TR-354

Piling GC -Efficient Garbage
Collection for Al Languages-

by
K. MNakalima

March, 1985

988, 1COT

hlita bookusal Bldg, 211K (Y 456-3191-5

H :D | 4=2% Mita 1-Chome Telex [COT J 32964

Minato=ko Tolyo 102 Japan

Instltute for New Generation Computer Technolog;

Piling GC

— Efficient Garbage Collection for Al Languages -

Katsuto Nekaiiza
CENET: nakajlimaficos.jp Doslay,

ARPA: pakajimaTicot.uecp Taddd

UUCP: ihnp4'kddlablicotinakzjfima

Institute for New Generation Computer Techrology (ICOT)
21F Mita Kokusai Building, 1-4-28 Mita,
Minato-ku, Tokyo, 108, JAPAN
Phone: 03(456)3069 Telex:ICOT J32064

Abstract

One of the most critical points for efficient implementation of languags syztems is in the efficiency
of allocation and reclamation of memory area for data ohject. As in languages such as Lisp or
GHC, stack-like memory allocalicn as in Prolog cannot be applied and general heap-like memory
management is required. Hence, some garbage collection (GC) mechanism is indispensable. Widely
used copying GO is an efficient method because garbage is not accessed during GC. Tts performance,
however, decreases when active cbjects occupy a great deal of memory arsa. Another defect of the
method is that half of the memory space must always be reserved for GO during normal processing.
This paper proposes a new GG method based on copying GO, which solves the above-described
' problems of original copying GC; it is efficient even when the density of active abjects is high; it also
solves the memory space efficiency problem. A study of combining this method with reference count
GC is also preseated. A scheme for executing this GO in parallel on a shared memory multiprocessor

system is given.

1. Introduction

Dune of the most noticeable features of programming languages such as Lisp, Prolog and GHC [7] is
that the system substitutes memory management for the programmers. Using these languages, Al
programmers are not concerned with memory allocation and can devote themselves to encoding the
algorithm itself.

Prolog and GHC have the write-once characterislic. Memory cells are allocated and used even for
storing temporary results, Even in impure Lisp, once allocated data structures are not reused very
often. Hence, memory cells run out very quickly unless they are collected and reused quickly after
they become garbage. In Lisp and GHC systems, the memory management scheme is particularly
important because there is no other efficient way for memory reclamation like the stack mechanism in
a Prolog system [8].

If the system can collect garbage memory cells and reuse themn repeatedly, the working set of the
memory can be kept small. As a result, the execution speed can be improved on a machine which has

hisrzrchical memories such as cache memory.
The key issues in selecting or designing a garbage collector are:

« Time eSciency {time required to collect a unit of garbage)

s« Nos-sion GC or stop GC (real-time GC or not)

o Mlemore efdency
Tm a rexl-iima svrtem where the response might be ihe most important fzature, nos-siop GO is
2

sacrificing the time eflicisncy o oz

mectie for thz lazguage. it s naturel to give priovity to the time ellciency, althongh efforis shouid

be rmade to shortan the siop period.

\amors eTciency may also bz a major problez In capyiag GC [1], which wastes hali of the memory
spacz, and in reference count GC, which uses an extra counter field for all objects. If copying GC
is acopted on a real memery machine, wasting kzlf of the memory is & serious preblem. Even on
a virtual memory machine, although wasting half of the memeory space may be a minor matter, the
degradation of the performance is not small when a large program is executed because the working
set is doubled.

In order to improve time efficiency, at least two issues must be considered. One is to reduce the
costs of operations related to reclamation, and the other is to obtain high locality of memory access.
From the view point of memory access locality, incremental garbage collectors using the reference
count have the best efficiency among various garbage collectors [3]. However, the reclamation cost
of the reference count is relatively high in general. Furthermore, the reference count has the serious
defoct of not being able to collect cyclic garbage (garbage objects which are linked to each ather).

Some garbage collectors which traverse active (live) objects can collect cyclic garbage. Sweeping
GC [6] and eopying GC [1) are popular. As sweeping GO sweeps all the memory space once or more
after marking active objects, the cost of memery reference is very high. Copying GC only accesses
active objects in the condemned memory space (called from space) although the copied objects in the
new space (called to space) are also accessed twice by sweeping. The number of memory accesses is
almost proportional to the number of active memory cells and the locality of the memory references is
uch better than that of sweeping GC. However, if a large part of the memory is occupied with active
ahjects as in a practical situation in which a Jarge application program is running, even copying GC
accesses many memory cells over the whole of memory, and its performance is no better than sweeping
GC. .

This paper intraduces a garbage collection method called Piling GC. 1t is based on copying GC,
and is aimed at achieving great efficiency even in a system in which the density of active objects is
high. Its basic idea is similar to that of generation GC [5). The underlying assumption of Piling GC
is that “An object which survived one garbage collection will probably survive the next.” In garbage
collection, active objects are piled in a region which will not be scavenged until all the memory is
occupied with the piled objects. This method is superior in time and memory efficiencies to copying
GC. Chapter 2 presents the principles of Piling GC, and Chapter 3 describes its implementation.

The combination of reference count GC and Piling GC might be one solution for efficient memory
management, because it can make the most of the access locality in the reference count scheme and
Piling GC can compensate for the defects of the incomplete reclamation of reference count. Chapter
4 describes a case study of combining it with reference count GC.

2

A shared memory multiprocessor with coherent cache mewory attached to each proeessor is pos-
¢iblv a suitable architecture for the parallel execution of Al languages such as GHC. Efficient garbage
collection is more dificult on such machines. Chapier 5 presenis & parallel methed of Piling GC.

2. Priociples

Piling GC is based en tha following abservation.

1

If a region in whick =08t of tha objerts are active could be izalatsd Som tha me—aininz memien of

heap memery, ead if & garbage collector could collact zethage oaly Eom therzze’-iog ragion
the copying GC schems would ba very efficient in terms of the garbaze collacting rate, that ls,

the number of collected memory cells with a unit number of memory acceseas,

In Piling GC, active objects are selacted from the work arec which is nsad for object creation, 2ad
are piled into an isolated region called the pifing area. If the heap memory can be split in the wark
area and the piling area by an arbitrary boundary, the piling area can be allowad to grow untll it
occupies all the heap memory. When the heap memory is filled with the piled objects, another global
garbage collector condenses the piling area. As it takes a relatively long time for the piling area to
occupy whole of the heap, we can use a slower garbage collector for global GC.

To make it possible to collect garbage only in the work arse, refersnce pointers from the piling
area to the work area must be memorized. These memorized pointers will become marking roots in
Piling GC and be updated correctly to point to the new locations where the referenced objects are
moved to. This management of the pointer is called tratlirig.

Piling GC is similar to generation GC in principle. The basic idea of generation GC came from
the fact that “Newer objects easily become garbage." The ohjects are grouped by their birth time
into several generations. The garbage collector visits younger generations more frequently than older
generations. Some contiguons generations are nn:c.a.ﬁona,ll}r merged to make one generation a reasonable
size for GC. In the generation GC scheme, as the newest objects, which will live a very long time, do
not move to the older generation soon, they are visited by GC more than the shorter-life objects in
the older generations.

The basic idea of Piling GC comes from the assumption that “The objects which survived one GU
will probably survive the next GC.” It seems to be the best if the objects are grouped by the number
of GCs they survived. The heap memory is divided into several generations according to the number
of survivals. Active objects are shifted to their senior generations after each or several GCs. The
trailed pointers should be memorized individually at each generation that they are referring to. It is
as expensive as generation GC to trail and maintain the pointers between the generations.

The simplest implementation of this idea is the Piling GC, in which enly two generations are used,
the work area and the piling area. Active objects are piled into the piling area at each GC. All the
trailing information can be discarded after each Piling GC because the objects referenced from the
trailed pointers are piled and trailing is no longer necessary for them.

The following chapter explains the implementation for the simplest Piling GC.

L_J]?‘[]ing area

__-IL_E)- ~‘\"I\ detive data which has
> pezn piled
; Wark area ¢) /'
[PEs
.:C::) |{ J _ ! ' : I Betive datz
! ———— Active datz whizz
{ | |} | mar ecntain scae
______ | ——— ! garhages
From space To space
Figure 1: Piling Arca znd Work Ares
Piling area . Piling area
0 Q
) 'i"ur;l) area (I) O
Co
:i{f Work area
/ ’ o
1 T9] |
QIR
Before piling GC After piling GC

Figure 2: Piling Area and Work Area before and after Piling GC

3. Implementation

3.1 Memory Allocation

For simplicity of explanations, we assume that memory space for the heap can be divided into subspaces .
called areas and that physical pieces of memory (pages) are assigned to the contiguous address of each
areq.

First, the memory pages are divided equally into two areas, one is the work area (which corresponds
to from space in conventional copying GC), and the other is the piling area (fo space). Objects are
created in the work area until the pages for thle. area is exhausted. When the work area becomes full,
only the active objects are copied to the piling area. After copying, the top peinter of the piling area
is set to the next to the region to which the active objects were moved. This region is excluded from
the next GC. The memaory pages allocated to the work area and to the region beyond the top of the
piling area are divided again equally into two, one for the work area, and the other for the top of the
piling arca so that the piling area never overflows with copied ohjects in the next Piling GC. Again,

new objects are ereated in the work area (Figure 1).

In the next GC, new active objects in the work area are piled to the top of the piling area and

Filing ares I:IIE'ili::r;. grea

Q 1A

0
(} | | Thase zre pzed for
Q

O / > the new piling area

Before compaszticn After compaetion
Figure 3: Gioba! Compaction GC in the Piling Area

merged into the previously piled region by proceeding the top pointer of the piling area (Figure 2).
This process is repeated until the number of memory pages left becomes less than some predetermined
threshold number. When this state is reached, the piling area is condensed by a2 global garbage
collector,! as the piling area may contain some garbage as the result of execution (Figure 3). When
.the work area becomes very small, most of the newly created objects will survive and be piled because
Piling GC is invoked before they becomes garbage. This causes a degradation of efficiency of the
reclamation in total. To prevent this, it is better not to set the threshold number too low (eg. 1%~5%
of the total physical pages).?

3.2 Trailing

The key point of Piling GC is to avoid accessing objects in the piling area as far as possible. If the
ubjects in the piling area are allowed to be marked, all the objects except for some possible garbage
are accessed at least once for each ohject. Therefore, the piling area should be isolated from the work
area.

In Piling GC, the reference pointers from the piling area to the same area can be left unchanged.
The pointers referring from the work area to the same area are maintained correctly by GC as in
conventional copying GC. Ouly the pointers referring across the two areas shounld be considered. In
Piling GC, these pointers are treated as follows.

{a) Pointers from the work area to the piling area

As the referenced object can be treated as merked, the marking path is terminated. No operation
or aceess to the referred object is done, because an address comparison is enough to determine
whether the object is in the piling area or not.

{b) Pointers from the piling area to the work area

All the pointers in the piling area are considered active. Therefore, the pointers referring to
the work area should be the marking roots. They should be memorized when the pointers are

sweep compaction GO is available
%t can be used as marking stack in sweep compaction GO

Indirection Table 0 Filing arez
1T (b

Y — i
—— |—F]
| | 1

N
191 |
Ly
Qill}

- mm wm e o e am o TR T o = e

s,

igure 4: Trziling by Indireciion Tabls

uPi]Ing area Address tzhle
Work area
0 T (J.)¢ - - - —‘—Q
%é ol
]‘-‘ro;-;; i To space

Figure 5: Trailing by Address Table

created, and they should be updated at GC because the objects referred to by them move to the
piling area.

In Lisp or GHC, there are generally fewer pointers referring from old objects to new ones than in
the opposite direction. Therefore, the number of pointers of case (b} should be very small, and the
memory space for memorizing them, called frail table, must be negligible in total.

There are two possible ways to trail the pointers.

(1) Indirection Table
The trail table keeps the indirection peinters from the piling area to the work area (Figure 4).

(2) Address Table

The trail table keeps the address of the pointers in the piling area (Figure 3).

{1) is same as the entry table praposed in [5]. The advantage of this method is that if an entry of the
table is no longer in use, the entry can be nullified to avoid marking unnecessary objects through the
trailed pointer. One of the defects is that the reference through the pointer must pay one indirection
overhead. Another and possibly more serious defect in normal execution is that during the reference
through a pointer which may be a trailed one, the check js always necessary whether the reference is

Trail Filing zrea

T TS

i
I
1
Fork arez O
|
|
i

— - mm W — = = = =

Figuze 6: CP and 5P during Piling GC

an indirection path or not. However, if an “invisible pointer” mechanism is already used in the system
and it is also available in the trail table, no extra overhead will arise,

The advantage of (2) is that there is no overhead at all on referring through the trailed pointers
in normal execution. However, it is difficult to nullify 2 trail table entry even when a trailed pointer
is found to be no longer necessary.

If we can use the invisible pointer in the trail table, we will choose method (1), although it is
necessary to consider the machine architecture, the programming language, its implementation and
the dynamic characteristics of the program (see Section 4.1).

In either method, possibly the heaviest overhead in normal execution for trailing is the cost of
checking whether a pointer stored into an memory object should be trailed or not when it is doubtful.
The condition to trail is:

o If and only if a pointer referring to the work area is stored in the piling area.

The physical memory pages for the trail table are allocated dynamically. Any address space (area)
will work well if it can be identified as the marking root. The table entries are assigned one by one
at each trailed pointer creation. If there are no more memory pages for a new trail entry, we split
the same number of pages from already allocated memory pages in both the work area and the piling
area. Trail entries are never accumulated because they are discarded after each Piling GC.

3.3 Procedure

The Piling GC procedure is almost the same as that of copying GC. Some working pointers for marking
process and two pointers, copy pointer (CP) and sweep pointer (SP), are used. The CP is the top
pointer of the piling area (Figure 6).

The following is the procedure of Piling GC.

1) After initializing the SP to the top of the piling area, one marking root is picked up from a
: t=1
possibly fixed region in the work area and the marking phase starts.

(2) If the root is a pointer referring to an object in the work area, the referenced object is copied
to the top of the piling area indicated by the CP. The CP is incremented by the size of the

copied object. The root pointer itself is updated to point to the new location for the abject. The
old location is also modified to be a pointer pointing to the mew locatioa for the visitors to it
afterward.

(3) If the root is 2 pointer referzing to the work asea and the location referenced by the pointer
contains another pointer pointing to copied abject in the piling ares, the root peinieris updated
to point to the new location of the objact.

-

(4} If the root i= a pointer referring to the piling 2rs2. oo operation Is dece

i After marking with one of the roots, the nex: masiing root is pizkad o

-
i

(i) From the location indicated by the 5P,

3

or, if the 5P has already reached the same position s the CF,
(i) From the {rail table,
or, if the trail table has already been marked out,
(iii) From the fixed region in the work area, if any.
(6) Garbage collection finishes if there is no marking root.

(7) The physical memory pages for the trail table, the work area and the region beyond the CP (the
top of the piling area) are deallocated. The deallocated pages are divided equally into two, one
for the work area and the other for the top of the new piling area.

The steps above are almost same as that of copying GC except for (4), (7) and (ii) of (5).

4. Combination with Reference Count GC

The overall performance of the system employing Piling GC depends on the spead at which the work
area is consumed. Slower the consumption speed, the better the performance. Thus the introduction
of an incremental GC on top of Piling GC can make the overall performance better. Moreover, an
optimized but incomplete incremental GC such as one using the Multiple Reference Bit technique [2]
can be employed, since Piling GC .can collect garbage cells which the incomplete incremental GC has
left unreclaimed.
This chapter discusses the problems and solutions for adopting Piling GC in systems with reference
count GC.

4.1 Trail

Trailing has been considered as a cheap operation and to use only a little of memory because it is
supposed that few pointers are created which might be trailed. However, if reference count GC reclaims
and allows the objects in the piling area to be reused, the trailing might become very frequent.

If the memory cells in the piling area are reused, the following problems arise:

(1) Frequent trail check:

If a memery cell is reused to store 2 new object, the object must be checked every time when it
is a pointer.

(2} High possibility of trailing:
I & memory cell is reused to store & poiznter, thers is 2 bigh possibility that the pointer is trailed.

(3! Lacge memory consumption for the wral Tzt

=i
)

T addition to {2), more than one trailing iz deza for the sa—e memory ol

tha call is rensed again and agzin. If the trail entsy izsaif ca=not be rec

ai

trail table may grow infinitely.

To reuse the trail entry, hashing or some other techrique must be adopted, aad it raises the cost
of the trailing operation. Compaction for the trail table may be more realistic than aveiding doubls
entries for the same cell. Compaction can be done at a cost of abaut 2.N times of memory access,
where N is the number of entries in the trail table, because it is possible to mark the location pointed
from the trail table.

One drastic solution for this problem is, of course, not to reuse the object cells in the piling area.
As the abolished cells are not reclaimed until the next global GC, the piling area will grow more

quickly. Even so, the speed of growth must be much lower than in a system without reference count
GC.

4,2 Invalidation of a Trail Entry

If a trailed pointer is the last reference path to an object in the work area and the object is reclaimed
by reference count GC because it consumes the path, the trail entry may become dangling. It may
cause useless (or, in some cases, erroneous) copying in Piling GC.

If the trail table consists of the indirection pointers, the trail entry can be nullified by clearing the
indirection pointer when the pointers are nused. However, the indirection path through the trail entry
should be distinguished from the normal indirection path.

If the trail table memorizes the address of the trailed pointers, the trail entry itsclf cannot be found
from the trailed pointer. Hence, it is very difficult to nullify the trailing information. There are two
alternatives:

(a) When a trailed pointer is created, the reference count is incremented by two instead of incre-
menting by one to ensure that the count will never reach zero (Figure 7).

(b) When a trailed pointer is consumed, the location where the pointer was stored is cleared. Whether
this method is possible at a low cost or not depends on the implementation. The address of the
pointer must be memorized during the operation in which a trailed pointer might be consumed.

As (b) needs several dynamic checks during normal execution, it is not generally efficient. On
the other hand, (a) has a serious defect in that all the garbage’ cells, which may be large structures,
reachable from the trailed pointer arelelt unreclaimed and never reused until the next global GC. To
conclude, the indirection table is more suitable for trailing than the address table.

Address tzhie Ezap

lo# trziled pointer i
a

&

i relerence cnly wher

It 15 SRQred

Figure T: Staving off the Recla—ziion of an Objesct Referrsd to from Trailing
5. Parallel Piling GC on a Multiprocessor

This chapter describes a parallel method for Piling GC on a shared memory multiprocessor. Piling
GC can be done in cooperation with several processing elements (PEs).

5.1 Machine Model

FEvery PE shares a common heap memory, and for their local heap memory, they are supplied one
or several memory pages at 2 time from the common heap memory. If there are not enough pages
to be supplied, Piling GC is invoked., Every PE can exclusively access common memory using lock
mechanism, and can be synchronized by this.

5.2 Procedure

Each PE has its individual destination as to space to copy the active objects, and shares the respoa-
sibility of marking. The start and end of GC can be synchronized by using a shared counter which is
exclusively accessed and indicates the number of signaling PEs.

The algorithm of the Parallel Piling GC is as follows (Figure 8).

(1) The PE which finds that the work area full is called the GC master. The GC master synchronizes
all the other PEs to start garbage collection simultaneously.

(2) The GC master starts marking and copying from a marking root in the work area. A lock
operation is necessary to mark an object. The to space for the GC master is reserved one f-age
from the top of the piling area. The top of the piling area is incremented by one page. Although
this also needs a lock operation, the copying operation does not need a lock.

(3) PEs other than the GC master signal a request for marking root(s) to be provided and wait.

(4) The busy PE senses the signal of the requests from other PEs {client PEs) at every period of a
unit operation such as marking with a single root. If the busy PE (server PE) finds a client PE,
it provides the client PE one or more marking roots from the location pointed to by its own 5P,
The SP of the server PE is incremented by the number of the giving root(s}. -

(5) The client PE which is provided with the marking root begins marking and copying with it. If
its own to space is full or has not yet been assigned a memaory page, ancther page at the top of

1

Piling area

.
. Work afes orliy
' : | | ~ 5P "To spece S17 for GO aaster (PEi)
Lme e —
Cgy b ===z - - oem = omm
=5 : Lol | TTe space 217 for FII
— b= L.
Ff;a | il 1|-— 87k "To space =17 feor FIx
ling - - - = — (&
L Pl “To space 217 for PEi

e k" J;

/ {— piled area top — - - - - - - - - -

Figure 8: Parallel Piling GC

the piling area is assigned. If the new page is not adjacent to the previous page, a special linkage
(page link) should be put at the last location of the previous page so that the 5P can faollow and
sweep the new page.

(6) If a PE (including the GC master) finishes marking with a root, it picks up the next root from
the location pointed by its own SP without a lock. If it has no root, it signals a request for
marking root(s) to be provided and waits. '

(7) If all PEs enter the waiting status, garbage collection has finished. The GC master {or some
other PE) reallocates the rest of the memory pages to the work area and the piling area and
signals to all the other PEs to resume normal execution.

In this method, few lock operations are required and the period of the lock is short (during the
write access to mark an object and the s space assiznment in the piling area). One of its defects is
the fragmentation of memory in the piling area. In particular, if a copied object is too large to put
the rest of a page in the to space, a new page must be assigned and the rest of the old page is lefl
unused unless it is possible to use the fragment by free list management or something else. The worst
case might arise in that more memory pages are required than before GC if the fragments which are
a little smaller than the copied objects are accumulated even when all the fragments can be used.
The simplest solution is that each PE has its own address space as the piling area if fragmentation of
address space is allowed. Physical memory pages are assigned contiguoucly in their spaces. However,
global GC must compact each fragment of the space. In this solution, the fragmentation of the memary
pages is negligible because it is the same number of pages as that of PEs in the worst case,

1

5.3 Trail Tahle

If & trail table is shared among all PEs, a lock operation is necessary to access the table entry.
Thersfore, it i berar to split ihe tzble to each PE. The only defect of separation iz the fragmentation
of memory for the table, 2nd it is a!so negligible. The allocation of memory pages to the frail table is
almeost the sa—e as that on a single procassor. Each trall table grows by obtaining pages equally from

th2 2located pages to the work atea and the piling area.

6. Conclusion

This paper proposed a garbeg= colsciion scheme called Piling GC which is eficiant for heép based
implementation of ATI languegss suech es Liso znd GHC. Piling GO can attain efficient collection
without any loss of memory space, even when the densisy of active objects iz very high, by piling the
active objects and isclating them from the garbage collected area. The only defect of Piling GC is
that another garbage collector is required 23 2 global GC for compacting 2l the active objects, even
though it may be rarely invoked.

This paper also examined the possibility of combining incremental reference count GC with Pil-
ing GC. On the recent machines with hierarchical memories such as cache memory, the incremental
reference count scheme is most efficient from the view point of memory access locality. However, it
is insufficient iz the reclamation of cyclic garbage. Hence, the combination of reference count GC
and Piling GC is one geod solution for efficient execution, in which an optimized but incomplete
incremental GC can be introduced because Piling GC can collect garbage cells which the incomplete
incremental GC has left unreclaimed.

The paper also presented a method of parallel-Piling GC on a shared memory multiprocessor and
showed that the Piling GC scheme is so efficient and general that it can be used in many situations.

Piling GC will be implemented and evaluated on the Flat GHC system on the Parallel Inference
Machine [4] which is being developed at ICOT.

Acknowledgement

I would like to thank the ICOT Directar, Dr. K. Fuchi, and the chief of the fourth research section,
Dr. S. Uchida, who gave us the opportunity to pursue this research. I would also like to thank the
research members of the PIM and multi-PSI projects, especially Dr. T. Chikayama, Dr. A. Goto and
Mr. N. Ichiyoshi for giving me good advice and for joining in discussions,

References
[1] H.G. Baker, List processing in real time on a serial computer, Commun. ACM, 21(4):250-204,
1978,

[2] T. Chikayama and Y. Kimura, Multiple Reference Management in Flat GHC, in Proceedings of
the Fourth International Conference on Logic Programming, pp. 276-293, 1987. (also published as
ICOT Technical Report TR-243).

[3] J. Cohen, Garbage Collection of Linked Data Structures, ACM Computing Surveys, 13(3):341-
367, Sep. 1981,

12

[4]

(3]

(6]

rm1

Li}

[8]

A. Goto, Parallel Inference Machine Research in FGCS Project, in US-Jopan Al Symposium 87,
Pp- 21-36, Nov. 1857,

. Lieberman and C. Hewitt, A Real-Time Garbage Collector Based on the Ii%stimes of Objects,
Commun. ACM, 26(5):418-428, 1833,

F.L. Morzis, A time 2nd space efficient gazbage collection algorithm, Commun. ACM, 21(8):562-
863, 1975,

. Ueda. Guceed Forn Clouses: A Forcllel Tozic Frocemming Lcngucgs vith the concent ¢’ ¢
Guerd, T 208, ICOT. 1935, (also to appses In Progem=ing of Foterz Gaoesztion Cemputars,
Norih-Helaad, Amsendam, 1037}

D.H.D. Wa-ran. [mplementing Prolog - Compiling Precicale Logic Program, D.AL Reseairch

Report 32 2ad 40, Dept. of Al, Univ. of Edizburgh, 1877.

13

