ICOT Technical Report: TR-341

TR-341

An Efficient Termination Detection
and Abortion Algorithm for Distributed
Processing Systems

by
K. Rokusawa, N. [chiyoshi
T. Chikayama & H. Nakashima

February, 1988

©1988, ICOT
Mita Kokusai Bldg. 21F (03) 456-3191—5
|c :D | 4-28 Mita 1-Chome Telex ICOT]32064

Minato-ku Takyo 108 Japan

Institute for New Generation Computer Technology

An Efficient Termination Detection and Abortion Algorithm
for
Distributed Processing Systems

Kazuali Rokusawa MNobuyuki Ichiyoshi Takashi Chikayama
Institute for New Generation Computer lTechnology ~

Hiroshi Nakashima
Mitsubishi Electric Corporation !

Abstract

This paper describes an algorithm for termina-
tion detection and abortion in distributed pro-
cessing svstems, where processes may exist not
only in processing elements but also in tran-
sit. The algorithm works coreectly whather
the communication channels are first-in-first-
out or not, and no acknowledzement message
is required. Assigning weights to all processes
and maintaining the invariant that the sum of
the weights is zoro are the main features of the
algorithm. '

1 Introduction

Termination detection and abortion of all pro-
Ccesges in a system are major functions in paral-
lol processing. They are easy in closely-coupled
systems, such as shared memory multiproces-
sors, but difficult in distributed systems, par-
ticularly when there are processes in transit.
We have devised an algorithm for termina-
tion detection and abortion in distributed pro-
ces3ing systems, where processes may exist nat
only in processing clements but also in tran-
sit. This algorithm is called the weighted throw
counting scheme, which is an application of the
weighted reference connting scheme [1] [5], a

"Femrth Research Laboratory, Institute for New
Generation Computer Technology, 4-28, Mita 1-chome,
Minato-ku, Tokye 108 JAPAN

"Computer Systems Development Department, [n-
formation Svstems and Electronics Development Lab-
oratory, Mitsubishi Electric Corporation, 1-1, Ohfuna
Fechome, Kamakura-shi, Kanagawa 247 JAPAN

garbage collection scheme for parallel process-
ing systems.

The algorithm will be applied to parallel im-
plementation of KL1, a parallel logic program-
ming language based on GHC [1], on the Mnlti-
PSI [3], a collection of Personal Sequential In-
ference Machines [6] {PSI's} interconnected by
a lasl communicalion network.

This paper is organized as follows. Section 2
defines the computation model employed. Sec-
tion 3 shows the problems of termination de-
tection and abortion in distributed systems. A
naive solution is presentled in section 4. Sec-
tion 5 deacribes the algorithm for termination
detection and abortion where the communica-
tion channels are first-in-first-out. The algo
ritlun for the system wilh non-lirst-in-frst-out
communication is presented in section 6. Fi-
nally the comparison of the algorithm with the
naive one is given in section T.

2 Computation Model
The following process model is assumed:

* A process pool consists of one controlling
process and a finite number of child pro-
CRSSES;

¢ There are a finite number of process pools
in the system;

o Bach process pool is assigned a unjque
process pool identifier ([*1D);

» A child process can terminate at any time;

A B : Process pool identifier (PID)
@ : Child process A
: Controlling process B

: Process pool

Figure 1: Computation Model

s A child process can generate another child
process having the same PID and a new
process pool having a new PID as well.

In this paper, “process” means “child pro-
cess” unless otherwise indicated., A process
pool terminates if all the children terminate.
Aborting a process pool is forcing all the chil-
dren to terminate. A process pool described
above is distributed over the following ma-
chine:

« A finite number of processing elements
(PEs) interconnected by a communication
network;

s No glohal storage; PEs may communicate
by passing messages;

» Asynchronous communication, in which
messages are deliverad with arbitrary fi-
nite delay.

it is assumed that a PE can detect the ter-
mination of all processes in it having the same
PID and can force them to terminate. The
controlling process and PEs can communicate
in both directions. A PE may send a mes-
sage to the controlling process informing it of

the termination of all processes, and the con-
trolling process may send a message to abort
processes.

Although there exist a finite number of pro-
eess pools in the system at a given time, there
is no limitation of total number of process
pools, since any process can generale a new
process pool al any time.

Processes may migrate among PFs for load
halancing. To achieve this, a PE may throw
a process in the PE to another PE and the
thrown process is delivered with arbitrary fi-
nite delay. Therefore, at a given time, pro-
cesses may he in transit in the communication
network but not in any PEs.

3 Problems

This section describes why termination de-
tection and abortion of processes distributed
over several processors are difficult, particu-
larly when there are processes in transit.

2.1 Termination Detection

The controlling process must detect the termi-
nation of all processes having the same PID as

the comtrolling process.

Fach PE can detect the termination of all
processes with the same PID in the PE locally
and can send a message indicating termina-
tion (terminated message) to the correspond-
ing controlling process.

However, even if the controlling process re-
ceives lerminated messages from all PEs, it is
not sure that all processes have terminated.
There may be processes in transit, which will
be received by a PE after the PE has sent a
terminated message.

3.2 Abortion

The controlling process must force to termi-
nate all processes having the same PID as the
controlling process.

If the controlling process broadcasts a mes
sage causing processes in the pool to termi-
nate {abort message), it is possible to abort
all the processes in the PE, but imposzsible to
abort the processes in transit. After receiving
an abort message and aborting the processes,
the PE may receive 2 thrown process.

If a PE memorizes the PID carried by the
abort message and ignores received processes
with the same PID as that memorized, the
abortion by broadcast scheme deseribed abowve
may work. However, this scheme has disad-
vantages, First, if only a few PEs have the
process to be aborted, most of abort messages
are useless. Second, it is impossible to reuse
a PID, because the controlling process cannot
detect the termination of the abortion; this is
a major disadvantage.

4 The Naive Scheme

Tchivoshi et al. [2] describe a termination de-
tection scheme using acknowledge messages.
It effectively does the following, although dif-
ferent terminology is used. A non-empty set
of processes in one PE having the same PID
forms a snbpnol of processes, which is called
a “process subpool”, or a “subpool” in short.
Processes in a PE are under the control of a
subpool. On receiving a thrown process, the
PFE decides whether there is already a subpool
having the same PID as the thrown process.

If there is, the PF adds the process recejved
to the subpool and sends back an acknowl
edge message; otherwise, creates a new subpool
and memorizes the sender PE of the process in
it. Each subpool has a counter which is incre-
mented on throwing a process, and is decre-
mented on receiving the acknowledge message
or terminated message. When all processes in
it are terminated and the value of the counter
reaches zero, the subpool terminates and sends
a ferminated message to the PE memorized.

This scheme is simple and termination can
he detected correctly; if the wvalue of the
counter reaches zerp, there is neither pro-
cess thrown from the corresponding subpoasl
in transit nor subpool created by the thrown
process from the corresponding subpoaol. How-
ever, it has a serious disadvantage; termination
of a subpoal depends on terminations of other
subpools. Since subpools form a tree struc-
ture, the root cannot terminate unless all its
leaves terminate. In the worst case, a chain of
snbpools is created, where each subpool termi-
nates sequentially.

5 The WTC Scheme

We have devised a new scheme which requires
no acknowledge message and makes it pos-
sible to reuse the PID. This new scheme is
the weighled throw counting (WTC) scheme
which is an application of the weighted refer-
ence counting scheme [1] [5], a garbage collec-
tion scheme for parallel processing systems.

5.1 Termination Detection

We associate weight with the controlling pro-
cess, each process and each subpool. The
weight of a process in transit and that of a
subpool are positive integers, while the weight
of the controlling process is a negative inte-
ger. The WTC scheme maintains the invariant
that:

The sum of the weights is zero.

This ensures that the weight of the control-
ling process reaches zero if and only if all pro-
cesses terminate; there is no processes neither
in a PK nor in transit (see figure 2).

— 3 —

controlling process

O

weight = -550

subpool

O O

walght = 150

|

O | mee— | O

~~weight = 20

subpoaol

O

waight = 300

subpool

Co

1O

waight = 80

Figure 2: The WT'C Scheme

When a PE throws a process [rom a sub-
pool, the PE assigns a weight to the thrown
process and subtracts the same amount from
the weight of the subpool. The new weight of
the subpool and that assigned to the thrown
process should both be positive, and the sum of
the two weights is equal to the original weight
of the subpool. For example, if a subpool origi-
nally weighs 1000, the weight of a thrown pro-
cess and the new weight of the subpool can
be set to 50 and 950. When a PE receives
a thrown process, it adds the weight assigned
to the received process to the weight of the
subpool having the same PID. If there is no
subpool with the same PID, a PE creates a
new subpool containing the received process
and sets its initial weight at the weight of the
received process.

When the weight of a subpool becomes one,
the PE cannot throw a process, because non-
zero weight must be assigned to the thrown
process and non-zero weight must remain also
in the subpool after throwing. The operation
when this situation occurs is described in sec-
tion 5.1.

When all processes in it are terminated, the
subpool ferminates and sends a terminated
message to the corresponding controlling pro-

cess. This lerminated message gives notifica-
tion of the termination of the subpool and car-
ries the weight of the terminated subpool. On
receiving a ferminated message, the controlling
process adds the weight carried by the termi-
nated message to its (negative) weight. If the
weight of the controlling process reaches zero,
the termination of all processes is detected.

5.2 Abortion

This section describes an abortion scheme for
the computation model with first-in-first-out
communication; messages are delivered in the
order sent. A scheme without this assumption
is described in section 6.

The controlling process should be able to
force all processes with the same PID as the
controlling process to terminate, and detect
the termination of all processes to reuse the
PID. Termination is detected using the WTC
scheme described above. Thus, only delivery of
the abort message to each PE containing the
subpool is required. To achieve this, the con-
trolling process needs to detect creation of a
subpool and to send an abort message to the
PE containing the subpool.

We introduce here a new message, named

the ready message which gives notification of
the creation of a subpool. On creation of a
subpool, a PE sends a ready message to the
corresponding controlling process. On receiv-
ing a ready message, the controlling process
memorizes the sender PE, which is deleted on
receiving a terminated message.

The controlling process performs the follow-
ing operations to achieve the abortion:

(1) Sending an abort message to
each PE memorized;

(2) Sending an abort message to the
sender PE of a ready message re-
ceived alter operation (1},

Once the controlling process receives a ready
message, a subpool may exist in the sender
PE until a terminated message is received from
the same PE. The controlling process therefore
performs operation (1), which aborts all sub-
pools already detected by the controlling pro-
cess. Operation (2) aborts such subpools that
wera not recognized by the controlling process
when operation (1) was carried out: a snhpool
that is created after operation (1), or created
before operation (1} but whose ready message
is still in transit.

It is necessary to assign a weight to an abort
message like the thrown process, while not nec-
egsary to a ready message, because once the
controlling process receives a ready message,
it will receive a terminated message later from
the sender PE of the ready message (the FIFO
assumption).

On receiving an abort message, a PE per-
forms either of the following operations:

{3a) Forcing the subpool with the
specified PID to terminate, and
sending back a terminated mes-
sape which carries the sum of the
weight of the terminated sub-
poal and the abort messapge;

(3b) If there is no subpool having
the specified PID, sending back
a refurn message which carries
back the weight assigned to the
abort message,

Figure 3 shows the abortion operations de-
seribed above,

When a subpool terminates before receiving
an abort message, an abort message may reach
a PE having no subpool with the same PID
as the abort message. In this case, operation
(3b) is performed and the refurn message is
sent as the response to the abert message. On
receiving a return message, the controlling pro-
cess adds the weight of the message to its own
weight. If the weight of the controlling process
reaches zero by this operation, the termination
of all processes is guaranteed.

During the operations of abortion, the fol
lowing cyclic situation may occur. The con-
trolling process sends an abori message to
abort a subpool. A process is thrown from
the subpool before the abort message arrives.
The thrown process is delivered to a PE where
there is no subpool having the same PID as
the thrown process. Then a new subpool is
created and a ready message is sent., A pro-
cess may be thrown again to still another PE
from this new subpool before the PE receives
an aborf message from the controlling process.

On receiving one abort message, the non-
zero weight of the subpool is sent back to
the controlling process. Since the sum of the
weights of subpools and processes in transit is
finite, all processes can be aborted by sending
a finite number of abort messages, even if the
above situation occurs,

5.3 When the Weight becomes One

As mentioned in the section 5.1, when the
weight of a subpool becomes one, the P can-
not throw a process,

In this case, the PE sends a message re-
questing more weight (request message) to the
controlling process. Process throwing is sus-
pended until the weight of the subpool be-
comes more than one. On receiving a reguest
message, the controlling process sends back
a message which carries some weight to the
sender PE (supply message} and reduces the
same amount from its own weight. When a PE
receives a supply message, it adds the weight
carried by the supply message to the weight of
the subpool, which enables it to throw any sus-
pended processes. Since receiving of a thrown

controlling process

- “My PE = i, j PE
subpool bo \
- abort
O PE j %mcess
O Q subpool
O

O

k

2) controlling process

jx\\

terminated , FE = 1,
PE 1 /
subpool \ O

r—-=" terminated
| |
i [

| | —_—
..o T

terminated | i

| |
| |
terminated

PE j created
subpool

) controlling process

PE k
D abort subpool

PE = k o

PE i

FE j

Figure 3: Abortion Operations

process also increases the weight of the sub-
pool, a subpool may terminate before receiving
a supply message, and a supply messapge may
ceach a PE that contains no subpool. In this
case, a return message is sent back to the con-
trolling process. This is similar to the action
when a PE without a subpool receives an abort
H'I.E'SSH:EE.

It is not necessary Lo AsSign any weight
lo the request message, because a terminated
message is delivered to the controlling process
only after this request message {the channel is
FIFQ), and the weight of the controlling pro
¢ess nmever reaches zero, leaving request mes-
sages in transit.

5.4 How to Assign a Weight

This section describes the strategy to assign
a weight which decreases the number of addi-
tional messages { request and supply Messages .

In the worst case, that is, to assign a weight
of on¢ in any case, the same number of ad-
ditional messages as the thrown processes are
required, while no additional messages are re-
quired in the best case. If the weight carried
by a supply message is large enough compared
with the weight assigned to a thrown process,
the weight of the subpool will not reach eas-
ily one after receiving a supply message. The
weight assigned to the thrown process must be
less than the weight of the subpool, while the
weight carried by a supply message does not
have this limitation. Using the following strat-
egy, one subpool almosi always needs only to
send a request message once.

o Assign a fixed weight (say 2'°) to a thrown
process if the weight of the subpool is
more than twice of that; otherwise assign
half of the weight of the subpoal.

e A supply message carries a Very large
weight (say 2%%).

On receiving a supply message, the weight
of the subpool becomes more than 220 and it
can throw a process at least 2'° times without
receiving any weight.

If a subpool receives a supply message be
fore its weight hecomes one, it need not to
send a request message. A subpool which is

created by receiving a process with a welght
of 217 can throw a process at least 10 times
until its weight becomes one. Therefore, if the
controlling process sends back a supply mes-
sage on Teceiving a ready message, a reque st
message is expected to be almost needless,

6 Non-FIFO Communication

In the computation model with non-first-in-
first-out communication, the following situa-
tions may Occur:

e A ferminated message may be delivered
before a ready message and a request mes-

FAgEe.

o The controlling process may receive sev-
eral ready messages (or terminated mes-
sages) belore receiving a terminated mes-
sage (or a ready message).

The former may cause the weight of the con-
trolling process to reach zero, leaving ready
messages of request messages in transit. On
account of the latter, simply memorizing or
deleting the sender PE of a ready message or
a terminated message will not work. To cope
with the situations mentioned above, we mod-
ify the scheme as follows:

o Assign a weight to a ready message and
a request message (a requesl message will
be sent when the weight reaches two).

¢ The controlling process has a set of coun-
ters corresponding to each PE, which is
incremented on receiving a ready message
and is decremented on receiving a termi-
nated message.

The former change assures that the weight
of the controlling process never reaches zero
leaving any messages or processes in transit.
By the latter change, if a subpool may exist in
a PF, the value of the corresponding counter
becomes positive. The controlling process thus
performs the following operations to achieve
the abortion:

(1} Sending an aborl message to
each PE whose corresponding
count is positive;

(2) Sending a0 abort message 1o the
cender PE of 2 ready MessAge
received after gperation (1 u
the count corresponding 0 the
gender PE, after increment, is
positive.

Qjnce no MOTe than one subpool can exist in
one PE at a time, it is enough 10 send one
abort message o O0F PE.

7 Comparison

The WTC scheme is much superior 10 the
paive scheme using acknowledgement in two

First, the WTC scheme requites fewet ad-
ditional messages than in the paive scheme.
The number of subpools ere ated is expected to
be small enongh compared with the number of
thrown processes. The WTC scheme requires
about the same number of request messages
and supply messages as the number of the cre:
ations of subpools, while the naive gcheme I8
quires almost the same number of acknowledge
messages as the number of thrown processes.

Second, iD the WTC ccheme, each gub-
pool can terminate independently, while in the
naive scheme, termination of a subpeol de-
pends oL terminations of other subpools.

g Summary

We have devised an afficient algorithm for ter-
mination detection and abortion. 1ts major
advantages are as follows.

e Ouly a few Additional messages aTe re-
quired.

» Each subpool can terminate indepen
dently.

o Rense of the process pool identifier is poO&
sible.

The techniques described in this paper are ap-
plicable to many kinds of distributed process:
ing systems.

Acknowledgeme nts

We thank the members of the Multi-PSL
group 11 the 1COT Research Centel and co-
operating companies, the Director of 1COT,
Dr. Kazuhiro Fuchi and the manager of
the fourth research laboratory: Dr. Shunichi
Uchida for valuable discnssions and encourage
ment.

References

1} 0. L Bevan. Distributed garbage collection

using reference counting. In Proceedings of

Parallel Architectures and Languages Fu-
rope, Pages 176-187, June 1087,

(2] M. Tchivoshi, T- Miyazaki, and K. Taki. A

Distributed Impiemenmticm of Flat GHC

on the Multi-PSL Technical Report TR-
230, 1COT, 1087. Also in Proceedings
of the Fourth [nternational (onference on
Logic Programming, 1987.

f3) K. Taki. The parallel software research

and development tool: Multi-PSI system.

In Proceedings of France-Jupan Artificial
Intelligence and Computer Science Sympo-
gium 1986, pages 155-381, 1986.

4] K. Ueda. Guarded Horn Clauses. Technical
Report TR-103, 1COT 1085.

[5] P. Watson and 1. Watson. An efficient

garbage collection scheme for parallel com-

puter A rchitectures. In Proceedings of For
allel Architectures gnd Languages Europe,
pages 432443, June 1987.

(6] M. Yokota, A Yamamoto, K. Taki,

H. Nishikawa, and §. Uchida The Design
and Implemsntutian of o Personal Sequers
tial Inference Machine: PS5l 1COT Tech-
pical Report TR-045, 1COT, 1984 Also
in Mew Generation Clommuting, Vol.1 No.2,
1984.

— 8 —

