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Abstract

This paper presents a framework for detecting functionality of Prolog programas hy
abstract interpretation. The framework is based on mode analysis of Prolog programs. The
mode analysis is in turn based on OLDT resolution by Tamaki and Sato, a hybrid of the
top-down and the bottom-up interpretations of Prolog programs. By directly abstracting the
Lybrid interpretation according to the mode structure, we can infer mode patterns of goals
without either diving into infinite looping or wasting time for mode patterns of irrelevant
goals. [unctionality is detected hy overestimating the solution number of each goal for
each mode pattern during the mode analysis process, and by guarantceing that the solution
pumber is at wost 1. This method is a refinement of the one by Debray and Warren.
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1. Introduction

Thougls relationality {er nondeterminaey) is one of the prominent features of Prolog,
many Prolog programs in practice are functional (or deterministic) [3],/10],[12). When a
goal is executed with some arguments instantiated to ground terms, the form of the goal at
suceess time is often unique. If such functionality iz detected, the space prepared for later
barktracking is no longer necessary to be kept 2o that much memory space is redoced. Due
to its importance, many researches have been done on functionality detection [3],{10].[12].

In thiz paper, a framework for detecting functionality of Prolog programs by abstract
interpretation is presented. The framework is based on mode avalysis of Prolog programs.
The mode analysiz iz in turn based on OLDT resolution by Tamak: and Sato, a hyhrid of the
top-down and the bottome-np interpretations of Prolog programs. By directly abstracting the
hybrid interpretation according to the mode structure, we cun iufer mode patterns of goals
without vither diving into infinite looping or wasting time for mode patterns of irrelevant
goals. Functionality iz detected by overestimating the salution nnmber of each goal for
each mode pattern during the mode analysis process, aud by wuarantecing that the solution
mumber is at most 1. This method is a refinement of the one by Debray and Warren [3].

This paper iz organized as follows: After presenting the hyhrid interpretation of Prolog
programs in Section 2, we will show a mode analysis method in Section 3, beranse the
mode information plays a crucial role in our functionality detection. Then, we will show a
functionality detection method based on the mode analysis method in Section 4.

- The following sections assume familiarity with the basie terminologies of Hrest order
logie such as term, atom (atomic formula), definite clanse, negative clause, substitution, most
;3:.*11!'1"-!| nsifier {rll.g w.) and so onis assumed, The syntax of DEC-10 Prolor is followed.
Negative clanses are often confused with sequences of atoms. Syutactical variablez are XY, 2
for variables, at for terins and A, B for atoms, possibly with primes apd subseriptz, In
addition, ¢{Z)] s nsed for a term containing some oceurrence of variable 2, and 0.0, r for
subistitutions.

2. Standard Hybrid Interpretation ol Logic Programs

In this section, we will first present a basic hylrid jnterpretation method of Prolog
programs (13}, then a modified hybrid interpetation method snitable for the basis of the
abetract iterpretation presented later,

2.1 Basic Hybrid Interpretation of Logic Programs
(1) SEearch Tree

A searel troe s ntree with its nodes labelled with vegative or oull clanses, and with it=
ecdies lubelled with substitations, A search tree of negative clanse (7 is a search tree whose
root node 32 labelled with €7 The relation betwes o node and its child nodes i a searcl tree
12 specificd i various ways depending ou various strategies of “resalution™. In this paper,
the elass of “ordered linear” strategies is assumed, (See the explauations of OLDT resoluition
i the following subsection (4), and of OLD resulution in Seetion 3.)

A refictation of negative clanse & s a path i acsearch troe of €7 from the root to a node
lillll‘!}l'll with tloe uu|] L'I:.HL'-'\.I' a. Lot ﬂ'hﬂg. ._,If?k |J|_‘ l:]:.l.r.‘ l;l.]h'l:‘- UE t';n’ t‘:tl;:t':*- il Flue p.l.t]l



Then, the answer substitution of the refutation is the composed substitution r = 818 -+ &4,
aud the solution of the refutation 1s G'r.

Clonsider a path in a search tree from one node to another node. Intuitively, when
tle leftmost atam of the starting node’s label is refuted just at the ending node, the path is
called a uuit subrefutation of the atom. More formally, let Go, Gy, ..., Gy be a zequence of
labels of the nodes and #,, #5, ..., 6 be the labels of the edges on the path. The path is
called & unit subrefutation of atom A when @p, @1, G2, ..., Gr-1, g are of the form

ALGT,

“Hy G,

“Hp, G l:",

“Hioy, Glyly e b y”

TR RN P
respectively, where 7, Hy, Hs. ..., Hi_, are sequences of atoms. Then, the answer substi-
tution of the unit subrefutation is the composed substitution r = #; 03 -+ - 0, and the solution
of the unit subrefutaion is Ar.

(2) Solution Table

A solufion tahle is a set of entrics. Each entry is a pair of the key and the solutton list.
The key is an atom such that there is no other identical key {moduls renaming of variubles)
in the solution table. The solution list is a list of atoms, called solufions, such that each
solution in it is an iustance of the corresponding key.

(3) Association

Let Tr be a search tree whose nodes labelled with non-null clanzes are elazzified into
either solution nodes or Jookup nodes, and let T'h be a solution table. (The solution nodes
and lookup nodes are vxplained later.) An association of Tr and Th i1z a set of pointers
pointing frum each lookup node in T'r into some solution list in Th such that the leftmost
atom of the lovknp node’s label and the key of the solution list are variauts of each other.

Example 2.1.1 An association of a search tree of “reach(s,1p)" and a solution table is
depicted in the figure below. The underline denotes the lookup node, and the dotted line
denotes the association from the lookup node,

reachia,Ya)

Yo=Y >/ \‘:Fu'::rl}
-~ reach{a,Zy) edge(Z,,Y1) m|
N < F =n>]
! edge{a, Y, )
! <¥ =b>/ V¥ =
! O O

L
reach{nY) : [reach(a.a),reack(ab) reach{a,c)]
cdge(a.Y) : [edge(ab).edgelac)]

Figure 2.1.1 Search Tree, Solution Table and Association

(4) OLDT Structure



The hybrid Prolog interpreter is modeled by OLDT resclution. An QLDT structurc of

nesative clause 7 is a triple (T'r, T'h, As) satislying the following conditions:

(a)

(b)
{e)

Tris asearch tree of . The relation between a node and its child nodes in a search tree
is specified by the following OLDT resolution. Each node of the search tree labelled
with non-nuli clansze iz clas=sified into either a solution node or a lockup node,

Thi= a solution table,

Az is an association of Tr and Th. The tail of the solution list pointed from a lookup
node 18 called the associated solution list of the lookup node.

Let & be a negative clanse of the Torm “Ap, As, ..., A7 (n 2> 1), A node of OLDT

etructure (Tr, T, As) labelled with pegative clause & iz 2aid to be OLDT reselvable when it
satisfies either of the following conditions:

(a)

(b)

The node iz o terminal solution node of Tr, and there iz some definite elause *B; -
By Bz,...,B." (m > 0) in program P such that A, =pnd By arc unifiable, say by
an m.ga. #. (Without lozs of generality, we assume that the m.g.u. § substitutes a
term consisting of fresh variables for every variable in A and the definite elause.) The
negative clause (or possibly null elanse) By #, Byf,... B, 8, Az8,... A0 is called
the QLDT resolvent.

The node 15 a lookup node of Tr, and there is some solution Br in the associated
solution list of the lookup pode such that Br is an instance of Ay, say by an lustautiation
d. (Azain, we assumc that the instaotiation ¢ substitutes a term consisting of fresh
variables for every variable in Ay, that is, a fresh variant of Br is an instance of 4, hy
8.) The negative clause {or possibly mull clavse) “A,8, ... 4,87 is called the OLDT
reaolvent,

The restriction of the substitution # to the variables of Ay is called the substitution of the
QOLDT pesolution.

The jnitial OLDT structure of negative clause 7 is the triple (Trg, Thy, Asg), where

Try 12 a searcl tree consistineg of just the root solution node labelled with &, Thy = the
solutivn table consisting of just one entry whaose key is the leftmost atom of & and solution
list i= the empty list, and Asy iz the empty set of polnters.

An immediate extension of OLDT steueture (T, Th, Az) in program P is the result of

the foliowing operations, when a node v of OLDT structure [T'r, T'h, Aa) is OLDT resolvable.

()

(b}

When v is a termiual gelution node, let €. Cq, ... 0% (£ 2 0) be all the clanzes with
which the node w is OLDT resolvable, and 7y, 5. ., 0 be the respective OLDT
rezolvents. Then add & child nodes of v labelled with 7, &a, ..., G, to v, The edze
froom v to the node labelled with 77 15 labelled with 8, where 8 iz the substitution
of the OLDT resolution with €, When v is a lookup node, let Byry, Bor, ...,
Byn [k 2 0) be all the solutions with which the wode v s OLDT resolvable, and
Gy, Ga.... @y be the respective OLDT resolvents, Then add & child nodes of o labelled
with 7y, Fa,.. . 7. to v. The edze from o to the node labelled with &; is labelled
with #;, where #; s e substitution of the OLDT resolution with B,r;. A new node
labelled with a nou-null clanse is a lookup node when the lefrmozt atom of the new
negative clanse 8 a varlant of =ome key in T'h, and i= a solution node otherwize.
Teplace the poiter from the OLDT resolved lookup node with the one pointing to the
last of the assaciated solution list. Add a pointer from the vwew lookup node o the
Lieail of the solution list of the corresponding key.

When a new node i= a solntion node, add a new entry whese key is the leftmost atom
of the label of the new node and whose solution list i= the empty list. When a new
node 15 a lookup node, add no new entry. For each unit subrefutation of atom A (if
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any) starting from a solution node and ending with some of the new nodes, add its

solution Ar to the last of the solution list of A in Tk, if Ar is not in the solution hist.

An OLDT structure (T'r', TH', As'} iz an extension of OLDT structure (Tr, Th, As)
if (T+',TH, As") is obtained from (Tr, Th, As) through successive application of immediate
extensions.

Example 2.1.2 Consider the following “graph reachability” program by Tamaki and Sato [13].
reach(X,Y) i- reach(X,Z), edge(2,Y).
reach( X X).
edge(a.b).
edeela,c),
edge(b,a}.
- edze(b,d).
Tlhen, the hybrid interpretation generates the following OLDT structures of “reach{a, ¥g)".
First, the initial OLDT structure below is generated, The root node of the scarch tree
iz a solntion node. The solution table contains only one entry with its key reach{a.Y) and
its zolution list [ ].
reach(a.Yg)

reach(a.Y) : | |
Figure 2.1.2 Basic Hybrid Interpretation at Step 1

Secondly, the root mode “reach(a, ¥y)" is OLDT resolved using the program to generate
two child nodes. The generated left child node is a lookup node, because its leftmost atom
iz a variant of the key in the sclution table. The association associates the lookup node to
the head of the salution list of reach{a, ¥). The gencrated right child node iz the cnd of
a unit snbrefutation of reach{a, Yy). Its solution reach{a, a) iz added to the solution list of
reach(a, ).

reach(a, Yy)
{}ru.dryl:}f Ve Ype=ax
J— reach{a,Z;).edge(Z,.Y,) o

¢
reach(a,Y) ¢ [reach{aa)|
Figure 2.1.3 Basic Hybrid Interpretation at Step 2

Thirdly, the lookup node is OLDT resolved using the solution table to genevate ome
child solution pode. Tl asseciation associates the lockup node to the last of the solution
lizt.

reach(aYy)
/ \
_ereachiaZy).edge(Z1,Y ) O
S cfiesa>|
! edge(a,Y,)
i
¥

reach(a,Y) @ [reachfa.a)]
edge(aY) o [ ]

Figure 2.1.4 Basic Mybrid Interpretation at Step 3



Fourthly, the geucrated solution node is OLDT resolved further using the program to
geuerate two new podes labelled with the null clauses. These two nodes add two solutions
reach{a,b) and reack(a e} to the last of the solution list of reack(a, ¥}, and two solutions

edge(a, b) and edge(a, ¢) to the last of the sclution list of edge(a, Y.

reach{a, ¥y
/ A\

_-reach{a,Zy).edge(Z,,Y,) (|
/ |
! edge(a,¥,)
I- <Y, =b>/ hN Y=o
’| O O
1

reach{a.Y) : [reach(a,a).reach(ab) reachia.c))
edge(a, Y] : [edge(ab)edgela.c)]

Figure 2.1.5 Basic Hybrid Interpretation at Step 4

Fifthily, the lookup node 15 OLDT resolved usiug the solution table, since new solutions

were added to the solution list of receh(a, ¥).
reach{a Ya)
/ \

Jppp— reuch{E_I.Z_:-l}.vdgE{Zi,Y1} L]
- / ' l<Zi=b> \<Z,<e>
edgze(c,Y))

-
-

& edee(a,Y) edge(b.¥ )
Y A

—
—_—— e e —

-—

T

reach(a.Y) : [reach(a.a),reach{ab) reach{a,c)]
edge(a,Y) : [edze(a.b).edge(a,c)]
edge(b.Y) : [ ]
edge(c,Y) : [ ]
Figure 2.1.6 Basic Hyhrid Interpretation at Step 5

Sixthly. the left new solution node *edge(d, ¥,)™ is OLDT resolved, and one new solution

reach{a. d) iz added to the solution hist.
reach(a,Yq)
/ \
- nm====reach(a L;).edge(Z,,Y,) O
- ! |<Z,=b> \cZje=c>
i edgel(a,’Y)) edge(b,Y ) edge{e,Yy)
/ \<Yi«=a>/ \<Y =d>
‘. O o o O

“u

-

i

T —— e -
P

reachia,Y) |rt:a.ch{'a..a.].reachfa,h},remh{ah:ch}frmch{a,d]]

edge(a,Y) : [edze{a.b)edze(ac)]
edge(lLY) ¢ Jedge(b,a),edge(b.d))

edge{e,Y) : [ ]
Figure 2.1.7 Basic Hybrid Interpretation at Step 6

3



Lastly. the laokup node is OLDT resolved once more using the solution table, and the
extension process stops, becanse the solution nodes labelled with edge(e, Y1) and edge(d, Y, )
are not OLDT resolvable.

reach{a, ¥y)
/ \
m====reach{a,Z,) rdge(Z,. Y} [
e / ! A \<Z) =d>
! edee(a,¥,) edge(b,¥y) edge(c.¥1) edge(d, Y,)
/ \ / \
=~ O o a O

f
!
\

.

reach(a.Y) : [reach(a.a) reach{ab) reach{ac) reach{a,d)]
edrela Y) : [edae({a.b)edge(a.c)]

edge(h.Y) : [edee(b.a).edre(b.d)|

edge(e.Y) : [ ]

edze(d, Y] : {]

Figure 2.1.8 Basic Hybrid Interpretation at Step 7

Though all salutions were found under the depth-first from-left-to-right extension strategy in
this example, the strategy iz not complete in general. The reasen of the incompleteness is two-
fald. One is that there might he generated infinitely many different sohition nodes. Another
is that some lookup node might generate infinitely many child nodes so that extensions at
other nodes rizght to the lookup node might be inhibited forever.

(5) Soundness and Completeness of OLDT Resolution

Let (3 be a negative clause. An OLDT refutation of G in program P is a refutation in
the search tree of sowe extension of OLDT steucture of (7. The answer substitution of the
OLDT refutation and the solution of the OLDT refutation are defined in the same way as
before. Then, OLDT resolution is sound and complete. {Do not confuse the completeness of
the general OLDT resolution with the incompicteness of the one under a specific extension
strategy, e.g., the depth-first from-left-to-right strayegy.)

Theorem 2.1 (Soundness and Completeness of OLDT Resolution)

If i7r is o ssintion of an OLDT refutation of & in P, its universal closure WX, X5 --- X,
Gr s a logical eonsequence of P

If a nniversal closure W¥; Y5 - ¥, G is 8 logical consequenre of P, there 1= Gr which
15w solation of an OLDT refutation of o in P and 7o 15 an mstance of OFr.

Proof. Though our hybrid interpretation is different from the original OLDT resolution by
Tamaki aud Sato [13] in two respects (see [7]). these differences do not affect the proof of the
sounduess aud the completeness. See Tamaki and Sato [13] pp.03-94.

2.2 Modified Hybrid Interpretation of Logic Programs

Iu order to make the conceptual presentation of the hylrid interpretation simpler, we
liave nat considered the details of bow it is implemented. In particular, it is not olbvious in
1‘1||_' spnnedint e extenston of OLDT struckire”

{a)} how we can kuow whether a new node is the end of a unit subrefutation starting from
some solution node, and



(h) how we can obtain the solution of the unit subrefutation efficiently if any.
It is an easy solution to insert a special eall-exit marker Ay, 0] between Byf, Baf, .., Bumd
and Az, .., A.f when a solution node is OLDT resolved using an m.gu. #, and obtain the
unit suhrefutation of A, and its solntion 4, r when the leftmost of a new OLDT resolvent
is the special call-exit marker [A;, 7). But, we will use the following modified frumework.
(Though such redefinition might be confusing, it is a little difficult to grasp the intuitive
meaning of the modified framewerk without the explanation in Section 2.1.)

A search tree of OLDT structure in the modified framework is a tree with its nodes
labelled with a pair of a (generalized) negative clause and a substitution, (We have said
Secperalized”, because it might contain non-atoms, ie., call-exit markers, The edges are not
labelled with substitutions any more.) A search tree of (G, o) 1s a serach tree whose root
node is labelled with (@7, o). The clause part of each label is a sequence “uy, a2, ..., a7
consisting of either atoms in the body of the clanses in PU {&} or call-exit markers of the
form [A, a']. A refutation of (G,o) is a path in a search tree of {7, ) fram the root to a
node labelled with {0, r). The answer substitution of the refutation is the substitution r,
and the sofution of the refutafion is Gr. A solution table and an association are defined in
the same way as before,

An OLDT structure is a triple of a search tree, a solution table and an association. The
relation between a node and its child nodes in search trees of OLDT structures is specified
by the following modified OLDT resolution. :

A pode of OLDT structure (Tr, Th, As) labelled with {“ay, a2, ..., aa”, ) is said to
be OLDT resolvable when it satisfies either of the following conditions:

{a) The node is a terminal solution node of Tr, and there is some definite clause "Ly
B, B, .. ..0." {m = 0)in program P such that a0 and By are unifiable, say by an
g 8

(b} The node iz a lovkup node of Tr, and there is some solution Br in the associated
sohition list of the lookup node sueh that (a fresh variant of) Bris an instance of a, g,
say by an instantiation §.

The OLDT resolvent is obtained through the following two phases, called calling phase
and exiting pliase since they n:'ur'l'i_'spuul_:l tr a “Call” {or “Reda”) line and an "Exit” line in
the messages of the conventional DECLO Prolog tracer. A call-exit marker 1s inserted in the
calling phase when a node iz OLDT resolved using the program, while no call-cxit marker
is menerated when a nede is OLDT resolved using the soluticn table. When there iz a call-
exit marker at the lefrmost of the clause part in the exiting phase, it means that some unit
subrefutation is obtained.

(a) (Calling Phase) When a node labelled with (“ay,a2,...,0,7, o) is OLDT resalved,
the intermediate label is generated as follows:

a-1. When the node is OLDT resolved using a definite elanse “By - By, Ba, ... BT
in prozraim P and an m.gan 0, the intermediate clanse part is “By. Ba. ..., B,
lep.e] ez, ., @y, ", and the intermediate substitution part rp 18 &,

a-2. When the node s OLDT resolved using a selution Br in the solution table and an
instantiation &, the intermediate clause part i *o2, ..., gy, and the imtermediate
substitution part rp 2 o8,

(b} (Exiting Phase) When there are k call-exit markers [Ay, o], [Az, o2], ..., [Ac, ok] at
the leftmost of the intermediate clause part, the label of the new node is zenerated as
follows:



1:-1. The clause part 12 obtamed by eliminating all these call-exit markers. The sub-
stitution part is op « 0 g20 7.

h-2. Add A;ey7y, Azreoima, ..., Agfr - - o170 to the last of the solution lists of Aoy,
Asea, ..., Apog, respectively, if they are not in the solution lists.

The precise alzorithm iz shown in Figure 2.2.1. The processing at the calling pliase is
performed in the first case statement, while that of the exiting phase is performed o Le
zecond while statement successively,

Note that, when a node i=s labelled with (G, ), the substitution part o always shows
the instantiation of atoms to the left of the leftmost call-exit marker in &. When there is
a call-exit marker [4;,0,;] at the leftmost of clause part in the exiting phase, we need to
npdate the substitution part by composing o; in order that the property above still holds
after eliminating the call-exit marker. The sequence 7,72, ..., 7 denotes the sequence of
updated substitutions. In addition, when we pass a call-exit marker [A;, o] in the while
loop above witls substitution ry, the atom Ayr; denotez the solution of the unit subrefutation
of Aje;. The solution Aj7; is added to the solution list of 4;0;.

A nade labelled with (Cay, 02, ..., 0,7, o) is a lookup node when a variant of atom
a @ already exists as a key in the zolution table, and iz a solution node otherwise (n > 1).

OLDT-resolve(( %oy, e, ..., 0,7, ) o lahel] @ lahel ;
1=
case
when a solution node iz OLDT resalved with “By - By, Ba, ..., Ba"In P
let @ be the mozgu. of a0 and By
let 7y be a negative clanse “By Ba, ..., By, [ay, 0], 2,000, 8,
let 7y be the substitution # ; — (A)
when a lookup node 1s OLDT resclved with “Br™ m Th
let # be the instantiation of aye to (a fresh variant of) Br ;

let Gu be a negative caluse “aa,... 0,7 5
let my be the composed substitution #48 ; — (B)
endcase

while the leftmost of G; i a call-exit marker [Aigy.0040.] do
let (¢, 5y be Gy other than the leftmost call-cxit marker |
let ropq e ooy — ()
add Ajpires to the lnst of Ajpyo041 solution list if it is not in it ;
t=14+1;
endw hile
|:{.’.r|.!:1r|l-ﬂvl-=hl]|| V= ['f-"'ll-rl.] H
return (o Trew -

Figure 2.2.1 Modified Hybrid Interpretation

The initial OLDT steucture of (G o) is a triple (Trq, Thy, Asg), where Try is a search
tree of (7 consisting of just the root zolution node labelled with (G, 7}, Thy is a selution table
consisting of just cue cutry whose key is the leftmost atom of 7 and solution list is [ |, and
Adg 18 the empty set of pointers. The immediate exteasion of OLDT structure, extension of
OLDT structure, answer substitution of QLDT refutation and solution of OLDT refutation
are defined o the same way as before.



Example 2.2 Consider the example in Section 2.1 again. The modified hybrid interpretation
cenerates the following OLDT structures of reach{a, ¥y).
First, the initial OLDT structure below is generated. Now, the root node is labelled
with [“reach(a, ¥y} ,<>).
reach(a, Ya)
<=

reach{a,Y) : [ ]
Figure 2.2.2 Modified Hybrid Inferpretation at Step 1

Secondly, the root wode (“reach(a,¥y)",<>) is OLDT resclved using the program to
generate two child nodes, The intermediate label of the left child node is

{(“reach( X1, Z).edye| Z1.Yy), [reach(a, Yy), <> |7, <Yo=¥, X1 +a>).
It i= the new label immediately, since its leftmost is not a call-exit marker. The intermediate
laliel of the right child node is

{(“[reach(e.Yo), <= |7, < Yos=a, X1 =a>),
Dy eliminating the leftmost call-exit marker and composing the substitution, the new label
iz (O,< ¥y = a X, <= a>). (When the clause part of the label is O, we will omit the
assienments irrelovant to the top-level goal in the following figures, eg, < X) < a >)
During the elimination of the call-exit marker, reach(e, a) is added to the solution table.

reach(a. Yo
o>
/ \
~~reach{X;.Z,).edge(Z,.Y,), [ reach(a,Yq) <> ] O
i-_,q_ o {PQ*FYL..Xl‘Fd} ‘:Yg'::a:’

-

Y
reach{aY) @ [reack(aa)]
Figure 2.2.3 Modified Hybrid Interpretation at Step 2

Thirdly, the left lockup node is OLDT resolved using the solution table to generate
one child solution node,

reach{aYaq)
<>
/ S
ceteachi X 2 bedee(2,.Y)), | reachia Yo). <> | O
{ T <Y<V X, =a> <Yy<=a>
. |
by

So_ o edge(20.Yy) § reacki(a,Yy) <> ]
“*-,1__H-c;1’;]<—.Y|,X1*{=r1121"v'=|1}

———
-

¢

reach(a.Y) : [reach(a.a)]

edze(aY) ¢ [ ]
Figure 2.2.4 Modifled Hybrid Interpretation at Step 3
Fourthly, the generated solution node 1z OLDT rezolved using a unit clavse “edge(a, §)”
m program P to generate the intermediate label

["[ml!':;r.'{zh Y|},-=-‘.' YoV X =08 <=a> ], [reach[a,‘ﬂ;},{} ]mr <1 ¢=I§l}:|'

o



By eliminating the leftmost call-exit markers and composing substitutions, the new label is
(O, <Yo=h X +a, £y =Y, =b>). During the elimination of the call-exit markers,
edge{a, b) and reach{a, b) are added to the solution table. _

Similarly, the node is OLDT resolved using a uuit clause “edge{a,¢)” in program P to
senerate the intermediate label

(“ledge( 2, Y1), < Yo=Y X1 <=0, 2 <> |, freach(a, Ya), <> ], < Vi+e>)
By eliminating the leftmost call-exit markers and compesing substitutions similarly, the new
lahel i= (O, <« ¥y =e. X, =a, £, +=a, Y, <=c>). This time, edge{a.b) and reach{a, b} are
added to the solution table during the elimination of the eall-exit markers.
The process of extension proceeds similarly to obtain all the solutions as in Example 2.1.2,

Remark. Note that we no longer need to keep the edges and the non-terminal solution nodes
of search trees, In addition, we can throw away assignments in § for the variables in Br at
step (B), aud those in 7 for variables not in A, 41741 at step (C} in Figure 2.2.1.

reach(a, ¥q)

L1
/ \

-reach{X;.Z1)edge(Z;, Y1), | reack{a,Yo), <> | |
If <Yp+=Y. X <a> <Yp+=u>
1 |
| edge(Z,,Y;) [ reach(a, Yo) <> |

. <Yu=V1 XK1=, dy—a>

S ! A
Tn i m)
“*-H,___{YE,-::&} <Yyec>

kT

reach(aY) : [reathl{a.arreafh (a.b).reach{a.c)]
edze(a,Y) : [edge(ab)edge(ac)]

Figure 2.2.5 Modified Hybrid Interpretation at Step 4
3. Mode Analysis by Abstract Hybrid Interpretation

Suppose we wenld like to know that, when a goal “tsort(Ly, M)" with its first arqument
Ly instantiated to a ground term suceeeds, the form of its second argument M after the
srecrss 15 nuigne, where taert and insertp are defined by

wort ([ 1.[ ).

isort ([ X|L].M) - isort(L N}, insertp( X, N M).

insertp( X[ L[X]).

iesertp( X[ YN [XY|M]) - XY

imsertp( X[ YINLIYIM]) - X5, insertp( XN, M).
When the first clanse (unit clanze ssort([ 1, [ )] is used first to succeed, the desired function-
ality is obvionsz, When the sceond clanse is used first, the goal is reduced to “tsort(Ly, Nl
tnsertp( X Ny M7, If we can assume the functionality for fsort{L., N1} when its first
arpunent Ly s instuntinted to a ground term, the detection of the desired functionality i=
reduced to that of tneertp( X, Ny, M), It is, bowever, crucial to know that the second ar-
gument Ny is instautiated to a ground term after the first subgoal ssort{L;, N|) suceceds in
order to kuow that the formn of M alter the success of tnaertp( Xy, Ny, M) is unique. More
eenerally, the first argument of faort invoked from the top-level goal is always a ground term
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at calling time and the second argument is always a ground term at exiting time. Similarly,
so are the first and the second arzuments of insertp at calling time, and the third argument
at exiting time, How can we show it mechanically?

In this section, we will reformulate the work by Mellish [10],[11] and Debray [4] from
the point of view in Section 2.2.

3.1 Mode Analysis

A mede iz one of the following 3 zetz of terms:
ary © the set of all terms,
ground ; the set of all ground terms,
@ : the emptyset of terma,
Modes are ordered by the instantiation ordering = depicted below.

@
|
ground

any
Note that this iz the roverse of the set inclusion ordering below.

any
e
ground
|
t}

A mode substitution i+ an expression of the form
<X e=mp Xosma, o Kie=m>,
where my.ma.... mg are modes. The mode assigned to variable X by mode substitution
element w.rt. the instautiation ordering, to variable X when X is not in the domain of the
mode substitution explicitly. Henee the empty mode substitution <> assigns eny to every
varialble,

Let A be an atom in the body of some clause in PU{G}, p be a mode substitution of
tlie form

<Xpem Xasma ... K= my >
Then Ap i called a mode-abstracted atom, and denotes the set of all atoms obtained by
replacing each Xy in A with a term in m;. Two mode-abstracted atoms Ap and Br are
saidd to be nuifiable when Apn Br # 0. A list of mode-abstracted atoms [Agpy, Azp, ..oy
Appin] devotes the set union U Aip. Similarly, Gu (or the pair (G, p)) is called a mode-
abstracted negative clause, aud denotes the set of negative clauses obtained by replacing cach
Xion € with a termoinomy. When (715 of the form "4, Az ... AL7, the mode-abstracted
atom A p s called the lefimost mode-abstracted atom of Gp.

The purpose of mode analysis is to obtain possible mode patterns of goals appearing in
the top-down exeeution of a given goal. Let us formalize the top-down execution here. The
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top-down Prolog interpreter is modeled hy OLD resolution. The OLD resolution is defined
using just search trees, called OLD trees. (Because there is neither a solution table nor
an association, we have no distinction of solution nodes and lookup nodes. All nodes are
sohition nodes.) The relation between a node and its child nodes in OLD trees is specified in
the same way as the OLDT rezolution in Section 2.1, except that we have no resclution using
lockup nodes and solution tables, hence no manipulation of solution tables and aszociations.

An atom A appearing at the leftmost of the label of a node in some OLD tree of 7 is
called calling pattern of G. Note that any calling pattern of G is an instanece of scme atom
in the body of sume clause in P U {G}. Each calling pattern corresponds to some key in the
solution table of OLDT structure.

A solution Ar of a subrefutation in an OLD tree of G is called an exiting pattern of
(+. Note that any exitiug pattern of G is also an instance of some atom in the body of some

clanse in P U {7}, Each exiting pattern corresponds to some element in the solution lists of
OLDT structure.

Let G be a mode-abstracted negative clause, C(Gp) be the set of all calling patterus
of nesative elanzes In Gpoand &(Gu) be the set of all exiting patterns of negative clanses in
Gp. The maee analysis wor.t. (v 15 the problem to compute

(a) some list of mode-abstracted atoms which iz a superset of C(Gp),
{b} some list of mode-alstracted atoms which 15 a superset of &[G ).

Remark. We have adopted the simplest mode structure consizsting of just 3 mades any,
ground, § (cf. Section 3 of [4]). In erder to include an additional mode varinble representing
the ot of all variables, we need to take one more quantity (called sharing) into consideration
ta infor modes correctly. [Sce Section G of [7] for details ) But, these 3 modes are enough for

the functionality detection in Seetion 4.
3.2 Abstract Hybrid Interpretation for Mode Analysis

3.2.1 OLDT Structure for Mode Analysis

A search tree for mode analysis s a tree with its nodes labeled with a pair of a (zen-
eralized) nemative clanzge and a mode substitution. (For brevity, we will sometimes omit the
ternn “for mode aunlysis™ Lereafter in Section 3.) A search tree of (G, p) 15 a search tree
wloze raot pade is [abeled with (&, p). The clausze part of each lahel is a gequence “ny, 04,
...my" consizting of cither atoms in the body of some clause in PU{G} or call-exit markers
of the form [A p' gl A refutation of (7. ) is a path in a search tree of (G, p) from the
root te s pode labelled with {0, v}, The answer substitution of the refutation is the mode
substitution r and the solution of the refutation is G,

A solition table for mode analysis is a sct of entries, Each entry consists of the key
and the solution list. The key is a mode-abstracted atom. The solution list is a list of
mode-nhstracted atoms, called selutions, whose all solutions are greater than the key wor.t.
thie instanfiation erdering.

Let Tr be a search tree whose nodes labeled with non-null clauses are classified into
either solution nodes or lookup nodes, and let Th he a solution table. An association for
menle analysis of Tr and Th is a set of pointers pointing {rom each lookup wode in Tr into
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some solution list in Th such that the leftmost mode-abstracted atom of the lookup node’
label and the key of the solution list are variants of each other.

An OLDT structure for mode analysis i= a triple of search tree, solution table and
association. The relation hetween a node and its child nodes in a scarch tree is specified by
OLIT resolition for mode analvsis in Section 3.2.3.

3.2.2 Overestimation of Modes

Becausze the purpose of mode analysis is to compute supersets of the sets of calling
patterns and exiting patterns using lists of mode-abstracted atoms, we need to overestimate
them someliow by manipulating mode-abstracted atoms. We would like to do it by specilying
tlie operations for mode analysis corresponding to those at step (A).(DB) and (C) in Figure
221, In order to specify them, we need to consider the following situation: Let A be an
atom. Xy, Xa...., X all the variables in A, g a mode substitution of the form

{..Xj ﬁﬂi[.x;ﬂhﬂlg,.. . .Xt-;:m,k -

I an atom, Yy, Ya. ..., Y7 all the variables iu B, and v a mode substitution of the form
<YienYoen o Yien>,

Then
(1) How can we know whether Ap and By are unifiable, ie., whether there is an atom in
Apn Be?
{b) If there is such an atom Ae = HBr, what terms are expected to be assigned to each 75
by «7

Example 3.2.2.1 There is a common atom of

XY )= X=ground ¥ =any >,

s iU g(V)) €U =any. V = any >,
Heuve, they are unifiable. Let p( f{U7), g(V))7 be a common atom. Theo U7 must be instan-
tinted o a term in ground, and Vomust be justantiated to a term in any.

(1} Overestimation ¢l Unifability

Whon two mode-abatracted atoms Ap and O are unifiable, two atoms A and IF must
be unifiable in the namal sense, Let i be an mogu of 4 and B of the form

XN asty Nawmta, o Xp=h V=0, Vo=00,... V1 =5 >
H owe ean overestimate the mode assiened to each ocourrence of & in & from the mode
substitution u anid that of £ in a; from the mode substitution v, we can overcstimate the
mode assirned to the variable 2 by taking the join v w.r.t, the instantiation ordering for
all orenrrences of Z. I it s the emptyset @ for zome variable Z, we can’t expect that there
exists a common atom Ar = Brin Apn Be.

A mode coutaining all instances of some occurrence of Z when an instance of term t[ 2]
is in mode m iz denoted by Z/ < t{Z] = m >. Due to the choice of modes {see [4]), it is
computed simply as follow:

Zf < tZleme=m.

Fxample 32222 Let ¢ he [X|L] and m be ground. Then

X/ < |[X|L] <= ground >= ground, L{ < [X|L]+=ground >= ground.
Let t be [X|L] and m be any. Then -

X/ < [X|L]e=any »=any, L} <[X|L]«any >= any.
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Note that Z/ < t[Z] = m > is not § when m is not §. Berause the join V of non-
empty modes wort, the instantiation ordering is always now-empty, the mode assigned to
each variable is non-empty when p and v do not assign @ to any variable. Thiz means that
the nnifiability of Ap and B can be reduced to the unifiability of 4 and 1.

(2} One Way Propagation of Mode Substitutions

Recall the situation we are considering, Fivst, we will restrict our attentions to the
case where v =<> first. Suppose there iz an atom Ae = Br in Apn B <>, Then, what
terms are expected to be assizued to variables in B by #7

Az has been just shown, we can overestimate the mode assigned to each variable Z
in t; from the mode substitution g, By collecting these modes assisnment for all variables,
we can overcstimate the mode substitution A for the variables in £),¢62, ..., 8. If we can
overestimate the mode assioned to #; from the mode substitution A obtained ahove, we can
obtain the mode substitution o'

<Y, e=nlYae=nl . Yien >
by collecting the modes for all varlables ¥y, ¥a, ..., ¥

Let A e a mode substitution. A mode containing all inetances of 9 when each variable
X is assigued a term in mode A[X) is denoted by 2/ A, and computed as follows:

@, MX) =0 for zome X in #;
sfA = ground. when A X) = ground for every variable X in 4
Iﬂy_ otherwise.

Example 3.2.2.3 Let 2 be [X|L] aud A be < X «=ground, L+ ground>. Then
s/A = ground,

Let s be [X|E and A be = X = any, L+ ground>. Then
sfA = any.

Let A, B be atoms, g a mode-substitution for the variables in A, and 7 an m.gu. of 4
aund . The mede-substitution for the variables in B, that is obtained from g and 5 using
Z] < t[Z] <=t > aud «fA above, 12 denoted by propagate(p, n). (Note that propagate({u, n)
depewds oo pust goand 7))

(3) Overestimation of Mode Substitutions

Az for the operation at step (A) for mode analysis, we can adopt the one way propa-
ratinn

propegate(p, n)

since the destination side mode substitution is <3, As for the operations at step (D) and
(C) for mode analysis, where the destination side mode substitution is not necessanly <>
we can adopt the join V w.r.t. the instantiation ordering

nV propagate(y, n),

i.e., varinble-wise join of the mode assigned by the previous mode substitution g and the one
Ly the one-way propagation propagate(v,n).
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Example 3.2.2.4 Let v and propagate(p, n) be mode substitutions :
<Xy e=many. Y, seny =,
< X <= ground ¥y < any >

Then, vV propagute( g, n) i a mode substitution
< X 4= ground ¥, <any >

2.2.3 OLDT Resolution for Mode Analysis

The relation between a node and its child nodes in a search tree is specified by OLDT
reaolution for mode analyais as follows:

A node of OLDT structure {Tr, Th, As) labeled with (“oy, oz, ..., @.", g) is said to
be OLDT resolvable (n > 1} when it satisfies either of the following conditions:

{a) The node is a terminal solution node of T'r, and there is some definite clause “By :-
B By ..., B.." [m 2 0) in program P such that o; and Hy is unifiable, say by an
m.ga .

(b) The pode iz a lookup node of Tr, and there is some mode-abstracted atom Be in the
associated solution list of the lookup node such that a, and B are varnants of each
other, Let g be the renaming of B to oy,

The precize alzorithm of OLDT resolution for mode analysis 1s shown in Figure 3.2.3.
Mote that the operations at steps {A), [B) and [C) in Figure 2.2.1 are modified.

OLDT-resolve(( "ay. az, ... a,™, p) o label) ¢ label ;
t:=0;
case
when a solution node s OLDT resolved with “By :- By, B3,...,B,.,"n P
let 7 be the moga. of ay and By ;
let Gy be anegative clanse *By Bay. 0 By, oy, pn) ez, 20”5
let vy be propagate(pw.n) ; — [A)
when a lookup node is OLDT resolved with *Bv” in Th

let 1 be the rennming of B to o ;
let €3y be a necative caluse “aa, .., T,
let 1y be ¥V propagate(v,n) ; — (B)

endcase

while the leftmost of 7, is a call-exit marker [A;4y, pigr, mis1] do
let Geeg be 7) other than the lefrmeost call-exit marker ;
[t Viey Lo it U;Jrr}pi:yutr[w,m_!_l} : — {C}
add Aj1ywipg to the last of Ajgppipr’s solution list if it is not in it ;
ti=1+ 1

endwhile

{{:m-.w~ #n:‘.uj = {G'r Iﬂ'j H

refurn {(F. e, Moew -

Figure 3.2.3 OLDT Resolution for Mode Analysis
A node labeled with (“a;, 02,..., 2,7, i) is a lockup node when a variant of o puis a
key in the solution table, and is a solntion node otherwise (n > 1).
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The initial OLDT structure, immodinte extension of OLDT structure, extension of
OLDT structure, answer substitution of QOLDT refutaticn and solution of OLDT refutation
are defined i the same way as in Section 2.2.

3.3 Examples of Mode Analysis
We will sliow two examples of mode analysiz, which are used again in Scction 4.

Example 3.3.1 Let fsort, tnaertp, < and < be predicates defined by

isort ([ 1 1)

isort{[2|L].M) - isort{L.N), insertp (X, N, M),

insertp{ X[ ].[X]).

inzertp( [ Y NL[XYIN]) - X<Y.

msertp X [Y[N]L[Y|M]) - X=Y, insertp( 2} N M).

0<X.

ae{ X <aue(Y) - XY

suc(X)=0.

suc{ X zac(Y) - X=Y.
Tlien, extension of OLDT structure proceeds similarly to reach in Example 2.2, (This fsort
iz the “Inscrtion sort”.)

First, the initial OLDT structure below iz generated. The root node of the search tree
iz a solution node. The solution table contains ouly one entry with its key szort{L, M) <
L <= ground > and irs solution list 12| ]

isort( Ly Mg)
< Ly = ground >

teort(L, M) < Le=ground > : [ |

Figure 3.3.1. Mode Analysis at Step 1

isort{ Lo, My}
< Ly == ground >

! Y
O sort{ Ly Ny binsertp( X, Ny, M )00 --.
< Ly, My <= ground > - <L, X, <=ground> _d_:r'r

e

tsort(L. M) < Le=ground> : [eort(L, M} <L, M <+ ground >|
Figure 3.3.2. Mode Analysis at Step 2

Secondly, the root node is OLDT resolved using the prozram to generate two child
nocdes, Sinee the intermediate clanse part of the left chald nade is

“ul'.wrt[Ln., Myl. < Ln+= _!]r_rrr_ur.uf}, < Lo, My -::l 1} ]".
the node is the end of a it subrefutation. Its solution isort{ Ly, My) < Ly, My <= ground >
iz added to the solution list. Since the intermediate clause part of the right child node 1s

“taort( Ly, Ny ), tnsertp{ Xy, Ny, M),

['i.TiJrll: Lu. fl-fu].,. < Iy #gmund}, - Lu —_ [X]_,Ll]-. .I.Hh'fn — .I...Iffl > ]TI .
it iz immediately the clause part of the geoerated node, The generated node is a lookup
node, becanse the leftmost mode-abstracted atom 12 a variant of that of the root pode. The
aszociation aszociates the lookup node to the head of the solution list of ssert| L, M) <L &=
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ground >. (From now on, the quantities inside call-exit markers are omitted due to space
limit so that they are depicted shmply by [].)

Thivdly, the lookup node iz OLDT resolved using the solution table to generate one
child solution node. The association associates the looknp node to the last of the zolution
Tist,

Fourtlildy, the new solution node is OLDT resolved uszing the program to geocrate
theer child nodes. The generated left child node adds a solution fnaertp{ X, Noo M;) <
Xao. No Mo = ground > to the solution table. The generated center child node and right
child node are solution nodes. '

Fifthly, the center solution node is OLDT resolved using the program to generate two
child nodes. The generated left child node labeled with the null clause gives three solutions,
of which a new solution Xy < ¥; < X5, Y; <= ground > is added to the solution tahle. The
wenerated rislit child uode is a lookup node. The association asseciates the right lookup node
to the head of the solution list of X €V < XY <= ground >,

Sixtlly. the lookup node is OLDT resolved using the solution table to geneate ane child
node, The generated child node labeled with the null clause O zives three solutions, all of
which ave already o the solution table.

isort | Lo, Ma )
< Lp+ ground >

/ \
o igort Ly Ny ) insertp{ X Ny ML ———
< Ly, M, += grournd = <Ly, Xy <=ground = ' T e
grouns e ~_
inEEﬂp{X11Nl,h{1],E] “x\
< X|. Ny =ground > ~
/ | hY ) t‘
0 X2 Y2 {100 X3 >Ysusertp(Xs Na.Ms ) [LIT
<Lop.My<ground> <Xz Yaeground> < X3, Yz, Na<=ground> :-'
! ! ‘
.
o Xo SYLILIDE -~ - e
{L.;,M,;ezm:: < X, Vy=ground> ‘H‘“u. Iy
| R
O -’.r'f e
< Lo, My = ground > LT L
#‘f -
tsortl L M) < L= ground > : [tsort(L M) < L M <= ground =| K
inaertp(X. N M) < X, N = ground > : [insertp(X, N M) <X, N, M <= ground >] |
X<SY <X Y =ground>: [X €Y <X,Y s=ground>] el

X>Y <X Y e=ground>: | ]
Figure 3.3.3. Mode Analysis at Step &

The process proceeds in the same way. Lastly at step 10, all nodes are OLDT resolved
up. The zearch tree below the rightmost solution node in Firure 3.3.2 and the fnal solution
table are as in Figu:'v 2.3.4. The Aual solution talde says tlat

{a) faert is always called with its fiest argument instantiated to a ground term. insertp is
always called with it2 first and sccond arguments instantiated to ground terms. < aned
> are always called with their armuments instantiated to grownd terms,
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{b) When isort succeeds, its first and second arguments are instantiated to ground terms.
8o are all arpuments of inzertp, < and >,

X3 >Y; insertp(X3 Na M3 ) {011
< Xy, Yy, Ny =ground>

/ !
ingertp(Xs No Mg ) [11] - Xg >Ye.[].inzertp(Xe No.Mg) 1101~
<Xy Ny =ground> < Xe. Yo, Ny = ground> N
I AN I : \
O \x insertp{Xe,Ne Mg ) {11} -~ ~ . "1'
< Ly. My = ground> 5 < Xg, Ng &= ground > A \
T 5 | 5 |
\\ . Li }
‘\,,_ < Lo, My <= ground > ' \ |1
o |
e | I
iaort(L, M) < Le=ground> : [fsort( L. M) <L, M < ground >| T j
g :

X<Y <X.Yeground>: [X 2 Y <X, Y < ground >| S ’
grewnesl -

X>V <X Vaeground>: [X>Y <X Y =ground>]

Figure 3.3.4. Mode Analysis at Step 10

sort{Lg Mag)
< Ly <= ground >
i
perm(L; M, },ordercd(M, }.[]
<Ly <=ground>
/ \ .
ordered{Mz).[] perm(La Na).insertr( X3, N2 Ms) []ovdered (M3 ).f}
< Ma = grournd > <Xy, Ly=ground>

! | \ |
O o Xe €Yy, insertr| Xz, N3 Mz ) [].

ordered{[¥4|My]}.011] ordered (M3 ).[]
<Ly My = ground> <X Vi My=ground> < X3, Ny ground >

I\ /A
o ordered(Ms) [] insertr(Xa,No.Ms) {].
ordered(Mg].[]
< Mg <=ground> < Xa, Np+= ground >
I
m] nrdfrﬂi[Mg}.[!.[—I
< Lg, My =ground> <My <ground>
|
0
< Lo, My <= ground >

< Ly M, = ground >

Figure 3.3.5. Mode Analysis of sort
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o,
2

sort(L, M) < Leground > : [sort(L, M) <L M+ ground>] .
perm(L. M) < L-::grmm:f} : Jrcrml{L,,‘J] < L, M+ ground >|

insertr( X, N,M) <X N < ground> : [m.s-.rtrl[x NM)<XN, M#gruuﬂd}]
ordered{ M) < M < ground > : [m:dﬂrrri{ﬁff} < M < grr}unri :&-Is

X<Y <X, Y eground> : [X €Y <X, Y-d:yrmmd}]

ordered{|Y|M]) <Y, M <= ground> : [ordered{([Y[M]) <, Md:gruundb]

Figure 3.3.5. Mode Analysis of sort (Continned)

Example 3.3.2 Let sort, perm, fnaertr and ordered be predicates defined by
sort (LA = perm{ LM) ordered( M),
perm(] L] 1)
permf [ X|L].M) = perm(L.N), insertr(X,N,M).
mserte 20N X|NJL.
inserte{ X [Y|NLIYIM]} - insertr{X,N M}
ordered(| ]).
ordered([X]).
ordered ([ XY [M]) - X<V, ordered{[Y[M]).
0=y,
suci ) <auc(Y) - X£Y.
Then the OLDT resolution for mode analysiz generates the OLDT structure in Figure 2.3.5.
| Tlis #ort is a specification of sorting.}

4. Functionality Detection Based on Mode Analysis

Because variables in Prolog are freely instantiatable, we need to be a little careful
in defining the functionality of Prolog programs. In this paper, we will define it assuming
mode information. (See Section 5 for another definition assuming type information.) Then,
functiouality of a siven mode-ahstracted atom can be detected by overestimating the number
of its sclution for each atom satisfying the mode restriction. If the number is guaranteed to
be at most 1, we can conclude that the mode-abstracted atom is functional.

4.1 Overestimating Solution Numbers

A mode-alztracted atom Ap @5 sald to be functional, if, when any goal Ae in Ap
succeeds with itz form Ar, the atom Ar iz unique up to renaming of variables, that is, the
inpnt form (the form at calling time) Ar uniquely determines the output form (the form at
exiting time) Ar. A mode-abstracted atom Ap is said to be relational atherwise. (This is a
definition obtained by simplifying the one by Debray and Warren [3].)

Thiz defimition of lanetionality is different from the usual defiuition of determinacy (cf.
[1o[.J01].[12]). When the execution of a goal never succeeds in two different ways, i.e., there
is at most one OLD refutation of the goal, the goal is said to be deterministic. { Hence, even
if the hacktracking iz forced after the first success, it never suceeeds twice.) The following
exmnplu 15 due to Debray and Warren [ﬂl Let uguin-mld—uyrﬁn be a predicate defined by

again-and-again(a).

again-and-again({X) - again-and-agamn(X).

When the execution of a goal again-end-again(X) succeeds using the first clause, the ar-
gument must be “a”. When the backtracking is forced after the suceess, the second clanse
iz used to recurse. When the execution succeeds again, the arrument must be *a™ azain.
Henee, aguir-and-again{ X) is not deterministic, but functional.
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(1) Selution Number

It order to detect functionality for a given mode-abstracted atom, we need to count the
nimber of solutions somehow during the mode analysis process in Section 3. But, it is difficult
to exactly connt the wumbers of solutions. Moreover, it is unnecessary for functionality
detection to know whether the salution number is 2 or 3. Our additional demain of abstract
tterpretation consists of the following three elements;

2 : more thau 2

1:1

0:0

Three operations 4+, % and maz are defined for these elements as follows:

+ o1 12 b o1 2
0] 01 12 0 000
1 T 2 2 1 01 2
2 I 2 2 2 J o 2 2
? when some z; i3 2;
mazx{z, ra,.... 7} = ¢ 1 whenno z, is 2 and some z; is 1;
0 when no 2, 18 2 and no zjis 1.

Example 4.1.1 The results of the lollowing operations
maz{l, 1= 1},
mar{l. 1,1 = 1},
maz{l.1}

ave all 1.

(2) Solution Number Expression

During the mode analysiz process, we will obtain expressions which overestimate the
numbers of each solution in the solution table. A solution oumber expressivu-(or simply
expression) i defined as follows:

{a) The solution mumber constants 0, 1 and 2 arc factors.

(b} #{Av) iz a factor when Av is a mode-abstracted atom. (Iutuitively, #(Av) is used to
show that each atom in some mode-abstracted atom bas at most #(Av) solutions in
Av. It often takes much space to write #(4w) for actual Ar so that we use « (possibly
with subszeript) for its abhreviation.)

{e) 0= f.1x f,2x fand g x f are factors when [ is a factor.

[} A factor iz a 2imple expression.

(e} [+ ¢eis asimple expression when [ is a factor and ¢ 1s a simple expression.

(f} mazf{ey.ea,..., ex ) is an expression when ey, ez, ..., eg are simple expressions (k£ > 1).

Example 4.1.2 Let 4.2, 73, 74 be abbreviations {or
#lwort(LM)< L M < ground >},
#(insertp{ XN M) < X, N <= ground =),
#(K<SY < X, Y = ground >), i
#IN=2Y < XY =ground >}
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respuctively. Then
mazil, v * vz}
mauz{l.v3. 74 X 127,
muz{l. v},
moazd 1oyg )

are solution wanber expressiones.

Hereafter, the following simplification of solution number expressions are implicitly
azzumed.

O4+e— e, e+ 0—e
24e—12, e+2—12,
0xe—0, g x 0 =0
1xe—e, gxl— e

(3) Overestimating Solution Numbers from OR Goals

There are two kinds of OR-branching in the search tree of OQLDT resolution for mode
analysis.

(i) Clauses of the prozram is applied to a solution node.
{ii) Solutions of the solurion tahle is applied to a lookup node.

How cau we overestimate the solution number of the gnal at DR.-hr:‘!.uflling from thosze

of the OR-branches.
(i) Overestimating Solution Numbers from OR Goals Using Programs

For simplicity, we assume that the following consistency matrix C is known for each
mode-abstracted atom.

Coi = 1 there might exist a differcnt solution of a common goal using clause ¢ and clause 7;
1 0 there iz no different solution of a common goal nzing clanse { and clause j;

Wlhen the predicate of a mode-abstracted atom is defined using & elanses, its consistency
matrix iz a £ x k svimmetric matrix with its all diagonal elements 1.

Example 4.1.3 Let dnaertp be a predicate for inserting an element properly defined by
inzertp( 2. JX]).
insertp( X[ YN[ X YN} - X<Y.
insertpf X[ Y[NL[YIM]) = Y<X, insertp{ X, N.M}.

Then the consistency matvix of tnaertp( X, N M) < X N &=ground > is

0
0
1

I
0,
0,

1 n!
IE‘ 1
becanse the secomd argumtents of the heads of the 1st clanse 15 not unifisble with those of
the 2ad and 3rd clanses, and X <V and X > Y are inconsistent when X aud ¥ oare groupd.
Mow, let tngertr be a predicate for inserting an element randomly defined by
imsertr| X, N.[X|N]).
inzerte( 2 YINLIY[M]) o= inserte{X. N M)
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Tlien, the cousisteury watrix of mode-abstracted atom inaertr{ X, N, M)} < X, N <= ground >

s
1,1
L1/
How to obtain consistency matrices is discussed in Debray and Warren [2].

Mow, suppose that the solution numbers of & mode-abstracted negative clause A4, As,

. ALT poare overestimated by solution number expressions ey, e2,...,¢; when Ist, 2nd,

..., k-th clanses are used Hrst respectively. Then, if € = (C};) is the consistency matrix of
App. the solution vumber of the negative clause 1= at most

mr!.:l:{{?“ wep+ e Kes+ oo+ O % e,
Cop xep+Con ®egt oo+ Cop X iy,

l’:;:_l Xﬁj+ﬁk:3<ﬂg+"-+(:kkﬁ£k}. [iJ

Example 4.1.4 Suppose that the solution number of any atom in insertp(X. N M) <X N <=
ground > iz at most 1 when 1st, 2od and 3rd clauses are wsed first respectively, Then the
golution number of the atom is at most

mar{lx 14+0x 1+0x10x1+1x1+0x1,0x1+0x1+1x1}=1.
Now suppose that the solution number of any atom in tnaertr( X, N, M} < X, N <= ground >
iz at most 1 when 1st and 2nd elauses are used frst respectively. Then the solution number
of the atom iz ab most

mar{l®x1+1x 1. 1=x1+1x1}=2

(ii} Overestimating Solution Numbers from OR Goals Using Solution Tables

Suppose that the solution numbers of a mode-abstracted negative clause “A), da, .
A,” p are overcstimated by solution number expressions e, ez,..., & when k solutions in
A p's solution list are used first respectively. Then, becanze we have no information about
wliether thiese solutions in the zolution table overlap or not, we can only overcstimate the
solution nnamber of the original negetive clause by

eyt oeg koo {++}
Exzmple 4.1.5 Suppose that a goal multiply(X, Y, W) < X <= ground > has two salutions
uzine the salutions in the solution list helow fest.

multiply(X. Y. 2 < X = ground > : [multiply(X. Y, Z) <« X, Z = ground >,
multiply( X, Y, Z) <« X, Y, 2 = ground >|

and the muonbers of these solutions are overestimated by
Ti R T3,
R T

Then the mumber of the solutions of the original goal iz overcstimated by
T X Tk oy X4

{4) Overestimating Solution Numbers from AND Goals
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Suppose that a mode-abstracted negative clause A}, Az, ..., A" p has a refutation in
which the e-th mode-abstracted atom 1= of the form A, g, when it 15 at the leftmost, and the
solution mumbers of the mode-abstracted atoms Appy, Aapa, o, Aapte are overestimated
by €. e2....,¢.. Then the solution oumber of the original negative elause is overestimated
Ly their produoct

£ 0% g X o M o#,, {ti:]

Example 4.1.6 Cousider an AND goal in

“toort( LN oinsertp X, N M) < L= ground >,
Suppose that the number of vaort{ L, N < L < ground »'s solutions returning an atom in
faort(L, V) < L, N = ground > ig overestimated by

s
and the mmmber of inzertp( X, N, M) < X N <= ground >"s solution returning an atom in
ingertp( X, N M) < X, N, M = ground > is overestimated by

2
Then the mumber of tsort[L, N, tnsertp( X, N, M) < L <= ground >'s zolutions retuming an
atom iu faert{ L. N), tnaertp{X. N M) < L N, X M < ground > is overestimated by their
product

T a.

(5) Join of Solution Number Expressions

Reeall the made analysis proeess in Section 3.3, In Figure 3.3.3 of Example 3.3.1, we
have one solution of the top-level goal

saart(L M) < L M < ground >
in the solution table, but the solution has been obtained through 4 different paths in the
search tree. In general. one solution o a solution table 13 obtamed through many different
paths in a search tree. (In Figure 3.3.4 at step 10, the solution is ohtained through 6
paths) In order to overestimate the number of the solution, we need to take all paths into
consideration, Though we can obtain the overestimation of the solution number accarding
to the rales {+), {++) and [+ + «) after having constructed up all the zearch tree, it is more
elficicut if we can obtain the overestimation inerementally as the mode analysis proceeds.
How =lionld we update the new overestimation when a new additional overcstimation of the
solution munber 1= obitained?

Example 4.1.7 Consider the four refutations in Figure 3.3.3 which appeared during the mode
aualysis of fwort{Ly. My) < Ly =ground > in Example 3.3.1.

Thougl the solution number expression overestimating the numhber of the solution
twort| L M) < LM <= ground > is obtained from 6 refutations in Figure 3.3.4 at step 10,
which give the solution, by following the rule of (), (++) and (+ « +), we can just obtain the
partinl tnformation of ﬂn overvstimation at step 6

maz{l+7,0+7},

muz {7+ L7 4 g % el

maz{?+ 0.7+ 4 % 1.},

maz{?+ 0,744 % 12},
at step 2,4, & and G, where +; and 4. are abbreviations for

#lizort(LM) < L, M= ground =),

Flinsertp[ XN M) <X N, M «= ground >,
and the “" parts should be decided from other refutations. As far as the process proceeds
until step 6, we can just summarize the partial information obtained so far to max{l,y %72}
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iﬂﬁl’t{h],h{u)
< Ly =yground >

/ i\
O isort (L Ny pinsertp(Xy Ny M )] -~ o
< Ly, My <= yround > <Ly, X, < ground > T
I “"\.
insertp( X, Ny M )11 N
<X1. Ny ground > R
/ | A\ K
o Xz Y2 0001 X3 >Y3 insertp(Xa N3 Ma ) [L[]
< Lo My+=ground> <Xz Yasground> < X3, Y3, Ni+=ground> )
/ \ .
0 Xe<Yo LI --—--_
< Ly, M) &= ground > <Xy, Yy =ground > T P__,-*"
— e P
O e T
< Ly, My =ground > ;,." \\ﬁ

taort| L. M) < L<=ground > : [isort{L, M) <L, M:graund}i r
tnaertp( X N MY <X, N e=ground > ¢ ltnurtp (X, N, M i <X N, J'rf-:grnund}]
X=Y <X, Y-s:yraund} [I{Y{X}’cgraund‘v] Tt e et
X>»>Y =X, Y#—grnuﬂd} [

Figure 4.1.1 Four Refutations Obtained at Step 8

The join of selution number expressions ¢ V f 15 devised for summarizing the partial
overestimation from each overestimation so far obtained as follows:

ﬁrt.ﬂx{l:l, L SRR ,_E.'k] ‘u’m.ar.{fl._,l"g, ,J.;,} = ma:{cl VI;,G; UI-;, saey Bk W J'k}1
v /= the sinple expression e contams the factor f ;
[ . ) P
e+ f the Slmplc CXpression e does not contain the {actor ," H

Note that, the first rule corresponds to the following column by column decomposition.
maz{Cpy x ey +Cra®ea+ -+ O ¥ £,

L-':; Hﬁ‘]+c::!‘:ﬂg+"'+ﬁggxft.

Cep ®eg + Cpp ®ex + -+ Oy !{.‘k}.

= max{(Tyy % 6,0y X ey, ..., Cpp X e}V
mar{Cya % 2, Caa X e2,..., Tha % ea}V
el gy % ep, Cap % oep, o0, Cpp % e )

Example 4.1.8 Suppose that the pumber of solutions obtained through the four paths in
Figure 3.3.3 are overcstitnated by

mu.‘c{l. IJ} at step 2,

maz{0, 7 % vz} at step 4, 5 and G,
respectively, Then the overcstimation of the mimber of the solution is ebtained merementally
as the mode analysis procecds as follows;
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marfl,0} at step 2,
maz{l,0} V maz{0, 7y % 72} = mez{l, 7 x 72} at step 4,
mazll, 4 % 42} V maz{0, 7y x 12} = maz{l, 7 X 42} at step 5 and 6.

(6) Calculating Solution Numbers from Solution Number Expressions

Let 71, 72, ... & be abbreviations for #(Aypy), #{Azpz), .., #(Arpx), and eg, ea,
... ex be the solutivn number expressions (possibly containing 71,72, -- -, Tk overestimating
Y1.%2. ... 7k respectively. We denote the k-vector (91,9202 7%) by 7, the k-vector of
solution number expressions (e, eg,..., e} by e(7), the k-vector {1,1,..., 1) by 1 and a k-
vector (ny.nz, ..., ne) by n. Then the overestimation of these solution nimhbers are obtained
as follows:

n =1
repeat 1 ;= 1+ 1; 0,y = e(n; ) until n;y, < n;
return n,

Figure 4.1.2 Bottom-up Approximation of Solution Numbers

Because each solution Ay in the solution table is obtained in the mode analysis process,
some atom in the key mode-abstracted atom has at least one solution in Ay;. Hence, the
number of solutions in Ay, is estimated by 1 first. Then, using the relation represented by
each ¢;, the estimation is repeatedly updated until there occurs no change.

We will show how the previous two examples continue.

Example 4.1.9 Suppose that the pumbers of solutions represented by 7y, 72, 43, 74 are over-
estimated as follows:

"y = mu:.:{l.."“ £ 1’3}.

72+ maz{l. 13,94 % 72}

3 1 mazil.ya}

g tormazilyg)
At the besinniug of the caleulation, ny, na, ny and ny are initialized to 1. After the first
repetition of the computation of the right-hand sides, they are updated to 1,1, 1,1, which do
nnt change heneeafrer. After all, we have detected that these solution numbers are at most
1.

Exzmple 4.1.10 Suppose that the oumbers of solutions represented by -yp, 72, Y3, T4 T5: Yo
ave overestimated as follows:

S B - b

vz @ maz{l. 2 % 73}

vz s maz{l + 3, 1+ 13}

g mazil 1,78 % 76}

1s : maz{l v}

et mazfl. 1,95 % s}
At the begiuning of the ealenlation, ny, ng, n3. ng, ny and ng are mitialized to 1. After the
first repetition of the computation of the right-hand sides, they are updated to 2,2,2,1, 1,1,
which do not change henceafter. After all, we could not detect that these solution numbers
are at most 1.
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In the previons examples, we had to perform the bottem-up caleulation after the solu-
tion number expressions overestimating solution numbers were known. Is it possible to know
wlictlhier 4; is overestimated by 1 or 2 from the sclution number expressions directly? Careful
exantipation shows that 4 is overestimated by 2 if and only if the corresponding expression
g; contaius either the plus symbol “+" or ;7 overestimated by 2. For example, e3 contains
“1” and ¢y and es containg v, in Example 4.1.10. Hence, we define @ as follows:

£ or 7; overestimated by 2;

{2 when e containz either the plus symbol *+7
e otherwise.

4.2 Abstract Hybrid Interpretation for Functionality Detection

A search tree for functionality detection is a tree with itz node laheled with a triple
of a (generalized) negative elauze, a mode substitution and a factor. {For brevity, we will
sometimes omit the term *for functionality detection™ hereafter in Section 4.) A search tree
of (7. u. 1) is a search tree whose root node is labeled with (&, g, 1}. The clause part of each
triple is a sequence @y, @z, ..., &, consisting of either atoms in the body of some elause
in P'U {7} or call-exit markers of the form [A, p,e,n, h-th}. A refutation of (G, p,1) is a
path in a search tree of (G, g, ) from the root to a node labelled with (O, v, f). The answer
snhstitution of the refutation is the mode substitution v, the answer factor i3 the factor f,
and the selution of the refutation is Gu f.

A solution table for functionslity detection iz a set of entries, Bach entry consists of
the key and the solution list. The key is a mode-abstracted atom Ap. The solution list is a
list of triples of the form Awe, called solutions, where ¢ is a solution number expression.

#( Ar) is said to be overestimated by 2 in a solution table T, when there is a solution
of the form Ae?in Th. #(Ap) is said to immediately depend on #{ D) in a solution table Th,
when there is a solution Ape in Tb such that #(Bv) appears in e, #{Ap) is said to depend.on
# (D) when #(Ap) is connected to #( D) through successive “immediate depend” relation,
i.oo, they are in the teansitive closure of the *immediate depend” relation.

Let Tr Lie o zearch tree whose nodes labeled with non-omll clauses are classified into
either sofution noedes or Jookup nodes, and let Th be a solution table. An asseciation for
functionality detection of Tr and Th is a set of pointers pointing from each lockup node in
Tr into some golution list in Th,

An OLDT structure for functionality detection is a triple of search tree, solution table
and association. The relation between a node and its child nodes in a search tree is specified
by OLDT resolution for functionality detection az follows:

A node of OLDT steucture (Tr, Th, As) labeled with (%a,, ez, ..., .7, &, ¢) is said
to be OLDT resolvable (n 2 1) when 1t satisfies either of the following conditions:

{a] The node is a terminal solution pode of Tr and there iz some definite clanse Iy -
0y, Ba ... . By’ (m 2 0) in program P such that &, and Bg iz unifiable, say by an
m.z.u. .,

{b} The node iz a lockup node of Tr and there is some solution Do f7 in the associated
solution list of the lookup node such that a; and I are variants of each other, Let g
be the rennming of O to oy,
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The precise algorithm of OLDT resolution for functionality detection is shown in Figure
47, Note that the operations at steps (A), (B) and (C) are modified.

OLDT-resalvel{ “ay. ao....,ax", . ) ¢ label) : Jabel ;
1= 0
case
when a solution node is OLDT resolved with the h-th clanse “By - By, Bz, ..., im
in P defining the predicate of oy
let  Le the m.gou. of ey and Hp ;
let (7y be a pegabive clanse By, Bz, ..., Bm, leer, e, heth], @z, 26"
let 17 be propagate(p,n) and fo be 1: — [A)
when a lookup pode is OLDT resolved with “Bvf” in T
let y be renaming of IF to iy

=

let (7 be a negative caluse “as, ... 0.7 3
let vg be oV propagate(v,n) and fy be e x #{Bv) ; — (B}
endcase

while thie leftmost of & is a call-exit marker [A;41. pit1, #ig1, Mg, A-th] do
let Gyo1 be 7 other than the leftmost call-exit marker ;
let viyy be pipy V propagate(vi, miv1) ;
let froy be oy @ #{Aipivipa) s —(C)
mtl:l-sulutiun[A.Hu,_,_lmuz{i-‘m = _,Ir.'..f.fgh * _.Ir,;, . ..,GM; x f..}1 Af-l-l#’-'fi-!}
where € ig the consistency matrix of Acpipisr b
1= Ly
endwhile
{Gncw' Hrew. Eﬂcw] = Uril'u vi, fils
return (.- Harw s frew -

add-solution(Ave, Ap)
case
when there exists a solution Ave’ in Ap's solution list :
replace the solution Ave’ with Ave Ve |
ife've=2
then for all BAS in the solution table such that #(BA) depends on #£{ Av),
replace the expression part f with 2
when there exists uo solution of the form Ave' In Ap's solution list :
add Ave to the last of the solution list ;
endcase

Figure 4.2 OLDT Resolution for Functionality Detection
A node labeled with (“ey, @0, .., @.", g e} is a lookup node when the mode-abstracted
atom oy is o key in the zolution table, aud is a solution node otherwise (n 2 1).

Tl initinl OLDT structurs, pnmediate extension of OLDT structure, extension of
OLDT stricture, snswer suhstitution of OLDT refutation and solution of OLDT refutation
are debined in the same way as in Section 2.3,

4.3 Examples of Functionality Detection
We will show two examples of how functionality deteetion proceeds,
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Example 4.3.1 Let 1sort, snsertp, € and < be predicates defined as before in Example 3.3.1.
Then, extension of OLDT structure proceeds similarly to the mode analysis.

First, the initial OLDT structure below is generated, The expression part of the root
node s uitialized to 1

isort( Ly My )

1
1sort( Lo M) < L ground > : [}
Figure 4.3.1 Functionality Detection at Step 1

Secondly, the root node is OLDT resolved using the program to generate two child
nodes. Since the clanse part of the intermediate label of the left child node is

“Pisort(Ly. M), < Lo =ground >, 1, < Ly, My &= | >, Lat]",
the pode is the end of a unit subrefutation and its solution tsert{Lo, My) < Lo, My <=
ground > maz{1.0} i= added to the solution list, because the expression part of the inter-
mediate label iz 1 and the vousistency matrix of saort{ Ly, M) < Lo+ ground > is

1,0
()

The cxpression part of the label is set to 5, where ¢ is an abbreviation for dsert{ L, M) <
L. M =ground > Siuce the clause part of the intermediate label of the right child node is

“gaort{ Ly, M), naertp( Xy, Ny, M),

[taert{Lo. My), < Lo & ground > 1, < Ly <= [ X, [Li], My = My >, 2nd]”,
it is immedintely the clause part of the generated node. (Again, the quantities inside call-exit
markers are amitted due to space it so that they are depicted simply by [].}

izart| Lo, Mg)

< Ly=ground >

1
/ hS
O izort{ Ly 'Nl..-"! Ansertp| X, Ny M, 'LEI—=1
< Ly. M, = ground > o <Ly, Xy ¢=ground > P
Tl 1 -7

o ———

[
taurt[L, M) < L &= ground > : [tsort(L, M) < L, M <= ground > maz{1,0}]
Figure 4,3.2 Functionalily Detection at Step 2

Thirdly, the lockup vode 15 OLDT resolved usine the solution tahle to generate one
chilil snlution nade. Sinee the manher of the solution used at the OLDT rezolution is denoted
by 71, the expression part of the new label is 1 x 5, = 7.

Fourtlly, the new solution node is OLDT resclved using the program to generate three
clild nodes. The gencrated left child node adds twe solntions te the solution table wlhile two
call-cxit markers

[insertp{ X Ny, M) < X Ny = ground >y, < X1 = X N <[ | M = [X] > 1at],

[[I'Hwt[Lu, My}, < Ly 4= ground =, 1, < Lo &= {X,| L], My = M, >, 2nd]
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are eliminated during the exiting phase. The first one gives a solution insertp| X, N, M)
< X N, M « ground > with its expression maz{1,0,0}, since the consistency matrix of

inaertp( X, N, M) <X, N «ground> is

1,0,0
0,1,0
0,0,1

The second one gives a solution isort(L, M} < L,M < ground > with its expression
maz{0. 4 %72}, where 72 is an abbreviation for # (insertp(X, N, M) < X, N, M = ground >).
The expression part of the solution in the solution table is updated to the join of the new
expression and the previous one

maz{l.0} vV maz{0,7; x 72} = maz{l, 7 x 72}.

The generated center child node and right child node are solution nedes. Their expression
part are both 1.

Fifthly, the center node is OLDT resolved using the program to geuerate two child
nodes. The generated left child node labeled with the null clause O gives three solutions,
which are added to the solutiou table as hefore, The generated right child node is a lookup
node,

ot { Lﬂ.,Mﬂ]
< Ly &= ground >

1
{ \ .
m} igort Ly Ny ) insertp(Xy Ny My L) -~<
< Lo, My <= grovnd > < Ly, Xy <ground > e
71 1 R
I s
inzertp(X, Ny M L] AN
< Xp, Ny <= ground > \
T1 1'1
/ I \ i
o X2 <Y [l X3 >Yg,insertp(X3,Na Ma ), [11] ;
< Ly My = ground>  <Xa, T3 = ground > < X3, Y3, Ny &= ground > |
T i 1 [
I\ /
0 XSVl - _r
< Ly, M, = ground > < Xa Yy=ground > U= i
L T T !
il 1 I ‘\H.\.f
AN
O LA
< Ly, M, -¢=gruun.£ = ‘rll II.
T1 / [
v /

isort(L. M) < L« ground > : [tsort(L. M) <L, M 4= ground > maz{l, v ¥ 12}]
inacrtp{ X, N, M) < X N = ground > ‘

[iraertp( XN, M) <X, N, M_~=gro_t:=_r_u_f_‘;~ maz{l, 73,0} o
X €Y <X Y =ground > : (X <Y <X.Y «ground> maz{l,43}]
X=Y {X.Yﬂ=gwﬂl_d} ]

.
-

Figure 4.3.3 Functionality Detection at Step 6
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Sixthly, the lookup node is OLDT resolved using the solution table to generate one
ehild node. The generated child node labeled with the pull clause O gives three solutions,
which are added to the solution table as before,

The process proceeds in the same way, Lastly at step 10, all nodes are OLDT resalved
up. The search tree below the rightmost solution node in Figure 4.3.3 and the final solution
table are as follows:

X3 > Y usertp{Xg, N3, Mg ) f]L 1
< X3, Y3, Ny =ground >

1
\
insertp(Xg, No M) [0.01- Xa >Yq [} insertp(Xg,No Mg) f1.I]-~
< X, Ny #EFFDE;EE = AN < Xg. Yo, Ng d:g!‘{rﬂﬂ!l.} \
Y4 E I *
\ \
| \ |
O b insertp{ Xe No Me ).IJ I -~ -
< Ly, My <= ground > N < Xg, Ny =ground > .
1 5 4 "'\
S I .
T a 3
\\{Lu,Mﬁ¢=Eruund> "-ll
T e - 11 i
TE TR o e b e am —— == -— . |
fgort{L M} < Leground> : [isort{L M) < L M = ground> maz{l, v % 72} /‘. ;
tnaertp{ X, N, M) <X, N <= ground > : ,:__—_-;—_—_:_-'_1#/
[insertp( X, N. M) < X, N, M <ground> maz{l, y3,74 x';n}] P
X<Y <X.Ysground>: [X <Y <X,Y =ground> muz{l,qg}] _,.u'"J

X>Y <X Y e=ground>: [X>Y <X Y &ground> maz{l, 14}]
Figure 4.3.4 Functionality Detection at Step 10

The final zolution table says that, when ao atom fsort 15 called with its first argument
mstantiated to a ground term, the number of its solution is at most L, because there is only
one selution in the corresponding zolution list. Stmilarly, solution numbers of atoms i other
entries are overcstimated by (tle aums of | the solution numbers in the corresponding solution
lista. After all, we have deteeted the funetionalicy of faort,

Example 4.3, 2 Let sort, perm, tnaertr and erdered be predicates defined as before in Example
3.1.2, Then the OLDT resclution for fuuctionality detection generates the following OLDT
strnctures for functionality deteetion, where 1, 52, 72, 74, ¥ and 5 are abbreviations for

#{zort{LM} < L. M = ground =),

#lperm{L.M) < L. M <= ground >},

#imzertr( XN M) < X, N. M +=ground >},

#lardered[ M) < M= ground >),

#(XL Y <X, Y = ground>),

F#lordered ([YIM]) < ¥, M <= ground > ).



sort{Lo, Mo
< Ly +=ground >

1
|

perm( Ly M, )ordered(M;).[]
< Ly <= ground >
1

/ \
ordered(M-).[1 perm({L;.N3).inserte(Xs, N3, Ms ) [] ordered(Ms), []‘
<Mg :yruunﬂ'} {Xa,.[q ﬁﬂ‘i"ﬂﬂﬂd}
T2 1
/ | hY 1
0 D Xa €Y, insertr(X3,N3,Ma) {],

ordered([Y¢|My]LIE0] ordered(M3).[]
< Lp, My +=ground> <Ly, My<ground> <Xy, Y M, =ground> <Xz, Ny<ground >
T Tt 1 a
I\ AR
o - ordered(Ma),[1 insertr(Xs; Ny Ma) [} - .
4 ordercd(Ms) [] \
< Mg s=ground > < Xg, Ny += ground >

2 1 o
|
O ordered(Ms).J]1.1]-~_
< Ly, My = ground > < M, <= ground >

T1 'Ir:

o
< L. My tgrrjuﬂ_d}
T1

%

r

sort( L, M) < L=ground > : [sort(L, M) <L M < ground> 2} -
perm(L. M) < Le=ground> : [perm(L, M) <L, Mﬁgruund} 2] L
inserir( X. N, M) < X, N < ground > : [insertr(X. N, M) <X N, M &= ground > 2]
ordered{ M) <M < ground > : [ordered(M) < M < ground > maz{1,1,y5 % Tﬁ}i
X <Y <X.Y =ground> : [X £ ¥ < XY <= grownd > maz{1, 7}
ordered([V|M]) <Y, M &= ground> :

[ordersd{[Y |M]) <¥Y. M <= ground> max{0, 1. 75 % 7o }]

Figure 4.3.5 Funetionality Detection of sort

After all, we could uot deteet the functionality of sert. (We zuess that, in seneral, the
more easily the functionality can be detected by abstract interpretation, the more efficiently

the program can perform the same task.)

Remark. One might wonder that the simnltancous mode analysis is redundaut, since the

zolution mmmber expressions overestimating solution unmbers ave dicectly corresponding to

the programs, e.g., Example 4.3.1 and 4.3.2. Tlis is not a casze in general. (ef. Example
1.5.) Moreover, the consistency matrices are dependent on the modes,

5. Discussion
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Functionality (or determinacy) detection of Prolog programs has been studied by sev-
eral researcliors extensively. A technique of detecting determinacy of Prolog programs was
first proposed by Mellish [10]. Though his approach was operational (e.g., the operational
chinracteristios of the definition of determinacy and strong dependence on the impure effect of
the cut operator) and rather informal, he recently proposed a unified framework for abstract
interpretation of Prolos programs {cf. (1], [2]) in order to give a theoretical foundation to his
various techuiques for aualyzing determinacy, mode and shared structures [11]. His approach
derives simultaneous recurrence equations for goals at calling time and exiting time during
the top-down execution of a given top-level goal, and obtains a solution greater than the
least solution of the simultaneous recurrence equations using a bottom-up approximation.
Our approach iz less operational and based on the standard hybrid interpretation directly,
which makes the mode analysis simpler.

Debray and Warren [3) employed a less operational definition of functionality and de-
veloped a method for detecting functionality of Prolog programs. We owes to their approach
both the definition of functionality and the use of consistency matrix {“mntual exclusive-
ness” i [3]]. But their explanation of the algorithm is rather iuformal and implicit in several
respects, thongh they refered to the use of mode information [4] and extension table [3]
(solution table in this paper).

Sawamura and Takeshima [12] employed an operational definition of determinacy and
proved its recursive unsolvability in general. Then, they elarified several solvable cases (ahso-
lute determinacy and relative determinacy) to utilize them for Prolog program optimization.

Owr approach can be improved or extended in several respects. First, detection of
functionality can be more efficient when functionality of some atoms is already known. If
some mode-abstracted atom is kuown to be functional, we delete the program defining the
predicates and register the mode-ahstracted atoms in the selution table with its solution
pumber expression 1. When the mode-abstracted atom appears at the leftmost, the node is
always considered a lookup node,

Example 5.1 Auy atom is functional when all its arguments are justantiated to ground terms.
Iu partienlar, a unary atom is functional when its argument is instantiated to a ground term,
e.o.. ordered{Af) < M <= ground >. Punctionality of some primitive predicates is obwvions,
er.add{ X. Y, Z) < X.Y & ground > In the mode analysis process, we can delete the clauses
defining add and modifies fhe mitial =olution table to include the entry

Aaddi X Y. 2 e XY e ground > ¢ [add(X,Y.2) <« X. Y, Z <= ground > 1]

Secandly, detection of functionality can be extended for the case when types of some
armunents are given. Instead of the mode analysis, we can combine the type inference with
the overestimation. t?&!'t" [5!.. [5], [T] for details of type illfLTL‘ﬂCL".}

Example 5.2 Suppose we would like to know that, when a goal “reverse(L, M)™ with its
first armument L instantiated to a list sueceeds, the furm of its sccond argument M after tla
success 12 unigue, where reverse and append are defined by

reverse(] L)

reverse([ X|L].M) - reverse{L, N}, append(N,[X].M).

append{[ |.M.M).

append | [XJLLMIX|N]) - append(L.M,N).

Theu, we only peed to consider the following type-abstracted atom
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reverse(LM)< L4 ligt >,

6. Conclusions

We Lave shown a framework for detecting functionality of logic programs. This method

is an element of our system for analysis of Prolog programs Argus/A under development

(5].7)[81.10)
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