ICOT Technical Report: TR-344

TR-344

Partial Evaluation of GHC Programs
Based on UR-set with Constraint Solving

by
H. Fujita, A. Okumura &
K. Furukawa

February, 1988

©1988, 1COT

Mita Kokusan Bldg, 21F (03) 456-2191~ 5
[[ :D | 4-28 Mita 1-Chome Telex ICOT ]32964
Minato=ko Tokyo 108 Japan

Institute for New Generation Computer Technology




Partial Evaluation of GHC Programs Based on
UR-set with Constraint Solving

Hiroshi FUJITA, Akira OKUMURA and Koichi FURUKAWA

ICQOT Research Center,
Institute for New Generation Computer Technology,
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

Abstract: A method of partial evaluation of GHC programs based on
UR-set [Furukawa 87| is presented. Unfolding is not allowed in GHC
as freely as in Prolog beacuse of synchronization issues inherent in the
language semantics [Ueda 83]. Hence, other techniques are required
to enhance the UR-set and to make partial evaluation more effective.
To this end, a kind of constraint solving is introduced. If the partial
evaluator is equipped with a constraint solver suitable for the domain
of the given program, runtime efficiency of the resultant program may
be improved to a degree comparable to that obtainable by Futamura's
Generalized Partial Computation [Futamura 87).

1. Introduction

There has been considerable effort in constructing partial evaluators for logie pro-
gramming languages. There are several implementations in Prolog that have successfully
optimized meta-programs [Takeuchi 86 and Levi 86] (also [Safra 86] for FCP), and gen-
erated compilers and compiler generators by self-application of the partial evaluator

[Fujita 87a and Fuller 87).

To what extent partial evaluation is able to perform is strongly dependent on the
specific language used for the subject programs. In particular, the ease of unfolding
(expansion of a call by its definition) is the key to making partial evaluation feasible.
In pure Prolog, unfolding can be performed relatively freely. However, it fums out
to be very difficult in concurrent logic languages. One must be very careful about
the conditions that allow application of unfolding rules in concurrent logic programs.
Recently, a set of unfolding rules called the UR-set has been defined for GHC programs
by [Furukawa 87|, and shown to be feasible.

This paper presents a method of partial evaluation of GHC programs based on
the UR-set. This method specializes a program with respect to a specific goal pattern,
performing some simplification on the specialized program on the basis of constraint
solving. :

By propagation of constants, even if accompanied with reduction based on unfolding
in the UR-set, only a few computations can be reduced. Hence, it is said that the



runtime efficiency of the subject programs may not be significantly improved by partial
evaluation. This motivated another direction of research to make partial evaluation
more effective. Futamura's Generalized Partial Computation [Futamura B7] is the latest
result for functional languages in this approach. This paper shows that comparable
results can be obtained by incorporating constraint solvers into the partial evaluation
algorithm presented in this paper.

Section 2 gives a brief description of the UR-set for GHC programs. Section 3
presents a partial evaluation algorithm based on the UR-set. In section 4, the par-
tiel evaluation algorithm is extended to have some constraint solver to obtain further
possibilities of optimization.

2. The UR-set

The UR-set is a set of transformation rules for GHC programs. It consists of the
following four rules.

Rule 1 : Unification Ezecution/Elimination

An explicit unification (=/2) appearing in the guard or the body of a clause, C,
is symbolically executed within the body part; that is, a further instantiated value
substitutes corresponding variable occurrences within the body. If a unification in the
guard fails, the clause is eliminated. Furthermore, if neither side of = includes any
variables which also appear in any other literal of the clause, the unification goal is
eliminated after the substitution, Thus, a new clause, C', is derived from the original
C. A new program is derived by replacing € of the original program by C'.

Examples: (p(X) :- X=a | q(X)) is substituted by (p(x) :- x=a | q(a)).
(p :- trne | X=a, q(X)) is substituted by (p :- true | q(a}).
Rule 2 : Unfolding ot an Immediately Ezecutable Goal

Before stating the body of Rule 2, several notions need to be introduced.
Definition : A clause for a given goal is called

satisfied :  if its guard is already true without further argument instantiations,

candidate :  if the goal is not sufficiently instantiated to judge whether the guard

is true or not,
unsatisfiable 1  if the guard is already known to be unsatisfiable.
Example: For a goal, p(1,4),
(p(x,¥) - X =1 | ...) is satisfied,

(p(x.¥) :- ¥ =11 ...) is candidate, and
(p(x,¥) :-x =21 ,..) is unsatisfiable.

Definition : A goal is said to be immediately ezecutable if there is no candidate
clause for that goal. :

Now let a clause, C, be (H « G | B). Then C is unfolded at an immediately
executable body goal, B; € B, by all its satisfied clauses, C’ (1 < j <1I; lis the number



of satisfied clauses). The resultant clause, Df , 13 obtained from the original clause,
by replacing goal B; by the body of C]. D] is a guarded resolvent of C and C";’- whose
guard goals are the same as C, because the guards of C;i must be true. Thus, a new
program is derived by replacing clause C of the original program by all of D;f .

Example: {(p :- true | g,a(1),z)} is substituted by
{{p :- true ! gq.b,e,z),{ 2 :- true | g.d,e,5)}
where  {{a(x) := x=1 | b,c), (agx) := 220 | d,e), (a(X) := 3=2 | £,5)}

Rule 3 : Predicate Introduction and Folding

Let a clause, C, be (P « G | (UU B}), where I/; € U are output unifications
and B; £ B are not output unifications. Furthermore, let the intersection of a set of
variables appearing in G'U UV and a set of those appearing in B be X;, X5...., X
Then, a new clause, Cy, of newP is introduced as

newP(X1,X2,.., Xr) « true | B,
Then, B of C is folded by € and a transformed clause, €', is obtained as
P G(UU{newP(X1,X2,..,X7)}).

Thus, a new program is derived by replacing clause C of the original program by C,
and C'. This rule is used to transform clauses into forms where Rule 4 can be applied.
Example:  (p(x,¥) :- 120 | Y=[XIZ], q(Z), ¥) is substituted by

£ (p{X,¥) := X0 | ¥ = [X12], newP(Z)),
(newP(X) :- true | g(X), r) }

Rule 4 : Unfolding across the Guard

Let a clause, C, be (H + G| B). If neither Rule 1 nor Rule 2 can be applied to C
and no B; € Bis an output unification, C is unfolded at each B; independently. That
is, a set of clauses §; is derived by unfolding C at B; for each i(1 < i < n). However,
if there are clauses in any §; which have meaningless puard goals, they are discarded.
Let S be a set of clauses in B; which are not discarded. A new program is derived by
replacing C by the union of all 5.

Some clauses are discarded because unfolding may move a guard goal to an inap-
propriate place. For example, if (p :- true | q(X), r(x)) is unfolded at q(x) by (q(x) :-
1=0 | s), the result is (p :- x=0 | s, r(x)). However, x=0 cannot be a guard condition
at that place but an assignment goal. It may cause r(x) to fail, and it must therefore

be discarded.
Example:  (p(X) :- true | q(X), z(X)} is replaced by

{ (p(x) := x>3 | q1, r(X)), { (q(x) := 123 | q1),
(p(X) :- X=<3 | g2, (X)), where {q(X) :- X=<3 | q2),
(p(x) := x<2 | q(x), r1), (r(X) - x<2 | r1),
(p(X} :~ X>=2 | qlX), r2) } (r(x) :- X>=2 | r2) }



3. Partial Evaluation of GHC Programs

3.1 Specialization of Clauses

Each goal pattern appearing in the ariginal program clauses as well as the top-level
guery paitern is examnined. Some goals mey be evaluated or immediately executed,
others are forced to remain a2s they are. Even in the latter case, if there is a goal
not the most general zoal, itz private clauses are created as the instantiated subset
of the original clauses. Another pariial evaluation process may be triggered in the
course of the current specialization process because of substitution propagation. All the
processes will terminate when no more procezses can be triggered. Thus, specialized
clauses are obtained, which are more efficiens than the original clauses with respect to
goals containing partially instantieted arguments. Fig.1l s a sketch of the algorithm.

The idea of the specialization process is that for every distinct call pattern (up to
variable renaming) of & goal in ths original program, P, and its descendants generated
by (tentative) unfolding, specialized clauses for the call are created. Each goal pattern
will be replaced by the newly introduced predicate name, and will have its own set
of clauses that can be called via the new predicate name, while it is essentially an
instantiated subset of clauses in P for the original goal.

Let a top-level query to the given program always be an instance of an atomic goal
from a set, {4;}. Then, partial evaluation can be started on each C; by activating
NewClause(C;), where C; = (@Q; + true | 4;) and Q; is an introduced atom of a new
predicate symbol with all distinct variables appearing in 4;.

Example 1: Immediate execution on constant input value

€:  gi(X,Y,Z) := true | append([1,2(X],Y,2)

P:  { append([H1X],¥.Z) :~ true | 2=[H|Z=], append(X,¥,Zs)
append([],Y,Z) :- trua | Z=Y }

Cr: g1(X,¥,Z) := true | Z=[1,2(21], append(X,Y,Z1)

Example 2:  Propagating constant input value

€:  g2(X,Z) :- truas | append(X,[3,4],Z)

cr: q2(X,Z) :- true | gi(X,2)

D: { append(X,[2,41,2) -:: gi(X,2) }

P4: { gi([HIX]},Z) :- true | Z=[H[Zs], gi(X,Za)}
g1C01,2) = true | 2=[3,8] 3

Example 3 Propagating constant output value

C:  g3(X,¥) :~ true | append(X.Y,[1,2])

C': g3(X,¥) :- true | gi(X,Y)

B: { append(2,¥,{1,2]) -:: gt(X,¥Y)
append(X,¥,[2]) -:: g2(X,¥) }

P+: { gi([AIX],¥) :- trus | t=H, g2(X.,Y)
g1(00,¥) :- true | [1,2]=Y
g2([H],¥) = O=y | 2=d
g2([1,Y} := trma | [2]=Y ¥



P := a set of original program clauses
I a set of goal pattern redefinitions := ¢
P a set of specialized program clauses := ¢

Process SpecClause(C) :

/¥ (1) */ apply Rule 1 and 2 to C as far as paossible
if the resuliant clause: C; = ¢ then terminate
else if
[* (2} */ tr7 1o 2pply Rule 4 (with the help of Rule 3, if needed), and
if it was applied
then invoke SpecClause on each resultant clzuse, and terminate
else
assume C; = (H — G| B), and
for each B; € Bdo

/* (3) */ look into the goal pattern redefinitions, D
if there exists (P = P') € D such that

B; is a variant of P by the renaming, p, ie, B; = Pp
then add P'p into B

/* (4) make private clauses for each distinct goal pattern */
else if there exists non-null set {C? : H? «+ & | B’} € P such that
HY is unifiable with B; by the substitutions,
8/ and o’, for H! and B, respectively
and
/* (5) Guard Evaluation */
the guard G’#7 is not evaluated as fail
then create a new goal B:- with a new predicate symbol and
all distinct variables occurring in B;, and
add B; into B, and
add (B; = B}) into D, and

for each C7 do invoke SpecClause(C787)
add (H — G| B') into P*
else terminate
/* if all B; are tried successfully */
add C': (H « G| B)into P, and terminate

Figure 1 Main pracess of the partial evaluation algorithm

3.2 Virtual Backward Propagation

Suppose a clause, (H «— G| B), has a pair of body goals, B; and B;(i # j), such
that the defining clauses are

HY .. X..)—Gi|(BfUu{X=¢) (1SkZEN)



and,

Hi(..X..)=G;|B; (1<1<M)

respectively, where X is an output variable of B;, while it is an input variable of B;.
It is often the case that such clauses are found in P*. Then, whichever clause from
H¥(1 < k < N) is commited, the output value for X will always be the same, ¢. This
fact can be used freely in Prolog, and further reduction on all of the caller, producer
and consumer clauses is possible [Levi 87]. However, it may not be guaranteed to be
correct to export the value of X to B; because of possible changes of synchronization
condition., Ewven if this is the case, it can be used to find and remove an unsatisSed
clause, (H; — G‘; | B_I,] if G; turns out to be unsatisfiable by X = ¢. Such removal of
a clause is safe with respect to preservation of synchronization conditions as well as the
set of success patterns of goals.

This is called virtual backward propagation (of a substitution), and is incorporated
into the basic partial evaluation algorithm described in the previous subsection, as a
post process for SpecClause.

4. Simplification Based on Constraints

4.1 Constraint Propagation

Looking more closely into specialized program P*, another redundancy may be
found. For instance, there may be a clause in P that cannot be called by any goal
in P, This fact can be revealed by considering some residual goals in the specialized
clauses as constraints for other goals, and by checking the consistency of the constraints
during expansion of the goals by their defining clauses.

For example, consider the clauses:

(1)  p(X,Y) = X\=a | q(X), Y=c.
(2) qgla) - true | r.
(3)  qlA) = &\=b | =.
(4) qfA) := ad=a | t.

The constraint for q(x) in (1) is X\=a, When (2) is selected, the mgu, {a/x}, is inconsistent
with the constraint, hence, the clause is never used for solving p(x,¥). The guard, a\=b
in (3), is not inconsistent with the constraint so far. The guard, a\=a in (4), is identical
to the constraint, hence, it can be eliminated as far as the clause is exclusive to clause
(1). Thus, the clauses are simplified as follows:

(1)  p(x,¥) :- I\=a | q(X), Y=c.
(2) rernoved

(3) gqCa) := a\=b | =.

(4') qlA) = true | t.

Note that Rule 4 may not be applied at clause (1) in the example.

4.2 Constraint Reduction



for each clause C: (H + G| B) in Pt
if there exists a constraint, C;, common to every global constraint for C
then re-evaluate the guard, G, as well as head unification,
with constraint C_, and
if the clause turns out to be unsatisfied
then remove it from P
else if the guard G is simplified to G,
with possible changes from B to B (via local variables)
then remove it from P, and
invoke & process SpecClause(H ~— 'rd | B*}

Figure 2 Use of constraint solving for specialization

In the course of tentative goal expansion, a variable may be constrained to a single
possible value under the accumulated constraints so far. If this is the case, then the
further specialization of clauses may be triggered.

For example, consider the clauses:

(1)  p(x,¥) :- x>0 | q(X), Y=ec.
{2 q(Xx) := X=<1 | z(X).

{3) =z(Xx) :- x<1 | s.

{4} (X} := X>=1 | t.

None of the guards in (1) to (4) can be reduced, and each one should remain as it is.
However, assume that q is called only by p, then X is constrained to have a value 1 by
the conjunction of guards, X>0 and X=<1 (X is assumed to be an integer). Guard X=<1
should still be there in clause (3); however, the fact that X should be 1 can be used
in the body, r(X). Thus, in (2), the body can be replaced by r(1). Then clause (3)
turns out to he unaa.tlsﬁad while clause (4) is immediately executable. The result after
specialization process on clause (2) is

(1) p(x,Y) - X>0 | q(X), YT=c.
(2*) qlX) ;- X=<1 | t.

4.3 Constraint Solving for Specialization

To be more formal, more concrete definitions of constraint are given, and the algo-
rithm to use the constraint for specialization in the way described above is shown.
Definition : atomic constraint

An atomic constraint is an atom of a special predicate in a predefined set. Practi-
cally, the set is of some built-in predicates for GHC, say, {#, <, <, >,2,:=}.

Definition : local constraint for a goal
Let a clause, C, be (H « G| B). For a guard, G; € G, the conjunction of atomic
constraints from the rest of the guards G;(; # i) € G is called the local constraint for

G;. For a body goal, B; € B, the conjunction of atomic constraints from guard G and
those from the body goals, Bjy; € B, is called the local constraint for B;.



Definition : C-graph

C-graph is defined by a set of nodes, N, and a set of arcs, A, where each node in
N is for a clause, (H «— G| B), and there is a directed arc in 4 from each body goal,
B; € B, to another node (a clause) in N of which head is the same predicate as B;.

Definition : global constraini for a clause

Let S be a source node in N of a C-graph, and D be a destination node (targes
clause) in N, then each path from § down to D, which is a sequence of arcs in A of the
C-graph, is called a global constraint for the target clause.

Then, the use of constraint solving for specialization is sketched as in Fig.2.

4.4 Example: String M-atching

Consider the program for strin;g matching:

P: { match{P,T) :- true | macchi(P,T,P.T)
matchi([AlPel, [AlTs],P,T) :- trus | macchi(Ps,Ts,P,T)
matchi (LA 3, (81,7, [LIT]) :- AN=B | matchi(P,T,P,T)
matchi([1,_,_,_) :- true | true ¥

The first argument of mateh, P, is a pattern string which is matched against the second
arguinent, T, a target string,.

Now, suppose that the pattern is fixed to the list [a,a,a,b]. Then the NewClause
process will terminate with the following result without the help of the constraint solver.

C:  query(T) :- true | mateh([a,a,a,b],T)
C': guery(T) :- trus | gi(T)

D: { matechi([a,=z,a,bl, s, la,a,a,b],A) =22 gi(h)
matchif{[a,a,bl A, [a,a,a,b],[alad) —:: g2(4A)
matchi([a,bl,4,(a,a,n,b],[a,al4]) =:: g3(A)
matchi{[b], A, [a,a,a,b],[a,a,alA]) —:: g4dA)
matchi{{a,a,a,bl,[a,a,AlB]),[a,a,a,b],[2,a,4]B]) —:: gB(A,B)

matchi([a,n,bl,[A1B],[a,2,a,b],[a,A|B]) -:: gB(A)
matchi{[a,a,a,b] ,[A]B],[a,a,2,b],[AIB]) —:: gT{A) 1}
P+; { gi{lalAl) :- true | g2(A} gs(a,A) :- true | ga(a)
g1CCAIB]) i~ a\=A | gi(B) g5(A,B) - a\=a | g&(4.B)
g2([alal) :- true | ga(a) g6(a,A) :- true | g3(A)
g2([AlB]) := a\=A | g7(a,B) g8(A,B) :- a\=A | gT7(A,B)
g3([alad) :- true | g4(n) g7(a,A) := true | g2(A)
g3([AIB]) := m\=A | g8(A,B) gT(A,B) :- a\=a | gi(B)
g3({[bIA]) :- true | true
g4([alB1) := bA\=a | g&(A,B) 3

There are seven redefinitions of goal patterns, each of which corresponds to a
distinct goal pattern that will appear in computation under the top-level query,
match(la,a,a,b],T).



Looking into PY, it is found easily that every call of g6(a,B) is constrained as a\=4,
and that it is inconsistent with the head unification for the first clause of g, while the
guard in the second clanse of gs becomes identical after head unification. Hence, the
first clause of g8 is unsatisfiable, while the second is satisfied. Thus, every call of gs(4,58)
becomes immediately executable. The same thing is found for g7. After applying Rule
9 at the clauses which contain gs or g7, P is simplified as:

F+'; { gi{lalkl) :- true | g2(A) g5(a,4) - tzue | gildl
g1 (fal8l) :- a\=4 | gi(B) gs5(A,5) - av=a | gi(3)
ga(lalal) - tzue | g3(4)
g2({4iB1) :- a\=a | g1(B)

|
|
[
[
g3([aiAl) := true | gala}
|
!
1

g3([alB]) :- a\=a | gi(B}
g4([b1A1) := true | true
geC(lAIB)) := B\=t | g5(A,B) 3}

The partially evaluated program behaves as the Knuth-Morris-Platt algorithm does
when pattern string contains a run of identical elements. In general, in the original
program, no matter what the pattern is, if the target has an unmatching prefix of
length M, then unsuccessful elementwise matching is repeated M times, while, in the
specialized program, if z is repeated N times in the pattern, and the target contains a
run of z, repeated L times within its unmatching prefix of length M, min(L, N') times
of elementwise matching for = is saved.

4.5 Example: McCarthy’s 91-function

MecCarthy's 91-function is the least fixpoint of the following non-linear recursive
functional equation for integers as its domain.

mOL(X) = if X > 100 then X — 10 else m91(m91(X + 11))

Consider the GHC clauses corresponding to the above definition, in the domain of
positive integers.

me1(X,¥) = X>100 | ¥ := X-10.
moi (X, ¥) = X>0, X¥=<100 | W := X+11, a91(W,2), m91(Z,Y).

After the process roughly shown in Fig.3, the following clanses are obtained.

m31(A,B} = A*100 |B ;= A-10.
m91(100,8) :— trua | B := 91.
m91(99,B) ;- tree | B := 91,
m91{1,8) :- true | B := 9L,

5. Relation to Other Research

This work was inspired by the work of [Futamura 87] for functional programs.
He considered that unevaluable residual conditional tests, obtained in the if-then-else
construct, should be used at most in the expansion of each conditional branch. In his



{} m91(A.B) 71
==> (1.1) {} A»100 ? ==> A>100 ..residuoal
(1.2) {A>100} B := &-10 7 ==> B := A-10 ..residual
==> mP1{A,B) :- A>100 | A := B-10 ..residual clause

71 ==> (2.1} {A=<100F A0 T ==> A>D ..residual
£2.2) {A%0} A=<i00 7 ==> A=<100 ..residual
(2.2) {A»0, A=<100} D := A+11 7 ==> D := A+11 ..rasidual
{2.4) {a»>0, A=<100, D := &+#11} no1(D,C) 72
==> (1.1} {A>0, A=<100, D :e= A+11} D>100 7 ==> D>100 ..residual
(1.2} {4>0, As<100, D := A+11, Dot00} € := D-10 7
= {A>89, A4=<100, D := A+11} C := D=-10 7
== € := D=10 ..residual
{2.5) {a»0, A=<1D00, D := A+ii, D>100, C := D-10} m91(C,B) 73
= {A>89, A=<1i00, ¢ := A+11-10} =91(C,B) 73
==» (1.1) {4>89, k=<100, C := A+11-10} C>100 7
= {A>89, A=<100, A+11=10 > 100} C>100 7
= A=100 ..solved
(1.2) {A=100, € := A+11-10F B := C-10 7
==> B 1= 100+411-10-10 = 91 . .residual
==> m91{L00,B) := trua | B := 91 ..residual clause

73 ==> (2.1) {A»89, A=<100, C := A+11-10} C>0 7 ==> C>0 .,residual
{2.2) {A>89, A=<100, € := A+11-10} C=<100 7
= {A>89, A=<100, A+11-10 =< 100} C=<i00 7
= {A>80, A=<90} C=<100 7 ==> C=<100 ..residual
(2.3) {A>89, A=<99, C 1= A+11-10} D1 := C+11 7
==> D1 := C+1i1 ..residual
(2.4) {A>89, A=<99, D1 := A+11-10+11} m91(D1,C1) 74
==> (1.1) {A>89, 4=<99, D1 := A+11-10+11} D1>100 7
==r D1>100 ..residual
€1.2) {&>989, Ak=<99, D1 := A+11-10+11} €1 := Di-10 7
==> C1 := D1-10 ..reasidual
(2.6) {A>88, A=<89, €1 := A+11-10+11-10} m91({C1,B) 75
==> {1.1) {A>89, A=<95, €1 := A+11-10+11-10} C1>100 7
= {A<BS, A=<88, A+11-10+11-10 >100 } C1>100 ?
= A=899 ..solved
{1.2) {A=99, C1 := A+11-10+11-10} B := Ci-10 ?
==> B = 99+11-10+11-10-10 = 91 . .residual
== m31(99,B) :- trus | B := 51 ..residual clause

TE o ==» ...

Figure 3 Derivation of MeCarthy's 91-function

partial evaluation, called 2, a certain theorem prover is used to reduce conditional tests
during successive expansion of if-then-else in depth. A similar idea is realized in logic
languages [Fujita 87b}, even more naturally and in a more generalized manner by using
the notion of constraint solving.

This research seems to be closely related to CLP [Jaffar 87]. However, the definition
of the constraints and their handling are different from ours. The difference comes from

— 10 —



not only the base language syntax and semantics, but also the use of constraint; it is
viewed as an answer in real execution of CLP, while it is just a residual goal in our
case and it still needs to be solved or evaluated at execution time. Nonetheless, CLP
and our method are closely related. That is, some constraint solving technigues used in
CLP may be applied to our method, and vice versa. Moreover, the two may be unified,
and the partial evaluation of CLP programs may be introduced in & very natural way.

In [Gallagher 87}, a method of partial evaluation for FCP programs is given. It
seemns to be & very promising idea to use abstract interpretation as a formal basis of
partial evaluation. However, it is not very clear, by now, how much improvement can be
obtained by the method applied to some real applications. The idea of using constraint
solvers may be applied also to their framework.

There is another view of combining or unifying concurrent logic programming and
constraint logic programming [Saraswat 87]. This suggests that all of these relatively
orthogonal ideas and techniques about concurrency, constraint and partial evaluation
may neatly fit together in the same logic programming framework.

6. Conclusion

This paper described a method of partial evaluation of GHC programs. A given pro-
gram is specialized with respect to some specific query pattern, by performing reductions
as much as possible on the basis of immediate execntion defined in the UR-set together
with some constraint solver. The degree of performance improvement of the resultant
program depends on the given program and partial information in the query pattern.
In the worst case, the resultant program will be identical to the original program, al-
though the initial steps in the execution may be saved. However, there is a possibility
of performance being drastically improved, if the partial evaluator is equipped with an
approapriate constraint solver.

The method presents only a general framework; any kind of constraint, its domain
and its solver, can be considered. Constraint solving can be done at any degree of ea-
gerness. The stronger the solver with which the partial evaluator is equipped, the more
opportunities of optimization there are. However, the total cost of partial evaluation
will also increase. The optimal compromise of the power of the solver cannot be pre-
determined, because it depends solely on the input data partially given as well as the
subject program. Extensive work on real and typical GHC progams should be required
to prove the method being really a useful framework.

References

[Fujita 87a] Fujita, H. and Furukawa, K., A Self-applicable Partial Evaluator and Its
Use in Incremental Compilation, ICOT TR-258, 1987

[Fujita 87b] Fujita, H., An Algorithm for Partial Evaluation with Constraints, [COT
TM-367, 1987

[Fuller 86] Fuller, D.A. and Abramsky, 5., Mixed Computation of Prolog Programs,
Technical Report, Dept. of Computing, Imperial College of Science and Technol-
ogy, London, 1986

— 11 —



[Furukawa 87] Furukawa, K. and Okumura A., Unfolding Rules for GHC Programs,
ICOT TR-27T, 1987

{Futamura 87] Futamura, Y., Generalized Partial Computation, in US-Japan Al Sym-
posium 87

{Gallagher 87] Gallagher, J. and Ceodish, M., Specialisation of Prolog and FCP pro-
grams, in Proc. of Workshop on Partial Evaluation and Mixed Computation, GL
Avernaes, Denmark, 1987

[Jaffar 87] Jaffar, J. and Lassez, J.-L., Constraint Logic Programming, in Proc. 14cth
ACM POPL Conf., Munich, 1987

[Levi 86] Levi, G., Object Level Reflaction of Inference Rules by Partial Evaluation
(extended abstract), in P. Maes and D. Nardi, eds., Workshop on Meta-Level Ar-
chitectures and Reflection, Sardinia, 1958

[Levi 87] Levi, G., 1987, private communication

[Safra 86] Safra, S. and Shapiro, E., Meta Interpreters for Real, in Information Pro-
cessing B6, Dublin, Ireland, 271-278, North-Holland, 1938

[Saraswat 87] Saraswat, V.A., CP as a general-purpose constraint-language, AAAI-87,
1987

[Takeuchi 86] Takeuchi, A. and Furukawa, K., Partial Evaluation of Prolog Programs

and Its Application to Meta Programming, in Information Processing 86, Dublin,
Ireland, 415-420, North-Holland, 1986

[Ueda 85] Ueda, K., Guarded Horn Clauses, in Proc. Logic Programming '87, 1986

— 12 —



