ICOT Technical Repori: TR-333

TR-333

Pruning Search Trees in
Assumption-based Reasoning

by
K. Inoue

January, 1988

€988, 1COT

Mita Kekusai Bldg, Z1F (03) 436-3191 -5

|CDT 4-28 Mita 1-Chome Telex [COT 32964

Minato-ku Tokyo 108 Japan

ihstitute for New Generation Computer Technology

Pruning Search Trees
in Assumption-based Reasoning

Katsumi Inoue

ICOT Research Center,
1-4-28, Mita, Minato-ku, Tokyo 108, Japan

phone: +81-3-456-3192
telex: ICOT J 32964

csnet: inoueicot.jp@relay.cs.net
uuep: {enea,inria,kddlab,mit-eddie,ukc}licotlinoue

[COT Technical Report TR-333
December 19587

Abstract

This paper describes a general search algorithm for multiple contexts that
should be considered for reasoning during problem solving. The idea is based
on AND/OR tree search with underlying assumption-based reasoning. In
assumption-based reasoning, a context can be represented by a combination of
assumptions, while in AND/OR tree search procedures, it can be represented
by a solution tree. A context deriving a contradiction is checked in a mecha-
nism of truth maintenance, making the search efficient. The proposed search
procedure is more powerful than those of various truth maintenance systems.

The mechanism is also shown to be very suitable for the constraint satisfaction
problem.

Keywords: Assumption-based Reasoning, Dependency-Directed Search,
Truth Maintenance, Multiple Contexts, Constraint Satisfaction Problem.

1. Introduction

Tt is necessary for all Al systems to search in problem solving. For example,
synthesis problems (such as design and planning) and conjectural reasoning (such as
nenmonotonic reasoning, inductive reasoning and analogy) are basically combinatorial
problems. A major problem of such Al systems is that of the combinatorial explosion
of search space. During problem solving, search space can be modelled incrementally
as construction of AND/OR graphs. One way to tackle the combinatorial explosion in
searching these graphs is a deterministic choice of OR parts using a production rule
as strong heuristics in rule-based systems. In this case, heuristics are treated as com-
plete knowledge, otherwise they are not helpful for determinicity. In the real world,
however, this way is too rigid, because we are often forced to make some decision even
if complete information is not available. When we have alternatives for solving prob-
lems, we often select a choice nondeterministically and backtracking is needed. For this
purpose, dependency-directed backtracking (DDB) [Stallman & Sussman 77) is a good
way to avoid redundant computing and rediscovering failures involved by chronologieal
backtracking, and it is very common for recent Al systems to control reasoning with
dependency-directed search (DDS), which is a search mechanism based on DDB. Al-
though DDS itself is a powerful way to treat OR parts intelligently, previously proposed
methods have some problems because of their algorithmic difficulties.

The proposal in this paper follows a logical analysis for DDS in terms of the
assumption-based reasoning introduced in section 2. General algorithms for DDS, whieh
overcome some problems of the previously proposed methods described in section 3, are
shown in section 4. There are two classes of algorithms; one is for searching logically
consistent contexts in multiple contexts, and the other, which is for solving a plausible
or preferred context in some sense, can be constructed by changing the first algorithm
slightly. This technique can be thought of as a hierarchical search for hypothesis space,
and may therefore be applied to the constraint satisfaction problem in section 5.

2. Assumption-based Reasoning

DDS plays an important role in fruth maintenance systems (TMSs) such as
[Doyle 79], [McDermott 83] and [de Kleer 86a]. The main task of TMSs is to main-
tain consistency of dynamic knowledge bases, while DDS can give a guide for problem
solving. TMSs perform assumpiion-based reasoning. Assumption-based reasoning is
desirable when dealing with alternative knowledge or incomplete knowledge in prob-
lem solving, and it makes assumptions for these types of knowledge, with which we
can infer what kind of data holds based on what kind of assumptions. In general, a
problem solver using a TMS depends on a problem domain, while a TMS is generic, or
domain-independent.

A TMS is necessary to maintain dynamic knowledge base, but the style a TMS
is implemented with is not important, because our proposal in this paper is not based
on a mechanism for truth maintenance but rather on a mechanism of how assumption-
based reasoning can be used for problem solving. However, we should know and must
specify how a TMS can perform its task. Here, we consider the logical framework for

assumption-based reasoning based on the first order predicate caleulus. We assume that
the TMS can answer the following question correctly:

Input:
Ep : a set of closed formulae, which are submitted by the problem solver to be
premises, 1.e., they hold universally.
A ¢ aset of formulae, which are submitted by the problem solver to be assump-
tions, l.e,, they are incomplete knowledge, or not guaranteed to be true.
C @ a ground formula.

Query:
Compute all logical supports D for € with respect to &, where I7 is a set of
conjunctions of ground instances of elements of A and for all d € D,

1. (justifiebality): T l=d D C,
2. (satisfiability): There exists a model M of I such that [=,, d, and
3. (minimality): No proper conjunct subset of d has properties 1 and 2. []

The above query is denoted as SUPPORT(E,C). Here, d € D is called the support-
ing assumption (or legicel support) for C' with respect to I, and D is called the set of
supporting assumptions (or all logical supports) for C' with respect to ¥. A combination
of ground instances of elements of A is called a context. Therefore, any supporting as-
sumption for any formula constructs a context, and a set of supporting assumptions for
any formula may represent multiple contezts. If E represents a context, a maximal set
of logical consequences of a set £U E such that £ U E is consistent, that is, property 2
(satisfiability) is satisfied, is called an eztension of & and E. Of course, the TMS may
perform other tasks such as determining what data is believed or not in a particular
context, but it is the SUPPORT(E, (') procedure that can characterize its following
logical framework. First, the TMS deals with assumptions, which are specialized data
for incomplete knowledge, so that all logical supports for any formula are constructed
by the set of conjunctious of ground instances of elements of A. These computation
of logical supports, which are sometimes called hypotheses, is called hypothetical rea-
soming [Poole 87] and can be applied directly to explain an observation in diagnostic
reasoning. The separation between assumplions and other formulae makes knowledge
hases comprehensive and helps the system to compute clearly and efficiently. This is
in contrast to computing all or sowe ‘prime implicants’ of & of propositional clauses as
in the Clause Management System [Reiter & de Kleer 87]. Second, the TMS maintains
multiple contexts simultaneously to compute all logical supports for €. This is similar
to de Kleer's Assumption-hased Truth Muintenance System (ATMS) [de Kleer 86a). If
any assumption and any supported formula ¢ are atomic formulae and % is a set of
grounded Horn clauses, the above three properties are a formalism for the ATMS, so
that D, d € D, a context, and an extension correspond to a ‘label’, an ‘environment’,
a ‘characterizing environment for a context’, and a ‘context’ of the ATMS. In prob-
lem solving, for example, the selection of models in design problems, there may exist
multiple worlds corresponding to various items of alternative knowledge and we often
want to compare those worlds, so that a mechanism of maintaining multiple contexts is
necessary. Third, the above framework gives the semantics for assumption-bhased rea-

soning. It subsumes various TMSs. Although an implementation of the TMS is beyond
the scope of this paper, it is desirable to implement it by a logic-based approach, an
outline of which was propoesed in [Inoue 87]. In the following discussion, however, it is
assumed for simplicity that any element of A is atomic like the ATMS, but the method
of controlling reasoning is different. This restriction for the TMS is not essential for
searching multiple contexts.

By exploiting the above TMS to DDS, we can characterize the intelligent search
procedure for solving non-deterministic problems in problem solving. DDB has an
intelligent cache for the problem solver to avoid much of redundant computation. The
search procedure realizing DDS will be shown in section 4. Here, we describe how the
logical framework of the TMS is concerned with search strategies for problem solving.
When we encounter alternatives or draw some conclusion from incomplete knowledge, we
can make assumptions for that decision. A combination of such knowledge constructs
a context, and this context must satisfy consistency, that is, satisfiability of logical
supports. Note that logical supports must be computed for all necessary data which
should hold in some context, and a context itself is a minimal combination of such
individual logical support such that it satisfies all properties of the logical support for
conjunction of data, and such that it satisfies properties 1 and 2, but does not satisfy
property 3 for individual formulae. As stated above, there may be many consistent
combinations of assumptions, i.e., multiple contexts. When there are multiple contexts,
which context should be selected is a problem. We believe that the multiple contexts
problem should be solved dependently on problem domains, because at present it seems
to be too weak for a general framework of commonsense reasoning like nonmeonotonic
logics to select one context [Hanks & McDermott 87]. Therefore, this paper focusses
on the search for multiple contexts, and the TMS is generic for maintaining multiple
contexts while the problem solver reasons dependently on the problem domain. The
search procedure based on DDS is considered to be the generic interface between the
TMS and the problem solver, but to be domain-dependent in the sense of utilizing
domain heuristics.

3. Searching Multiple Contexts with TMSs

Several techniques have been proposed to handle multiple contexts. These tech-
niques manage search in knowledge-based systems. They can be broadly classified as
CONNIVER-style, justification-based or assumption-based, which roughly correspond
to the spatial, serial and conditional methods in the classification proposed by [Post 87].
Hybrid approaches have also been developed to avoid the pitfalls of these techniques.

The CONNIVER-style approach sprouts alternative contexts that coexist in the
database. It was originally developed by the programming language CONNIVER [Suss-
man & McDermott 72]. This method models contexts using named tags with assump-
tions corresponding to assertion and deletion of facts. Commercial expert system tools
ART and KEE use a similar mechanism. Tt is easy to switch or compare contexts with
each other during search. Its disadvantages are duplication of facts in different contexts
and the difficulty of multiple disjunctive dependencies.

The justification-based approach keeps only one current consistent context and DDB
is provided if a failure oceurs. This mechanism was introduced in the nonmonotonic
Justification-based TMS (JTMS) [Doyle 79], and is the most popular method to pro-
vide default reasoning. The main difficulty of this method is that of comparing and
constructing alternatives, so that the costs of contexi switching are high. The recent
Al language SCHEMER. [Zabih et al. 87], which has a DDB mechanism in a simple
binary OR tree as search space and so realizes McCarthy's AMB operator, has the same
problem. However, the scheme proposed by McDermott, insisting on a single context, 1s
somewhat different from other JTMSs. It retains the essence of the CONNIVER-style
approach with underlying combinations of assumptions as multiple contexts [McDer-
mott 83]. This point is clarified further by the ATMS.

The assumption-based approach maintains a global, concurrent representation of all
contexts by labelling each item of data with dependent assumptions. This is represented
in the ATMS. Many advantages of the ATMS over the JTMS are given in [de Kleer 36a|.
It allows multiple contexts to be compared, switched, or synthesized as needed. In the
ATMS, only the environment, i.e., a combination of assumptions, identifies a context.
This point provides an advantage over the CONNIVER-style approach, because the
ATMS avoids redundant computations and duplication of conclusions in different con-
texts. Therefore, the method proposed in this paper follows the assumption-based
approach described in the previous section.

With the ATMS, however, there is still a major problem of controlling the infer-
ence during search for multiple contexts. Search in the ATMS is based on interpretation
construction, which is regarded as searching the enwironment lattice, i.e., the Hasse di-
agram of the power set of assumptions. During interpretation construction, the earlier
the most general environment of a node’s label is found, the more label updating is
avoided, and the earlier the most general nogoods, that is, inconsistent assumption sets,
are found, the more steps concerning ultimately inconsistent environments are reduced.
For those purposes, a problem solver focusses breadth-first on contexts with fewer as-
sumptions first through a specialized interface, or consumer architecture [de Kleer 86¢].
The scheduler needs backtracking when only part of the search space should be explored
for the purpose of the characteristics of tasks, such that not all solutions are required at
once, or requirement of efficiency. Therefore, a simple method that combines depth-first
search of DDB and breadth-first search of consumer architecture is proposed in [de Kleer
& Williams 86]. The algonthm, called assumption-based DDB (ADDRB), however, still
has the following problems:

First, their method that the ATMS is guaranteed to explicitly identify all nogoods
which follow from the current set of justifications does not appear to be very effective
in ADDB. ADDE checks (by the breadth-first search) the consistency of the current
environment consisting of assumptions, one from each disjunctive control assumption,
so that consumers of ultimately unnecessary environments may be executed by the
scheduler. Even if not all of the nogoods involved in the current environment are
discovered, they will be identified if necessary. The advantage appears only in avoiding
checking the consistency of other contexts including already identified nogoods. The

disadvantage that more consumers of intermediate environments ultimately independent
of solutions are executed seems to be more expensive. Second, in ADDB, the current
environment must be flatly constructed from all control assumptions. Therefore, the
task that some choices are dependent on other contexts and some are not cannot be
dealt with by ADDB directly. It is a problem of the ATMS itself that all assumptions
are treated in the same flat structure, without hierarchy. Third, the interpretation
construction of the ATMS is isomorphic to the minimum set covering problem which
is NP-complete. Since no algorithm, including ADDB, tries te reduce the inherent
combinatorial explosion of search space, high efficiency cannot be expected of these
TMS algorithms.

4, The Context Search Algorithm

Given the problems analyzed in the previous section, our main goal is to formalize
a general search algorithm for multiple contexts so as to overcome them. The approach
follows from the assumption-based style which functions as the TMS deseribed in sec-
tion 2. The underlying logic represented by SUPPORT(L, C') can make the TMS prune
the search tree by resolution as described later.

In assumption-based reasoning, it is absurd to use a stack control regime in order to
realize context switching easily. Our method for controlling search is via an AND/OR
tree, where the root node represents an overall problem to be solved, and aercs in it
indicate logical dependencies between nodes representing decomposition processes or
relations of assumptions. Nodes with successors are called nonterminal, and those with
no successor are called terminal. Each nonterminal node has immediate successors
either of type AND or of type OR. Nonterminal nodes with successors of type AND
are called AND nodes, and their successors correspond to conjunctive partial problems.
Nonterminal nodes with suceessors of type OR are ealled OR nodes, and their successors
correspond to disjunctive assumptions. As already described in section 1, multiple
contexts can be basically represented by an AND/OR tree or an AND/OR graph.
Hence, it is possible for us to apply directly several algorithms for AND/OR graph
search, such as 40* or GBF [Pearl 84], to search control in assumption-based reasoning.
Although the search space for nondeterministic problems has been dealt with by OR
trees such as a binary tree for SCHEMER, an OR tree can be thought as a special case
of AND/OR trees. By comparing an AND/OR tree with an equivalent OR tree, the
former has several advantages over the latter, such that with an AND/OR tree it is
more natural to describe a problem and more eompact to represent a problem avoiding
duplication.

Given an AND/OR tree representation of assumptions, we can identify its different
solutions, each one representing a possible context, by a solution tree. A solution tree,
T, of an AND/OR tree, @, is a subtree of & with the following two properties: (i)
the root node of & is the root node of T, and (ii) if an AND node of G is in T, then
all of its successors are in T, and if an OR node of G is in T, then exactly one of
its successors is in T. AND/OR. tree search is used to explore contexts. We assume
that the search tree G should be incrementally constructed, expanded, and traversed

during problem solving, so that it is not necessary to explore all assumptions as a whole
search tree. This point is very important for practical problem solving because naot all
of assumptions or their relations are represented explicitly before any inference starts.
We shall use a representation for a set of solution trees, that is, a partial solution tree.
A partial solution tree, T'. of an AND/OR tree, (7, is a subtrec of G with the following
three properties: (i) the root node of G is the root node of T', (ii} if any node other
than the root of G is in T', then its ancestors are also in T", and (iii) if an OR node
of G is in T', then at most one of its suceessors is in 7. It is possible to say that
T' is a set of T and that it 1s an incomplete solution tree which may be cxtended. A
partial solution tree is called active when it represents a consistent context. Therefore,
an active partial solution tree corresponds to a set of assumptions satisfying consistency
described in section 2, with their logical dependencies.

We now present two classes of search algorithms for multiple contexts. One of
them, given in section 4.1, is for searching all (or one) logically consistent contexts
corresponding to complete solution trees. This is available when all assumptions imme-
diately following any context are treated equally, or not ordered, or equivalently simply
ordered. The first and the second problems of ADDB described in section 3 will be
solved with this algorithm. The other, given in section 4.2, is for searching one (or
all) optimal context(s) by some estimation, and can be obtained by changing another
algorithm slightly. This is available when a preference relation, such as some estimation
function or partial ordering, can be obtained among assumptions. This algorithm could
solve the third problem of ADDB described in section 3.

4.1 Search for Consistent Contexts

Let ¥ be a set of data maintained by the TMS, as defined in section 2. The context
search algorithm called GSEARCH maintains another four sets, that is, OPEN, D,
NOGOOD and SOLUTION. OPEN is a set of active partial solution trees, each
of which represents a state of traversal corresponding to a consistent context. D is a
set of maximal consistent contexts that have been found to be consistently combined
assumptions during search. Each element d € D corresponds to an interpretation of the
ATMS [de Kleer 86b]. NOGOOD is a set of minimal inconsistent contexts that have
been found, i.e., nogoods. SOLUTION is a set of solutions, each of which represent a
complete consistent solution tree.

In the GSEARCH algorithm, the basic loop consists of picking one active partial
solution tree from OPEN, checking its consistency by the CHECK procedure, exe-
cuting the problem solving procedures attached to its context if the test is all right,
and then decomposing it or traversing search by the EXPAND procedure. An active
partial solution trec in OPEN can be represented by a set of tip nodes. If CHECK
succeeds, a context corresponding to the partial solution tree is added to D, otherwise,
a contradiction occurs in the context, so that it is added to NOGOQD. To perform
CHECK, the TMS described in section 2 is used with it arranged especially to find
inconsistencies of contexts. Logical dependencies of assumption and justifications given
by invoking consumers, ie., attached problem solving procedures, are added to T by

the ADDCLAUSE procedure. In GSEARCH, at the beginning, a problem, P, to be
solved is assigned to OPFEN, and all consumers attached to the overall context {} which
consists of no assumptions are executed.

pro
1 L]
2.

El‘luh

G.
7.

BI

cedure GSEARCH:

Let OPEN := {{P}}, D := ¢, NOGOOD := ¢ and SOLUTION := ¢.

Halt if a termination condition is satisfied; consistent contexts are given by
SOLUTION. A termination condition is either of the following: (a) when all
consistent contexts are desired, OPEN = ¢, or (b) when only one solution is

desired, SOLUTION # ¢.

. Select an element, L, from OPEN and delete it from OPEN. Suppose L =

(C,Cy,Ch,...,Ci).

. Let E:= SUPPORT(Z,C). If E = {} holds, then go to 8.

Let
S:={{C},{C,Ca}.{C,C1},...,{C,Ci},
{C,Cﬂ, C[}, R {C,Cﬂ,gj;}, ,,,,,, " {C, Cn,C‘h. - Gk}]‘

If 5 = ¢ holds, then go to 8.
Select the first clement, s, from 5. If CHECK(s, E) = true, then return to 6.
Otherwise, return to 2.

EXPAND(L) and return to 2. [}

procedure CHECK (context,E):

1.

2.
3.
4.

Let © be the first element of contert, and F be the set of the remaming elements
of context.

If there exists d € D such that EU F C d, then return (true).

If there exists n € NOGOQD such that £ U F 2 n, then return (false).

Execute consumers attached to E U F, then ADDCLAUSE(L, p) for each jus-
tification p given by invoking it. If a justification derives L (or falsity), then
return (false).

. Add EUF to D and delete all elements which are a subset of EU F from D, then

return (true). []

procedure EXPAND(L):
Remark. This procedurce is depth-first.

1.

2.

3.

Let ' be the first element of L, and F' be the set of the remaining elements of L.
Suppnse F= {Cn,cl, e ,C;_.}.

If C is nonterminal, generate all the sons, Cs,{i = 1,...,m), of C, where m is the
number of sons, and then ADDCLAUSE(X,) for the logical dependencies, H,
of assumptions. If each Cs; is of type AND, then add {Cs,,Ci,...,Ci} to the
head of OPEN, otherwise, add {Cs,,C1,...,Cx} forall i = 1,...,m to the head
of OPEN. Return.

If C is terminal, backtrack to the sibling node As of the ancestor node of C,
where As is the nearest unexpanded node of type AND from €, and then add
{As,C,Cy,...,Ci} to the head of OPEN, and return. If there is no node 45, add
L to SOLUTION, then return. [

procedure ADDCLAUSE(Z,s):

1. Add clause s to L.

2, If s or a resolvent of s and a clause in ¥ derives 1, compute an inconsistent
assumption set n by SUPPORT(E, 1). Add n to NOGOOLD and, for each element
d € D, if n subsumes d, substitute d for d —n. Delete all elements subsumed by the
other elament in NOGOQOD from NOGOQOD, and delete all elements subsumed
by any element in NOGOOD from OPEN.

3. Return. []

Note that GSEARCH is not only a single search procedure, but can be extended
to a class of search procedures that result by specifying the selection rule in step 3 and
altering the expansion rule in EXPAND. Although we have proposed the depth-first
procedure here, the subsequent section shows that informed search procedures with
best-first search are constructed by changing these rules slightly.

Remarks. (1) Instep d of GSEARCH, SUPPORT(E, (') returns logical supports for
C including C itself if C' is an assumption. Therefore, when SUPPORT(Z,C) = {},
¥, | € holds, that is, C holds universally as a fact. (2} SUPPORT(X,C) is only
necessary in step 4 of GSEARCH and in step 2 of ADDCLAUSE. However, there
may be many cases implicitly using it for executing consumers to record logical depen-
dencies of data, so that the scheduler collects all consumers for a particular context. (3)
NOGOOD and SOLUTION grow monotonically, while D and OPEN grow nonmana-
tonically. (4) CHECK is o procedure to test whether an assumpiion contradicts the
contexrt deriving if. For example, when a negative clause AV =B is in E, the context
search algorithm prunes all partial solution trees including both A and B by recording
{A,B} in NOGOOD, which means that B cannot be added to the context {A} because
A D —B holds. (5) Once a consumer is executed, it is never executed again. This is
ensured by step 2 of CHECK, because contexts that have been already checked are
returned immediately before the consumer is executed, []

Proposition 1. A context L picked from OPEN (in step 3 of GSEARCH) satisfies
the condition where the remainder F' of L without the first element (' is consistent.
There exists d € D such that FC d.

Remark. The set F'is like a kernel environment of the ATMS [de Kleer 86¢c|, but it is
used differently. F is a set of conditions of which each solution must be consistent and
GSEARCH ouly checks the consistency of combinations of such a condition and new
assumption €', so that we need not check the consistency of the power set of F again.
In the ATMS, a kernel enviromment is a set of conditions with which any solution must
be consistent, while I depends on each context in GSEARCH .

Proof. No partial solution tree in OPEN includes any element of NOGQOD by step
2of ADDCLAUSE. The first element of each partial solution trec in OPEN must be
constructed in front of F in step 2 or 3 of EXPAND, where F is either a subset of a
consistent context (in step 2) or a consistent context (in step 3), whose consistency has
already been checked in step 4 or steps 5 to 7 of GSEARCH, and has already been
added if it has not been included by any element of D in step 5 of CHECK. []

Proposition 2. In GSEARCH, the following properties hold for any point during
search:

(1) D 2 SOLUTION, and

(2) For all d € D, there does not exist n € NOGQOD such that d 2 n.

Proof. The first property is obvious from the fact that any solution is added to
SOLUTION in step 3 of EXPAND after its consistency was checked and added to
D). The second property is immediate from step 2 of ADDCLAUSE. []

Theorem 1. At the end of GSEARC H, any solution tree in SQLUTION is consistent,
that is, GSFEARCH is sound, and when all consistent contexts are desired, SOLUTION
holds all of them, that is, GSEARCH is complete.

Proof. The soundness is obvious from Proposition 2. To prove the completeness
we assume the contrary and obtain a contradiction. Suppose GSEARCH misses the
solution, 5. Since every consistent partial selution tree is added to OPEN and picked
from it unless it becomes contradictory, there exists a context, S', which is a partial
solution tree of S such that 5' is selected from OPEN and is not to be inserted in
OPEN again. Then, 5 is either found to be inconsistent, or added to SOLUTION.
Both cascs contradict the supposition. [|

GSEARCH has several advantages as it searches an AND/OR tree constructed
with hierarchy incremnentally. First, with GSEARCH, problem solving can proceed
efficiently with compiled knowledge because a contradiction in an iutermediate level can
be found so that a kind of compilation of some condition on a set of low level knowledge
can be represented. This is our solution for the second problem of ADDB. Second,
GSEARCH can prune a search tree by resolution. Pruning a partial solution tree
corresponds to a resolution of a nogood in NOGOOD and a logical dependency between
nodes such as conjunction or exhaustivity of disjunction. For example, a nonterminal
node becomes inconsistent if it has sons of type AND and one of them is found to be
inconsistent, or if it has sons of type OR and all of them are found to be inconsistent.
Resolution by the TMS can make GSEARCH prune partial solution trees, which is
ultimately inconsistent. A partial solution tree, T, is pruned when its expanded partial
solution trees are inconsistent and they cover cxhaustively the expanded sons of an
OR node of T. This pruning corresponds to negative hyperresolution of the ATMS
[de Kleer 86b] which is used to ensure completeness when the ATMS deals with positive
clauses as well as Horn clauses as justifications. In GSEARCH , this can be implemented
more simply because of the concept of the partial solution tree. Third, GSEARCH
surpasses ADDDB, that is, AREA(GSEARCH) C AREA(ADDDB) holds for any problem
P, where AREA(X) denotes the set of contexts whose consumers are executed using
X. In ADDB, although the number of contexts tested for the consistency is reduced,
the number of consumers executed is not reduced by the backtracking algorithm. If the
costs of executing consumers are very high, the first problem of ADDB will arise. In
GSEARCH, the problem is solved with the search order in steps 5 to 8 so that fewer
consumers of ultimately unnecessary contexts are executed than ADDB. This property
will be illustrated in examples in section 5.

— 10 —

4.2 Informed Search for an Optimal Context

When some estunation for assumplions, contexts or solufions 13 availlable, we can
expect to improve the search performance. We can order contexts by comparing them
with some preference relation, and an optimal solution can be gained. For this purpose,
we might change GSEARCH in section 4.1 slightly. The concept of consistency in
CHECK might be altered to feasibility, or, possibility for optimality. The selection
rule in step 3 of GSEARCH or the expansion rule in step 2 or 3 of EXPAND might
he altered so that the most preferred context is selected and expanded. The termination
condition, however, iz left as in the case of the all solution search of GSEARCH to
exclude local optimization like hill-climbing. The resulting procedure performs best-first
search like AO*, or it can support the branch and bound procedure (B&B) [Ibaraki 77].
There are several approaches and concepts, which are not independent, for searching
the optimal context, as follows.

(1) Ordering

The ordering strategy can make the search procedure more efficient, because it finds
many general nogeoods early in GSEARCH. This strategy is useful even if we desire
logically consistent solutions as described in section 4.1. A simple example where the
arrangement of subproblems makes search efficient will be shown in the next section.
This is one aspect where GSFARC H surpasses ADDB.

(2) Best-first Search

In an assumption-based approach like the ATMS, multiple concurrent contexts are
maintained. It seems to be rationally efficient for problem solving with this approach
that best-first search is employed to elicit advantages of concurrency. In best-first
search, context switching or backtracking happens not only when a context becomes
contradictory, but also when there is a more preferred active context. When using some
estimation function, when an estimation of some context is updated, context switching
will happen still more. Generally the number of times to decompose the problem in
best-first search is smaller than any other search such as depth-first, at the cost of some
overhead of space.

(3) Pruning with B&B

In TMSs, constraints are used for detecting contradiction. With B&B it is possible
to enhance efficiency for constraint solving when an object value should be computed.
A constraint can he changed dynamically during search so that infeasible contexts are
pruned by the bound. For example, in job-shop scheduling problems, derived plans
must satisfy the constraint of the limit of machining time. However, this constraint can
be improved by the object value of the best feasible solution currently available (i.e.,
the incumbent).

(4) Heunstic Search

Generally, to solve combinatorial problems, it is hard to keep all active contexts like
breadth-first search. Some heuristic information helps problem solving to tackle the
combinatorial explosion as humans do. If heuristic information is available, heuristic
search proceeds along an plausible inference path. Note that heuristic search does not

always find an optimal solution. Whether optimality is ensured or not depends on
the properties of the preference relation. If a sufficient condition that the sclution of
heuristic search is the best solution can be obtained, the heuristic information can, of
course, he used. This depends very much on the problem to be solved.

(5) Dominance Relation

When an appropriate estimation function cannot be obtained, it may be possible to
reduce the search with a dominance relation. A dominance relation D is a binary
relation defined on the set of partial problems such that Py T P; implies that P; can
he excluded from consideration without loss of optimality of the given problem, if P
has been already generated when P, is selected for the check. This is used in B&B and
efficiency is obtained with or without an estimation function. The dominance relation
may be used when partial ordering is used.

5. Application to Constraint Satisfaction Problem

The context search algorithm described in the previous section must be used with a
problem solver dependent on a problem domain. Here, the working of the GSEARCH
algorithm on an example of a constraint setisfaction problem (CSP) is illustrated. In
CSP, consistent assignment of values for a set of variables which satisfies all constraints
is found [Mackworth 77]. A constraint Ci(X;,,...,X;;) specifies which values of the
variables are compatible with each other. A CSP is a task to be solved in the design
problem. To solve CSP, gencrate and test (G&T) can be used as a technique. The
constraints are used to test consistency of the assignments made by a generator. When
the constraints can be applied to partial assignments, partial solutions can be pruned by
hierarchical G& T. Chronological backtracking is used to implement hierarchical G&T,
but DDS can enhance performance more.

The GSEARC H procedure can be applied to CSP as follows. An assumption is
an assignment of a value to a variable. With the constraints folded into the generator
by the consumer of the context, GSEARCH can assign values for variables such as a
look-ahead sclieine or constraint propagation. This can be done by depth-first search
of EXPAND. MHierarchical G&T with DDS such as a look-back scheme make the
search more efficient. This can he supplied by CHECK. Therefore, GSEARCH has
the advantages of both the look-ahead and look-back schemes. The specification of the
problem P can be given hy any logical form of decompoesition to subproblems. AND/OR
tree search in GSEARCH is then applied to the specification of P. In any level of the
tree, when an assumption is newly considered, the TMS can check if it is consistent with
a current environment by computing logical supports of it or its negation. GSEARCH
never generates a context that happens to occur in an impossible combination. Note
that an assumption in an intermediate level corresponding to a nonterminal node is a
state of partial problems or a subset of variables and it might not have an explicit value
or a consumer. However, an assumption in an intermediate level can represent compiled
knowledge as described in section 4.1, so that a partial solution tree can be pruned by
the constraints. We can also represent ‘components’, that is, partial solutions to a set
of constraints which can then be ignored because the constraints are already implicit

12

in themselves, This way of representation is reported to be very useful for CSP in an
other independent research of [Mittal & Frayman 87).

Next, some sinple examples illustrate the application of our proposed approaches
based on GSEARCH for C5P. Through these examples, DDB, ATMS, and ADDB
are compared. Here, the main characteristics for these systems are justification-based
approach with depth-first search such as SCHEMER for DDB [Zabih et al. 87], and
assumption-based approach with breadth-first search for the ATMS [de Kleer 86b], and
the integration of DDD inte ATMS for ADDD [de Kleer & Williams 86]. GSEARCH
surpasses any of these systems because ADDB searches only the common parts of DDB
and ATMS, and GSFARCH searches no more contexis than ADDB. Note that in the
following examples only part of the advantages of GSEARCH i1s displayed because
the constraints work on only the lowest level, or terminal nodes, and never work on
compiled knowledge hierarchically. These exanples are used only to show an advantage
of GSEANRCH over other algorithms even when the problem has a flat structure that
is handled by them. First, let us consider the CSP presented in Example 1, which is
discussed in [de Kleer & Williams 86].

Example 1. The problem P is a conjunction of three subproblems Py, P, and P;.
Fach subproblem corresponds to a variable whose possibilities of values arc:

P] = {G,b}, Pﬂ e {ch}1 Pll = {E'{f}‘
Assume that the following inconsistencies are ultimately detected:

andD L,
hbo L,
cehe L.

Note that these justifications deriving inconsistencies can be thought of as integrity

constraints and might not be given explicitly. Instead, the following dual constraints
may be given to the original CSP like [Mackworth 77):

Ci(P1, Py), C2(Pa, P3), C3(P), ...

?

and each C; is satisfied, for instance, in the following cases:

Cy: (a,¢),(byc), (b, d).

Cy: {C,f},{d,ﬂl,{d, f}
Cy: (a).

In this example, however, it is not essential for the constraints to be given by explicit
satisfying conditions or by implicit integrity conditions.

We represent an assumption that is a decision to assign a value to a variable by
the capital letter of the value. For example, when a is selected for a value of Py, the
corresponding assumption is represented by 4, and 4 O a is added to £. Then the
problem P forms an AND/OR tree shown in Figure 1. The solution of P is the context

{A,C, F} and it is shown by the solution tree (the bold line) in Figure 1. An example
of the partial solution tree is illustrated in Figure 1 by the dotted line, representing
{Pp, A}.

DDB, ATMS and ADDB execute at most the consumers of the following contexts.
I total, there are 27 contexts in P. The order below is the order in which each context
is examined for consistency by the procedure.

DDB: {}, {4}, {C}, {4,C}, {E}, {A,E}, (C,E}, {4,C,E}, {F}, {4,F},
(C,F}, {A,C,F}, {D}, {4, D}, {D,E}, {4,D, E}, {B}, {B,C}, {B, F} and
{B,C,F} (20 contexts)

ATMS: {}, {4}, {B}, {C}, {D}, {E}, {F}, {4,C}, {4, D}, {4, E}, {A, F}, {C, E},
(C,F}, {D,E}, {D,F} and {A,C,F} (16 contexts)

ADDB: {}, {4}, {C}, {4,C}. {E}, {4, E}, {C,E}, {F}, {4, F}, {C,F}, {4,C, F},
{D}, {A4,D}, {D,E} and {B} (15 contexts)

Figure 2 shows the process of GSEARCH in this problem. Note that the logical
dependencies of nodes, such as P = P,AP;, ANFPyor P, = AV B, are added to &
and they are indicated by “*’. However these formulae are irrelevant to computation
of logical supports in this example, because they only represent the decomposition
relations. Therefore, all logical implications in formulae are bidirectional, or equivalent.
In GSEARCH, these relations cun be treated as partial solution trees and pruning
cearch trees are done automatically in the algorithm, so that it is not necessary to check
resolution with these formulae. Here is the ordered list of contexts executed for their

consumers by CHECK iu GSEARCH, i.e. AREA(GSEARCHY:

(1, {4}, {C}, {A,C), {E}, {C.E}, {F}, {C.F}, {4,F}, {4,C,F}, {D},
{A, D} and {8} (13 contexts).

In this example, GSEARCH searches for the minimum number of contexts, that
is, it only searches {the power set of solution contexts} U {the power set of all given
nogood contexts}. []

Example 2. Suppose that problem P has the same structure as Example 1, but the
detected inconsistencies are different, as follows:

ame 3L,
b L,
ahfoLl.

In this case, there is no consistent solution. Figure 3 shows the environment lattice
[de Kleer 86a] for this example. In Figure 3, the nodes in the lowest level correspond to
a solution tree and the upper nodes are their subset contexts, but {} is not represented
therc. Nogoods derived by these justifications are representcd by netted nodes.

DDB searches the contexts above the line partitioning the lattice in Figure 3, and
executes the consumers of 16 contexts. ATMS does not search the crossed-out nodes
which correspond to the supersets of detected nogoods, but executes the consumers
of 15 contexts. AREA(ADDB) is indicated by the conjunction of AREA(DDB) and
AREA(ATMS), and 11 contexts are examined by ADDB. GSEARCH examines the

- 14 —

contexts which are the same as AREA(ADDEB}, and the order in which GSEARCH
examines a context is indicated to the corresponding nodes. Note that the context
14, D} is not examined by any procedures except the basic ATMS. In GSEARCH, it
1s pruned because the partial solution tree {4, P;} is found to be inconsistent from the
pruning rule, that is, nogoed{4, E} and nogood{A, F} derive nogood{4, P;} and then
derive nogood{A}. DDB and ADDB do not execute the consumers of {A, D} either,
but DDB checks consistency for {4, D, E} and {4, D, F'}, and ADDB schedules them,
while in GSEARCH, they never appear in OPEN. []

Example 3. This is the same as Example 2, except that inconsistencies are detected
as follows:

ahc L,
b L,
ardDL .

In this case, there are no consistent solutions like Example 2. The structure is thought
to be the same with respect to nogoods. This example can be obtained by changing the
order of P; and FP; in Example 2.

In this example, the numbers of examined contexts with DDB, ATMS and ADDB
are 16, 15 and 11, respectively, and these are the same as Example 2. However,
GSEARCH examines the minimum number of contexts (7 contexts). This result shows
that the ordering strategy can have high search efficiency as described in section 4.2,

[]

To summarize, GSEARCH is more powerful for CSP than other procedures even
if the problem P has a flat structure like that shown in the examples. We emphasize
again that GSEARCH can treat problems with a hierarchical structure different from
the above examples. If inconsistencies are found in an intermediate level, partial solution
trees for some compiled knowledge are pruned. It should be also noted that GSEARCH
could be applied to another type of design tasks rather than simple CSP, such that
the problems need to be selected their models as well as the values of the variables
for models. A model can be represented by a set of constraints relating the desire,
intention, specification or necessity given by the user forming a context. For example,
in [Bose & Rao Padala 87}, the justification-based approach is used for the flight planning
problem. In GSEARC H, such models can be represented by the hierarchical structure
of AND/OR graphs, and the parameters of the models can be attached below them. The
assumption-based approach is very helpful for selecting models as it maintains multiple
contexts elegantly.

6. Conclusion

This paper introduced a general problem solving technique to control reasoning
with DDS. The resulting scarch procedure GSEARCH works between the domain-
dependent problem solver and the domain-independent TMS which maintain dynamic
knowledge. The main characteristics of the proposed method are that reasoning is
controlled by an AND/OR tree search mechanism, and that assumptions can be added

to the TMS along their contexts incrementally rather than added to every possible world
concurrently in a flat structure like the ATMS. Informed search can be corporated into
this method to make searching more efficient. This mechanism can solve CSPs.

The proposed framework will be incorporated into an assumption-based reason-
ing system APRICOT |[Inoue 87| to be developed. APRICOT will supply the basic
architecture for maintaining multiple contexts based on logic-based TMS, and will be
the core for controlling various reasoning in the knowledge system shell PROTON-2
which will be implemented in the PSI-2 machine. PROTON-2 is an improved version
of the expert system tool PROTON [Nagai et al. 87] in ICOT. We plan to apply this

mechanism to constraint solving in mechanical design.

One of the future topics of research is the trade-off between efficiency with heuristic
information and completeness or optimality of the algorithm, as described in section 4.2.
We believe that our proposal will be a basis for the bridge between logical consistency
such as TMSs in Al and algorithmic feasibility such as combinatorial optimization in

OR.
Acknowledgments

I would like to thank Dr. Koichi Furukawa, Y. Nagai and K., Satoh for their useful
comments. I would also like to thank Y. Fujii, the chief of the fifth laboratory at ICOT,
for his kind encouragement. Finally, I wish to express my thanks to Dr. Kazuhiro Fuchi,
Director of ICOT Research Center, who provided me with the opportunity to pursue
this research in the Fifth Generation Computer Systems Project.

References

[Bose & Rao Padala 87] Bose, P. K. and Rao Padala, A. M., “Reasoning with Incom-
plete Knowledge in an Interactive Personal Flight Planning Assistant”, Proc.
Awvignon 87: Ezpert System & their Applications (1987), pp. 1077-1092.

[de Kleer 86a] de Kleer, J., “An Assumption-based TMS”, Artificial Intelligence 28
(1986}, pp. 127-162.

[de Kleer 86b] de Kleer, J., “Extending the ATMS", Artificial Intelligence 28 (1986),
pp. 163-196.

[de Kleer 86¢] de Kleer, J., “Problem Solving with the ATMS", Artificial Intelligence
28 (1986), pp. 197-224.

tde Kleer & Williams 86] de Kleer, J. and Williams, B. C., “Back to Backtracking:
Controlling the ATMS”, Proc. AAAI-86 (1986), pp. 910-917.

[Doyle 79] Doyle, J., “A Truth Maintenance System™, Artificial Intelligence 12 (1986),
pp. 231-272.

{Hanks & McDermott 87] Hanks, S. and MeDermott, D., “Nonmonotonic Logie and
Temporal Projection”, Artifictal Intelligence 33 (1987), pp. 379-412.

(Ibaraki 77] Ibaraki, T., “The Power of Dominance Relations in Branch and Bound

— 16 —

Algorithms™, J. ACM 24 (1977), pp. 264-279.

[Inoue 87] Inoue, K., “Resolution Search Strategies for Assumption-based Problem
Solving”, Proc. 35th Annual Convention IPS Japen (1987 (in Japanese).

[Mackworth 77] Mackworth, A. K., “Consistency in Networks of Relations”, Artificial
Intelligence 8 (1977), pp. 99-118.

[MeDermott 83] McDermott, D., “Contexts and Data Dependencies: A Synthesis”,
IEEE Trans. Pattern Anal. Machine Intelligence 5 (3) (1983), pp. 237-246.

[Mittal & Frayman 87] Mittal, 5. and Frayman F., “Making Partial Choices in Con
straint Reasoning Problems”, Proe. AAAI-87 (1087), pp. 631-636.

[Nagai et al. 87] Nagai, Y., Kubono, H. and Iwashita Y., “PROTON: Expert System
Tool on the PST Machine”, Proc. Avignon 87: Ezpert Sysfem & their Applica-
tzons (1987), pp. 79-98.

[Pear! 84] DPearl, 1., Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley, Reading, MA, 19584,

[Poole 87] Poole, D. L., A Logical Framework for Default Reasoning, Research Report
C5-87-54, Department of Computer Science, University of Waterloo, 1987,

[Post 87] Post, 5., “Nonmonotonic Reasoning by Minimizing Contradiction in a Hedged
Predicate Caleulus”, Proc. Srd Annual Erpert System Conference in Ganern-
ment (1987), pp. 6-10.

[Reiter & de Kleer 87] Reiter, R. and de Kleer, J., “Foundations of Assumption-based
Truth Maintenance Systems: Preliminary Report”, Proc. AAAT-87 (1987), pp.
183-188.

[Stallman & Sussman 77] Stallman, R. M. and Sussman, G. J., “Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided Circuit
Analysis”, Artificial Intelligence 9 (1977), pp. 135-196.

[Sussman & MeDermott 72] Sussman, G. J. and MeDermott, D. V., “From PLANNER
to CONNIVER—A Generic Approach”, Proc. AFIPS FICC (1972), pp. 1171-
11749,

[Zabih et al. 87] Zabih, R., McAllester, D. and Chapman, D., “Non-Deterministic Lisp
with Dependency-Directed Dacktracking”, Prec. AAAI87 (1987). pp. 59-64.

— 17 —

AND

A B C D E F

Figure 1: The AND/OR search tree for Example 1.

Loop Context ADDCLAUSE(E X) D NOGOOD QOPEN SOLUTION

No.

0 {P}

1 {F} P=F AP AP* {P}

2 {A} P=AvE* {4} {8}

3 {4} ADa {4} { P, AL {B}

4 {P,A} P=CvD* {A} {C, A}, {D, A} {B}

5 (C,A}) Coe {4,C) [Py, C, A}, {D, A}, {B)

6 {P,C, A} Fa=EVF* {A,C} {E,C,A}{F,C, A},

{D, A}, {B}

T {E,C,A} EDe —cV e {4, C}H{E} {C,E} {F,C, A}, (D, A}, {B}

8 {F,.C,A} FOf {A,C F}LE} {C,E)} {p, A}, B} {A,C, F}

9 {D,A} Do>d —av-d {A,C, F},{D},(E} {C E}.{A,D} {B} {A,C, F}
10 {8} Bob, =b [A,C, F) {E},{D},{B} ¢ {A.C. F}

Figure 2: The computation process by GSEARCH in Example 1.

<\

BB} {AT) [BF \(CFs
4& " A T

Figure 3: The search space for Example 2.

Figure 4: The search space for Example 3.

