Aln)
| ":1_ = D |
P4 fin) W
Y =0 1l jaeo
Al -
end_sincs
_ | producs{A(}5(i) = ¢
(Al | since
! : | let n be arbitrary suca that A(n)
! fln) =1
Py : :
H fla)=1 | fin)=1
Al ’
and_since
: : A(k)
Alk Eyv=10

f(k)=o
hence product{A(:)}f(z}) = 0

n does not occur in the assumptions and the consequence of the proof figure and
is a new free variable in the proof in PDL

iP6 S Cc=ncC

l.n
iP§’ I[c=c"
il..n
P7 Ytt+t)=3 i+ t2
Al4) Al AlH)
PT [Mtat)=T] 1]
AlH) AL AGD)

D 3D 0ED 3D o

Al1) B(1) By Al

s JIIe=ITT1¢

A(3) B(j) B(j) Al)

P9 Sen=cH i

Al Al
{Pg’ [TeS= (I v°
A1) Als)

P10 STe= S ot D

Al AlDaBli) Al Aa=B(3)

P10’ M= I ¢ II ¢

Ali) A(AB() AlDASB()

{P11 S A=)

AG) Aj)
P11’ I re= [f)
Al3) AL

t (does not have occurences of the free variable i.

t f() does not have occurences of the free variables 1 and ;.

1.9 Rules for functionally defined matrices

\ : k:i..m
ilh'Il 1..-- ¥ -.:.-u.u I:
| zt fli, kg tite.m
g (. j}) []E kence k1) =
(mas<i:i..m,j:1..n3f (8,700 0k, 1]

A2 colosize(mat{i:l..m,j:1. .n}f{i, 7)) =m
AL3 row_size(mat{i:i..m,j:1..n}f({, 7)) =n

1.10 Rules for sequences

length(seq{i:1..m}f(i)) -=

k:1..m
(seq{e:1..m}f(i)) (k] = f(k)

[seqli:1..m}f(i) = seq{j:1..m}f(5)]

seq{i:1..m}f(i) = seq{j:1..m}gls)
m=n & all{i:l..m}f(i}=g(s)
all{i:1..m}f(i)=g(i)
seq{j:1..m}f(7) = seq{k:1..m}g(k)

41 —

1.11 Rules for permutations

PE1 id(n) :perm <n > sgn(id(n)) =1
prparm < n >
p~liperm<n> sgn{p~!) = sgn(p)
piperm <> goperm<n >

PE3 ;
peg:perm <n> sgn(pog) = sgn{p)sgniq)
F piperm <n >
PE= idinjep=poidin)=p
. pipsrmon =
PES pep~! =id(n) p~lep=i1idin)
PES prperm<n> gipermEn> TipErm<n >
(pogqlor=pol(gor)
t:1l.n
PE —
f id(n)ji] = i
PES p:perm<n> g :perm < T > t:1l.n
(p e q)fi] = pla[s]]
PES piperm <n
sgn(p) =1V sgn(p) = —1
{PE10 pirperm<n >
[T fGy =TI sl
i:l..m il..n
tPELL g:IpETI <1 >
Yo fley= Y, fleea)= D, fleep)
Piperm<nz pipermans pipermanly
tPE12 > Y= 3 f)
piperman FipeTMIA N >

t f() does not have occurences of the free variable 7.

t f() does not have occurences of the free variables p.

— 42 —

Appendix 2. Example Proof in PDL

The following is a simple theorem on the determinant of a transpose and its proof
quoted from {Lang 83].

Theorem. Let A be ¢ squere matriz. Then Det(A)=Det(*4).

Proaf. In Thegrem 3§, we bad

(%) Dez(d) =Y €0)aa(),1 " Cafn),n-

L

Let & be 2 permutation of {1,...,n}. Ea(j) =k, then ¢~ '(k) = j. We can
therefore write
Ge(f)y = Cko=t{k)

In a product

Tz(1),1 """ Tng=1(n)s

each integer k from 1 to n occurs precisely once among the integers o(1), ..., a(n).
Hence this poroduct can be written

@1,6-1(1) """ On,o=3(ndy

and our sum () is equal to

E Efﬂ'_i}ﬂl", 113 Gne—i{n)s

-

because e(o)=¢c(o?). In this sum, each term corresponds to a permuta-
tion . However, as ¢ ranges over all permutations, so does o~ because a
permutation determines its inverse uniquely. Hence our sum is equal to

[**) Z E{d)ﬂl.ﬂll} e ﬂn,r.r_{n]-

=

The swm (#+) is precisely the sum giving the expanded form of the determi-
nant of the transpose of 4. Hence we have proved what we wanted.

The following is the corresponding description in PDL.

theory determinant
det(A:square)
:= sum{P:perm<col_size(A)>}

sgn(P)*prod{I:1..col size(A)}A[P[I],I]

theorem determinant_cf_transpose:

43 —

a11{A:squarerdet (A)=det(trans(A))

proof
let a:sguare be arbitrary
n = col_sizela)
then n = col_size{tra=s(a))
dat{z)
=sum{P:peratz>rsga(P)=prod{I:1..0n}a[P[I],I] by definiticz
lsum{?:perz<:>}sgz{i17{?}}';:ad{l:1..1}![1:?(?}[1],1]
=sum{P:perm<a>tsmn(Fl*pradil:1. .etirans(2) [PLI],1]
since
let p:perm<n> bs arbitrary
prod{I:1..ntalinv(p} I}, I]
=prod{I:1..n}alinv(p) [p(1]],p(I]]
=prod{l:1..n}trans(a)[plI],I]

since .
let i:1..n be arbitrary
alinv(b) [plil],plil]
=ali,plil]
=trans(a) [p[i],1i]
end_since
sgalinv(pl}) = sga(p)
end_since
= det(trans(a)) by definitien
end since

end_theeoren

end_theory

— 44 —

Appendix 3. Example Session with the CAP-LA system

‘The session proceeds using various windows on a bit-map display.

and_thaarzm

imESSES ELI
all Xigza. (Xed 1 {scme Yisss. Hev=lld
peoaf

w4 Erhitrary
{mnma Yipoa. X=Y=11]

e Hizza

las HMipos ba arsibirars
somw Yipos, Kelevel
LR 'R
wnd_aincs)

TAP-L A acringlLad 28] B-1F pdittestlirigciiiearals. L --T

peas, . 1
freszs. esa. b
imd, 1
ingd.gmi. L
mas.. 23
matural.. §
mkkaors. w35. 1
Abrule. gao. 1
=rgtty. ezl
sratby, rew, 1

ta_wtbuf. asp, 1

Fead: rauaruasrrCal L Aspclrtestlbantdieaspin .| tas, man, 1

taz. nEws
T Teeeeeme £ fmztl.. 1
L tra.ami. L
FMACS (mg=) id2,20] 2-1% tacrioss, ka1 —-Tep--| t::z 1
Raad! PaysiuserdCaP_Ladtashioan. ta. i trule. sae. L
win. gap. i

jroon |
B9-Jul-BE Wadneaday 12:0%:0d

WSER + CAP_LA
SIMOS Varaion 2858

After entering the CAP-LA system, a system menu window appears for function se-
lection. The user clicks the function in the menu to see a list of theories registered
under his name and the next window appears. _

EAP-LA 3751EM 1.0 :]

&
u

Theery Listing Fenu (tastl)
Theory namas (model
1 Exarple (tawt)
2 trans_md(taxt]
3 trans_tritaxk]

AF-LAlsfring) o9, 20, ®-1% polstastirkextrpronf --Top--

This list is also used for selection of the theory needed. If the theory “Example” is
selected, its content appears.

LAF=-LA 5Y5T:EN 1.9

nreary Exampla

theoram succonanzere!
all Aigpos. wid=E+l)
awiom:

sn=thsgrem

tamaren al!
all Xizes., (=2 ! (some Y:ipzs. X=¥+1})

la: X:izox Be aroiirary
(A= ! [mor= ¥ipgas, X=¥=11)
sincse
infu-*:== en X
- bass
zloar
atap
la* K:=ze=s be arbitraru
aome Yipos., Kelsysl
abwious;
pnd_zince;
end_praat;
end_thearan
end_thaory

CAP=LA{string! 199, 26) =11 pdlrtest]dtantiExaznle. . 1 ~~Top--
Read: dsuysduserdCAP_LAMpdl>testlitextieExampls. .l

The user wants to check a text after editing and the text is checked against the syntax
of PDL. If any errors are found, then the next window appears.

EAP-LA SYSTEM 1.9 o T
(£ =8 | {scpe Yipoa . X = ¥él))
| since
induction en X
base
clear
atep
lat KEipos be arbitrary
somg Yipos . K+l = Y+l obwicusni
and_since;
end_proaf:
and_thaoran

and_thasry

HERERESRA Error Massage Llat for nat #FE¥FESNSEY
]
Syntax Error Iixz

thaory Exarcle ¢ thaorem ause. nemzars ! 2ll X ¢t poa . % (@ = X # 1) axlom | snd_theoren!
theoress ml ¢ all X ¢ pox . (X =@ | (sore Y { pos . X =Y 4+ 1}) proot lat X ¢ poz bae!
arbitrary { X =@ | { some ¥ ¢t pas . X =% + 13) slnce [nduction on X bass clear atap |
lat K ! pos be arbitrary some ¥ [pos . K+ 1 =Y + 1

¥x3% hare TEEX

ebviousn ; snd_slnee ; and_proaf ; snd_theaorar and_thaory

CAP-LA(strangl(B9,14) 3-1% pdlitescldtextinat.. 2@ —-Bottom— ¥
paras fajled |

—4F =

Once all syntactic errors are corrected, correciness of the proof is then checked. The
user can trace the process of proof checking through another window if necessary.

AF-LA STSTEM 1.8

?hlﬂr‘_-i Exanple!
thagram succS_no
mll Xipza .
el theoram

kngorem all

cao_rula_window/2

rule {n2d, fact,

sore 'Y izos, "KM ipastla"Y tpoatl. L1}
rulaelaucs_manzaro.axics.

all*ftpos, WiE="X":tpas+ll. [}
rula{sucs_nonzerg.mxion,

Sid=himoasl) L)

11 %= T
all diges . 8 rulelsuss nonssrosaxion,

:rg:: Kizea Bi] {::F :*f;:iinﬁp{ﬂrh:pus+LH

Y 1 rulstecoml LEYa s

:fn::a I Awa L [I]
ingusti| rulef{row_sizs.fumnsticn.
bass rewezize (Atnatrin (8,000 0E 01,000
4L‘:1" rutsi{zal_ai=a.funskion,
“lat K colosizaAtsetrix(d.C.000. OB, 03,2100

aom

end_sineesBYAL

snd_proof]
gnd _thasram

rUl"U|5|
some'Y ' tpoa. "K' ipoatl="Y"rpes+l.0)
snd_thsary

FAILI

CAD-LAIlatringl [B9.28] F=1F pdl ieat [tantinat.. o8 —-lop--
Checkimz al: created rulas?

-

Upon campletifcm. of proof checking, if a printout of the theorem and the proof is
requested in a clean format, the system can print it in an English form or a Japanese

form.
AF-LA araled Lo -
L]
Esiamale

TE succ_nonzera
o EdS8En X LHLT
mec{d = X~}

£7
2 al
TS0 RAOER X WHLT
X = 0 Bk
#4 RANED Y ewILT
K = Wy
=y
% pacuy X o= E¥rs

(e
K= 0wl
AL mAvEn Y sEELT
K o= ¥+
P
X wlirs Mg
base
LLET
itep
E®: panee K & EXTa -
AL AL Y SRTLT
E+1 = ¥-1
s

Car-LAlstring) [/2.28] 33n]l_Ewampla -—[ap== £

S50t Foenk(font_137: kanji-l&

FECP

Appendix 4. Experiments with Metis

Let us begin with purely algebraic examples. The first example is the word problem
of ring theory.

Example 4.1

Metis was given an AC-operator + end e binary operzaior =, (oot AC iz gezeral with
the following axioms:

(1) 0+A4=A4

(2) (—4)+A=0

(3) (AxB)*xC = Ax(B=C)
(4) (A+B)+C=A+C+B+C
(5) Ax(B+C)=A*B+AxC

We had Metis run the completion procedure in automatic mode. Metis obtained
(A4+B)*C = A+(B+C) and 0+ A = A as the first and the second ruling formula and
converted them to the rules (A+ B)+C — A+ (B =) and 0+ 4 — A, respectively.
The third ruling formula (—A)+ A = 0 could be oriented left to right by the recursive
path ordering, if 0 < + or 0 < —. 5o Metis asked the user which should be intraduced.

[METIS] -» k _

<< Hnouth = Bendix (avtomatic execution) »>
New Rule is ri: (A*BY+C => A+(B+3)
New HRule is ri: O+h =-> A

You can orient -A+A -> 0 by the following.
[1] 0 << +
2] 0 << -
alse exit

After selecting 0 < 4, we had Metis continue the procedure.

select na 7 1
[0 << + is asserted.]

New Rule is=s Td: -A+A => 0
New Hule is Té: ={-4) ->» &
New Rule is rS: | -0y => 0

Which do you want teo orient 7
[1] A=(B+C) ~-> A#B+A=C
[2] A=B+A*C -> Ax=(B+C)
else exit

— 48 -

The sixth ruling formula was the left distributive law and it could be oriented to either
direction depending on the orderings on function symbols. Since we instructed Metis
to convert it to the rule A+ (B + C) — A+ B+ 4 = C, the system sulomatically

introduced + < — as the ordering on function symbols.

select mo 7 1

[+ << = is asserted.]
Naw Eule is rh: A= (B+I) =» fA=Eaix=(
¥ew Bule is rT: {A+3)=0 => A=C+3=C
Hew Aule is rg: A+ =(B+4) =-» =B

[+ << - iz asserted.]

The eighth ruling formula can be converted to the rule —(4 + (=B)) — B +(—A} if
and only if + < —. So Metis introduces the ordering without interaction.
" New Rule is rs: ~(A+(~B)) ->» B+(-A)

Hew Rule is ri -{A+B) -> =-A+(-B)

DELETE rs8

DELETE rE=

DELETE r3

New Rule is rll: A=Q+A*B => A%B

New Rule is rl2: A*Q =>» 0

DELETE rii

DELETE ril=

New Rule is ri3: O=A+E*A => B*A

New Rule is ri4: C=p => O

DELETE rl3

DELETE rid*

New Rule is r15: (-A)*B+#A%3 -> 0

Which do you want to orient 7
[1] (-A)=B =-> =—A=B
[2] -a*B -> (-A)=B
else exit

selact no 7 1

[- «¢ * is asserted.]

New Rule is ri6: (=A)*B =-> -A*B
DELETE rib
DELETE Tlo*
New Rule 1is ri7: A*=(-B)+A*B -> 0
New Bule is rig: A*(-B)Y => =A%B
DELETE ri7
DELETE 17+

Enuth - Bendix terminated.

Your system is [COMPLETE] .

The procedure terminated successfully, Here is the resulting complete TRS for the
word problem of rings.

[¥=TI51 =-» 1list
<< state listing »>
"ring

operaiors:
+ / AC (multiset ordering)
o/ o

/1 _
* /2 (left to right lexicographic ordering)

orderings:
0 < M4v o< o -
O e, -
+,0 < M-r g &

+,-,0 € nev

equations:
No equations,

rules:
ri: (A=B)*C -> A=(B+*C)
ra: O+A -> A
T2k A+0+B => A+B
ra: =A+L =>» O
i A+(-B)+B -> A+0Q
T4 ={=A) => A
r5: =(0) => 0
T6: A#(B+C) => A*B+A*C
7: (A+B)*C -> RA*C+BsC
rio: -(A+B) -> -A+(-B)
ria: AxQ => Q
ri4;: Oxp -> 0
ri6: {(-A)*B -> -A+B
risd: A*(-B) => =-p#B

—al —

Huet and Hullot developed a method to prove inductive theorems without explicit
induction [Huet 82] using a modified version of the Knuth-Bendix completion proce-
dure. Their method is called inductionless induction and is effective for many theorems
which usually require explicit induction.

In order to use the method, ground terns bave to be classified into two categories,
namely, consiructor terms which ere always irreducible and consirucied only of snpacial
function symbols called constructors, and non-consiructor ierms which are alweays
reducible and include a funciion symbol other than constructors. To prove 2z incuclive
theorem, we add th

P

The statement is an inductive theorem if the process succeeds to completion without

e statement as an axiom and execute the completion procedure.

vielding any rules to rewrtite consiructor tesms.

Metis was given an ordinary definition of the append operation for two lists and two
diferent definitions of the reverse operation of a list.

[METIS] => list rule
<< state listing >>

W--- append & reverse =--"

rules:
ri: append([],4) -> A [e3]
r2: vrwev([l,A) =-> A [es]
r3: reverse([l) -> [] [e1]

r4: append([AlB],C) -> [Alappend(B,C)] [e4]
r5: rev([AlB],C) ~-> rev(B,[AlC]) [e6]
r6: reverse([A|B]) -> append(reverse(B),[al) [e2]

If we define [__|__] (cons) and [] (nil) as the constructors, then the above conditions
are satisfied. We added an equation rev(A,[]) = reverse(A) and had Metis execute
the completion procedure.

[METIS] =->* kB iNTERACTIVE
€< Knuth - Bendix (interactive axecution) 2>

Current ruling formula [CAN] be oriented.
<4<E e7: reversalA) =(<)= zrev(A,[]) 53y
Which do you want to oriemt 7
[1] reverse(A) =-> rev(A,[])
[2] reverse(A) <- rev(a,[])
elsa exit
Which 7 1

[rev << reverse is asserted.]

Current ruling formula is [ORIENTED]

New Rule is r7: reversa(A) -> rev(A,[])
DELETE r3
DELETE Th

Current ruling formula [CAN] be oriented.
£¢cg ef: xev(A,[8]) =(¢>)= aspznd(rev(s,[1},([8]) >35>
Which do you want to crieat 7
[1] xev(a,[8]) -> append(rev(a,[d),[ED)
(2] rewv(A,[B]) <- append(rev(a,[]),[B])
else exit
Which T 2
[rev << append is asserted.]

Current ruling formula is [ORIENTED]
New Rule is r8: append(rev(A,[1),[B1) -> wrev(a,[B])

Current ruling formula is [ORIENTED] .
New Rule is r3: append(rev(A,[Bl),[C]l) -> rev(a,[B,Cl)

Current ruling formula is [ORIENTED]
4L 210: append(rev(A,[B,C]),[D]) =>= rev(a,6[B,C,D]) 225>
Since the current and the former ruling formulas suggested that a new lemma
append(rev(A, B),C) = rev(A, append(B,C))
would be useful, we added it.

[METIS/KB] -> new LEMMA
<< introduce a new lemma >>
Lemma > append(rev(A,B),C) = rev(A,append(B,C)).

Current ruling formula is [ORIENTED] .

New Rule is rid: append(rev(A,B),C) => rev(A,append(B,C))
DELETE b o=
DELETE 3

Enuth - Bendix is terminated.
Your system is [COMPLETE 1.

The completion terminated and, therefore, both the target statement and the lemma
inserted on the way were proved to be inductive theorems.

Severa! examples were taken from the theory of A-caleulus and combinators [Hindley
86, Barendregt 84]. In the theory of combinators, the combinator K = AXY. X and
S=AXYZ X*Z+(Y+*Z) (2s usual we assume that symbols *, standing for function
application, are left associative) are celled basic combinators because all the A
without free varizables can be consisucted Tom S and K only.

"

xample 4.2

It is well-known that the identity I = AX, X is represented by S*K*K. Metis was
given the two axdoms K* X Y = X and S+ X+ YV =« Z = X+ Z« (Y« Z) for K
and S to derive the identitv. The problem can be expressed as 2TV, [=X = X
Metis converted its negation to Skolemized form A=3$1(A) # 51(A4) (31 is the so-called
Skolem funection).

[METIS] -» proVE ssTRATEGY TERMINAL
<< prove formulas by S-strategy >>

Formula > seme(I,211(X, I=X =X J}).

Try to prove fermula : A= $1(A) =/= $1(4)

Enter S-strategy...

Current ruling formula
New Rule is ril:
Current ruling formula
New Hule is ri:

Current ruling formula
¥ew Rule is r3:

Current ruling formula
New Rule is rd:
Currant ruling formula

New Rule is rs:

eld: $i(s+k+d) =/=
Then [FROVED].

is [INEQUATION] .
A $1CA) <=/=> F1(Aa)
is [DRIENTED]
k=A%*R -> A

42 [INEQUATION]
A <-/-3 $1{k=a)

is [NOT] erientable.
s*A*B*C <=> A*C*(B+C)

is [ORIENTED]
s*k*A*B -> B

E1(s+k+A) [r5/r1] is a contradiction.

The first ruling formula was the target formula A+31(A4) # $§1(A4), and the second was
‘the axiom for K, which was oriented left to right. The third formula was an extended
narrowing from the first using the second, since A = K+« A+31(K+A4) # §1(K+4). The
fourth was the axiom for S which could not be onented. The fifth was an extended
critical pair between the fourth and the second, since SsK+«4+8 = K+«H+(4+5) = B.
Using this, a contradictory narrowing was obtained rom the first ruling formula. By
examining this process, we easily fnd that all terms of the form S » K = A ere equal
to the identity function, and 8 = K = K iz merely 20 instance of such terms.

Example 4.3

Next, we made Metis try to prove the fixed-point theorem, i.e. that there exists a fixed-
point for any combinaior, with the existence of the combinators B = AXY Z. X»(¥=Z2)
of composition of functions and M = AX. X * X of self-application, which are defined
by B=S+(K+S)*Kand M =S+I+1. Metis was given the axdoms B#X =Y+ Z =
X#(Y=Z)and M*X = X = X. The theorem can be expressed as YF.3P. F+ P = P.

[METIS] -> list all
<< state listing >>
cperators:
* / 2 (lexicographic ordering left to right)
5/ 0 '
m/ 0

orderings:
No orderings

equations:

el: m*A = A#*A [axiom]

el: b+A+B+C = A*(B*() laxiom]
riles:

Wo rules.

[METIS] -> prove sstrategy terminal
<< prove equations by S-strategy >>

Equation > all(F,some(P, F+P = P)).

Try to prove equation : $1¥4A =/= A
Enter S-strategy...

Current ruling formula is [INEQUATION] .
New Rule is ri: 14 <-/-> A

— 54 —

Current ruling formula is [¥OT] orientable.
£4<4 el: m=A AxA 3a3>

Since the above ruling formula could not be criented, we let Metis introduce 2 new
function svmbol s and rewrite both A= A and M = A to s(4). Acquisition of the new
function svmbol and orientation of new equations was done interactively as foli

[M=TIS/PROVI/S-STRA] -» mew funciizn

<< intreduce 2 new Iunction >

OpexratorTs

[-53: m=Af = ={4) (axiom) is asserted.]
[e2: A=4 = s(&) (axiom) is asserted.]

Cuzrext ruling formula [CAN] be oriented.
<L gd: awdp =({<>)= slA) »r2>
MZTIS/PROVE/S-STRA] -> suggestion cuzrrent
<< suggestion for ordering »>>

Which do you want to orient 7

1] A=A -> s(A)
(2] A=A <= s(A)
alsa exit

Which 7 1

[= << * is asserted.

is [ORIENTED]
aA*p -» s{4)

Current ruling formula
Wew Rule is r2:

is [ORIENTED]
melh => ={i)

Current ruling
New Rule is

formula
r3:

ie [INEQUATION]
s($1) <=/-> $1

formula

T4

Current ruling
New Rule is

formula
5

Current ruling

HNew Hule is

formuela
ré:

Current ruling

New HAule is

formula
rT:

Current ruling
New RBaule is

Current ruling formula

is [ORIENTED)

b*A*B+C => A*(B*C)

is [ORIENTED]

s{b)*A*B =~> b*(A*B)

is [CRIENTED 1 .
s{b*A}*B -2 A*Eb*ﬁ*&]

is [ORIENTED]

25 —

New Rule is Td: A*(B#(b*A*B)) => s(b*AxBE)

Current ruling formula is [ORIENTED]
New Rule is r9: s(=(b))=4 -> b*{s(b)=a)

Curreat ruling ferzula is [INEQUATION]
New Rule is ril: s(b=$1=4) <-/-> Ax(bxfis=a)

e32: s(be*3i*z) =/= s(b*$i*n} [z3/r10] is =z contradictian.
Then [PROVED J.

Metis finally derived a contradictory inequation. The inequation was obtained by
substituting M to A in ri0 and rewriting the right hand side by r3. The inequation
r10 was from rl and 8, since

S(B*3l+A)=8ls(A=(B=Sl+A))# A+=(B81+4)
and the rule r8 was from r2 and 5, since
A*(B+(B+A4+B))=B+sA«Bx(BxA+B)=s5(B+A+H).

Examining this process of refutation showed us that m*(B*$1%*m) is the value sub.
stituted to the original variable A in the inequality obtained by the negation of the
target formula. In fact, it iz a fixed point of 31, since

M+(B+S1+M)=B+31l+«Mx*(B=31xM)=251+(M=+(B+31+M))

