ICOT Technical Report: TR-330

TR-330

Inferring Parsers of Context-Free Languages
from Structural Examples

by
Y. Sakakibara

MNovember, 1987

€987, 1ICOT

Mita Kokusai Bldg, 21F 03 43631915

|GDT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokvoe 108 Japan

Institute for New Generation Computer Technology

Inferring Parsers of Contexi-Free Languages

from Structural Examples

by

Yasubumi SAKAKIBARA*

* Research Associate, Fundamental Informatics Section, International Institute
for Advanced Study of Social Information Science, FUJITSU LIMITED
140 Miyamoto, Numazu, Shizuoka 410-03, JAPAN

Abstract

We consider a grammatical inference of context-free languages from their
structural descriptions. In the context of inferring parsers, the structure of the
grammar inferred is significant. The structure of a context-free grammar is
described by the shapes of derivation trees, called skeletons which are derivation
trees from the grammar with non-labeled nodes. It is known that the set of
derivation trees of a context-free grammar is rational, and the set of skeletons of a
context-free grammar is also rational. Based on this fact, by extending an efficient
inductive inference algorithm for finite automata to the one for tree automata, we
can get an efficient inductive inference algorithm for parsers of context-free
languages. A grammar (or parser) inferred by the algorithm is not only a correct
grammar which correctly generates the language but also assign a correct

structure on the sentences of the language.

1. Introduction

In this paper, we will study the inductive inference of parsers (or grammars) of
conlext-free languages from examples of their structural descriptions. Inductive
inference of formal languages is formally defined by Gold [8]. Especially, the
problem of identifying a “correct” grammar for a language from finite examples of
the language is known as the grammatical inference problem. In the context of
grammatical inference, a “correct” grammar only means a grammar which correctly
generates the language. However when we consider the problem of identifying a
parser for a language, the structure of the grammar identified is more significant.
Consider the following example from [12]. The grammar G below, which specifies
the set of all valid arithmetic expressions involving a variable “v” and the operations
of multiplication “X” and addition “+",

Sp—v

51— Aqv

Ay —v+ (the grammar Gq)

Al—vXx

Al —v+Ay

A —wx A,
For example, the parse tree for vXv+vXv is shown in Figure 1.1. However the
structure assigned by grammar G to this sentence is semantically meaningless.
The same language can be described by grammar Gg below in a meaningful manner.

Se— Es

Es— Fq

Eg— Fo+Es (the grammar Gg)

Fa—v

Fg— vXFq
The structure assigned by Gz to the same sentence is shown in Figure 1.2, Here the

phrases are all significant in terms of the rules of arithmetic.

St 52

Eg
Ay
Ez
I Fa
A Fy
A
Fq Fq
v X v 4+ v X v v X v 4+ v X v
Figure 1.1 Figure 1.2

Although Gy and Gg are weakly equivalent, this fact is not very relevant from a
practical point of view since it would be unusual to consider such a grammar as Gy

which structures sentences in a nonsignificant manner,

Thus in the context of inferring a parser, since a grammar inferred is intended for
use in a practical situation entailing the translation or interpretation of sentences in
a compiler, it is necessary that a grammar inferred must not only generate the
unknown language, but also assign a meaningful structure on the sentences of the
language. To do so, it is necessary for us to assume that information on the structure
of the language is available to the inference algorithm. In the case of context-free
languages, the structure of the languages is usually described by the shapes of the
derivation trees. Such structural descriptions are called skeletons. A skeleton is a

kind of tree whose interior nodes have no label.

On the other hand, the set of derivation trees of a context-free grammar is

rational, where a rational set of trees is a set of trees which can be recognized by

— % =

some tree autvmaton. Furthermore, the set of skeletons of a context-free grammar is
also rational., Based on this fact, the problem of inductive inference of parsers of
context-free languages from the sentences and structures is reduced to the problem
of inductive inference of tree automata. Then by extending an inductive inference
algorithm for finite automata [1] to the one for tree automata, we can get an efficient
inductive inference algorithm for parsers of context-free languages. A grammar (or
parser) inferred by the algorithm is not only a correct grammar which correctly
generates the language but also assign a correct structure on the sentences of the
language. Furthermore, the time complexity of the algorithm is a polynomial order

with respect to the size of input examples.

2, Basic definitions of tree

Definition We denote N the set of positive integers. Dom is a tree domain iff it
satisfies
a) DomcN* and Dom is finite,
b) Dom is prefix-closed, i.e. if m, n¢N* and mn¢ Dom then me¢ Dom,
¢) ni¢ Dom implies nj¢ Dom for 1=j=1, jeN.

A direct successor (direct predecessor) of a node x is a node y, where y=xi (yi=x)
forieN. A terminal node in Dom is one which has no direct successor, The frontier of
Dom, denoted frontier{Dom), is the set of all terminal nodes in Dom. The interior of

Dom, denoted interior{Dom), is Dom — frontier{ Dom).

Definition The depth of neDom is recursively defined as
depth(n) =0 ifn=e¢
depth(ni) = depth(n)+1 forieN.

If tis a tree domain, then depth(t)=max{depth(i) : ict}.

Definition [13] An alphabet is a finite nonempty set of symbols. A ranked alphabet

I' is a finite set of symbols associated with a relation r.cI'x{0,1,2,...,m}. The rp is

called the rank of I'. For each nz0, the subset {a€I': (a, n)er} is denoted by T'5. The
rank here is not necessarily a function. In many cases the symbols in I'y will be
considered as function symbols. The rank of a function symbol is called its arity and a

symbol of arity 0 is called a constant symbol.

Diefinition ([3]) A tree over a finite ranked alphabet I' is a mapping t : Dom—T,
which labels the nodes of the tree domain Dom. We require the following condition :
if t{m)=f¢ly, then fori¢ N, mi¢ Dom(t) iff 1si=n. I'T denote the setof all treesover I',

If we consider T' as a set of function symbols, the finite trees over I' can be
identified with well-formed terms over I' and written linearly with commas and
parentheses. Within a proof or a theorem, we shall only write down well-formed
terms to represent well-formed trees. Hence when declaring “let t be of the form
f(t1,...,tn) ..." we also declare that f is of arity n and this allows n to be 0 (in this case

(t1,00estn) is the empty sequence, i.e. t=f).

Definition Lett=f{t},...,t;) be a tree over I'. The frontier of t, denoted frontier(t),isa
string over I'g recursively defined as
frontier(t) = f forn=0and fely
= fruntier{t;}"-fmntier[tn] forn>0.
Let T be a set of trees. The frontier set of T, denoted Front(T), is Front(T)
={frontier(t) : tisin T}.

Definition If t¢I'7, then the subtree of t at n, where n is in the domain of t
(n¢Dom(t)), is defined as t/n={(i, x) : (ni, x)¢t}. For téI'" and neDom(t), the
replacement at n with a tree u is defined as t(n+u)={(m, %) : t{fm)=x and n«m}U{(ni,
x) : u(i)=x and i¢Dom(u)}. The replacement (substitution) of terminal nodes labeled
cel’ with a tree u is defined as t(ceu)={(m, x) : t{fm)=x and x# c}U{(ni, x) : t{n)=c,

u(i)=xandi¢Dom(u)}.

Definition Let $ be a new symbol of arity 0 that we add to . (TU{$})T denotes the
set of all trees over 'U{$}. Especially we are interested in the subset Sub of (TU{$})T
which is the set of all trees te(TU{$})" such that t exactly contains one $-symbol. We
use the notation I's” for the Sub. For trees t¢I'T and seI's”, we define an operation “#”
to replace the node labeled $ of s with t by s#t=s(8«t) (like concatenation of
strings).

Definition A skeletal alphabet Sk is a ranked alphabet consisting of the singleton {0}
of the special symbol ¢ associated with a relation re, S{o}x{1,2,...,m}. A skeleton over
an alphabet A is a mapping s : Dom—AUSk where o is not in A, mapping
frontier(Dom) to A and interior(Dom) to Sk. Let t be a tree over I', The skeletal (or
structural) description of t, denoted s(¢), is a skeleton over I'p such that
s(x) = t(x) for xefrontier(Dom)
= o forx€interior(Dom).
We require that if t(x)=f of arity nz1 for x¢interior(Dom), then s(x)=0¢8k,. Let T
be a set of trees. The corresponding skeletal set, denoted S(T), is S(T) ={s(t) : t is in T}.

Thus a skeleton is a tree defined over ['gUSk which has a special symbol o for the
interior nodes. The skeletal description of a tree preserves the structure of the tree,

but not the label names describing that structure.

3. Tree automaton and context-free grammar

Definition ([14]) A deterministic (frontier to root) tree automaton over I'is a 4-tuple
Ta=(Q,T,85, F), where
a) Q) is a nonempty finite set of states,
b) I' is a nonempty finite ranked alphabet,
¢) §=(80,51,...,0m) is a state transition function such that
8K :MeXQ —Q (k=0,1,....m),
d) FcQ is the set of final states.

If § is a state transition function from 'y X QF to 29, then Ta is nondeterministic.
§ can be extended to I'T by letting :
Bf(ty,...,tk)) = 8g(f, 8(ty1),...,8(t)) for k>0 and fel,
=8p(f) fork=0andfely.
The tree t is accepted by Tp iff 8(t)¢F. The set of trees accepted by Ty is the subset
L(Ta)of [T defined as : I{Ta)={t: 8(t)¢F}., A subsetL of I'T is called rational iff there

exists some automaton Tx such that L=L(T4).

Definition A deterministic (frontier to root) tree automaton over I' is a 4-tuple
Ta=(Q,TI,8,¥F), where
a) Q is a nonempty finite set of states,
b) I'is a nonempty finite ranked alphabet,
¢) 8§=(8p,81,...,0m) is a state transition function such that
By : T X (QUTgY—Q (k=1,2,...,m),
Bola) = a foraely,

d) FCQ is the set of final states.

In this definition, the labels on the frontier are taken as “initial” states. Any
rational set which includes no constant can be recognized by tree automaton defined
by the second definition. In the rest of the paper, we will use the second definition for
tree automata (because any rational set of trees in our target class does not include

any constant),

Especially in [11], the second type of tree automata which recognizes sets of

skeletons is called skeletal automata.

Proposition 3.1 ([14]) Nondeterministic frontier to root tree automata are no more

powerful than deterministic frontier to root tree automata.

Given a rational set Lg, by the above proposition, there always exists the

minimum state deterministic tree automaton which accepts Lg.

LT

LT

Proposition 3.2 (the replacement lemma [15]) Let Tao=(Q, I, §, F) be a tree
automaton and s, §', t be trees over I, If B(s)=0(s"), then 8(t(xes))=08t(x«s") for

x€Dom(t).

For the definitions of context-free grammars and languages, we use the notations

of [10). Here we state some basic definitions about context-free grammars,

Definition A context-free grammar is denoted G=(N, L, P, 5), where N and L are
alphabets of nonterminals and terminals, respectively, We assume that N and are
disjoint. P is a finite set of productions; each production is of the form A — a, where
A is a nonterminal and a is a string of symbols from (NUZ)*. Finally, S is a special

nonterminal called the start symbol.

Definition Let G=(N, I, P, 8) be a context-free grammar. We define two relations
= and =" between stringsin (NUZ)*. If A— [is a production of P and a and y are any
strings in (NUZL)*, then aAy=afly. We say that aAy directly derives afiy in grammar
G. Suppose that aj,...,am are strings in (NUI)*, mz1, and a;=asg, ag=
U3yeeny@m—1-0m. Then we say aj="am or a1 derives an, in grammar G. That is, =»* is
the reflexive and transitive closure of =. The language generated by G, denoted

L{G),is{w:wisin L' and S="w}.

A finite set of nonterminals and terminals NUZ can be viewed as a ranked

alphabetI', where Z=Ty. Then

Definition Let G=(N, Z, P, 8) be a context-free grammar. For A in NUEL, the set
Da(G) of trees over NUE is recursively defined as ;
Da(G) = {a} for A=acL,
= {Alty,...,ti) : A=By-Bg, ti¢Dp,(G) (1=i=k)} for AeN.
A tree in DA(G) is called a derivation tree of G from A. For the set Dg(G) of derivation
trees of G from the start symbol S, the S-subscript will be deleted.

Note that DA(G) for AeN is a set of trees with depth at least 1.

Proposition 3.3 ([14]) Let Ly be a rational set of trees. Then Front(Lg) is a context-

free language.

Proposition 3.4 ([11]) Let G=(N, L, P, S) be a context-free grammar. Then D(G) isa

rational set of trees, Furthermore, S(D((G)) is a rational set of trees over EUSK.

Thus the structural descriptions of a context-free grammmar constitute a rational

set. Itis obvious that L{G)=Front(D(G)) =Front(S(D(G))).

For a context-free grammar G, S(D(G)) corresponds to the structural descriptions,

called skeletal structural descriptions, of L{G). Then

Definition Two context-free grammars G and Gg are said to be equivalent if
L{G1)=L{Gq) (i.e., they generate the same language). Two context-free grammars
G1 and G2 are said to be structurally equivalent if S(D(G)) =S(D(Gg)).

Another structural descriptions of a context-free language can be described by

means of a parenthesis grammar.

Definition Let G be a context-free grammar with a set of productions P={A; — Bi :
1=i=n}. Then [G], the parenthesized version of G is the grammar with a set of
dt]l‘!

productions {A; — [Bi]l : 1siSn} where “[" and are special brackets that are not

terminal symbols of G. [G] is called a parenthesis grammar.

Then the following another definition for structurally equivalence is found in

[12].

Definition Two context-free grammars G; and Gg are said to be structurally

equivalent if L{[G 1) = L{(IGz]).

We can easily verify that those two different definitions for structurally

equivalence are equivalent.

Definition G=(N, Z, P, 5) is a wide-sense context-free grammar if N and T are
alphabets of nonterminals and terminals respectively, N and I are disjoint, P is a
finite set of productions, each production is of the form A — a, where A is a
nonterminal and a is a string of symbeols from (NUZ)*, and SCN is the set of starting

symbols,

In this definition, G is the usual context-free grammar but may have more than
one starting symbol.

Proposition 3.5 ([11]) For each wide-sense context-free grammar G, there is a
context-free grammar G" with a unique start symbol such that G’ is structurally

equivalent to (3.

Now we show two important propositions which connect a context-free grammar

with a tree automaton.

Definition-A Let G=(N, Z, P, S) be a wide-sense context-free grammar. The
corresponding (nondeterministic) tree automaton TA(G)=(Q, ZUSk, §, F) over LUSk
is defined with state set @, final states F, and state transition function § as follows.

Q =N,

F=S§,

6plo, By,...,.Bp)=A for each production of the form A—B;---B,,,

fpla) = a forack,

Proposition 3.6 Let G=(N, L, P, S) be a wide-sense context-free grammar and TA(G)
be the corresponding tree automaton in the sense of definition-A. Then S(D(G))
=LA{TA(G)). Furthermore, the number of states in TA(Q) is equal to the number of

nonterminal symbols in G.

{(Proof) Firstly we prove that seS(DA(G)) iff 8(s)=A for A¢NUZ. We prove it by
induction on the depth of s. Suppose first that the depth of sis 0, i.e. s=a¢L. By the
definition of DaA(G) and the definition-A, acDa(G) iff A=a iff 8(a)=A. Hence
a¢S(Da(G)) ifTfé(a) = A.

Next suppose that the result holds for all trees with depth at most h. Letsbe a
tree of depth h+1, so that s=0a(uy,...,uy) for some skeletons uj,...,u, with depth at
most h. Assume that ujeS(Dg,(G)) for 1sisn. Then

o(uy,...,up) €S(DA(G))

iff there is a tree A{uy,...,un) in DA(G)

iff there is a production of the form A — By,...,.Bn in Pof G,

by the definition of DA(G),

iff 50(0, B1,....Ba)=A, by the definition-A,

iff (o, 8(uy),...,8(un))=A, by the induction hypothesis,

iff 8(ofuy,...,un)) =A.

This completes the induction and the proof of the above proposition.

Then it immediately follows from this that seS(D{G)) iff 8(s)=Ac¢F. Hence
S(D(G)) =L(TA(G)).

By the definition-A, it is clear that the number of states in TA(G) is equal to the
number of nonterminal symbols in G,

I:I

Definition-B Let Ta =(q, ZUSk, 6, F) be a tree automaton for a skeletal set over I.
The corresponding wide-sense context-free grammar G(Ta)=(N, I, P, S) is defined

with nonterminal alphabet N, start symbols S, and a finite set of productions P as

follows.
N=q,
S=F,

P = {6nlo, x1,0..,Xn) — X1-Xp : 0€3kp, X1,..,X0€QUE, and n= 1}.

10 -

Proposition 3.7 Let Tpo=(Q, ZUSk, 6, F) be a tree automaton and G(TA) be the
corresponding context-free grammar in the sense of definition-B.

Then L(TaA)=8(D(G(T).

(Proof) Firstly we prove that 8(s)=q iff seS(Dg(G(Ta))) for q¢QUE, We prove it by
induction on the depth of s. Suppose first that the depth of s is 0, i.e. s=acZ. By the
definition-B and the definition of DA(G), 8(a)=q iff g=a iff a€Dq(G(Ta)). Hence
(a)=qiff acS(Dg(G(TA))).

Next suppose that the result holds for all trees with depth at most h. Letsbe a
tree of depth h+1, so that s=o(uj,...,upy) for some skeletons uj,...,u, with depth at
most h. Assume that 8(u;)=x;for 1=i=n. Then

dlofuy,...,un))=q

iff 6n(u, 8(ui),....8(un))=q

iff8n(0, X1, %) =q
iff there is a production of the form q — xj,...,x in G(T4), by the definition-B,
iff there is a tree g(uy,...,up) in Dy(G(TA)),
by the definition of Dg(G(T»)) and the induction hypothesis,
iff o(uy,...,un)€S(Dg(G(TA))).
This completes the induction and the proof of the above proposition.

Then it immediately follows from this that 8(s)=qggeF iff s¢S(D(G(TA))). Hence

LITA)=8(D(G(TaN). |
-

4, State characterization matrix

Definition A set of test states § is a finite set of trees over ZUSk with depth at least
1. The set of transition states is defined to be X(S)={u(8) : 0eSk;, sc(SUZL), and o(5)¢8
fori=1}. A set of experiments E is a finite subset of (ZUSk)g™. S is called subtree-
closed if s€S implies that all subtrees with depth at least 1 of s are elements of S. E is

called §-prefix-closed with respect to S if e¢E except $ implies that there exists an ¢’

1'[

in E such that e=e'#0(s;,...,51-1,%,8i,...,8n —1) for some s;,...,8_1¢SUL and some i

(l=i=n).

Definition A state characterization matrix is a triple (5, E, M) where M is a matrix
with labeled rows and columns such that

1) The rows are labeled with the elements of SUX(S).

2) The columns are labeled with the elements of E.

3) Each entry of M is either O or 1.

4) I sj, 5j¢ SUX(S) and e;, ej¢E and e;j#s; = ej#s;j, then the (sj, e;) and (s;, e;) positions in
M must have the same entry.

The data contained in M is D(M)={(e#s, y) : s¢SUX(S), e€E, and the entry of M is
ye{0, 1}}. Thus we can regard D(M) as a finite function mapping E#(SUX(S)) to
{0,1}. Ifsis an element of (SUX(S)), then row(s) denotes the finite function f from E
to {0, 1} defined by fle) = D(M)(e#s).

Definition A state characterization matrix is called closed if every row(x) of
transition state x€X(S) is identical to some row(s) of test states scS. A state
characterization matrix is called consistent if whenever 51 and sz are test states of S
such that row(s;) is equal to row(sg), for 0¢Sk, and all uj,...,up_1€¢SUL,
row(o{uy,...,uj — 1,51,9;,...,un — 1)) is equal to row(o(uy,...,uj—_1,%2,8i,...,un—1)) for

Osisn(n=0).

M e E

s [eeeeen 1 (=D(M)(eds)

S Figu_l"ﬂ 4,1 [SpEl M)
X(3)

The ideas of the closed, consistent state characterization matrix and the
algorithm using this are essentially the extensions of Angluin’s ones [1] (the
extension from string automata to tree automata), A sequence of following lemmas
and theorems are guided by those Angluin’s results. The idea of the characterization

matrix is also related to the work by Gold [7].

Definition Let (S, E, M) be a closed, consistent state characterization matrix such
that E contains $. The constructed tree automaton Ta(M) over ZUSk from (S, E, M) is
defined with state set , final states F, and state transition function & as follows.

Q = {row(s) : s€S},

F = {row(s):s¢S and D(M)(s) =1},

Bnlo, row(sy),...,row(sy)) = row(u(sy,...,sn)) forsy,...,sn€SUL,

dpla) = a forack,

where the funetion row is augmented to be row(a)=a fnr_‘ ackh,

We can see that this is a well-defined deterministic tree automaton. If s1 and sg
are elements of S such that row(s;) =rowi(sz), then since E contains §, D(M)(s)=
D(M)($#s1) and D(M)(s3) =D(M)($#s9) are defined and equal to each other, . Hence F
is well-defined. Let s; and sg be two elements of S such that row(sy) =row(s2). Since
the state characterization matrix (S, E, M) is coansistent, for ui,...,un_1¢3UZE,
row(a(uy,...,uj — 1,51,Qis...,Un — 1)) =rowloluy,...,uj - 1,52,0j,...,Un—1)) (0=13n), and since

it is closed, this value is equal to row(s) for some sin S. Hence & is well-defined.

Thus to distinguish two different states, the closed, consistent state
characterization matrix uses the fact that for a tree automaton Ta=(Q, T, §, F), if
O(t{ne=s))7 8(t(n+=5"}) for neDom(t), then 8(s)¥8(s"). This corresponds to the

contraposition of the replacement lemma.

Lemma 4.1 Suppose that (S, E, M) is a closed, consistent state characterization
mairix such that S is subtree-closed and E is §-prefix-closed with respect to S. For the

constructed tree automaton TA(M) and for every s in (SUX(S)), 8(s)=row(s).

(Proof) We prove it by induction on the depth of s. Suppose first that the depth of s is
1, ie., s=o(ay,..,an) for aj,..,an€¢L, Since &(s)=28plo, &(a1),...,8(an))="8nl0, a1,...,a5)
=row(s) by the definition of &, the result is clearly true. Next suppose that the
result is true for all trees in (SUX(S)) with depth at most h. Let s in (SUX(8)) have
depth h+1, so that s=o(sy,...,8p) for some trees sy,...,s, over ZUSk with depth at mus.
h. Since S is subtree-closed, si,...,5; must be in SUZ, Then
8(s) =8(o(s1,...,8q))
=08p(a, 8(s1),...,5(8n))
=8n(o, row(s)),...,row(s,))
by the induction hypothesis and the definition of &,
=row(o(si,...,8n)), by the definition of 5y,
=rowls).

(W]

Proposition 4.2 Suppose that (S, E, M) is a closed, consistent state characterization
matrix such that 8 is subtree-closed and E is $-prefix-closed with respect to S. Then
the constructed tree automaton T'A(M) agrees with the data in M. That is, for every tree
sin(SUX(S)) andeinE, Sle#s) isin F iff D(M)(e#s)=1.

(Proof) We prove it by induction on the depth of § in e, When e is $ and s is any
element of (SUX(S)), by lemma 4.1, 8(e#s)=8(s)=row(s). If s is in S, then by the
definition of F, row(s) is in F iff D(M)(s)=1. If s is in X(S), then since (S, E, M) is
closed, row(s) =row(s’) for some s’ in 8, and row(s') is in F iff D(M)(s") =1, which is
true iff D(M)(s)=1.

Next suppose that the result holds for all e in E where the depth of $ is at most h.
Let e be an element of E where the depth of $ ish+1. Since E is $-prefix-closed with
respect to 5, e =e'#0(sy,...,5i = 1,$,8i,...,8n— 1) for some s1,...,87 - 1€SUL, some i(l=i=n)
and some e’ in E where the depth of § is h. For any element s of (SUX(S)), since (S, E,
M) is closed, there is an element 5" in S such that row(s) =row(s’), Then

O(0(81,..481— 1,8,8i1..1Sn — 1))

- |4 —

Fm
-

=b8plo,8(s1),...,6(si —1),8(5),8(si),....8(spn — 1))
=8n(0, row(s1),...,row(sj —1),row(s),row(s;),...,row(s, 1)), by lemma4.1,
=8nlo, row(sy),...,row(s; _ 1),row(s’),row(sj),....row(sp _ 1))
since row(s) =row(s’),
=rowlo(s1,...,5i — 1,5 ,5i,...,8n~1)), by the definition of §,,,
=8(0(s1,...,51 = 1,5 ,Sise-s5n—~1)), by lemma 4.1,
Therefore
8(e#s) =06(e'#0(s1,...,5i — 1,$,5is00s5n— 1) #3)
=ble'#o(s1,...,81— 1,8,8i,./5n 1))
=8(e'#0(s1,...,81— 1,881,580 — 1)),
by the above and the replacement lemma.
By the induction hypothesis,
8(e’#a(s1,...,8 — 1,8 Si,e 80— 1)) is in Fiff D(M)(e'# a(s1,...,8{ _ 1,5',55.. Sn—-10=1.
Since row(s) = row(s"), o -
D(M)(e'#0(s1,...,81 - 1,5',5is008n = 1) = D(M)e'#0(s1,...,8i - 1,5,5i,00,8n — 1)),
and since e'#0(sy,...,5i - 1,$, $i,...,Sn— 1) =e isin E,
DIM)(e’#0(s1,...,8i - 1.8,8i,...,Sn— 1)) = D(M)(e#s).
Hence 8(e#s) isin F iff D(M)(e#s)=1.
O

For the proof of the following theorem, for a tree automaton Ta=(Q,T, 8, F) we
extend & to (TUQ)T by letting : 8(q) =q for q¢Q, where Q is considered as a set of
constant symbols. In this definition, if q=8(s) for qeQ and s¢I'T, then

B(t(x+q)) = 8(t{x«s)) for teI'" and xe Dom(t).

Proposition 4.3 Suppose that (S, E, M) is a closed, consistent state characterization
matrix such that 8 is subtree-closed and E is $-prefix-closed with respect fo S.
Suppose that the constructed tree automaton T a(M) =(Q, ZUSk, &,) from (S, E, M)
has n states, If 'Tp'=(Q', EUSk, &, F') is any tree automaton which agrees with the

data in M that has n or fewer states, then'Ta’ is isomorphic to Ta(M).

(Proof) We prove it by exhibiting an isomorphism ¢. First define, for each q' in @,
row(g’) to be the finite function f from E to {0, 1} such that f(e)=1 iff 8'(e#q’) is in F".
Since Ta” agrees with the data in M, for each s in (SUX(S)) and each e in E, §'(e#s) is
in F" iff D(M)(e#s)=1, so row(8'(s)) is equal to row(s) in (S, E, M). Hence as s ranges
over all of S, row(5'(s)) ranges over all the elements of @, so T4 must have at least n
states, i.e., it must have exactly n states. Thus, for each s in S there is a unique q'in
Q' such that row(s) =row(q'), namely, 8(s).

Next we define for each s in S, ¢(row(s)) to be &'(s) and for a¢Z, ¢(a)=a. This
mapping is one-to-one and onto. We must verify that it preserves the transition
function, and that it carries F to F'. For each sy,...,5, in SUZ and 0¢Sk,, let s be an
element of S such that row(o(sy,...,8,)) =row(s). Then

$(Bnlo, row(sy),...,row(sy))) = dlrow(o(sy,...,sn))

= p(row(s))

=8&'(s).
Also,

&'n(o, dlrow(s1)),...,plrow(sn))) =8'u(0, 8(s1),...,8"(s0))
=8'(a(s1,...,8n)).
Since 8'(s) and &'(u(s1,...,5n)) have identical row values, namely row(s) and
row(o(sy,...,8p)), they must be the same state of Ty'".
Hence §(Sn(0, row(sy),...,row(sp))) =8nlo, d(row(s()),...,d(row(sy))) for all sq,...,8n in
SUL and v€Sk,. Lastly, since if s in S has row(s) in F, then D(M)(s)=1, so since
P{row(s)) is mapped to a state q' with row(q')=row(s), it must be that q' is in F".
Conversely, if row(s) is mapped to a state q’ in F’, then since row(q’) =row(s),
D(M)s)=1, so row(s) is in F. Thus ¢ maps F to F’, So we conclude that the mapping
¢ is an isomorphism of TA(M) and T4".
0

5. Inductive inference algorithm for context-free grammar

Now we describe an inference algorithm which efficiently infers an unknown
context-free grammar Gy. We assume that a finite alphabet £ which the Gy is
defined over and a skeletal aiphabet Sk for the Gy are given.

5.1 Algorithm 1

Definition (construction of a context-free grammar) Let (5, E, M) be a closed,
consistent state characterization matrix such that E contains $. The constructed
wide-sense context-free grammar GIM)=(N, E, P, S) from (S5, E, M) is defined with
nonterminal alphabet N, start symbols ScN, and a finite set of produclions P as
follows.

N = {row(s) : 3¢S},

S = {row(s) : s¢S and D(M)(s) =1},

P = {row(o(sy,...,Sn)) — row(s)--row(sp)},

where the function row is augmented to be row(a) =a for acZ.

Let Tp be a tree automaton over ZUSk which consists of only one state qq, and
state transition function such that 8,(0, q4,...,94) =q4d with no final state (i.e. F=@).
Clearly, L{Tp)=@.

(Algorithm 1 of inductive inference for contexi-free grammar)

Input : An oracle EX() for the set of examples of the skeletal descriptions of the

unknown context-free grammar Gy, i.e. examples of +s for s¢S(D(Gy)) and —s for

s€(ZUSK)T—S(D(Gy)), |
An oracle MEMBER(s) on a skeleton s as input for a membership query to output

1 or 0 according to whether s is a skeletal description of a derivation tree of Gy from

3,i.e.5¢3(D(Gy)),

Output: A sequence of conjectures of context-free grammar,

—17 —

Procedure:
S:=@; E:= {3}
TA :=Tp; CFG := @; Examples := &;
do forever
add an example EX() to Examples;
while there is a negative example —seExamples which TA accepts sor

there is a positive example +s¢Examples which TA does not accept s;
add s and all its subtrees except constants to S;
extend (S, E, M) to E#(SUX(S)) using MEMBER;
repeat

if (S, E, M) is not consistent
then find sy and sg in S, uy,...,un_1€SUL, e¢E, andi{1=i=n)such that

row(s) is equal to row(sg) and
Die#afuy,...,ui_1,81,u4,...,un - 1 }F De#o(uy,...,0i - 1,52,0i e Un - 1))
add e#o(uy,...,u;—1,9,1i,...,un 1) to E;
extend (S, E, M) to E#(SUX(S)) using MEMBER;

if (S, E, M) is not closed;
then find v(§)e X(8) such that row(o(8)) is different from row(s)
for all 2€5;

add o(5) to S;
extend (5, E, M) to E#(SUX(8)) using MEMBER;

untii (8, E, M) is closed and consistent;
TA := TA(M);
CFG := G(M);

end;

output CFG;

end.

In the above algorithm, the operation of “extend (S, E, M) to E#(SUX(S)) using
MEMBER” is the operation to extend D(M) by asking membership queries
MEMBER(s) for missing elements s. We call an example s presented by the oracle
EX a counter-example when the last conjecture TA(M) does not agree with s, i.e.

TA(M) accepts a negative example —s or does not acee pt a positive example +s.
2.2 Inference of parser

By replacing the construction of a context-free grammar with the following
construction of a parser in the algorithm 1, we will get an inductive inference

algorithm which infers a parser written in PROLOG.

Definition (construction of a parser) Let (8, E, M) be a closed, consistent state
characterization matrix such that E contains $. The constructed parsing Prolog
program PARSER(M) using difference-lists from (S, E, M) is defined with the
predicate set Predicate, tﬁe finite set of function symbols Fuﬁcliaﬁ, the calling
predicate sentence(T, X, X"), and the finite set of clauses PARSER(M) as follows :
Predicate = {phraserow(s)(T,X,X’) : s¢ S}U{terminaly(a,[a|X],X): acZ},
Function = {phrase qw(s) : ¢S},
PARSER(M) =
{sentence(1,Xy,X1) : — phraserqwis)(T,X0,X1) :s€S and D(M)(s)=1}
Ul phraserow(ofsy,...s,)(Phraserow(o(sy,...,s) T15ee Tn) X0, Xn) : =
Ri(T1,X0,X 1) BT, Xy = 1,X0).
:81€SUL, 0e8k,, and
Ri=phrase owis) if 5i¢5 and R; =terminal, ifs;j=a¢Z (1=i=n)}
U{ terminals(a, [a|X],X). :acZ}.

6. Correctness and complexity

To see that the algorithm 1 is correct, i.e. the algorithm 1 identifies a context-free

grammar G in the limit such that L{G)=L{Gy) for the unknown context-free

1%

gramunar Gy, it is enough for us to show that the constructed state characterization
matrix (S, E, M) during the running of the algorithm 1 is a closed, consistent one
such that S is subtree-closed and E is $-prefix-closed with respect to 8, and that the

while loop of the algorithm 1 is execuied at most in a finite time during the running

of the algorithm 1.

LLemma 8.1 Let (S, E, M) be a state characterization matriz such that S is subtree-
closed and E is $-prefix-closed with respect to S. Let n be the number of different
values of row(s) for s in 8. Any deterministic tree automaton which agrees with the

data tn M must have at least n states,

(Proof) Let Ta=(Q, I, 5, F) be a deterministic tree automaton which agrees with the
data in M. Suppose that s; and s3 are elements of S such that row(s;) and row(sg) are
distinct, Then there exists e in E such that D(M){e#s;)* D(M)(e#s2). Since Ta
agrees with the data in M, exactly one of (e#s1) and B(e#s2) is in F. Thus 8(s;) and
8(s7) must be distinet states because Ty is deterministic. Since 8(s) takes on at least
n different values as s ranges over S, Ts must have at least n states.

a

Lemma 6.2 The while loop of the algorithm 1 is executed at most in a finite time

during the running of the algorithm 1.

(Proof) Let n be the number of states in the minimum state deterministic tree
automaton Tam for S(ID(Gy)) of the unknown context-free grammar Gy, Firstly we
will show that whenever a state characterization matrix (8, E, M) is not consistent or
not closed, the number of distinet values row(s) for sin S must increase. If (S, E, M) is
not consistent, then sinee two previously equal row values, row(s;) and row(ss), are
no longer equal after E is augmented, the number of distinct values row(s) fursin S
must increase by at least one. 1f (8, E, M) is not closed and a tree o(3) is added to 5,
then since row(o(8)) is different from row(s) for all s in S before § is augmented, the

number of distinet values row(s) must increase by at least one,

W

LR

Next we will show that whenever a tree s and all its subtrees are added to S
because TA(M) does not agree with t, the next conjecture TA(M') must have at least
one more state than Ta(M). If a conjecture TA(M) is found to be incorrect by the
example t, then since TA(M’') is correct for the data in M and inequivalent to Ta(M)
(since TA{M’) is correct for the data t and so they disagree on t), by proposition 4.3,
TA(M) must have at least one more state.

Then by these and lemma 6.1, (S, E, M) can be not consistent or not closed at most
n—1 times and a counter-example is added to S at most n times during the running
of the algorithm 1. Thus whenever the condition of the while loop becomes true, the
algorithm 1 eventually makes a next conjecture in finite time, and the condition of
the while loup becomes true at most n times. Therefore, the while loop is executed at
most in a finite time.

]

By the above result, it follows that the algorithm 1 makes at most a finite number

of conjectures.

Lemma 6.3 The conjectures which the algorithm 1 makes are correct for the [acts

known by the oracles EX and MEMBER.,

(Proof) We will show that each state characterization matrix (S, E, M) during the
running of the algorithm 1 is a closed, consistent one such that S is subtree-closed
and E is $-prefix-closed with respect to S. In the algorithm 1, there are three
operations which extend the row or the column of (S, E, M). When t and all its
subtrees are added to S, S obviously remains subtree-closed. If (S, E, M) is not
consistent, then for some oeSk,, ug,...,un—1€SUL, e¢E, and i (1=2i=n),
e#uluy,..,ui_1,8,ui,....,un_1) is added to E. In this case, E remains $-prefix-closed
with respect to S. If (S, E, M) is not closed, then for some §¢(SUZ)" and 0eSk,, a(3) is
added to 8. In this case, § remains subtree-closed. Since the repeat loop is repeated
as long as (S, E, M) is not closed and consistent, by lemma 6.2, each constructed (S, E,

M) must eventually be closed and consistent. Thus each constructed (S, E, M) during

— 8 —

the running of the algorithm 1 is a closed, consistent one such that S is subtree-closed
and E is §-prefix-closed with respect to S. Then by proposition 4.2 and proposition
3.7, the conjectures of wide-sense context-free grammar which the algorithm 1

makes are correct for the facts known by the oracles EX and MEMBER.

In the conjectures of context-free grammar of the algorithm 1, we can effectively
detect and eliminate the nonterminal which cannot be derived from S (that
corresponds to dead state) and all productions which include it. By adding this

operation on the conjectures to the algorithm 1, we conclude the following theorem.

Theorem 6.4 Let Gy be an unknown context-free grammar. Given the oracles EX
and MEMBER for Gy, the algorithm 1 identifies in the limit a minimum nonterminal
wide-sense context-free grammar CFG such that L(ICFG)=1(Gy), CFG is structurally

equivalent to Gy and no two productions in P have the same right side,

(Proof) By lemma 6.2, 6.3, proposition 3.6, and 3.7.
E

The above theorem states that for a sequence of conjectures CFG,,CFG2,CFG3,..
by the algorithm 1, there exists a [inite time t such that for all t'>t, CFGy=CFG,
and LICFG{)=1([Gyu]). In [4], this type of identification is called structural

identification in the limit,

In [9], the grammars which have unique right hand sides of the productions are
called invertible grammars, which is one of the normal forms for context-free
grammars. Invertible grammars allow the process of bottom-up parsing to be made

simply.

Next we will analyse the time complexity of the algorithm 1. By lemma 6.2, the
while loop of the algorithm 1 is executed at most in a finite time. Then how much

time does the while loop consume during the running of the algorithm 1. That

— G0

depends partly on the size of the examples t presented by the oracle EX. We will
analyze the running time of the while loop as a function of n, the number of states in
the minimum tree automaton for S(D(Gy)) of the unknown context-free grammar
Gy, and m, the maximum size of any counter-examples presented by EX during the
running of the algorithm 1, where the size of an example is the number of symbols in
its textual representation. We will show that its running time is bounded by a
polynomial in m and n. Let k be the cardinality of the skeletal alphabet Sk (that is
the number of distinet ranks of the symbol o) and d be the mazximum rank of the
symbol 0 in 3k, We may assume dz=1.

Whenever (8, E, M) is discovered to be not closed, one element is added to S.
Whenever (8, E, M) is discovered to be not consistent, one element is added to E. For
each counter-example t of size at most m presented by the cracle EX, at most m
subtrees are added to 5. Since the state characterization matrix is discovered to be
not consistent at most n—=1 times, the total number of trees in E cannot exceed n.
Since the state characterization matrix is discovered to be not closed at most n—1
times, and since there can be at most n counter-examples, the total number of trees
in S cannot exceed n+mn, Thus, the maximum cardinality of E#(SUX(S)) is at most

n((n+mn)+k(n+mn)¥)=0(mini+i),

Now we consider the operations in the while loop executed by the algorithm 1.
Checking the state characterization matrix to be closed and consistent can be done in
time polynomial in the size of the matrix and must be done at most n times, Adding a
tree to S or E requires at most O(mn?) membership queries to extend the matrix.
When the state characterization matrix is closed and consistent, TA(G) and G(M)
may be constructed in time polynomial in the size of the matrix, and this must be
done at most n times, A counter-example requires the addition of at most m subtrees
to S, and this can be also happen at most n times.

Therefore, the total time which the while loop consumes during the running of the

algorithm 1 can be bounded by a polynomial function of m and n,

On the other hand, the check whether a conjecture agrees with an example, i.e.
TA accepts s or not, in the condition of the while loop is decidable and is performed in
steps of the example's size. Then by the above result, we can conclude that the
algorithm 1 infers a conjecture of context-free grammar and réquests a new example in
time polynomial in 1, m’ and n after the last example has been added, where 1 is the
number of examples known at the time of the request and m’ is the maximum size of

those | known examples.

7. An example

In inferring context-free grammar from their structural descriptions, given a set
of derivation trees from the unknown grammar with all nonterminal labels erased,
the problem is to reconstruct the nonterminal labels. Our algorithm 1 distinguishes
internal nodes of structural descriptions of the unknown grammar by using a set of

experiments K and reconstruct the nonterminal labels,

Suppose that the unknown grammar is the following context-free grammar
Gu=(N, L, P,) which generates the set of all valid arithmetic expressions involving
a variable “v", the operations of multiplication “X” and addition “+", and the
parentheses“["and “]”:

N ={5,E,F},
E={v,x,+,[,1L
P={8—E
E—F
E—~F+E
F—v
F—vxF
F—[E] L

— B -

Firstly, we give the algorithm 1 an example
olelolv, X ol [,0(o(v), +,0la(v))}, 1))
which is a structural description of a derivation tree
SEF v, X FO[LEFW),+,E(F(v), 1))

for a sentence v X [v+v] assigned by Gy.

a
/ U \
i x /T \
[d]
RN

a + tlr

v i)

v

Flgure'?l

The algorithm 1 adds all subtrees of it to S and divides them into two parts (i.e.

row(s)=0 and row(s')=1) by asking membership gueries of them. Thus internal

nodes of the structural description are labeled 0 or 1 of two row values, where E={§},

shown in Figure 7.2.

Next the algorithm 1 tries to make a closed, consistent state characterization

matrix by asking membership queries. In this process, the algorithm 1 discovers the

matrix to be not consistent once, and so it adds the experiment o($) to E. Then the

algorithm 1 makes a closed, consistent state characterization matrix and outputs the

first conjecture of context-free grammar, shown in Figure 7.3.

24

T T
.
[ﬂ/
|

v

]
N
i}\ !
I,

|

0

© o<

F|gura'?2

(The first conjecture G1=((N1, Z, P1, 51) }
Np={<10>, <01>, <00>},
S1={<10>1},

Pr={<00>—v
<01>— <00>
<01> = <00> 4+ <01>
<0>=—[<01>=]
<00> —v X <00>
<10> — <01>

<> — <10>

<Q0>—v X <01>

Figure 7.3

25

(State characterization matrix)

HE“
M $ u($)
alv)] [i]
alal(v)) N 0 1
us.'—.'a U{U{"q’},‘l‘ ,U{U{"F”} { 1
ol [,ololv),+,0{o(v)}), 1) 0 0
.::r{v,,}(?U{ [,ﬂfﬂ{‘-"},"‘,ﬂ'[ﬂ][\?}”,] }} 0 0
olofv, X0 [,o(o(v), +,0(o(v})), 1) 0 1
olo(o(v,>,o([,a(a(v), +,a(a(v))), 1)) 1 0
HK{S}H
Figure 7.4
01
v \
/ 00
v x / | \
[o]
00 01
T
00
v
v
F:gura'?'i

However G is not correct for Gy, so we give a counter-example o(a{o(a(o(a(v))))),

which is in S(D(Gy)) but not in S(IMGy)), to the algorithm 1. The algorithm 1

eventually makes other closed, consistent state characterization matrix, shown in
Figure 7.6, and outputs the second conjecture of context-free grammar. This
conjecture is a correct grammar for Gy, and furthermore structurally equivalent to
Gu. The reduced version of it is shown in Figure 7.7 by eliminating the meaningless
nonterminal and all productions including it.

(State characterization matrix)

“gn
a($) | ola(d,+,alalv))))

M
a(v)
a(a(v))
olo(v), +,0(a(v}})
ol [,olu(v), + ,0(c(v))), 1)
olv, X,ol [,ola(v), +,0(a(v))),]))
alo(v,X,o([,o(o(v),+,0(a(v))), 1)
olol(o(v, X,o([,0(o(v), +,a(alv))), 1))
olola(v)))
a(a(a{a(v))))
olo(o(olo(v)))))
a(a(alal(a(a(v)))))

==
[

H-S!'!'

Sc|olo=l=loo|ac|la|lc|la]

SIL o | DO =D | S|
L= = =l I = (v e T (S e B e

RK{S}”

Figure 7.6

(The second conjecture Gg =((Ng, £, Pg, Sg) }
Ny ={<100>, <010>, <001>},
Si={<100>1},

Pi={<001>—vw
<010> — <001>
<010> — <001> + <010>
<001> — [<010>]
<001l>=>—v X <001>

28 =

<100> — <010> 3

Figure 7.7

001

v X
,,f/l

[010]
RN
001 010
T
001
W
v
" Figure7.8

8. More efficient method

In the algorithm 1, a (minimal) tree automaton which corresponds to the
unknown context-free grammar is identified in the limit. However, since the
algorithm will have all structural descriptions of the unknown grammar which
corresponds to all derivation trees with non-labeled nodes for nonterminals, it is
enough for us to identify the nonterminal labels. Thus with the nonterminal labels
identified and structural descriptions of the unknown grammar, we can easily
reconstruct the productions of the grammar and the grammar itself. Then a more
efficient inference algorithm can be obtained using the following smaller

characterization matrix without X(S) part than the previous state characterization

matrix,

Definition LetS be a finite set of trees over ZUSk with depth at least 1 and E be a
finite subset of (2USk)3™. A nonterminal characterization matrix is a triple (S, E,
Mp), where My is a matrix with labeled rows and columns such that

1) The rows are labeled with the elements of S.

2) The columns are labeled with the elements of E.

3) Each entry of My is either O or 1.

4) If sj, 5j€S and e, ej¢E and ej#s; =ej#sj, then the (s;, ;) and (sj, ej) positions in My
must have the same entry.

The data contained in My is D(My)={(e#s, y) : 5¢S, e<E, and the entry of My is
y€{0, 1}}.

Definition Let G be a context-free grammar. A nonterminal characterization
matrix is called consistent with respect to G if the data in My agree with G (i.e.
D(Mw)(s)=1 iff seS(D(G))), and whenever s; and s2 are elements of S such that
row(s;) is equal to row(sg), then for all ¢S such that s=o(uy,...,u; - 1,51, Uj,eee,Un~1)
for some uy,...,un - 1€SUL and i, and for all ecE, e#seS(D(G)) iff e#oluy,...,u; 1,59,
Wiyeee i — 1)ESING)).

Mpy e E

o

seveeeee 1 (=D(Mp){e#3))
g Figure 8.1 (S, E, My)

Definition (construction of a context-free grammar) Let (S, E, My) be a nonterminal
characterization matrix such that E contains $. The constructed wide-sense context-
free grammar G(My)=(N, I, P, S) from (S, E, My) is defined with nonterminal
alphabet N, start symbols FCN, and a finite set of productions P as follows.

N = {row(s) : ¢S},

S = {row(s):s¢S and D(My)(s) =1},

ED

P = {row(o(s,....sn)) — row(s;)—-row(sg}},

where the function row is augmented to be row(a)=a for acZ.

Now we describe a more eflicient inference algorithm than the algorithm 1, which

uses the nonterminal characterization matrix.

(Algorithm 2 of inductive inference for context-free grammar)
Input : An oracle EX(} for the set of examples of the skeletal descriptions of the
unknown context-free grammar Gy, i.e. examples of +s5 for s¢S(D(Gy)) and —s for
se(ZUSK)T-S(D(Gy),
An oracle MEMBER(s) on a skeleton s as input for a membership query to output
1 or 0 according to whether s is a skeletal description of a derivation tree of Gy from
5, ie. seS(D(G)),
QOutput: A sequence of conjectures of context-free grammar,
Procedure:
S:=@; E:= {8}
CFG:= @; Examples:= &;
do forever
add an example EX() to Examples;
while there is a negative example —s¢Examples such that se S(D(CFG)) or
there is a positive example +s¢Examples seS(D(CFG));
add s and all its subtrees except constants to S;
extend (S, E, My) to E#8S using MEMBER:
repeat
if (5, E, My) is not consistent with respect to Gy
thenfind s;,s2 and 8in S, and e in E such that
s=o(uj,...,j ~1,51,Uj,...,un —1) for some uy,...,u, _1€SUZ and i
and MEMBER(e#s) 7 MEMBER(e#0(uy,...,u; . 1,52,1j,...,un —1));
add e#o(uy,...,ui— 1,$,ui,..,un—_ 1) to E:
extend (S, E, M) to E#S using MEMBER,;

— 31 —

until (8, E, My) is consistent with respeect to Gy

CFG:= G(My);
end;
output CFG;

end.

We will not state the correctness of the algorithm 2. However we will analyse the
time complexity of it. Let], m, m’, n, and d be the parameters defined in the section
6. Since the nonterminal characterization matrix is discovered to be not consistent
with respect to Gy at most n — 1 times, the total number of trees in E cannot exceed n,
and since there can be at most n counter-examples, the total number of trees in S
cannot exceed mn. Thus, the maximum cardinality of E#S is at most mn2. Checking
the nonterminal characterization matrix to be consistent with respect to G requires
at most m*n* membership queries and can be done in O(m®n*) time and must be done
at most n times. Adding a tree to § or E requires at most mn membership queries,
G(MN) may be constructed in time polynomial in the size of the matrix. A counter-
example requires the addition of at most m subtrees to S. Thus, the algorithm 2
infers a conjecture of context-free grammar and requests a new example in time
polynomial in 1, m’ and n after the last example has been added, The point is that the
time is bounded by a polynomial in I, m’, and n, and is no longer exponential in d.
That is, the time is bounded by a polynomial of a fixed constant k (k= 8) independent

of d or the unknown grammar,

9. Discussions

We remark on related work. A literature [4] is closely related, as it deseribes a
constructive method for inferring a context-free grammar from bracketed examples,
i.e. examples of structural descriptions of the language. In the paper, Crespi-
Reghizzi introduces the notion of structural identification in the limit. His inference

algorithm is to infer from positive data so that it is only to infer a class of context-free

— 37 =

grammars, called free operator precedence grammars. Levy and Joshi [11] show a
theoretical framework for grammatical inference in terms of structural descriptions
and have inspired our work. They show that a finite set of skeletons can characterize
a context-free language so that we need only construct a tree automaton which
recognizes the set of skeletons. Fass [6] presents an algorithmic solution to the
inference problem of context-free languages from their structured sentences based on
the theory of Levy and Joshi. His solution, however, only gives a theoretical basis for
grammatical inference and his algorithm is still impractical or inefficient.
Furthermore, these works are not formally discussed in the concept of identification
in the limit defined by Gold [8]. In another sense, Berger and Pair [2] are closely
related, as it describes inference for tree languages, called regular bilanguages.

Their study is a general approach in an abstract setting,

We consider an application of our algorithm to an inference from sentences (not
structural ones). Our algorithm needs the structural information of the unknown
grammar. However, if the algorithm automatically constructs the structure of
sentences, then it could infer the unknown language only from their sentences. As
we have seen in section 3, the structure of the language can be described by means of
a parenthesis grammar. Then our algorithm can infer the class of parenthesis
languages only [rom their sentences if the information about the symbols which play
roles of parentheses is given to the algorithm, because the structural information can
be obtained from sentences of a parenthesis language. Furthermore, our algorithm
can infer only frum sentences the class of generalized parenthesis languages in the
sense of [15], which is a proper superclass of the parenthesis languages and may be

able to define the most part of the programming languages.

As Crespi-Reghizzi et al. [5] suggest, grammatical inference may be useful in
specifying programming languages. A practical application of our algorithm is
designing programming languages or synthesis of compiler, because the siructure or

syntax of programming languages is usually defined by means of a context-free

— 33

grammar. Asin [5], the definition of structure and the definition of meaning should
be interconnected since structural orderings are an aid for interpreting a sentence.
Thus in inferring a programming language, a grammar inferred for the language
should be constructed such that it not only generates correctly sentences but also
assigns to each sentence a structure required by the designer. Then our appreoach

will provide an effective method for the process of programming language design.

Acknowledgements

The author would like to thank Dr. T.Kitagawa, the president of IIAS-SIS, Dr.
H.Enomoto, the director of ILAS-5IS, for giving him the opportunity to pursue this
work and helping him. He is deeply grateful to Dr. T.Yokomori for reading the draft
and giving him many valuable comments, Discussions with the colleagues
Y.Takada and H.Ishizaka were also very fruitful.

This is part of the work in the major R&D of the Fifth Generation Computer

Project, conducted under program set up by MITIL.

References

(1] Aﬁgluin,ﬂ., Learning regular sets from queries and counter-examples, Yale DCS
TR-464, 1986, to appear in Information and Compultation.

[2] Berger,J., Pair,C., Inference for regular bilanguages, J. Comput. Sys. Sci. 16
(1978), 100-122.

[3] Courcelle,B., Fundamental properties of infinite trees, Theor. Comput. Sci. 25
(1983), 95-169.

[4] Crespi-Reghizzi,S., An effective model for grammar inference, in Information
Processing 71, Gilchrist, B,, Ed., Elsevier North-Holland (1972), 524-529.

(5] Crespi-Reghizzi,S., Melkanoff M.A., and Lichten,L., The use of grammatical
inference for designing programming languages, Comm. ACM 16 (1973), 83-90.

[6] Fass,L.F., Learning context-free languages from their structured sentences,

SIGACT News, Vol 15, No.3 (1983), 24-35.

d4

584

(7] Gold,E.M., Complexity of automaton identification from given data, Information
and Control 10(1967), 447-474.

(8] Gold,E.M., Language identification in the limit, Information and Control 37
(1978), 302-320.

(9] Harrison,M.A., Introduction to formal language theory, Addison-Wesley, 1978.
{10] Hoperoft,J .E., Ullman J.D., Introduction to automata theory, languages and
computation, Addison-Wesley, 1979.

{11] Levy,L.S., Joshi,A.K., Skeletal structural descriptions, Information and Control
39(1978), 192-211.

[12] Paull,M.C., Unger,5.H., Structural equivalence of context-free grammars, J.
Comput. Sys. Sci. 2(1968), 427-463,

[13] Takahashi,M., Generalizations of regular sets and their application to a study of
context-free languages, Information and Control 27 (1975), 1-36.

[14] Thatcher J.W., Tree automaton : An informal survey, in Currents in the Theory
of Computing, Aho,A. V., Ed., Prentice-Hall, 1973.

[15] Thatcher,J . W., Wright,J.B., Generalized finite automata theory with an
application to a decision problem of second-order logic, Mathem. Systems Theory 2

(1968), 57-81.

— 45 —

