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Abatract

Garbage collection (GC) plays an important role in attaining efficiency in implementations of parallel
logic programming languages. In addition, not only normal execution bui alse GC must be executed in
parallel with good memory access locality. Otherwise, the performance of the total system will be seriously
damaged by the GC overhead.

The lazy reference counting (LRC) method, proposed in this paper, is a kind of reference counting GC.
LRC uses the fact that there are few muolti-referenced data objects. Not every data cell has a reference count
field. To indicate multiple reference, an indirect pointer of two-words, called the RC eell, is used in LRC.
One word in an RC cell is used to point a multi-referenced data object, and the other is used to show the
number of references to the data object. Pointers to the RC cell have a special tag, a pointer tag, to show
they are pointing an RC cell. The abstract machine instruction set includes instructions which maintain the
number of references, and collect garbage cells incrementally during execution.

LRC GC is suitable for implementing parallel logic programming languages on parallel processors with
ehared memory and local coherent cache memory. This is because LRC operations have small execution
overhead, and their memory operations have high locality LRC uses one additional tag type and extra
memory only for RC cells, but it does not require special memory hardware such as structure memory in
data flow machines,

1 Introduction

The parallel inference machine (PIM) is one of the most important research target of the FGCS project [8,9].
The principal aim of paraliel processing is to increase the execution performance so that users will be able ta
solve large application programs. Efficient memory management is very important in the PIM because the
garbage collection performance is critical to such Al-oriented systems.

The target language of PIM is a parallel logic programming language, KL1 [8], which is designed based
on GHC (17,18]. KLI is a committed choice logic programming language [4,5,15,17,18] without backtracking.
KLI can describe the basic operations such as synchronization and communication between parallel processes
without side-effects. _

Naive implementations of such parallel logic programming languages consume memory area very rapidly.
For example, whole array elements must be simply copied when only one element is updated becanse destructive
assignment is not allowed. As a result, garbage collections (GC) will occur frequently. In addition, the locality
of memory references is not good during GC by widely used methods, so that cache misses and memory faults
will occur often. In sequential Prolog [20], this problem is not very serious because of the backtracking feature,
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Figure 1: Multiple reference by RO cell

However, as other committed choice languages have no backtracking, an efficient incremental garbage collection
method is important in their implementation.

Reference counting [6,10] is one method to incrementally recognize when a certain storage area has become
inaccessible from the program. This method is commeonly used in parallel processor systems such as dataflow
machines [19]. However, there are two major problems in reference counting {6,7):

« In principle, each word cell must have a reference counter field for the whole memary space.
« The cost of updating the reference counter is high, because data objects must always be accessed.

Several methods were proposed to reduce these overbeads relying on the fact that data objects are not used
very many times, and most are used only once. Multiple reference bit (MRB) method {2] was proposed as an
incremental garbage collection method for committed choice logic programming langu ages'. The MRB method
has many advantages. However, as the MRB method uses only one-bit information to show multiple refersnces,
it cannot reclaim the garbage cells which once had multi-referenced. Therefore, we must augment the MRB
method with conventional garbage collection. In Lisp, Deutsch and Bobrow [7) proposed to keep a hash table?
for the reference count of multi-referenced cells.

This article proposes an incremental garbage collection method called lazy reference counting (LRC). LRC
introduces two-word indirect pointers with a reference counter, instead of a hash table in [7]. LRC makes up
for the deficiency of the MRB method because LRC can reclaim storage area that are no longer used, while
keeping most advantages of the MRB method. This paper presents the representation and maintenance of LRC
along with an abstract machine for KL1 and its instruction set augmented with this feature.

2 Lazy Reference Counting Method

2.1 Indirect pointer with reference count

LRC is a kind of reference counting garbage collection, reducing the cost of reference count maintenance and the
memory space for reference counts. LRC does not provide a reference count field in the data objects themselves,
because most data objects can be expected to be used only once. When a data object obtains two or more
references, an indirect pointer cell with reference count will be allocated lazily, as shown in Figure 1. The
indirect pointer cell is called an R cell. Therefore, reference pointers meet only at the RC cells. The first field
of an RC esll is used to represent a pointer to a multi-referenced data ohject?, the other is used to represent
the referedce count, i.e. the number of pointers meeting at this RC cell.

2.2 Multiple reference pointers

Pointers to an RC cell are called multiple reference pointers. They are indicated by a special tag?, and in this
article, with a black circle, REF @ , shown in Figure 1. All RC cells are pointed only by pointers of REF@ .
There are two kinds of pointers in KL1 implementation, structure pointers pointing list cells or arrays, and
indirect pointers to bind unbound variable cells. They can be classified as follows:

1[3) ahows the statistical feature in Lisp.

#The multireference table (MHRT). The zero count table (ZCT) is used to keep free cells.
¥ Atomic vahies or unbound varisbles in KL1 can be placed inside RC cells.

“This tag correspends to the multiple reference bit in the MAB method [2].
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Figure 2: Insertion of an RC cell

REF @ (multiple reference pointer): The pointed cell is an RC cell. Therefore, this is one of multiple reference
pointers to the cell

REF() (single reference pointer): The pointed cell is not an RC cell. This is the only pointer to the cell®.

LIST,VECT (structure pointers): The data object pointed by these pointers is the body of a structure such as
a list cell or an array. These are the cnly pointer to the data object.

2.3 Update and lazy allocation of RC cells

When a ceference path to a multi-referenced data object is consumed or generated in the execution of programs,
the reference count of the RC cell that appeared first in the reference path is updated. If there is no RC cell in
the reference path, the data ahject is a single-referenced data object {Figum E{EJ:I. When such a reference path
15 consumed, the storage area for the reference path and the data object can be reclaimed. On the other hand,
when an additional reference path is created to the single-referenced data object, a new RC cell is inserted just
before the data object, as in Figure 2(b). This operation is called lazy allocation of an RC cell.

3 Maintenance of Reference in KL1

Refersnce paths to data ohjects are created and consumed in the following operations during execution of KL1%
Programs.

3.1 Creation of data structures
In the execution of KL1, data structures are only created as arguments of body goals”.
p :- true | g([x[¥]).

Reduction by this clause will create a new list cell, [X]¥Y]. When a new structure is created as an argument of
a body goal, there can be no other reference paths to the structure. Therefore, no RC cell is required in the
reference path to this structure.

3.2 Creation of new variable cells

Because of the single assignment nature of KLI, an unbound variable cell usually has one reference path for
instantiating and one or more reference paths for referencing its value®. Therefore, an unbound variable cell
with only two reference paths is represented without an RC cell, as in Figure 3(a), and one with more than two
reference paths is represented with reference count, as in Figure 3(b). The latter is called an RC variable cell

Creation of a new vanable cell is required when body goals have a variable which is not passed from the
reduced goal, as in:

*1f the pointed cell is an unbound variable, there is another pointer, as mentioned in section 3.2.

#In the following explanation, KL1 is almest comparable to fat GHO [17,16].

TCrestion of new dats chiects is never required by guard part unification in KL1.

®An unbownd varisble cell with ooy one reference path is called a void variable, which usually means don't care.
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Figure 3: Representation of unbound variable cells

foo := true | p(X}, q(X}. (13
bar :- true | p(Y), q(¥), r{¥). (2}

Reduction by clause (1) will create a new variable cell for X, and clause (2) for Y. When a new variable cell
is created, there can be no other reference paths to the newly created variable cell except those in the clause.
Thus, representation of a new variable cell can be determined by how many times the variable appears in the
body. Therefore, the variable cell for X in elause (1) should be represented as in Figure 3{2), and for Y in clause
{2) as shown in Figure 3(b).

3.3 Passing variables between KL1 goals
Consider the following two examples:

plX) := trus | q(X). (1)
pl¥) :— true | q(¥), z(¥). (2)

Variable X in clause (1) will simply be passed from the reduced goal, p, to the next goal, q. In this case, the
number of reference paths to X will be kept unchanged by a goal reduction using this clause.

On the other hand, variable Y in clause {2) will be duplicated in body gosls g and r. In this case, the
number of reference paths to Y will increase. When the data object or variable cell indicated by Y is a multi-
referenced object, in other words, there is one or more RO cells in the reference path, the reference counter
in the RC ecell that appeared first is incremented. When the data object or variable cell indicated by Y is a
single-referenced object, a new RO cell should be inserted, which is pointed by REF @ from body goals q and
r. When the object is a bound variable cell, namely a value cell, there is only one reference path to the abject.
Therefore, an RC cell can be inserted without using exclusive access even in a parallel processor system with
shared memory. However, if the object is an unbound variable cell, there may be ancther reference path to the
variable cell, as shown in Figure 3(a). In such cases, an RC cell will be inserted by allocating a new RC variable
cell, followed by unification, as shown in Figure 4,

3.4 Dereferencing

Dereferencing preceding a unification does not consume reference paths to data objects. However, if there are
two or more RC cells in the reference path, as in Figure 5, the pointer can be reconnected directly to the farther
RO cell.

3.5 Instantiation of variables

In KL1 goal reduction, a built-in unifier, =, in a clause body unifies® two data objects (or variables). One
reference path to each data object is consumed by this unification. When one or both data objects are unbound
variables, one unbound variable is given some concrete value (atomic or structured) or bound to another variable
by connecting them with a reference chain. In this case, a reference path from the instantiated variable to another

*This is called achive wnification.
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variable is added. Therefore, only one reference path to the instantiated variable is consumed, keeping the total
number of reference paths to another variable unchanged.

The reference count update rules in unification between X and Y are as follows. Here, X is an unbound
variable Lo be instantiated, and Y ia a data object including an unbound variable.

a: When both X and ¥ are single-reference objects,
bind X with the pointer to Y which is already dereferenced.

b: When Y s a mulli-referenced object,
bind X with the pointer to the RC cell which appears first in the reference path to Y.

c: When X 15 a multi-reference object,

if X is an unbound variable as shown in Figure 7(a}, change the unbound variable cell to an RC variable
cell as shown in Figure 7{b) firat, then decrement the reference count of the RC cell, then bind X with the
pointer to Y.

3.6 Retrieval of structure elements

Retrieval of structure elements is required on unification with an explicit data structure in the head or guard
of a clause, as in:

p(LxI¥]) := true | p(X), q(¥).

By this unification, one reference path to the list structure is consumed, and one reference path each to structure
elements X and Y 15 created, When the structure has only one reference path, i.2. when it is a single-referenced
structure, the whole structure can be reclaimed and the reference paths from the body of the structure to its
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elements also disappear, so that the total number of reference paths to the structure elements is kept unchanpged,
However, when the structure is a multi-referenced structure, the reference path from the body of the structure
to its element remains unchanged, so that the number of referance paths to the structure element is incremented
by one. In this case, if the structure element is pointed only by the structure, an RC cell should be inserted.
Figure 8 shows an example. Here, when the cdr of list cell b to Y is retrieved, RC cell d is inserted, so that
pointers from list cell b and from Y meet at the RC cell.

4 Abstract Machine and Instruction Set

‘The KL1 abstract machine and its instruction set proposed in [11] are modified to implement LEC real-time
garbage collection. This section describes major differences from the original in [11].

Before RC call & LIST ol b
HEF T LIST »| ATOM LIST cell ¢
& RC 2 LIST >
Y:REF i@
After RO eell a LIST cell bs
REF @ —j—- LIST +—+{ATOM R cell d LIST cell ¢
- - RC 2 LIST +{LIST »

RC 2

Figure 8 Insertion of an RC cell in retrieving a structure clement
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Figure 10: Storage reclamation in dereference

4.1 Abstract machine

First, multiple reference pointer tag REF @ is introduced as a mew type tag in internal data representation.
Next, the free memery area for variable cells or for structures is maintained as a free list to allocate and to
reclaim dynamically. Then, unbound variables as structure elements are placed out of the structure body which
are pointed by the reference pointer from the body, as shown in Figure 8. By this scheme, the body of a
structure and its elements can be reclaimed independently.

4.2 Dereference

When variable values are required in unification, reference pointers between variable cells are dereferenced until
the final result such as atomic values, structure pointers or a pointer to an unbound variable cell is reached.
Because KL1 has no backtracking feature, the dereferenced result can be stored back to the place where the
pointer originally was {on registers or in data structure elements),

As the deferenced result should be stored back, the intermediate variable cells may be reclaimed. Cells that
become reclaimable during dereference are instantiated variable cells pointed by single reference pointers and
RO cells whose reference counter value is one,

A dereference algorithm follows.

Dereference algorithm
In what follows, two registers are used.

A : An argument register which has a reference path to an object.
5 : The structure register which will have a pointer to a structure body, if the dereferenced object
is a structure.

Step 1: If A is not an indirect pointer (not REF @ nor REF (O ), — end of dereference.

Step 2: Derefersnce the path from A until an instantiated value, a pointer of REF() to an unbound variable
cell, or an RC cell (REF @ ) appears in A, reclaiming cells pointed by the indirect pointer cell of REFO ;
— step 3.



Step 3: Do the following according to the type of dereferenced result. If A 1=
an instantiated value = put 4 in 5, if A is a pointer to a structure; — end of dereference.
a pointer of REFQ) to an unbound variable cell = end of dereference.
a pointer (REF @ ) to an RC cell = put the value pointed by A in §; — step 4.

Step 4: Do the following according to the type of 5. If 5 is:

either an instantiated value or an unbound RC variable =+ end of dereference.

an indirect pointer of REF(Q) = store the value pointed by 5 back in the RC cell pointed by A, reclaim
the cell pointed by 5, then put the value pointed by 4 in §; — step 4.

an indirect pointer of REF @ = increment the reference count in the RC cell pointed by 5, then decrement
the reference count in the RC cell pointed by A; — step 5.

Step 5: If the reference count of the RC. cell pointed by A is zero, reclaim the RC cell; — step 6.

Step 6: Put 5 in A, then obtain the value pointed by 5 as a new value of 5; — step 4.

4.3 Instruction set
The KL1 abstract machine instruction is similar to that of WAM [20]. The major differences are:

» Passive unification instructions will be suspended when instantiation of variables is required to accomplish
the unification.

» The guard part is compiled so that argument registers are never destroyed before commitment.
» Instructions are arranged so that reference paths to data objects can be maintained correctly.

To implement LRC incremental garbage collection, the unification instructions should be slightly modified,
and several new instructions introduced, The new instructions are for maintaining multiple references and for
reclaiming garbage cells.

4.3.1 Instructions to create new multi-referenced variables

set_rc_variable Xi, Gj, re
put_rc_variable Xi, 4j, re
write_re_variable Xi, re

These three instructions allocate new unbound RC variable cells pointed by REF @ , as shown in Figure 3(b).
The reference count is initiated as the third argument, rc, indicates. Here, the initiated reference count can be
determined in compiling time.

4.3,2 Adding reference in clause body

add_reference Xi, re¢

This instruction is used to pass a variable in a clause head to multiple body goals as described in Section 3.3.
If there is one or more RO cells in the reference path to X1, this instruction increases the reference count of the
RC eell that appears first. However, if X1 is a single-referenced variable, this instruction inserts an RC cell to
represent multiple references. This instruction can be combined with put_value, set_valua or write_value,
aE

put_value_add_ref AL, 1j, rc
set_value_add_ref Ai, Gj, Tc
write_value_add_ref &Gj, re



4.3.3 Adding reference of structure elements

add_ref struct_element AL, position, Aj

When an element indicated by position of a structure, A, was retrieved to Aj, this instruction maintains
addition of a reference to the element, as mentioned in section 3.6. If Al indicates a multi-referenced structure,
ie. Ai has a tag, REF @ , this instruction adds a reference path to the element. If Ai has a tag, REF(Q) , this
instruction has no operation,

4.3.4 Storage reclamation instructions

collect_list Ai
collect_wvect AL

These instructions maintain consumption of a reference path to structure, Al, when the elements of the structure
are retrieved as described in Section 3.6. Then, if the consumed path is the last one to the structure, that is, if
the tag of Al is REF(O or if it is REF@ and the reference counter of the RC cell pointed by Al shows one, the
memory area is reclaimed. If the structure A is a multi-referenced object, the reference counter in the RC cell
pointed by Al is decremented by one.

collect_wvalue Ai

This instruction recursively consumes a reference path to the data object, Ai, when a general unification or a
unification with a void variable occurs in the guard of a clause [11].

4,3.5 Compiling examples

Figure 11 shows compiling examples for LRC garbage collection. Here, the three instructions in Figure 11,

add_ref_struct_slement K1, car, X3
add_ref_struct_element A1, cdr, X4
eollaect_list Al

can be replaced by the following cne instruction.
retrieve_list_elements &1, X3, X4

This instruction merge may have considerable efficiency gain because the operations of the three instructions
are determined by the same condition, i.e. whether the list cell is a multi-referenced object or not.

5 Garbage Collection in PIM

5.1 Requirement for garbage collection method

A parallel inference machine PIM consisting of about 100 processing elements is now being developed at
ICOT [8]. The target processor performance is 200 to 500 KRPS'Y for KL1, so that 10 to 20 MRPS is ex-
pected as the total performance for actual applications. PIM has a hierarchical structure as shown in Figure 12.
Each cluster consists of eight or more processor elements (PEs) which share one address space and communicate
through shared memery (SM) over a common bus. The clusters are connected by a switching network.

Each PE in the PIM has coherent cache memory [1,13], which increases the efficiency of local execution. In
addition, exclusive memory access can be obtained at small cost by using the cache block status of coherent cache
memory [13]. Parallel processors with shared memory and local coberent cache memory like PIM clusters aim
to decrease processor-memory communication relying on locality of memory references. In a PIM cluster, the

I8RPS: KL1 goal Reduction Per Second



pllXI_T, X = true | g(X,¥), =(Y,[YIX]).

pi2:  wait_list Al % Unify the first argnments with list.
read_wariable 13 % Read the car of list.
read_variable X4 % Read the cdr of list.
wait _walue X3, A2 % Unify the Ind arg with car of liat.
- { commit ) -

add_ref struct_element Al, car, X3 b Add the reference count for car
add_ref_struct_slement A1, cdr, X4 % Add the reference count for cdr

collact _list Al : ™ Consume a path, reclaim if possible,
collect_value X4 T Consume a path, reclaim if possible.
collect_value A2 % Consume a path, reclaim if possible.
create_goal /2 o Create 2 goal record.
set_rc_variable X2, G1, 3 % Create a new RC variable cell.
aset_list G2 % Create a new list cell
write_value X2
write_valua_add_ref X3, 1 % Add the reference count, then write in edr.
enqueua_goal r/2 % Enqueue the goal record,
put_valoe X3, Al %% Fearrange argument registers.
ezecute q/2 % Execute goal 9/2.

Figure 11: Compiling examples
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memory reference locality is enhanced by an appropriate scheduling and load balancing scheme [14]. Garbage
collections in snch parallel processors should be as officient as usual parallel execution. That is, garbage collection
should be done in parallel, and memory references during garbage collection should have good locality.

5.2 LRC garbage collection in the PIM

In the implementation of LRC garbage collection on a PIM cluster, data objects must be accessed exclusively
to update a reference count of more than one. However, exclusive access can be done at low cost using the
hardware lock mechanism. In addition, only one lock at a time is required in the abstract machine instruction
set for LRC. As a result, reference information maintenance and garbage cell reclamation in LEC require only
memory operations with high locality. Therefore, these operations make best use of cache memories in the PIM.

Finding out the reference path information by LRC enables several interesting techniques in KL1 imple-
mentation, such as destructive array update and efficient stream merge, that are also available with the MRE
method [2]. :

5.3 Comparison with other garbage collection schemes

Marking or moving garbage collection schemes must access all data objects, so that garbage collection requires
enormous data communication in parallel computer systems. In other words, the garbage collection performance
is restricted by the band-width between processors and shared memory because hardware mechanisms, such as
a local coherent cache, do not work effectively. Another problem in parallel processor systems with a network is
that if one netwerk node stops execution and starts garbage collection, other nodes can not communicate with
the garhage collecting node. As a result, the garbage collecting node disturbs all the other nodes.

The most notable difference from the MRB is the storage reclamation ability. Using the MRB method, one
goal reduction usually generates about one word garbage on average, though it depends on the characteristics of
the source program [12]. Therefore, other non-incremental garbage collection, such as copying garbage collection
must be used with MRB garbage collection. In LRC, it is not necessary to use other garbage collection, except
for loop structures and fragmentation of memory area. The overhead of LRG is almost comparable to that of
the MRB method for single-referenced data objects. However, the cost of changing a single reference to multiple
references is high.

6 Conclusion

The LRC method, proposed in this article, has the following features. LRC incrementally maintains multiple
ceference information using a pointer tag and an RC cell, instead of hash tables. The storage reclamation
ability is high enough to solve big application programs without using other garbage collection mechinism. The
overhead for single reference data objects is as small as in the MRE method. The additional storage needed
for LRC is only for RC cells. LRC can be implemented on parallel processors with shared memory like a PIM
cluster efficiently. A detailed evaluation of LRC will be done in the near future.
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