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Abstract

This paper describes a logical framework for hypothetical reasoning. Hy-
pothetical reasoning is a kind of non-monotonic reasoning, and it is desirable
when dealing with incomplete knowledge in problem solving, making hypothe-
ses for this type of knowledge, with which we can infer the kinds of formula
that hold based on the different kinds of hypothesis. The paper also shows that
the semantics for default logic can be partly incorporated in the model theory.
In this simple and clear logical framework for hypothetical reasoning, truth
maintenance systems that have been widely used but lack model-theoretic se-
mantics, can be analyzed theoretically. The result shows that hypothetical
reasoning is an important subcase of default logic for which efficient theorem
proving techniques exist.
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1. Introduction

In the real world, we are often forced to make some decision even if complete in-
formation is not available in problem solving. For example, in order to solve synthesis
problems (such as design and planning) or in conjectural reasoning (such as inductive
reasoning and analogy), we need draw some conclusion from incomplete knowledge,
making reasoning non-monotonic. An approach to non-monotonic reasoning that has
been pursued to use in practice is seen in the field of truth maintenance systems (TMSs)
such as [Doyle 79] and [de Kleer 86). The main task of TMSs is to maintain consis-
tency of dynamic knowledge bases. In TMSs, when alternatives are found in solving
problems, assumptions are used for them or a choice is selected nondeterministically
and dependency-direcied search is done to avoid redundant computing and rediscover-
ing failures. Although TMSs have widely used as non-monotonic reasoning systems,
there has been little formal research on them. Because they lack clear semantics, TMSs
have not been well defined or understood.

The motivation of this research was to formalize reasoning systems with incomplete
knowledge, that is, to clarify model-theoretic semantics of such reasoning systems. One
example of this research can be seen in the Clause Management System (CMS) [Reiter
& de Kleer 87], which simply formalizes de Kleer's assumption-based TMS (ATMS).
We propose an alternative approach for reasoning with incomplete knowledge, in terms
of hypothetical reasoning, which is also simple and nore general than the CMS. Hypo-
thetical reasoning is desirable when dealing with alternative knowledge or incomplete
knowledge in problem solving, and it makes hypotheses for these types of knowledge,
with which we can infer what formulas hold based on what hypotheses. In this paper,
firstly, two different aspects of hypothetical reasoning are shown, and are then repre-
sented in a simple logical framework. Secondly, Reiter’s default logic [Reiter 80] is shown
to be incorporated in the framework, where the hypothesis corresponds to the simplest
normal default and a default theory is defined in terms of extensions. Lastly, the model
theory for the ATMS and Doyle’s TMS are presented, based on this logical framework
for hypothetical reasoning.

2. Two Aspects of Hypothetical Reasoning

In hypothetical reasoning, hypotheses (or assumptions) are not guaranteed to be
truc or not always true. The hypotheses are first given by a problem solver, which
may be domain-dependent, and they are used as unknown information in the problem
solver’s decision. Typical uses of hypothetical reasoning are broadly classified as follows.

1. Abductive reasouing

In model-based reasoniug, when an observation, ¢, of a system’s behavior is found, we
want to know hypotheses that explain observation ¢ with knowledge of deseriptions of
the system and devices, Consider the following reasoning, called the fallacy of affirming
the consequent in traditional logic:

g, and p>gq, therefore p.

As this is an invalid rule, we cannot conclude deductively the truth of p. We can only



say that p is a hypothesis that explains ¢. This type of reasoning 18 called abductive
reasoning, and in engineering, this can be applied directly to diagnostic reasoning such
as the theory formation in [Poole 86]. When the specifications are given as observations,
it can be also applied to design such as the resolution residue in [Finger & Genesereth 83].

2. Consistency maintenance in knowledge bases
When we must select from alternatives but information is not enough complete to select
one deterministically, we must choose one, say p, and process reasoning further from
there. Consider the following reasoning, called hypothetical syllogism or modus ponens
in traditicnal logie:

p, and pDgq, therefore g.

This is a valid rule but if we cannot conclude that p is true, we cannot conclude the truth
of g either. [n such a case, we can only say that ¢ holds under assumption p. This type
of reasoning is sometimes called assumption-based reasoning. Because the consequents
of these assumptions and formulas derived from them are not guaranteed to be true, if a
contradiction occurs in the reasoning process, we must remove the original assumptions
and select other assumptions instead. Typical Al systems with this mechanism are
implemented as TMSs, which maintain the consistency of knowledge bases, so that they
can deal with contradictions. In engineering, constraint satisfaction, which is needed in
parametric design, can be solved with this type of reasoning (e.g., [Inoue 87]).

Formal theories are studied mainly in abductive reasoning, such as [Poole 86] and
[Reiter & de Kleer 87). However, consistency maintenance mechanisms are pursued
algorithmically rather than theoretically. We suggest that both types of hypothetical
reasoning should be understood in the same model theory, that is, the latter case can be
analyzed in the same way as the former. These two types of hypothetical reasoning just
correspond to different aspects of the same logical framework for hypothetical reasoning
and can be explained as the unified formalism given in the next section.

3. General Formalism

This section considers a model theory for hypothetical reasoning. First, reason-
ing from knowledge is formalized. Then we show a logical framework for supporting
hypotheses which sanction a given propositional well-formed formulas. The framework
corresponds to a model theory for abductive reasoning. Next, reasoning from beliefs
is formalized within the framework. This formalism reflects the important property of
consistency maintenance. Finally, the formalism is compared with Reiter's default logic.
All proofs of theorems in this paper are shown in the full paper.

3.1 Supporting Hypotheses

Let U be a set of finite propositional symbols, and L be a propositional language
with U and logical connectives = and O and the set of well-formed formulas (wffs)
defined in the usual way. Logical connectives V and A are defined in terms of = and
O, that is,aVi=-a D> fandaAf=-(a> ). A literal is a symbol in U or
the negation of a symbol in U, A clause is a wif such that it is a finite disjunction of
zero or more literals. An interpretation, I, of U is defined as a set of literals such that



for each a € U, either a € I, or —~a € I, corresponding to be assigned to true or false,
respectively. A set of interpretations is denoted as f1. The relation, =, is defined as
follows: let T€e Qand a,f € L, (1) forac U, I Eaif « € I, (2) I E —a iff not
I'=a,and (3) I a2 fiff I = ~aor I = 3. Andlet M € Q be an interpretation
and W be a set of wifs in L, then the fact that M satisfies W is defined as M = a for
all @ € W. In this case, we say that M is a model of W. W is said to be satisfiahle if
it has at least one model. The set of all models of W is denoted as MOD(W). We say
that for a wif, @ € L, W entails o (written W k= a), if for each model, M € MOD(W}),
M = & holds. In this case, we say that a is a logical consequence of W,

Definition 1. A set of premises, I, is a satisflable set of wifs. A set of knowledge of
is a set of all logical consequences of Z. A wif, w € L, is a knowledge of Tiff & = w. ]

Definition 2. Suppose that a set of premises, £, is given. A wif, d € L, is indefinite
with respect to  iff & & d and ¥ & —d, that is, there exist models oy, 07, € MOD(I)
such that o1 # g2, o1 |= ~d and 73 |= d. A set of wifs, Dz, is a set of hypotheses with
respect to I iff each wif, d € D;y, (called hypothesis), is indefinite with respect to I.
A set of wifs, E, is an environment of Dy iff E € 2Pt51, The set of all indefinite wffs
with respect to I is denoted as DM AX(x). In the subsequent discussion, we omit the
subseript *(g)” in D or DMAX when they are clear in the situation, and we simply
say “indefinite wif” or “set of hypotheses”, omitting “with respect to . []

Definition 3. Let £, IJ and w be a set of premises, a set of hypotheses and a wif in L,
respectively. A wif, d € D, is a supporting hypothesis for w with respect to & and D iff

EeEdow

holds. The set of all supporting hypotheses for w with respect to & and D is denoted
as SMAX(Z,D,w). [

Proposition 1. Let d be a supporting hypothesis for w with respect to © and D. Then,
(1) ZU {d} is satisfiable.

(2) Tu{d} F w.

(3) Zu{-~w}lkE~-d

Proposition 2. (1) If w is a knowledge of T, that is, ¥ = w, then for any wiT set,
D g 2PMAX SAMAX(E,D,w) = D.

{2} w e D{E] iff we SMAX{E,D{E},LL?].

(3) T ~wiff SMAX(Z, DMAX,w)=¢. [

Intuitively, a supporting hypothesis, d, for w with respect to £ and D is a sup-
plementary wif with which the truth of w is assured by the entailment of E, keeping
consistency with . Given w, the computation of a set of supporting hypotheses for
w corresponds to abductive reasoning. We should pay attention to the principle of
parsimony, that is, such supporting hypotheses are to be minimal as follows.

Definition 4. Let £, D and w be the same as Definition 3. A wif, d € D, is a minimal
supporting hypothesis for w with respect to T and D iff d € SMAX(E, D,w) and there



e

exists no wif, d' € SMAX(Z, D, w), such that d # d' and d D d'. The set of all minimal
supporting hypotheses for w with respect to & and D is denoted as SMIN(Z, D, w).
Y= w, then SMIN(E, D,w) is denoted as ¢. [

To analyze the properties of SMIN(Z, D,w), we define the set of all models of E
that satisfy each indefinite wff, e, in an environment, E, of a set of hypotheses, D, as
follows.

M(3Z,E) = | ) MOD(S U {e}) .
c€EE

Lemma 3. Let d and d' be two hypotheses in D, wbeawlffin L. HZ = d 2 w and
d Dd, thenE=d Dw. []

Theorem 4. M(Z,SMIN(Z,D,w)) = M(Z,SMAX(Z,D,w)). []

Theorem 4 shows that only from SMIN(X, D, w), all models of T that satisfy each
hypothesis in SMAX(Z, D,w) can be computed.

Corollary 5 (monotonicity of supporting hypotheses). Let L be a set of premises,
and D and D' be two sets of hypotheses. If D C IV, then M(E,SMIN(E,D,w)) C
M(Z,SMIN(E, D', w)). []

Example 1. Suppose that ¥ is a set of premises, and that Dy and D; are two sets of

hypotheses, as follows.

T={aDe bDe, andbDyg, —g}
D] = {ﬂ, b]’
Dy ={a, b, aVb, ¢, bAc}

From this, the following sets of supporting hypotheses can be obtained.
SMAX(E,Dy,¢)=SMIN(Z,Dy,c) = {a, b}.
SMAX(E,Da,c)={a, b, aVh ¢, bAc}

SMIN(E, Dy, c) = {aVb, ¢}
SMAX(E, Dy, bae)={b, bac)
SMIN(E, Dy bAac)y={b} (O

The above definition of supporting hypotheses can be compared with the notion of
‘support’ of the CMS in [Reiter & de Kleer 87], where a support, -5, of the CMS roughly
corresponds to our supporting hypothesis, §. However, while in the CMS all wifs have
to be translated to the clausal normal form and some or all ‘prime implicants’ of ¥ of
propositional clauses are considered so that SMIN(Z, DMAX, C) for any clause C is
computed, we do not require this translation. We focus only on model-theoretic seman-
tics, and our formalism with any wifs is more general than one with the clausal normal
form. For example, our formalism naturally provides minimal supporting hypotheses
for conjunctive observations such as SMIN(E, Dy, b A ¢) in Example 1. Moreover, we
deal with indefinite wffs not by DM AX but by the set of hypotheses supplied by the
problem solver, which are all that is needed to construct a set of supporting hypothe-
ses for any wif. The separation between hypotheses and other wifs makes knowledge
bases. comprehensive and helps the system to compute clearly and efficiently. In our



formalism, as the set of hypotheses, D, is explicitly given in the model theory, the sets
of beliefs can be constructed from ¥ and environments of D in Section 3.2, and they
can be characterized in terms of eztensions in default logic in Section 3.3.

3.2 Beliefs

One technique for efficient computation of SMIN(E, D, w) for a wif, w € L, can
be considered to be a mechanism to keep dependencies or the original assumptions with
each wifs in TMSs, as stated in Section 4. Therefore, the above formalism iz a model
theory for consistency maintenance mechanisms as well as for abductive reasoning. Now,
we define reasoning from heliefs of a set of premises and an environment, which is a
basis for consistency maintenance mechanisms, as follows.

Definition 5. Suppose that  is a set of premises and that D is a set of hypotheses.
Let E be an environment of D such that TU E is satisfiable. A sel of beliefs of & and E
{denoted B(Z, E)) is a satisfiable set of all logical consequences of ZUE. A wif, w € L,
iga beliefof Eand Eif LUE Fw. [

Lemma 6. MOD(B(Z,E)) = MOD(SU E) C M(S,E). []

Theorem 7. Suppose that &, I) and FE are the same as Definition 5. Let w be a wif in
L, then, (1) if w is a belief of T and E, then F is a set of supporting hypotheses for w
with respect to T and DD, and (2) if an indefinite wff, d € D, is a supporting hypothesis
for w with respect to E and D, then w is a belief of & and E, where E is an environment
of D and there exists a hypothesis, d' € E, such that d' > d. [

Theoremn 7 gives a bridge between consistency maintenance and abductive reason-
ing. The next two theorems show that the set of models of B(%, E') decrease monoton-
ically when either a hypothesis is added to K, or a premise is added to X.

Theorem 8 (model monotonicity of hypotheses). Suppose that £, D and E are the
same as Definition 5. Let d be a hypothesis in D. And let E and E' be two environments
of D). Then, the following properties hold.

(1) Hd ¢ E then MOD(B(L,E U {d})) = MOD(B(Z, E}) —{7|vk=-d, v € Q).

(2) ¥ E C E', then MOD(B(EL,E")) C MOD(B(L, E)). [

Theorem 9 (model monotonicity of premises). Suppose that £ and ¥’ are two sets of
premises, and that E and E' are environments of D. HEC Z' and F' = E~{w|Z' Ew
or &' = ~w}, then MOD(B(Z', E')) € MOD(B(L, E)). O

3.3 Extensions

A set of hypotheses, D), is very closely related to a restricted case of a set of normal
defanlt in Reiter’s default logic [IReiter 80]. Here, we investigate the relationship between
a set of beliefs and an extension of a normal default theory. In the following discussion,
a normal default with the form, :Md /d, is only necessary for our logic.

Definition 6. Let I be a set of premises. A defoult with respect to I is any expression
of the form :Md/d, where d is an indefinite wif with respect to I, And let DRg) be a



set of defaults with respect to I. The set of consequents of defeults of DRz (denoted

Given a set of defaults, DR(y), we can characterize a set of hypotheses, D, as
Dixy = CONS(DR(y)). We now give a definition of an ertension by a fixed point
construction of sets of beliefs of & and an environment of D, which can be shown to be
equivalent to the original definition in [Reiter 80].

Definition 7. Let T be a set of premises, and IJ be a set of hypotheses. A fixed point
operator for & and D is defined as:

NMs p)(S) <€ B(Z, {d|de D, ~d & S}).

An eztension of & and D is the fixed point of this operator, that is, § 1s an extension
of & and D iff N*M{E,DJ(S} = 5. D

All concepts and results of normal default theories in default logic are now ap-
plicable to our model theory. In particular, by the property of semi-monotonicity,
MOD(Y) is restrictedly selected by repeatedly applying each hypothesis toward a set
of all models of an extension of © and . We have already seen in Theorem 8 that
MOD(B(Z, E)) decreases monotonically as environment E increases. A set of beliefs
of T and such a maximal environment E’ in 27 corresponds to an extension of £ and
D, where MOD(B(E, E')) is such a minimal set of models in 2492(F), This result
corresponds to the semanties for normal default theories in [Etherington 87)].

Last, in this section, it should be noted that although we state supporting hypothe-
ses or default theories in the propositional language to make the discussion clear, all
definitions of them can be extended to have the first order predicate calculus, where
closed formulas correspond to wifs and a model, M, of a set of function-free formulas is
represented by enumerating the ground atomie formulas true for M.

4. Truth Maintenance Systems

The logical framework for hypothetical reasoning subsumes various TMSs. This
section shows how the general formalism is related to TMSs, especially to de Kleer’s
assumption-based T'MS (ATMS) [de Kleer 86] and Doyle’s non-monotonic justification-
based T'MS (JTMS) [Doyle 79), which are two different kinds of representative TMSs.

4.1 de Kleer's ATMS

The ATMS maintains a global, concurrent representation of all sets of beliefs by
labeling each atomic formulas with all minimal supporting hypotheses. In other words,
the ATMS keeps all models of all extensions of £ and D. More formally, in the ATMS,
a set of premises, &, is given as a set of justifications submitted by the problem solver,
each of which is either & Horn clause (i.e., rule clause, unit clause, or negative clause
(called mogood)), or a positive clause (called choose) in the extended version. In the
ATMS, a set of assumptions, AS, 15 given as a set of indefinite atomic formulas with
respect to T in 7. Then. in our general model theory, the set of hypotheses, D, is as



follows.
D= {d|d= /a Ac2*7}.
agA
Each positive literal, w, in the set of all extensions of & and D forms a node, within
which SMIN(E, D,w) (called the label) is maintained. Each hypothesis, d, in the label
SMIN(EZ,D,w) 15 called an ‘environment’ in the ATMS. A set of all atomic clauses in
a set of beliefs of £ and A (A € 24°) corresponds to a contert in the ATMS.

We can generalize the above characterization of the ATMS with our formalism. In
particular, the generalization of the set of premises, ¥, from Horn clauses to general
clauses is equivalent to one with the CMS [Reiter & de Kleer 87]. In this case, a node
can be extended to express a supported wif of not only a negative clause but of any
clause. The following results give a characterization of the generalized ATMS.

Lemma 10. Suppose that I, AS and D are the same as the above definition, except
that ¥ is given as a set of (general) clauses. Let E be an environment of D such that
YU E is satisflable. Then, B(E,E) = B(E,{a|a € AS, Aea € E}). [

Theorem 11. Suppose that £, AS and D are the same as Lemma 10. The set of all
extensions of ¥ and D) -is equivalent to the set of all extensions of £ and A5, []

The next theorem is an immediate consequence of Theorem 7.

Theorem 12. Suppose that ¥, AS and D are the same as Lemma 10. Let w be
awifin L. SMIN(E,D,w) # ¢ iff w is a belief of some extension of £ and AS.
SMIN(E,D,w) =& iff w is a knowledge of 5. [

How do we consider constructing the deductive system that preserves the seman-
tics of the ATMS? The computation of all extensions of & and A4S is called interpre-
tation consiruction. By the property of semi-monotonicity of normal default theories
[Reiter 80], each hypothesis (or even assumption in the ATMS) can be treated in-
dependently, so that interpretation construction can be done simply by applying one
assumption after another and ignoring some assumptions. However, in the real world,
a major problem arises. Since not all premises as well as all assumptions are explicitly
available, the ultimate set of all premises, I, is implicitly defined. Indeed, Theorem 9
shows the global property of I, that is, if & grows, then the environment taken into
account decreases. Let us consider the following example.

Example 2. Suppose that £, and Xy are two sets of premises, and that AS; and AS;
are two sets of assumptions. Let D) and D; be two sets of hypotheses for A5, and AS;,
respectively, given by the previous definition. From

Ey={avh aAcDl, ¢Dg} and

AS i ={a, b, ¢},
we can obtain SMIN(E,,D;,g) = {c}. In this case, we have two extensions of I; and
ASy, ie, B(E,,{a,b}) and B(Ly, {b,c}). Then, the following premise is added to I,

and 3 is created as
Eg=E;U{bﬁCDL},



Since Iy k= —e, ¢ is no longer indefinite. Therefore, from
ﬂ592ﬂ51 —{C}.,

we now obtain SMIN(Z,, Da,g) = ¢. There is only one extension of Lz and A5, i.e.,
B(Z,,{a,b}). [

To avoid redundant computing during interpretation construction, dependency-
directed search (DDS) is utilized in the ATMS. DDS is also required if only part of
the search space should be explored for the purpose of the characteristics of tasks, such
that not all solutions are required at once, or more efficiency is required. In [Inoue 87,
an efficient algorithm is given for DDS, where reasoning is controlled by an AND/OR
tree search mechanism, and assumptions and premises can be added to a set of beliefs
incrementally constructing all extensions.

4.2 Doyle's TMS

The JTMS focuses only one current model of a set of beliefs at a time. In our
model theory, it is implicitly assumed that there are all models of every possible set
of beliefs. Therefore, the JTMS is interpreted as an extended reasoning module for
the logical framework for hypothetical reasoning, where a problem solver will somehow
choose a single model of an extension within which to reason about the world. DDS is
provided if a contradiction oceurs. Switching the set of beliefs is called belief revision.
This mechanism is the most popular method to provide default reasoning systems. The
JTMS tries to establish a maximal satisfiable set of nedes supported by the justifications.

We give a very simple formalism of the JTMS. Note that this is not an exact model
theory for the JTMS, but one explaining the above notion of the extended reasoning
module. An interpretation, -y, of U is called a labeling. A node is defined to be associated
with each atomic formula in I/. Let 7. be the current labeling. Then, (1) a node w is
‘believed’ (or is labeled in) iff w € 4. (i.e., 7. = w), and (2) a node w is not ‘believed’ (or
is labeled out) iff ~w € 7. (i.e., 7o & w). A justification for w has the form, J{w) D w,
where J(w) consists of the following two disjoint parts, I{w) (called the inlist) and O(w)
{called the outlist) such that

J(w) = I{w)AO(w), where J{w) # ¢, and [{w) = /I\m, Olw) = ,’\".er oy, 3; € U.

b

A set of premises, I, is given as a set of justifications and unit clauses. Given I, we
say that a labeling, v, is valid iff v € MOD(Z). And we say that a labeling, =, is
well-founded iff + is valid and for each ‘believed’ node, w, all literals of J{w) are in v,
that is, all nodes on I(w) are in and all nodes on O(w) are out.

Theorem 13. Let © be a set of premises, and v be a labeling. If v € MOD(Z U {w D
J(w) | J(w) 2w € L}), then « is well-founded. []

The truth maintenance process involves finding a well-founded labeling. The JTMS
selects only one model from the set of all well-founded models. Whenever new facts or
justifications are added to I, the process is repeated. From Theorem 9, when a new



justification is added, the set of models of beliefs will decrease. We must choose some
model from the restricted models, MOD({B(E', E'})) in Theorem 9, and this corresponds
to belief revision. We need a criterion for belief revision; intuitively, this is done by
exchanging the elements between sets of positive and negative literals in 4 as minimally
as possible, This kind of criterion is addressed in [Satch 87].

4.3 Discussion

The construction of the ATMS is more straightforward than the JTMS in the model
theory for hypothetical reasoning. The *brave’ character of default logic, where each
extension is treated as an acceptable set of beliefs is very close to the notion of keeping
all models of beliefs in the ATMS. Our formalism gives one natural way to interpret
the JTMS as an extended reasoning module for the ATMS, so that the current model
is selected from all models of sets of heliefs. Minimal belief revision should be involved
by comparing it with other models maintained by the ATMS.

A major problem of the JTMS is that the algorithm and the data structure are too
complex, and as a result, the formal analysis is very difficult. Our formalism for the
JTMS is not enough complete but much simpler and clearer. In [Doyle 83], the exact
specification for the JTMS is tried, so that the correctness of his algorithm is proven.
Conversely, we first formalize hypothetical reasoning and interpret the JTMS as an
implementation of the extra reasoning module for it. In [Morris 87], the relationship
between the JTMS and Reiter's non-normal defaults is shown not semantically but
syntactically. Howewver, the motivation of their research is to solve a multiple extensions
problem in default logic, which can be solved by the unidirectional property of the
justifications of the JTMS (shown in Theorem 13, in our model theory). Again, we first
construct the formalism for hypothetical reasoning, then we compare the model theory
only with the normal default theory, which is more tractable.

5. Conclusion

This paper presented a logical framework for hypothetical reasoning, which formal-
izes reasoning systems with incomplete knowledge. The model theory was shown to be
the formalism for both abductive reasoning and consistency maintenance in knowledge
bases. The key idea is that hypotheses are treated as indefinite wifs, making it possible
to relate them to the restricted case of normal default. The paper also described the
formalism for TMSs in our model theory for hypothetical reasoning. These results show
that hypothetical reasoning is an important subcase of default logic for which efficient
theorem proving techniques exist.
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