ICOT Technical Report: TR-343

TR-343

A Simple Programming System Written
in GHC and its Reflective Operations

by
1. Tanaka

February, 1988

©)1988, 1COT

Mita Kokusai Bldg, 21F {03) 456-3191~ 5
" :C] | 4-28 Mita 1-Chome Telex TCOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technolagy_

A Simple Programming System Written in GHC
and Its Reflective Operations

Abstract: A programming system can be defined as an environment
where one can input and execute programs. In this paper, we trv
to describe a simple programming system written in GHC. We try to
capture the function of metacall first. Input/Output problems in GHC
are also considered. After describing shell, we try to assemble these
parts into a simple programming system. How to add new features such
as reflective operations to the programming system is also discussed.
This paper assumes the basic knowledge of Parallel Logic Languages
such as PARLOG, Concurrent Prolog or GHC.

1. Introduction

Various kinds of Parallel Logic Langueges, which are based on and-parallel execu-
tion of programs, have been proposed so far. PARLOG [Clark 85), Concurrent Prolog
[Shapiro 83] and GHC [Ueda 85] are the examples of such languages. In these languages,
we can create processes dynamically and express the synchronization between processes
pretty easily. Therefore, it seems to be quite natural to try to describe an operating
system in these languages.

Trying to write an operating system in a logic language is not new. SIMPOS
[Takagi 84] may be one of that approach. However, the resulting system was full of side
effects and far from the logic programming. In parallel logic languages, PPS (Parlog
Programming System) [Foster 86, Clark 87)] and Logix [Silverman 86] has already been
developed. However, PPS or Logix are kinds of empirical system which consists of huge
amounts of codes and their overall structures are not clear enough.

In this paper we try to describe a simple programming system written in GHC.
Our objective is not, building up the practical programming system such as PPS or
Logix. Our interest rather exists in expressing an simple programming system in more
systematic manner. We also would like to test new features of a programming system
such as reflective operations. We also believe that our efforts lead to the development of
new programming techniques in parallel logic languages and prove the expressive power
of GHC in the long run.

The organizazion of this peper is 25 follows: In section 2. we describe meiceclls
which preseat us the basic fuaciions of ous programming sysiem. In section 3, input
and output hendling in the programming sysiem are discuszed. I~ section L. UXNINLke
saelland the overall structure of & simple progremming svstem z-e desc=i5ed. In section

5. reflective operaticns in the programming svsiem are dese=hed.

2. Metacalls and their descriptions

User programs cen be executed on a Profemiiisg syEiaT. mowever, the progra—-
=ing sysiem cznzcr be failed even i = user progra— fails. Thesefore, we need hs
metacali mechanism [Clark 34, Fostar 87] which protecis the programming svstem from
the failure. This metacall predicate executes the given goa! and resorts the executioz
resuli.

2.1 Various metacalls

Various kinds of metacalls have already discussed in [Clark 84]. Here, we briefly
review their works. The simplest metacall is the following one argument metaecall.

call(G)

This metacall simply executes goal G. However, this form of metacall does not help
us much because it is too simple. Therefare, the following two argument metacalls has
been proposed.

call(G,R}

This metacall executes goal G and return the result by instantiating R to success
when succeeded and to failure when failed.

The next extension is the following three argument metacall, which has slightly
been modified from [Clark 84].

call{s,In,0ut)

Here, In is called input stream and used for communication from the system to the
metacall. Out is called output stream and used for communication from the metacall.
We can suspend, resume or abort the goal execution by instantiating In to [suspend|In’],.
[resume|In*'] or [abort|In’]. The current state of the metacall can also be asked by in-
stantiating In to (state(s)11°]. When the execution of the metacall finishes successfully,
Out is instantiated to [success]. When failed, Out is instantiated to [tailure(R)], where
It is instantiated to the message which shows the cause of the failure.

2.2 Metacall and meta-interpreter

The next problem is how to implement these metacalls. Considering efficiency, they
should be implemented as a built-in predicate. In fact, metacalls are prepared as an
primitives in [Clark 84]. On the other hand, Shapiro takes the meta-interpreter and
program transformation approach to keep flexibility [Silverman 86].

[we forget the efficiency. it is possible to express these metacalls as meta-
& L 3 P
interpreter. The original notion of mets-interprefer comes from the self-deseription
cZ EVAL in Lisp. In Prolog. the following self-description is very famous [Bowen 83,

exec{tTiel) - 1,

exec({P,2)) =, ezac{?), exec(2)
azac(®) := clause((F:=3oe7)), exas{3esy)
ex=c{?].

Zis meta-interprerer simnly evecuies tha goel which
r oo

ez2e. You may cotice that this meta-izterprets

one argu=ent metacell, The GIC version of this meia-interpreter can be written 2=
follows:

exec{truel :- =wrze | froe.

exsc{{F,G)) = +tzze | exs=z{P), execid).

exec(P) :- not_sys(P) | reduce(F,30dy), exec(Body).
exec(P) :— sys(P) | 7.

This program is quite same to the Prolog program except that every clause defini-
tion includes | operator. '

The two argument metacalls can be written quite similarly by modifying this one
argument meta-interpreter.

exec{true,R) :- true | Re=success.

exec{false,R) :- true | R=failure.

exec{(P,Q),R) :~ true | exec(P,R1),-exec(Q,R2), and_result(R1,R2,R).
exec{P,R) :- not_sys(P) | reduce(P,Bady), exec(Body 1),

exec{P.R) := ays(P)} | sys_exe(P,R).

2.3 Three argument metacall implementation

It is already mentioned that metacalls should be implemented as a built-in predicate
considering efficiency. However, the three argument metacall may be too complex to
implement it so. Its specification also needs to be flexible. Therefore, we adopted a
kind of hybrid approach. We split the metacall into two parts, the ezec part which
realizes the basic function of metacall and the ezec_server part which is in charge of
other services. If we forget the efficiency, the ezec can be expressed as follows:

exec{true,In,0ut) :- true | Out=[success].
exec{false(R),In,Out) :- true | Out=[failure(R)].
exec((A,B),In,0ut) :- true | exec({d,In,01),
exec(B,In,02), omerge(01,02,0ut).
exec(A,In,0ut) :- sys{A),var(In) | sys_exe(4,In, Out).
exec(A,In,Out) :- ia_io(A),var(In) | Out=[CA].
exec(A,In,Out) :- not_sys(A),var(In) |
veduce{A, In,Body.Out,NewOut), exec(Body, In, NewQut).
exec(A, [susp|In],Out) :- true | wait(A,In,Out).
exec(A, [abort|Inl,0ut) := trus | Out=[aborted].

wait(A, [resume|In],Out) :- true | axec(d,In,Out).

waic(d, [akert|Ial ,Cus) ;- true | Ouz=[{abor==2].

The uxigue fezture of this ezec is Jn and Ou? which cozaect the object level and
iZe mete level Note that I/O is handled 25 2 meszags 16 the mete lavel. Also var{In)
is the specizl predicate which checks the absexce ol messezss in the a-zument variable.

1Ze exsc_server pert which isin charge of other sem-icas c2= be expressed as follows:
ezez_sacvar{Staze 0,57 [svso=es3!Z20, 13,2220 - saziIzy |
ss=lsucrut{[saccess, goaledl),
eTes_sax Jn*gS:: e, 0,21, [Haflv-af{2) 150} Iz, 0us) 1= Ta=ilz)
Er=lzhas],
Coe=leuzpus([failere reason=rl)].
exzc_server{State,G,EI, [GIED],In,Oue) := var{In), is_iz{a}}

Cut={GICut1],

exec_server(State,G,EI,20,In,0uzl).
exec_server{State,G ,EI, [undefired(G) |EQ],In,0ut) :-= wa=x{Iz) |

Cut=[input([undtfinld_goal=5, expected_result?], N¥3) [suri],

G=lG,

exec_server(State,5,EI,E0Q,In,Outl).
1xlc"larﬂar(5tat=,G*EI,EU,[ClIHJ.ﬂqF] i- true |

control_receiver{C,State,G,EI,EQ,In,Out).

This ezec_server has six arguments. The first argument shows the internal state of
the metacall. The second argument keeps the initial goal @ and used for user output.
The third and fourth arguments are connected to ezec. The fifth and the sixth arguments
are used for communication to the system. When the ezec_server receives a success or
failure message from the ezec, it transmits the message to the system by adding the
appropriate message. 1/0 messages are also forwarded to the system. When undefined
goal G appears in ezec, ezec_servers sends the message to the user and urges us to input
the new goal NG which corresponds to the execution result. When ezec_server receives
control message from the outside, ezec_server invokes control_receiver,

The ezec and ezec_server can be connected as follows:

€all{G,In,0ut):- truel
exec_sarver(run,G,EI,E0,In,0ut),
exec(G,EI,EQ).

We should notice that the pair of ezec_server and ezec works as a metacall as a
whole.

3. Input and output

Handling of input and output in logic programming is the important problem. We
assume virtual processes which correspond to the actual devices. We consider that
there exists a single stream which connects these virtual processes to the system. These
virtual processes are always consuming a stream. For output we send the message of
the form cutput(Message). The input message has the format input(Message_1ist, x). In
this case, Message_list is printed first, then the user’s input is instantiated to X. (Other

possibility may assume two streams which correspond to input and ouiput. However,
the synchronization of input and outprt becomes difieult in euch casza.)

In our approach. virtuze! processes cax be crezred br crecie predicate i= a ooogrea—.
This predicare is the speciz! o2 in which we can exacute only once iz our program §
gach viriuzal process,

3.1 Window

Window is uscally created oz e bitmap dlsnlav 228 we c2n inpur e=< putgur
sages from there. For example. & window is creazed when creaze{zindes, I} is eve—-

1he input and output to the window will be expressed as messages to siveam X (1o

=La e L

actual input is completed whez we put the cursor on the window and type in messzgas
from the keyboard.) The virtual processas which correspond to devices will be deletad

by instantiating X te 0.
3.2 Keyboard controller

As mentioned above, input and output will be performed by the request of the
program. That is, the system does not accept the keyboard input without the demand
of the program. Therefore we need to make the program which always generates the de-
mand. Ileyboard controller acts as such & programin a programuung system. Ieyboard
controller can be written as follows:

keyboard({Out,In) :- true]
Ouz={input([2],T)]|0us1],
keyboard(T,0utl,In).

keyboard(halt,Out,In) =~ trual
Out=[],
In=[].

keyboard(T,Out,In) :- goal_or_command(T)} |
In=[T[Ini],
Oue=[input([2],T1)[Outil,
keyboard(T1,0utl,Inl).

3.3 Database server

In the programming systemn, we need database capability which can add, delete
and check program definitions. The database capability is a kind of I/O in a broader
sense. Therefore, we imagine the virtual process which corresponds to the database.
The operations to the database can be realized by messages to the virtual process.

In fact, PPS tries to realize the database in such a way [Clark 87). However, every
ezec needs {o carry the stream to database in that case. This is very complicated

and this may cause the database access bottleneck. Therefore, we have implemented
db.server using side effect as follows:

db_server([add{Cede) |In],ready,Out) :-trual
add_definition(Code,Done,0ut ,Outl),

db_server{Ia,Dene,0usi).
db_server{[delete(Naze) |Inl,ready, Out) :—tzzea|
delete_delinition(§aze Doze,0ut,0utt),
db_server(Iz, Done,O=t1).
db_server([definition(¥eze) 23], ready, Cut) :=<raa|
defirmitign({¥a=s Dome Ouz,0-ci),
db_server{I=, Daze Ju=i).
The db_server predicate has three arguments. T g
the system. The second ergument is used tb saquantiz'izs the Celzbese access. The
third argument is the ouipur 1o the system.

ba ez amgms—ma—s 1z tha jorees Lo
4o LTSL atduoooy UE (L2 mputl Tom

4 Building a programming system

We have already discussed about the description of metacall and the handling of
10 in the programming system. The next step is the construction of a programming
syvsiem. In this section, we describe shell which plays the central role in the programming
system first. Then we try to assemble these parts into a simple prograiming system.

4.1 Shell

Shell creates the user task or enter the program to the database, depending on
messages from the user. The following is the programming example for shell.

shell([],Val,Db,0ut):-truel
val=[1,
Db=[],
Ouz=[].
shell{[goal(Geal) |Inl,Val,Db,0ut) :~truel
Val=[record_dict{Goal NGoal)|vali]l,
create{Window,Whut),
keyboard(KO,PI),
exec_server(run,NGoal,EI EO,PI,PQ),
exec(NGeal ,EI,EO),
shell(In,Vall,Db,0uc),
merga(KO0,PO,Wout).
shell{[db(Message) [In],Val,Db,0ut) :-trusl
Db=[Messagel|Dbi],
ghell{In,val,Dbil,0Out).
shell([binding{Message) |In],Val,Db,Out) :=trua|
Val=[Message|Vali],
shell(In,Vali,Db,0ut).

The shell hes four arguments; the first argument is the input stream, the second
one is the stream to the variable dictionary, the third one is the stream to database
server, and the fourth one is the output stream. This sh ell are connected to the variable
dictionary where user can freely define variables and its bindings. This variable dictio-
nary presents us a kind of user interface and macro facilities. This shell program works
as follows:

(1) If the input siream is [, it means the end of input. All streams will be close
in this case.

(2) If geai(@oal) is in the input siream. Goal iz sent to the variable dictionary.
The variable dictionary checks the bindings of every variable in Goal and creates
N Goal where every variables are bound to the current bindings. Also a window,
a keyboard coniroller, en ezec ssrver 2=d 2o exec will be created

(3) If the message to the database_server on the w2-iable dicilonary is receivad, the
message 1s sent to the approprizte sirea—.

1ze function of the varieble dictionary is 1o memorize 1k

Iz the vaiue of vmoish
e a]

imtemmal swete. It works as a kind of a user interfzce

The following Figure 1 shows the snapshot where processes are created i= accor-
dance with the user input.

var
dic

i\

—_— shell ——

(proe—s) (proe—s)
A

A
KB KE -X-1-} KB
w i ndew wilndow window

Figure 1. The creations of processes in shell

Corresponding to the input goal, four processes, i.e., exee, process server, keyboard
controller and window, are dynamically created.

Since four processes have their own window and keyboard, they can run quite inde-
pendently from shell. I{eyboard controller always sends the read request to the window,
and user can input the control commands to the process server from the window.

4.2 An example of a programming system

We show an example of a programming system by connecting the components
described before.

create_zorld :- trua
create(wizdos,Out),
Eeyesazd{Czz,Iz),
s2211(Ia,Vz,00,00t2),
vr_dicticzazy(Ve, 0 ,Cz222),
d=_sarver{dk ,Teady, Duzi),
i

sacgadidusl, 2T, 0usE, Dusd, It

This program caz be illizzzrzred 25 follows:

window
.‘l
KB _
Var
dic
shell

Figure 2. A simple programming system

Here, we create system window, keyboard controller, shell, variable dictionary and
database server. We connect the outputs of shell, variable dictionary and database
server to system window, together with the output of keyboard controller.

Since keyboard controller always generates the read request to the system window,
we can input goals from there. Commands to the database server or variable dictionary
can also be entered.

5. Reflective operations in the programming system

We sometimes need the ability to catch the current state of the system. Also
we need is the capability of modifying and returning it to the system. These kinds
of reflective capabilities, such as seen in 3-Lisp [Smith 84], seem to be very useful in
the operating system. In 3-Lisp we can freely obtain the current continuaetion and
environment from the program. Smith used meta-circular interpreters as a mechanism
to get the information from the program.

Similar to Smith's approach, we extend our meta-interpreter. How we extend the
meta-interpreter? It depends on what kind of resources we want to control. We would

1ke to conizol computation time, memories and processes in the programming system.

Therefore, we introduce scheduling gueue explicitly in our meta-interpreter. Program
coniinuation was explicit in the meta-cirenlas interpreter in 3-Lizp. We have though:
that scasduling gueue acts as coniinugiion in GHC. We also introduce reduciion count
o control computation resousces. \We assume that this reduction count corresponds o
the compuiztion iime o conveniicnal sysiems,

1

The thres argument ezec in 2.3 becomes the following six ergumient ezsc when we

periorm the ebove mentiozed modifcesion.

exs=(T,T,I2, 0wt , MaxE2,RE) = true |
er=lsncsess(redustion_count=2C)].
exez{issuel®],T,In,0ut, Maxss , BC) 1= szue |
exec(H,T,In,0ut, axiC, RC).
exac{if=21s52(B)I{H]),T,Ia,0us,MaxkRs,RBC) i~ true |
Cut=[failure(R)].
exac([AIE],T,In,0ut ,MaxfRC,RC) :— sys(A),var(In) , MaxRC>RC |
sys_exe(A,T,NT,RC,RCL,Dut NOut),
exec(H,NT,In NOut MaxRC, RCL)}.
exec([AIH),T,In,0ut MaxRC,RC) = is_io(A),var{In) MaxAC>acC |
Out=[4%¥0ut],
RC1=RC+1,
exec(H,T,In,NOut ,MaxRC,RC1).
exec([A|H],T,In,Out ,MazRC,RC) := not_sys(A),var(Tn), HaxRC>RC |
reduce{A,T,NT,RC,RC1,0Out ,NOat),
exac(H ,NT,In NOut MaxRC, RC1).
exec(H,T,In,Out,MaxRC,RC) = MaxRC>=RC |
Out=[count_over].
exec(H,T,[Mea|In],Out,MaxAC,RC) :- trua |
control_exec(Mes K,T,In,Out, HaxRC,RC):

The first two arguments of ezec, i.e., H and T, express the scheduling queue in
Difference list form, which was originally used in [Shapiro 83). Notice that goals are
processed sequentially because we have introduced a scheduling queue. The third and
the fourth arguments are the same as before, The fifth argument MazRC shows the
limit of the reduction count allowed in that ezec. The sixth argument RC shows the
current reduction count. '

There is no notion of job priority in this ezec. We sometimes would like to execute
goals by express. Therefore we also introduce ezpress queue to execute express goals
which have the form G@ezp. This can be realized by adding two more arguments EH
and ET, which correspond to the express queue, to six argument ezec. The following

two definitions describe the transition between six argument ezec and eight argument
exec.

exec{In, Out, [(GRexp|H],T,RC, MaxRE) ;—var{In)|
exec{[G|ET] ,ET,In,0ut B, T,RC, MaxRC),

exec(ET,ET,In,Out,H,T,RC, NaxRC) :=var{In}|
exec{In,Out, H,T,RC, MaxRC).

The meaning of this program is pretty simple. If we come across the express goal,

we simply call the eight argument ezec. If the express queue is empty, we simply return
to the s5ix argument ezec.

The next thing is to realize the reSective operations. Here we consider four kinds
of reZective operations, i.e., get.re, pulrc, get.q, put.q. Theze can be defined as follows:

ZE],ET,I=,0ut B, T.BC, MaxRC) - t=ua]

exaz{zaz_re(Maz C)
-]

21 = AC+1,

ez2s(Z3,E7,In,02:,2, 7,501, HaxAL),
exec{[zaz_-c{C)|EE] ,ET,I=,0us,5,T,RC, Haxdl) - sznel

HC1 := RC+1,

exez(EY ET,In,0u: ,8,T,RC1,ED.
exec(fzez_g{NE,NT)|EH) ,ET,In,Cut ,E,T,RC, KaxiC) 1~ £ruel

RT1 := RC+1,

NE := H,

BT := T,

exec{EH,ET,In,Out B, T, RCL, ¥axRC) .
exec{{pus_q{¥H,NT) [EK] ,ET,In,Out B, T, RC, MaxRC) i~ truel

RC1 &= RC+HL,

exec{EH,ET,In,Ovt RE,NT,RC1, MaxRC),

The get_rc gets MazRC and RC from ezec. The put rc resets the MazRC of ezec
to the given argument. The get.q gets the current scheduling queue of ezec. The put.g
resets the current scheduling queue to the given argument.

Here, we show an example which uses these reflective operations. This example
shows how to define check_rc predicate which checks the current reduction count of the
system and changes it if allowed less than 100 reductions,

chack_rc :— true |
get_rc(MaxRC,RC),
RestRC := MaxRC-RC,
check({MaxRC, RestRC),

chock(MaxRC, RestRC) :~ 100>=RestRC |
get_q(H,T),
input([reduction_incremsnt,@],AddRC),
NRC := MaxRC+AddRC,
put_rc(NRC),
T=[chack_rc@exp]|NT],
put_q{E,IT].

check{MaxRC,RestRC) :- 100<RestRC |
get_ql(E,T),
T=[chﬁck_rc@axpEITﬂ,
put_q(E,NT).

In a sense these reflective operations are very dangerous because we can freely
access and change the internal state of the system. However, we can say that at least
privileged user must have these capabilities for advanced system control.

— 10 —

6. Concluding remarks

In this paper, we ciscuzzed various factors in the programming syvitem and showed
Rl ‘L‘:I E‘ l’._,‘lf e "C ZVETETLE, PE....I"_"‘:LE‘ DPfLatlﬂ'—]S 1 -.--E prD“‘T?m""Llﬂ”’ c"' Ele are E ol

CELCEIEC.

Vou may notica thess nrayrma™ fragments are guite simple and declararive, It sesams
—=iniy co—es o= the extensive use of sireams, processes a=d meta-
interpreiation tectzicues. Toa olsz- separation of the meta from the object also makeas

the srstem vesy clea=. We —usi note that progrem fragments shovn here are i
exiremmsaly simplZad version 2=c the more compiete verszion workable on DEC ‘?Go is
aveilzbie from the zuibor

e would li%e {0 enswar (5 cuestion why we need to meke research in the program-
ming system now. ... Looking back on the history of parallel logie programming, we
decided the languzze specification first. Then we made interpreters and compilers. Now
we have started for programming environments and applications for those languages.

It seems to be clear that we can program easily in GHC. And techniques for parallel
problem solving such as in [Ohwada 87} are very similar to that of parallel programming
systems. It seems to us that the research in the parallel programming system leads to
that in parallel problem solving.

7. Acknowledgments

This research has been cerried out as a part of the Fifth Generation Computer
Project. Thanks to Yukiko Ohta, Fujitsu Social Science Laboratory for her useful
comments. Actually part of this research is indebted to her. Also thanks to Ioichi Fu-

rukawa, Deputy Director of ICOT, for his encouragement and giving us the opportunity
to pursue this research.

Refere nces

[Bowen 83] D.L.Bowen et al., DECsystem-10 Prolog User's Manual, University of Ed-
ingburgh, 1983

[Clark 84] I{.Clark and S.Gregory, Notes on Systems Programming in Parlog, in Pro-
ctedings of the International Conference on Fifth Generation Computer Systems
1984, pp.299-306, ICOT, 1984

[Clark 85] IC.Clark and 5.Gregory, PARLOG; Parallel Programming in Logic, Re-
search Report DOC 84/4, Dep. of Computing, Imperial College of Science and
Technology, Revised 1985

[Clask 87] K.Clark and I.Foster, A Declarative Environment for Concurrent Logic
Programming, Lecture Notes in Computer Science 250, TAPSOFT'87, pp.212-242,
1987

[Foster 86] I.Foster, The Parlog Programming System (PPS), Version 0.2, Imperial
College of Science and Technology, 1986

[Foster 87] LFoster, Logic Operating Systems; Design Issues, in Proceedings of the
Fourth Internationzl Conference on Logic Programming, Veol.2, pp.910-826, MIT
Press, May 1857

[Obwada 87] H.Ohwada 2nd F.)Mizoguchi, Managing Search in Parellel Logic Pro-
gramming, in Proceedinze of the Logic Programming Conference "87, pp.213-222,
ICOT, June 1937

Stapiro 83] E.Shapiro, A Subset of Concurrent Prolog and Its Izzerpreter, ICOT
Technical Report, TR-0C3, 1833

[Silvermen 83] WW.Sivermar et al., The Logix System-User Manua!, Versicn 1.21,
TWeizmann Institute, Israel, July 1986

[Srmith 82] B.C.Smiih, Reflection and Semantics in Lisp, in Proc. of 11th POPL, Salt
Lake City, Utah, pp.23-33, 1854

[Takagi 84] S.Takagi et al., Overall design of SIMPOS, in Proc. of the Second Inter-
national Logic Pregramming Conference, Uppsala, Sweden, July 1984, pp.1-12

[Ueda 85] K.Ueda, Guarded Horn Clauses, ICOT Technical Report, TR-103, 1985

— 12—

