ICOT Technical Report: TR-334

TR-334

Deductive Approach For
Nested Relations

by
k. Yokota

January, [958

1988, 1COT

Mita Kokusse Bldg, 21F (3 A50-3141-5

|CDT 4-28 Mita 1-Chome Telex ICOT J2u61

Monate-ku Tokye M8 Japan

Institute for New Gene}éfi_on Computer Technulnqu.

DEDUCTIVE APPROACH FOR NESTED RELATIONS

Eazumasa Yokota

Institute for New Geperation Computer Technology
4-28, Mita I-chome, Minato-ku. Tokyoe 108, Japan
junet: kyokotadicot. junet

csnet: kyokota%icot. jpécsnet-refay

uuep: {enea, inria, kddlab, nit-eddie, uke} 'icottkyokata

ABSTRACT

& recent trend of database theory is representation of
structured data and s deductive database. One such
representation is a nested (or non=first-normal-fora)
relational model that is an extension of a relational
model and {nherits clarity of the formalism. A& deductive
database is also an extension of it in the framework of
first order theory. This paper proposes a logie
programming language called CRL for their integration
and discusses a deductive approach for a nested
relational model.

Table of Contents

1. Introduction

2. Motivation
3. Nested Term
3.1 Jyntax

3.2 Semantics

4. Unification

5. Program

6. CEL and Nested Relations

T. Extensinons

8. Related Research

9. Coneluding Remarks
Acknowledgments
References

L. INTRODUCTION

The relational model has played an important role not only 23 one of the data
nodels but also as a3 theoretical backbone in the development of database
theory. It has siaple symtax and clear semantics, but restricts expressive
capability and application domains. To extend the model while reserving the
advantage, many approaches have been proposed, such as a deductive database, a
nested relational mode!l and a semantic madel.

The deductive database approach is based on familiarity between a3 relational
model and first order predicate logic [Gallaire T8]. As first order logic
provides uniform deseription of tuples, inference rules and integrity
econstraints, its approach iz intended to extend the model in the framework, The
conventional approach to formalize a database is called model-theoretic. In it,
relations are considered as interpretations of first order theory. On the other
hand, in a deductive database, relations are considered as a part of first
order theory, and the approach is proof-thesoretic [Gallaire 84, Reiter 84]. In
this framework, query processing can be considered as theorem proving in
theory. Furthermore, many areas, such as introducing negative and disjumctive
information and optimizing queries are studied as a deductive database in the
uniform framework.

From an application point of view, it has been pointed out that a relational
model has some difficulties in coping with applications for structured data,
such as CAD/CAM, office avtomation and document processing, where the first
normal farm of a relational model is considered not to be appropriate. As one
of the solutions of the problem, a nested (or unnormalized or
non-first-normal-form) relational model was proposed [Makinouchi 77] and has
been studied. There are many works on the model [Schek 82, Fischer 831,
Abiteboul 84, Kambayashi 84, Pistor 868], and the first international workshop
was held in April 1987 (Scholl 87].

At 1COT, many knowledge information processing systems have been developed and
planned on the personal seguential inference machine (PF3!). For such systems,
especially for matural language processing and proof checking systems which are
considered to play an important role in the fifth generation computer project,
a database and kpowledge base management system was planned to process various
kinds of data and knowledge with complex structures in such applications. The
KAPPA project was started for this purpose in September 1985. The system is
based on a nested relational model from the viewpoints of efficiency of
performance and representation of structures, and is intended to support

deductive functions like a deductive database [Yokota 37].

However, it is only recently that research has been condusted in integration

2 -

between a nested relational model and a deductive database, because it Is very
diffieult to econsider the model in the framework of the wuwsual first order
predicate logie. Recently, some formalism which corresponds to record
structures of @ nested relationazl model has been proposed in other fields
[Ait-Kaei 84,85, Mukai &7, Rounds 86]. In the area of databases. a calculus for
compliex objects [Bancilhon 86, Abiteboul 86] and a logic for objects [Maier 86]
have been proposed, with the possibility of representing nested relations
although they are not explicitly related to them. As an extension of FProlog.
LbL1 [Beer &7] and LPS {Kuper 87] has been proposed, aiming at a logic
programming language for nested relations.

This paper presents a logic programming language called CRL, wunder some
restrictions of nesting levels. which is intended to be a language for a
deductive database based on nested relations. The next section explains some
motivations of our approach, which is based on representation of record
structures. Section 3 defines the syntax and semantics of a nested term for
nested records, and Section 4 deseribes unification between nested terms.
Section 5 defines a program based on nested terms. and Section & discusses
relations between CRL and nested relations. Section 7 describes research plans
and Seetion 8 compares this research to related research.

Z. MOTIVATION

A ‘record” is one of the basic representations of the real world and its
structure appears not only in a database domain but also in various damains,
and relates to objects, complex ohjects, feature structures, situations and
other knowledge representation. In a deductive database for a relational model,
a record (tuple) is flat and corresponds to a predicate. However, it has some
problems.

First, it fixes the position of arguments {attributes). In the case of large
records it is not apprapriate for a user language because its predefined order
and position are not essential for what he wants, and it is not
data-independent if it is embedded in a program. Instead of fixed position
notation, we use attribute=value pair notation:
person{galois, L&11) = person{last_name/galois, born_in/1811)},

where the left side of / is an attribute name and the right side is the
corresponding valee. In this notation, the position and order are not fived and
they do not appear duplicaled. that is, the pairs are commutative, associative
and idempotent.

Secondly, & first order predieate also fixes the number af arguments. It is
very tedious for a user to write all the arguments even if he uses anonymous

variables. Hence, we admit partial deseription of attribute-value pairs:
person{_, 1811, _, _) = person{born_in/1811).

Using this notation. in a database a value not expressed explicitly is an

unknown (applicable) value and in a user query it is out of his interest.

A nested record in nested relations can be considered as a combination of two
kinds of nesting. column-nesting and row-nesting. A relatienal model does not
admit column-nesting, however, column-nesting can be expressed in the usual
first order predicate as hierarchy of functors and a predicate symbol (a
relation name), and a predicate symbol is treated as a top~level functor. I[n
pour attribute-value pair notation, both functor and predicate symbols are also
attributes, and eolumn-nesting ecan be expressed uniformly in the tree of
attributes:

person{namc(evariste, galois), 1811)

= person/(name/(first/evariste, last/galois), born_in/1811)

However, it is very difficult to express rov-nesting in the usual first order
term. A simple row-nesting (set value) can be expressed by distinguishing
between a set domain and an atom domain, that is, by using two-sorted logic
like [Xuper 87). In CRL a power set of an atom domain is used for simplicity:
person/{(name/ {john}, hobby/ {ski, tennis, baseball}).

Qur notaticn admits deep nesting but current CRL is restricted to-this simple
row-nesting. For deep row-nesting, there are some problems to be solved, which
are described in Section 7.

Even if a row-nested record can be expressed and stored in a database, a user
language should be independent of the status of the database. Consider the
following database (brackets are omitted in a case of a singleton):
person/(name/john, hobby/ [ski, tennis}),
person/(name/ [john, jackl, hobby/baseball).
To ask John's hobbies, the query should be written simply as
person/{name/john, hobby/X), although we have not say the semantics. The answer
ils 2 set [ski.tennis.baseball}l. That is, it is unnecessary for a user to know
how a database is row-nested.

Qur formalism 1s based on the above nested attribute-value pair. CRL is a logic
programming language based on such record structures, and s intended to
provide deductive functions to nested relations. An answer to a query is a set
of wvalues, or a nested subrecord which is partial information of some records
and considered as constraints for them.

3. MESTED TERM

3.1 Syntax

We assume a set of constants, D. a set of variables, V., and a set of
attributes, ATTR. where they are disjcint from e=ach other. For a set-value, we
use a power set of D (denoted by F(D}) as a domain of set-values, and simply
call the element a constant. We add a special constant, w, whose intended
interpretation is an "unknown value'. ATTR econtains an empty attribute. <.

Our language consists of the following symbols:

constants: g, d, = (EPD)): w,
variables: Xy (EV),
attributes: €, a, b, (EATTR),

auxiliary symbols: #./, ().

First, a nested attribute-value paired term (NAV) corresponding to a restricted

nested record is defined:

Definition: Nested attribute-value paired term

A nested attribute-value paired term (NAV) is defined recursively:

i) A constant or z variable is a NAV,

i) (al/tl#--#an/tn) is a WAV, where tl,--,tn are NAVs, ai,--, anSATTR and for
i.j (i#3). ai#ai.

A NAV defined by ii) is called proper.

Examples:
1) 4 record (NAV) with attributes of name, age and address:

(name/ {iohn} #age/ (28) #address/ (PA}).

{name/ {smith} ¥age/{26) *address/ {NY}}.
A rtecord is defined as a combination by '# of pairs of attributes and values
by /. A value is specified by an attribute and can be located anywhere.
According to the definition, a value is always a set, but the brackets of a
single value {a singleton) are often omitted. Parentheses are also omitled
except in cases of possible misinterpretation, such as the following:

name/johntage/28*address/PA,

name/smithtage/26%address/NY.

2} A row-nested record with name and hobby:
name/john*hobby/ {ski, tennis, baseball},
name/saith*hobby/ {music, skil.
In a case of multiple values. the attribute value is expressed explicitly as a
set. We consider that a record with set values has the same semantics as its
decomposed ones. Far example, the second record is equivalent to a set of
"name/smith#hobby/music’ and " name/smith*hohby*ski .
It means that row-nesting and row-unnesting operations do not change the
meaning (details in next subsection). Note that it is i=portant from the

viewpoint of the wuser language. because a set of nested records dees not
generally have unique representation.

3} A column-nested record
student/{name/(last/john#first/w)eaffiliation/icot¥hobby/{ski, tennis}
#school/(schoo!_name/mitatschool_address/tokye)).
A nested record is expressed as a nest of attributes and 2 set wvalue.
"first/ w' =eans that the first name is unknown, and it shows the possibility
of values attached.

We define some simple notations:

attrs(t) is a set of attributes included in & NAV t,

varsi(t) is a set of variables included in t,

subterm{ai, t)=ti is defined when t=al/tl#--#an/tn.
Further, for the sequence of attributes <hl, b2, -, bn», subtern(<bl, b2, <+, bnd, t)
is recursively defined:

subterm{, t}=subterm(b, t},

subterm{<bl, b2, ===, bn>, t)=subtern{<bl, -+, bn», subterm(bl, t)).
When subterm (p,t) is a constant or a variable, p is called a terminating path
of t. We simply use a notation p//<bl, -, bn>=q when subterm(<bl, -, bad, p)=q.

Example: .
Let t be a NAV of the above example 3).
attrs(t)
={student, name, last, first, affiliation, hobby, school, school_name, school_address)
A set of terminating paths of t is
[<student, name, first>, ¢student, name, last>, <student, affiliation>,
¢student, school, school_name>, <student, school, school_address>}.
t//<student, name, last>=hrown,

We give some axloms explicitly for rewriting NAVs:
a/(t1#t2)=a/t1%a/12,
tie(t24t3)=(t1#12)#t3,
tlet2=12%11,
t#L=t,

Lemma: 4 proper NAY can be transformed using the above axioms inte the
following form:

<al, =+, an» uk--#<bl, -, omd /v,

where <al, -, an», -, <bl,--.bm> are termlnating paths.
Proof: Obvious, because recursive definition of a NAV reserves a path form.

This transformed form is called a path form of a NAV.

Note that the above definition for a NAV is like a partially specified term
(PST) in CIL [Mukazi 87] if the domain of constants is restricted to D, since a
NAY defined by i)} can be rewritten as lal/tl,-- ,an/tn} because "% s
associative, comautative and idempotent, and |} used instead of w.

3.2 Semantics

We define a partially tagged tree (PTT) and consider a set of PTTs as a domain
of interpretation of NAVs. The same symbols are used for a set of attributes
ATTR and a set of constants [.

DPefinition: Attribute string
of attributes is defined as follows:

A concatenation
3, a=a. <d=a,
al. (aZ. a3)={(al. al).ad.
A concatenation, al.=*.an. is called an attribute string, which is denoted by
<al,*,an», and ATTE®# is a set of attribute strings.

Definition: Tree domain
A subset T of ATTR¥ is called a tree domain iff it satisfies the following
conditions:
If a.b=T then a€T, and
For any a=T. a set [b| a. b=T} is finite
Clearly, every tree domain contains an empty atiribute <.
An element, 1, of a tree domain, T, is called a leaf of T
iff Ya=ATTR l.n=T—m=<. leaf(T) denotes a set of all leaves of T.

Example:
T1={<» a,a.b,c)] and T2=(<» a,a.b,a.b.a, a. b.ab -} are tree domains.
leaf(Tl)={a.b, e} and leaf(T2)}=g.

Definition: Partially tagged tree (PTT)

Let T be a tree domain and f be a partial function from leaf(T) te D. A pair
{T.f) is called a partially tagged tree (PTT). A function, f, is expressed as a
sel of pairs of a leal and an element of D, which might be an empty set.

Exanple:
({1, ¢) and (<>, a3, a.b,cl, [{a.b,v), {c.v')} are PTTs.

Definition: Merge of PTTs
Let tl1={TL, £1), t2={T2, £2) be PTTs. A merge cperation of tl and tZ is denoted as
t1+t? and defined as tl+t2=({T1UTZ f1Uf2) only if fLUFZ is a function

n
¥e use the notation I tI for tl+--+tn.

i=1

4 sget of PTTs iz an associative, commutative, idempotent semigroup with a unit
element ({<>}, ¢} with respect to the merge operation.

This merge operation is extended naturally on a set of PTTs:

For a set of PTTs s and s*, s+s'={ti+tj [ti€s, ti"<s', ti+tj’ is defined}.

Exampie:

{{<r a.a.boel, (e bowd, (e, v)ED+ {1, e, dl, (0d, udi)
=({<> a a. b.e.db. {{a b v}, (e, v), {dudt)

({¢r.a.a boel, [a bov), le, v)Y+ (1<, e dl, ({e.u), {d, u))) is not defined
if v #=u.

Useful notations:
for a=ATTR and PTT t=(T, f),
a.t=(a.T,a.f)=(Ix| 3z, yET x.z=a.y), {{a. L.¥) | (1,¥v)E1}).
This iz also extended on a set of PTTs:
a. {t1, -, tn}={a. t1, -, a. tn}.
Partial order is defined:
for PIT t=(T.f) and t'=(T",{"), t=t" iff TET and f<H1".

Now we have prepared for semantics of NAYs. Let 5 be variable assignment from
V to a set of PTTs. Assignment 1[{n] from a NAV to 2 set of PTTs is defined
recursively:

Hoa T =101, 431 if t=a
=<y, (e el | eEst if t=sEP(D)
=7 (x) if t=x€y
=§?lai.[[n 1{eid if t=al/tl#-#an/tn
i=
Exampla:

Consider a NAV pl=a/c#b/{d,e}. pl=ajc#b/d and pli=a/c#b/e, and denote a simple
PTT as tx={{<»}, {{<>)]). Then

I0n J(pl)=la. tel+(b, td. b. te} ={a. te+b. td, a. tetb. te},

[[n)(p2)=la. te}+{b. td}={a. te+b, td],

I0n 1{p3)=la. te)+(b. tel=la. te+b. tel.
Clearly I[2J(pld=10n1(p2)UIiln](p3).
When we define a program based on a NAY in Section 5. we give semantics of it
such that even if pl is divided into pZ and p3. they have the same meaning.

Example:
Consider p=a/c¢¢b/w and q=a/c.
I0n)(p)=a. te+b. ({1}, @) =a te+ [({<> b},). and 1[n](q)=a. te.
Each meaning of p and q is different, however, they play a same role for a
nested relation with attributes a and b

4. UNIFICATION

As usual, #e start with & definition of substitution:

Definition: Substitution

A substitution, &, is a function from ¥ to a set of NAVs., which is different
from identity, only on a finite subsat of ¥. For a NAY, t, application & to t
is written as t8. & is also denoted by {x1/tl, - ,xnftnl where ti is
substituted for xi.

Composition of substitutions, generality, renaming substitution and wvariant
relation are defined just in the usual way [Lloyd 84]. We use a representative
HAY of an equivalent class module renaming.

Usually, wunification of p and q is to solve an equation p=q. However, a NAY

makes its position different due to its partiality and its set value. Note the

following points:

i) ¥hether unification of sets corresponds to their uswal equality or their
sel operation such as intersection or union

ii) Whether ‘ocecur cheek’ should be done or not, that is. infinite trees are

allowed as solutions or not

For the first point, we select the intersection of sets as their unification,
because the intersection should ecorrespond to database operations If we
consider a set of HAVs as a relation or a table. We give a semantics to a NAV
as a set of PTTs, each of which does not have a set value on the leaf, and if
wve consider a set of PTTs as a table. unification corresponds to a join or a
selection operation of tables. Unification of NAVs corresponds to a merge
operation of sets of PTTs.

For the second point, we restriet a solution to a set of finite restricted
PTTs, although CIL allows a more general solution. From the viewpoint of the
nested relation, the restrictions are not strict but natural. that is. such a
record structure does not appear in the model. However, if more general record
gtructures such as taxonomic information are handled, the restrictions should
be weakened and a solution in an infinite tree domain must be considered. The
problem is considered in Section T.

Definition: Fartial Order

Ordering of NAVs is recursively defined:

i) if p.q=P(D) and pSq then p=q.

i) if poand g are <pld/vi®slpn>/vn and <pld>/vl’ *--%lpndfvn’, and visvi® for
l=i=n, then p=q.

Definition: Compatibility

NAVs p and q are compatible iff

i) if p,g=P(D} then pliq= &,

i} p=V or q=V, or

i} if p and q are proper (without loss of generality, let p=t#t’ and q=u®u’
wvhere t=al/ple-tan/pn, t" =hl/pl’ - thm/pn’, u=al/qle---%¥an/qn and
v =¢l/ql" #--#ck/ak’), then pi and qi for each |=i=n are compatible.

For compatible p and q, we define frontier{p.q):
i) If pEV then frontier{p.q)={p.ql, and if 9=V then frontier(p.q)=1p.ql.
ii} if p=al/pl#--#an/pn#bl/pl #--%bm/pn’, g=al/ql#--#anfqnécl/ql #---#ck/qk’).

n
then frontier{p, q}=il.ill'runtieripi. gi). and

{ii} otherwise frontier{p.q)=¢.

Unification is obtaining a substitution € suech that p?@ and qf are compatible
for given NAVs, p and q.

Definition: Environment

4 set E of sets of NAVs is an environment iff

i) for any vEE, there exists at least one variable xSw,

it} for any variable x=wZE there does not exist v (#w) such that xS#', and
iii) for any p,qEwESE, there exists v E such that frontier(p, q)Cw'.

For environments E and E', a "transitive closure” of EUE" is defined:
i) ED=EUE,
i) If 3xEY x=EvsEEl, xEv €Ei and w#w

then Ei+l=(Bi={w, ' }) U {wUw')} U (frontier(p, q) | pEw, ¢Ew", where “1p, q=V}.
i) If p.aEvEEi, p.q=P(D) and pNg# ¢, Ei+l=(Ei-w)U [(v-{p,q)) U {pNnq)]}.
I Tor some n, En+l cannot be defined, then En Is a transitive closure of E and
E".

Given compatible NAVs p and q (we assume that vars(p} and vars(q) are

disjoint), an environment can be obtained by the following procedura:

i) If vars(p) or vars(g) is empty, then E={{x} | x&vars(p)Uvars(q)}.

i) If pEV, then E=({{x} | xEvarsip) Uvars(q)l-lp))U{p.q). 1f qEV. then
E={{{x} | xEvars(p) Uvars(g)}-{g}) VU (g, p}.

iii) If p and q are proper (p=al/plé---#an/pntbl/pl #---%bm/pm", gq=al/ql#--*an/qn*
cl/ql" ##ck/qk’), then let Ei be an environment of pi and qi for 1Si<n,
and

n K n
Eﬂ'('iu..:l\'ars{bi'}}U{ﬂlﬁfarsfqr”. Then E is a transitive closure of U Ei.

i=0

]{J

¥e denote a set of variables included in E by vars(E) and define ordering
“oecur check’:
Definition: Acyelic environment
Given an environment E, we define ordering on vars(E):

if x,t=v=E. x=V and ySvars(t) then x<y.
This ordering on vars{E) is aeyelic iff it does not contain the sequence X<--<x
for any variable x. And E is called acyclic if the ordering on E is acyelic.

Pefinition: Consistent enviromment
An enviroenment E is consistent iff for any p,q=w=E p and q are compatible.

Definition: Unification

Compatible NAVs p and q are unifiable iff there exists a substitution & such

that

i) prw or q=w,

i) if p#,q8 SP(D) then pd Nqd #+ ¢,

ii}) if p@=q8 =V, or .

iw) if p apd q are respectively al/pl&-—#%an/pnbl/pl #---%bn/pm’ and
al/ql#-#an/qn¥cl/ql’ #---#ck/qk’, then for each 1=i=n, pif and qif arc
unifiable.

Such 2 substitution is a unifier.

We define a unified NAV (denoted by uni(p,q, &) as the result of unification of
p and q by a unifier £ :
i) if psw then uni{p.q. &)=q, and If q=w then uni(p, q. @)=p,
i) if p#,q8 =P(D)} then unilp,q, & }=pMaq,
iii) if pf.q6 €Y then unilp.q. 8)=p8,
tv) if p and g arc respectively al/pl¥--#an/pn¥bl/pl #---%bm/pn” and
al/ql##an/qnicl/ql ##ck/ak’,
then uni{p.q, €)=
al/uni(pl, ql, 6)#---#an/(pn,qn, 8)¥bl/pl’ @ #---4bm/pn’ & #cl/ql" & #-4ck/gk’ 8.,

Theorem: Compatible NAVs p and q are unifiable iff there exists an acyclic and
consistent environment E of p and q.

Proof: only=if-part:

Let @ be a unifier and E"={i{x.t) | x/tE8). Thern a transitive closure of
E" Uvara(p) Uvars{q) is an acyelie and consistent environment.

if-part:

Let EO0={w| 2x,yEwEE x#y] and S0=¢. If x,y=w=E[l and x, y=V then Ei#l is
an environment such that all y in (Ei-{w}) U {w-{¥}) is replaced by x, and
Si+l=5iix/y}. Let En be an environment such that for any w=En there is only
one variable in w. Let E'0=En, and $°0=3n. If x is one of the minimal elements
in ordering in (x| {x,tl,,ta) €E i, x=Vl and w=[x, t1, -, tki =E" i, then as the

— 11 -

above procedure reserves consistency of E, tl, -, tn are compatible and a
unified NAV of ti and tj is well defined with identity substitution. If t is a
unified KAV of t1, --,tn, then let E" i+l be an enviropment such that all
occurrences of x in E"i-{w} are replaced by t. and §" i+1=5"iU {x/t}. Applying
this procedure repeatedly, ¥e can obtain E'm=¢ and 3 m.

Definition: Lossless unifier

As a necessary condition of wunification is compatibility, in the above
procedure of the theorem, we can also select t'(=1t) instead of t as a
substituted NAY. When t'=t, unification Is called lossless.

Corollary. There exists a unique lossless mgu if two NAVs are unified.

Froof: The above procedure In the theorem generates such a upifier. [t is easy
to verify the conditions.

Next we consider the semantics of unification of NAVs:
Corollary: if @ is a wunifier of p and q. and 1[#] 1is assignment then
Il p@)U1ln1iqd@)=1[n Jlunilp.q. }).

Proof: Clearly. in cases of p,q=P(D). and p=V or q=V. And also in the case
of proper p and q, recursive definitions of unification and assignment prove
the corollary.

5. PROGRAM

We define a program based on NAVs and its semantics:

Definition: Program

A pair (p,B) consisting of a NAV p and a set of NAVs B is a program clause.
(p. {pl, = ,pnl) is written as pepl,~-,pn. And (p, ¢) is called a unit clause
and written simply as p. A ground unit clause (a WAV without variables) is
called a fact. A program is a set of program eclauses.

Example: A program for parent and ancestor relationship:
parent/ [jack, bettyl #child/{john, cathy}.
parent/{jack, naney} #child/ {mary).
parent/ {john, kate) #child/ {bob}.
parent/ {george, mary) #child/w.
parent/{james, ann) #child/ (betty, paul].
ancestor/Xtdescendant,/Y+—parent/X*child/y.
ancestor/X¥descendant/Y+parent/X#child/Z, ancestor/Z#descendant/Y.

12

Definition: Madel
A non-empty set M of PITs is a mcdel iff for any assignment y and p<pl,
- pn=P, if I[7)(pi)=si=¥ for each 1=i=n then I[7](p) =N

Example: A model of the program
fonsider the subset of the above program:
parent/ (betty}#child/ (john, cathyl.
parent/{james, ann} #child/ (betty]
ancestor/X#descendant,/Y«parent/X¢child/Y.
ancestor/X+descendant/Y+parent/X*child/Z. ancestor/I*descendant/¥.
Let a PTT ({<.parent,child}, {{parent,u), (child,v)}) be denoted by pelu,v) and
{1¢>, ancestor, descendant}, {{ancestor, u), (descendant, v}}) by ad(u, v}. A model of
the program includes the following:
[pe(betty, john), pe(betty, cathy), pe(james, betty), pe(ann, betty),
ad(james, john). ad{james, cathy), ad (ann, john}. ad{ann, cathy}]).

Note that, according to the above definition, programs fa/{e, d1} and
la/ e}, a/ 14}l have the same model such as [{1¢>, a), 1{a, c)}), (1<, a), {{a.d}})},
That is, a row-nest and a row-unnest operations do not change Lhe meaning of
the program.

Lemma: The intersection of models of a program P is also a model of P.
Proaf: Clear from the above definition.

Theorem: There is the least model for a program F.

Proof: The least model is intersection of all models of P.

Dafinition: Logical consequence
A NAV p is a logical consequence of a program P iff a model of P is also a
nodel of p

Definition: Goal

A goal, @ (={ql,--,qa}), for a program, P, is a set of NAVs and writtem as
«—ql, ==, qn. An answer for a goal is a substitution & such that all of ql &, -,
qn8 arc logical consequences of the program P, Then & is called an answer
substitution.

Example: Consider the following gnals (queries} of the above program:
—parent/X¥child/john,
«—parent/Xéchild/john, parent/X#child/nary.
=—ancestor/Y#descendant /bob.

For the [irst guery X = {jack}, [betty) and [jack. bettyl, for the sccond X =

14 -

[jack}, and for the third X = 2 non-empty element of & power set of
liochn, kate, jack, betty, james, ann] are answer substitutions.

Example: Column-nested casa:
student/{name/(last/john*#first/w)#affiliation/icot*hobby/{ski, tennis}
#school/(school name/mita*school_address/tokyc}).
—student/ {name/X*school/Y).
An znswer is X=last/john#first/w and Y=school_name/mita¥school_address/tokyo.

Example: Consider the following program (unnormalized relation):

a/cl#b/ (c3, cdl.

a/elsb/el.

a/cl¥b/cd.
For a goal <af{el.c2i#b/X, X = {c3}, {cd} and (c3,cd} are answer
substitutions.

For a procedural semantics we must define some noticns:

Definition: Rest goal

Let t0 and t0° be unifiable by a unifier &. |f for some termination path p.
t0//p=8, uni{td, td", 83)//p=50 and S=50, tD is called reduced in p by &. If
t0=p/5%tl and t0 =p/S #t1" then p/(S-50)%tl and p/(5 -50)#t1" are called the
rests. If t0 is used as a goal, p/(S-50)%tl {s called the rest goal. Generally
if pl/Sl#-#pn/Sn s reduced in pl/S1" #---#pn/Sn’ #t, the rest goal s
pl/(51-81" Y #---#pn/(Sn-3n" }.

Definition: Marked substitution

A pair x:u of a variable x and a NAY u is called 2 marked subterm. Instead of
substitution of wu for x, substitution of x:u for ¥ is ecalled marked
substitution. Let t be a variable x and & ={x/x:u}, then t& = x:u. If t does
not inelude %" or "x:, A is identity. Let t be x:u and 8 =[x:u/x:v}. then
té = x:unifu,v, o) if there exists ¢ =& . If v and v cannot be unified, the
substitution is failed. If u,vEP(D) and ufivee @, x:v iz changed into x:{ufv).

Once we can get substitution {x/vl, the corresponding marked substitution &
={x/x:v}l and the new marked substitution & ={x:u/x:v} which includes a unifier
between v and u must be generated. Let t=p/x#t’ be a NAY and @ ={x/x:ul. Then
t@ =p/x:ut{t’ 8). If another binding substitution o is applied to the rest goal
t" and a variable x in t' is changed to v, then a unifier ¢ between v and u
iz applied to goals and x:({ue) has been replaced by x:unifv,u, o).

“x:' is not a variable but only a mark where there was x, and it cannot be
substituted or unified. Marked substitution is used to control a history of its
subterm wuniformly. |In the procedural semantics. marked substitution is used

— 14 —

instead of usual substitution.

Pefinition: Unmarked rest goal
If pl/Sl#-=-#pn/Sn is reduced in pl/SL" #--#pn/Sn #t and there are marks in pl, -,
pi, the unmarked rest goal is pl/S1 #pi/Si #piel/(Si41=8i+1") &-¥pn/{8n-8n").
This rest goal assures that under one mark there is a unique subterm even if
the mark appears in some goals.

Definition: SLb-resolution

Let P be a program and G be a goal. We assume that a set of variables included
in each program clause is disjoint from another. Let GO=G and E0 be an empty
environment. Let Gi={ql,--,qn}. [f qi=CGi and pi for some pi=—pil, -, pikEP are
unified by unifier &, then

Gi+l=|qi @ 8", ,qj-10 8" ,pil@, -, pikd,qi" 6.,qj+18 8", qné a1,

where 6 is a marked substitution corresponding to o, & is the nev generated
marked substitution and qj @ is the unmarked rest goal of gi generated by
g, If Ei' and Ei” are environments corresponding to & and 8° respectively,
Ei+l is a transitive closure of EiUEi" UEL". The sequence of (G0,EQ)= -
={Gi, Ei)= -~ is SLD-resolution of P and G.

Example: Consider the following program (unnormalized relation):

alcleb/ lcd, cd).

alc2#b/el.

afel#b/cd.
For a goal +<—a/lcl, el #b/%. we can obtain X=c3 and X=cd, which are the same as
X={c3,cd}, as the answer substitution.

Theorem: Given a program P and a goal G, if there exists n such that Gn=¢ in
the sequence of SLD-resolution. then the corresponding substitution & with En
is an answer substitution such that gi @ for 1=i=n is a logieal conseguence
af P.

E. CRL. AND NESTED RELATIONS

A NAV is an extension of a first order predicate (term) as follows:

p{ti, - tn) = p/(pSi/t1#--#pSn/tn).
On the right side, p is an attribute and p$l, - ,pdn are attributes
corresponding to the position of arguments of p. A set of usual predicates is
isomorphic to a set of KAYs, whose domain is restricted to a set of singletons.

If we fix a set of top-level attributes and use them as relation names, then we
can relate a NAY to a nested record in a relation whose name is the same as the

top-level attribute. Like Prolog. a CRL program is considered as a database

15

with wmultiple wvalues. Any database can be transformed and divided into an
extensional database (EDB) and an intensional one (IDB) like a Prolog database.
EDB is a wusual nested database. Its unique representation of EDE cannot be
guaranteed generally; howsver, given EDB, its meaning is unique independently
of its representation.

[f we see CRL as a3 programming lamguage, them its evaluation mechanism may be
based on modified 5LD-resclution of the above. The mechanism returns answers
aecording to the representation of EDB, and a set of answers has a2 unique
meaning independent of the representation. However, from the viewpoint of the
deductive database, the evaluation mechanism should be reconsidered for
termination and efficiency of query processing. Many optimization strategies
have been proposed for a deductive database for a relational database
[Bancilhon &6b), and most of them are resolved into a procedure using
relational algebra. However, extended relational algebra for nested relations
depends on their nested form.

For example, the following relation

DBl: a/cléb/ed, afclib/cd, a/cldb/cl
can be transformed into

DBZ: a/(el,c?}#b/ed, a/eldb/el, or

DB3: a/clth/ed, afclth/ led, ¢5).
If we consider a goal +—a/{cl,c2}#b/X. then the above strategy returns X=cd for
any of DBL, DBZ or IB3. However, In a case of a selectlion such as a=[cl.cll
only DB? returns a correct answer.

If a base relation consists of nested records, all of which are nested in
uniform sequence, then we should transform a goal for a base relation into the
corresponding form. [n the above example, the goal can be transformed into
+~a/lcll #b/X, a/lc2i#b/X for DB3. |If a base relation is not nested uniforaly,
then a goal with a set value should be decomposed into a set of goals with a
sat of goals with a singleton. For the following database
a/cl*b/ {ed, c4}. a/lel, c?)#b/es,

a goal <=a/Xb/|cd,] should be decomposed inta <a/X#b/cd, a/X&b/ch. If
matadata of a base relation has informatien about nested sequences, then we can
transform a given goal.

There are no problems in non recursive queries, because transformation of a
goal corresponding to base relations and bottom-up evaluation assures the
result. We have not yet investigated the strategy for recursive queries;
howaver, we consider that a combination of strategies for Prolog and
transformation of goals will give an answer.

The CRL database should be considered also from the viewpoint of the universal

— 16 —

relation. First, if the top-level attribute (relation name) is omitted. then it
is a universal relation. Second, a subclass of a nested relation satisfies
universal relation schema assumption [Abiteboul 84]. The relfation between the
CRL database and universal relation has not been discussed enough yet. ¥hen we
consider a set of NAVs as a database, there is another problem in duplication
of information, which causes an update anomaly. A simple solution is to enforce
a constraint as key attributes to a base relation.

T. EXTENSIONS

This section considers zome extensions to CHL, such as deep nesting, negation
and type hierarchy.

For deep row-nesting, we consider a constant domain as DU (w]), add a function

symbal "+", and generalize a definition of a NAV as follows:

i} A constant or a variable is a NAY,

i} {al/ti#--tan/tn) is a NAV, where ai,--,an<ATTR, tl,-.tn are WAVs and for
i,i (i#3), ai+#aij.

iii) If tl,==, tn are NAVs. (tl+--#tn) Is a NAY.

A NAV defined is called single when only by applications of i) and ii}.

¥e add new axioms for NAVs:
a/(t1+t2)=a/t1+a/12,
tl+{t2+t3)=(t1+12) +t3,
tl+t2=tZ+tl,
t+i=t.
t+a =t,
ti#(t2+t3)=(t1%t2)+(t1%t3).

We write [al, -, an! for (al+--+an) because "+ is ACI. A KAV defined in Section
§ should be rewritten as cl+-+cn instead of an element s={cl, -, cn} of P(D).

Definition: Kormal form
A NAY t is in a normal form iff t=tl+--+tn where tl, ==, tn are single NAVs.

Theorem: 4 NAV can be transformed intoc 2 normal form.

We give semantics to a normal form of a NAV. Let 7 be a variable assignment
from V to a set of PTTs. Then assignment I[n] is defined as follows:

ilnlip) = [{< @)} if p=w,
= ({3 ({3, ed)] if psc<D,
= p(x) if p=xev,
n

17

= lEilai.][n 1pid} if p is a WAV (al/pi#--#%an/pn),

n
= LJII[E 1{pi) if a normal foram of p is (pl+--+pn).
i=

In Section 3, a2 NAY was restricted so that its set value does not contain
variables. We can consider only a simple case: however, in the generalized NAV,
there might be wvariables and there are problems in the scope of variables.
That is, row-unpesting causes a variable over multiple records in a database,
and it works as a null wvalue with equality constraint, It also needs
unification under a distributive law.

Ancther extension is to introduce negative information. Like Prolog, a2 program
clause of CHL is extended to a set of literals {a positive NAV or a negative
NAV). The evaluation of a ground negative NAV s the same as SLONF. The sane
technigque as [Warren 87] for floundering can be applied to CRL.

Attribute-value pair representation 18 not only for formalism of nested
relation, but also for various kinds of structured data. [Maier 86], [Bancilhon
86). [Abiteboul 86] and other recent research deal with formalism of objects,
complex objects and so on. We would like to extend a "term’ defined by a
function from a tree domain of attributes (labels) to a domain of constants {or
types or objects), for representing more general structured data such as type
hierarchy and complex objects,

8. RELATED RESEARCH

CIL (Complex Indeterminates Language) is a logic programming language motivated
by situation semantics, which aims at representing uniformly various fields in
linguistics [Mukai 87]. It is also the implementation language for a discourse
understanding system called DUALS. It focuses on record structures appearing in
the domain and represents them in attribute-value pairs. From the viewpoint of
the nested relation, CIL handles a general column-nesting with infinite trees
but not row-nesting. Section 3 described the relation between CIL and CHL
Although they are in different domains, they are common in handling mare
general record structures.

Ait-Kael proposed the ¢ -term for type inheritance, which is an extension of
first order terms by type structure represented in attribute-type pairs with an
equality constraint called a tag. As notational convenience, ha considered the
e-term for a set of ¢-terms [Ait-Kaci 84, 86]. The ¢ -term is very flexible
and its type can be interpreted in various ways from the viewpoint of the
database. Bancilhon proposed a ealeulus for complex objects, where a type

— 18 —

corresponds to a complex object with set and tuple constructors, which are
linked by a part-of relation [Bancilhon 86]. Maier proposed a logie for
phjeets, where a class and an object correspond to a type and a2 tag
respectively [Maier 86]. The #-type also can be applied to a nested relation
if we consider a type as a relation (which might be called a relation obiect),
That is, a nested relation is defined as a pair of a tree domain of attributes,
and a partial function from the tree doasain to a set of relation objects.
However, as the object is different from a usual relation, ¥e must introduce a
set constructor as in [Bancilhon 861

Beeri et al proposed LDLL (Logic Database Language), which introduces
extensional and intensional definitions of a set, that is, setl enumeration and
set grouping into Prolog for resolving *mismateh’ between tuple-at-a-time in
Prolog and set-at-a-time in a database [Beeri 87]. Im LDLL.5, deep row-nesting
can be expressed by set grouping and transformed into LDLL. However, a nested
relation is not considered as a base relation but as a derived relation. ln the
framework of Prolog. it does not seem to be appropriate for formalizing nested
relations, from the viewpoints of representation of base nested relaztions and a
user language independent of nested sequence. Kuper also proposed LPS (Logie
Programming with Sets) with the explicit motivation of integration of a nested
relational model and a deductive database [Kuper 87]: however, it has been
proven to be a subclass of LDLL in [Beeri 8T].

Another significant research report was that of ¥.C.Rounds et al. which
considered a complete logical ealeulus for record struetures for linguistic
information. The calculus is not related to a database, but it seems wvery
valuable in introducing logical meaning such as disjunction and conjunction
between cccurrences of row-nesting.

The researeh on integration of a nested relation and a logic programming
language, that is, a deductive database based on nested relations. is a very
recent trend with many possibilities. From the wviewpoint of knowledge
representation. it relates structured data such as objects, complex objects,
class taxonomy and other structured objects in a semantic model.

From the viewpoint of the universal relation, we should consider the following
points. First, a logic programasing language based on attribute~value pairs
would be appropriate for a query language because it admits partial
specification and is more independent of the logical structure in a database.
Secondly, a nested relation itself relates a universal relation, like Verso
model and a universal relation schema assumption [Abiteboul &4]. A nested
database based on CRL should be considered in the point.

9. CONCLUDING REMARKS

This paper defined an attribute-value paired term called a NAYV, and 2 logie
pregramming language based on NAVs, called CRL. A NAV is an extension of a
first order term and is appropriate for representation of more gemeral record

structures, especially nested relations. 1t is also suitable for a user
language for a database. A CRL program can be considered as a nested database
consiting of an extensional database and am intensional database, like Froleg
database,

The main characteristics of CRL are:

i) The CRL program is data-independent, that is, even if database schema is
modified, the program does not need to be modified. This makes it casy for
a4 user to write inference rules and a query.

ii) The CRL database is independent of row-nest and row-unnest operations, that
is. it returns the same answer even if its nesting sequence is different.
From the viewpoint of the user language, it is diffieclt to enforce nested
sequences for a normal form of nested relations to a user query.

fii) [f a relation is uniformly nested, then CEL processes a user query more
efficiently than Prolog., because nested records and rules based on them
reduce the size of the database. and the number of database operations to a
base relation and evaluation paths will become smaller

iv) A user can specify only necessary information with a base relation name
as a NAY in his query. It helps him to write a query or a program.

We have already implemented the prototype system of KAPPA, and been designing
and planning a new system based on the prototype. CRL and its extended version
is intended to be one of the knowledge representation languages in the systen.
There remain many problems in CRL for its extensions, which also occur in usual
nested relations. Qur approach will help elarify thes.

ACKNOWLEDGMENTS

I would like to thank Dr. Toshio Yokoi, Dr. Shunichi Uchida and Dr. Kumiaki
Mukai for useful discussion and suggestion. I must thank to Mr. Minoru Kiyama
for invaluable comments. | also wish to express my gratitude to members of
KAPPA project,

REFERENCES

[Abitebou! 841 Abiteboul, S. and Bidoit. N.. “Non First Normal Form Relationms:
An Algebra Allowing Data Restructuring™, INRIA, TE-347, 1386

[Abiteboul 86] Abiteboul, 5. and Hull, H. "Hestructuring of Complex Objects and
Office Forms™, [CDT 88, LNCS-243, pp.54-7Z. 1986

[Ait-Kaci 84] Ait-Kaci. B., A Lattice Theoretic Approach to Computation Based
on a Caleulus of Partially Ordersd Type Structures . Dissertation, Univ. of
Pennsylvania, 1984

{ait-Kaci 86] Ait-Xaci, H. and Nasr, R., "LOGIN: a Logic Programming Language
with Built-in Inheritance”, J. Logic Programming. vol.§, pp.l133-215, 1988
(Bancilhon 86a) Bancilhon, F. and Khoshafiam, S.. "A Caleulus for Complex
Objects™, PODS 86, pp.53-59, 1988

[Bancilhon 86b] Bancilhon, F. and Ramakrishnan, R.. “An Amateunr’s Introduction
to Recursive Query Processing Strategies”™, SIGMOD" 88, pp. 16-52, 1986

[Beeri 87] Beeri. C.. Naqvi, 5., Ramakrishnan, R., Shauelli. 0. and Tsur. 5.,
“Sets and MNegation in a Logic Database Language (LDL1)", POD3S" 37, pp. 21-37,
1987

(Fischer 831 Fischer, P.C. and Thomas. §.. “Operations for Non-First-Normal
Forn Relations™, COMPSAC 83, pp.d64-4T75, 1983

[Gallaire 78] Gallaire, H. and Minker, J. (ed), Logic and Data Bases. Flenun,
1978

[Gallaire §4] Gallaire, K., Minker, J. and Nicolas, J.-M., T“lLogie and
Databases: a Deductive Approach™, Computing Surveys, vol.l6, no.Z, pp. 153-185,
1984

[Kambayashi 83) Kambayashi, Y., Tanaka, K. and Takeda, K.. T"Synthesis of
Unnormalized Relations Incorporating More Meaning™. Int.J. Information Science,
vol. 29, pp. 201-247, 1983

[¥uper 87] Kuper. G.M., “Logic Programming with Sets”. PODS'87. pp. 11-20, 13817
[Lloyd 84] Lloyd, J.¥., Foundations of Logic Programaing, Springer, 1984

[Maier 861 Maier, D.., "A Logic for Objects”, Proc. of the Workshop on
Foundation of Deductive Database and Logic Programming, pp. 6-26, 1988
[Makinouchi 77] Makinouehi, A., “A Consideration en WNormal Form of
Not-Necessarily-Normalized Relation in the Relational Data Model™. VLDB'77,
pp. 447-453, Tokyo, 1977

(Mukai 87] Mukai, M.. “Anadic Tuples in Prolog . ICOT, TR-233, 1887

[Pistor 86] Pistor, P. and Traunmueller, B., ~A Database Language for Sets,
Lists and Tables™, Inform. Systems, vol.ll, no.d. pp. 323-336, 1986

[Reiter 84] Reiter, R., “Toward a Logical Reconstruction of Relational Database
Theory”. in Conceptual Modeling, ed. by Brodie. M.L. Mylopoulos. J. and
Sehmide, J.¥., pp.191-238, Springer, 1964

[Rounds 86] Rounds, W.C. and Kasper, R., ~A Complete Logical Caleulus for
Record Structurcs Representing Linguistie Information™, 1986

[Schek 82] Schek, H.-I. and Pistor, P., “Data Structures for an Integrated Data

- 21

Base Management and [nformation Retrieval System™, YLDB 82, pp.197-207, Mexico
City, 1982

{Scholl 87] Scholl, W.H. and Schek, H.-J. (ed.). Theory and Applications for
Nested BRelations and Complex Objects, Workshop Material, Darmstadt, April 6-8,
1487

[(Wallace B7] Wallace, M, “Negation by Constraints: a Sound and Efficient
Implementation of Negation in Deductive Databases™, SLP 87, pp. 253-263, 1987
{Yokota 87] Yokota, K., “Knowledge Basc Management System KAPPA™, 5th Syaposium
on FGCS, June, 9-10. 1987 (in Japanese)

