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Abstract

In the problems of Computer Algebra, we often need to treat algebraic extension
fields, especially in the problems of polynomial factorization and integration of rational
functions.

Several mathematical results and new computational methods are presented for prim-
itive elements and their minimal polynomials.

For a field Q{a,f) obtained by adjoining two algebraic numbers o and 7 to the
rational number field Q, it is shown that there is at least one integer ¢ in distinct N
integers such that o + {9 is a primitive element, where N is the degree of Q(a, ) over
(). Moreover a method for calculating directly an integer ¢ such that a + 17 is a primitive
element is presented. Finally for given polynomial F over @@, methods are presented for
computing & primitive element of the splitting field of F and its minimal polynomial over

Q.



1. Intraduction

For many applications in Computer Algebra, it becomes more necessary to deal with
algebraic numbers. For example, the symbolic integration of rational polynomial requires
operating in an extension field obtained as a subfield of the splitting field of its denom-
inator. There are several approaches to describe extension fields in actual problems and
applications. Sometimes algebraic numbers should be computed numerically or expressed
in terms of radicals. But if we attempt to factor or integrate polvnomials symbolically, we
have to deal with extension fields in a precise, general and effective way. One promising
way is to describe extension fields of the rational field @ as polynomial factor rings. For
an extension field K over ¢ generated by one algebraic number o, i is usually described
as Qz|/ < F{x) >, where F(z) is the minimal polynomial over @, i.e. a monic irreducible
polynomial over Q which has o as a root. But for more complicated extension fields gen-
erated by finitely many algebraic numbers, there have been only a few discussions about
how to describe them as far as authors know.

In this papar such extension fields are considered. Since an extension field K gener-
ated by finitely many algebraic numbers has primitive elements, i.e. K is also generated
by only one element, an approach may be used where we find a primitive element a and
describe I\ as Q(a). Here, we employ this approach and discuss methods for finding
primitive elements,

Trager (1976), Loos (1982) and Landau (1983) discussed this approach and presented
some methods for finding primitive elements. It might be observed that their methods for
finding primitive elements, i.e. computing their minimal polynomials, follow essentially
from the same idea. That is, they are all based on the results of Kronecker and van
der Waerden. ( see van der Waerden(1941). } They use resultants of polvnomials in
actual computations. Differences between their methods are in their motivations and
applications.

Under the same idea as in their papers, we present some new methods and math-
ematical basis for computing a primitive element of a field generated by two algebraic
numbers, and for the splitting field of a polynomial over ). The remainder of this paper
is organized as follows. In Section 2 we discuss necessity to compute primitive elements

of finite extension fields, In Section 3 we discuss two methods, namely a trial method and



o deterministic method for finding a primitive element of field generated by two algebraic
integers. We present a deterministic method by using bounds of absolute values of alge-
braic integers. As for a trial method, we present an upper-bound of the number of trials.
Moreover in actual computation of the minimal polynomial of a primitive element, we
introduce a method wsing linear equations instead of resultants. In Section 4 we present

a deterministic method for finding primitive elements of sphitting fields.

2, Description of Finite Extension Fields

In dealing with algebraic numbers over ¢} on computers, it is an important problem
how should they be defined on computers. Some are defined in terms of radicals such as
o = 1+ V2, some are defined as roots of polynomials, and others are defined as rational
polynomials in algebraic numbers which have already been defined. Anyway, for Computer
Algebra, algebraic numbers ar:e treated as symbols or variables with constraints. Moreover,
in erder to be able to treat compositions of algebraic numbers which have already been
defined, it is necessary that algebraic numbers are treated as variables. So a finite extension
feld is conveniently described as a polynomial ring over Q with generators as variables.
To be exact, an extension field is described as a polynomial factor ring modulo an ideal
associated with algebraic relations among algebraic numbers. Such a description would

be adopted.

2.1. Extension Generated by One Element

We consider an extension field Q(a) generated by an algebraic number a. Let a
be defined by its minimal polynomial Fi. Then there is an isomorphism from Q(a) to
Qlzl/ < Falz) >, where < Fy > is the ideal generated by F,. So we identify Q(a) with
Q[z]/ < Fu(zx) > as fields. By this identification, the arithmetic, i.e. the operations of
addition, subtraction, multiplication and division, can be done on computers as follows.
Elements of Qa) arc expressed by polynomials in o with rational cocfficients, and the
arithmetic is performed as arithmetic in the polynomial ring @Q{z] with a reduction modulo
F,(z). We notice that for any algebraic conjugates a' of a over @, l.e. @' is also a root

of F,,, Ofa') is also isomorphic to Qfz]/ < Folz) =



2.2, Extension Generated by Two or More Elements

First we consider extension fields generated by two algebraic numbers. Let a and
G be algebraic numbers and let Qa, f) be the extension field generated by a and 4.
According to Section 2.1, Q(a) is identified with @[z]/ < F,(z) >, where F, is the
minimal polynomial over (). Let Fj be the minimal polynomial of 3 over @, and G4 over
@(a). Then there is an isomorphism from Q(a., §) to Q[z,y]/ < Fa(z),Gsly; x) >, where
< Fo(x),Gs(y; =) > is the ideal generated by F,(z) and Ga(y; z), and Gs(y; x) is Gs(y)
with x's substituted for a’s. We notice that G is not always equal to F3. G is a factor of
Fg irreducible over Q(a). So if 3 is defined only by Fj, there is a possibility that Q{a, 4)
can not be determined. In this case, there are candidates for Q{a, 8) which are obtained
by irreducible factors of Fj3 over @(a). Hence to determine Q(w, J), # should be defined
by Gj.

The arithmetic on Q(a, #) can be performed as arithmetic on a bi-variate polynomial
ring with a reduction modulo < Fo(z), Gs{y; ) >. But this arithmetic is rather compli-
cated, since the Euclidean algorithm can not be applied directly for a reduction modulo
< Fu(z),Gs(y:z) >. So simple arithmetic is needed as in Q(a). It is well-known that
a finite extension field K of @ has its primitive element v, i.e. K = Q(v). Then if we
have the following two algorithms, namely one which computes a primitive element ~ of
Q(a, ) and its minimal polynomial over @, and one by which a and 8 can be repre-
sented as polynomials in v over @, then the arithmetic on @(a, 3) can be more efficiently

performed on computers. This is the reason for the necessity of primitive elements.

Next we consider a finite extension fleld K generated by n algebraic numbers aq,....ay.
We can also compute a primitive element of K and its minimal polynomial over Q by

applving the above algorithm repeatedly as follows:

Let K = Q{aq,...,a;} for 2 <1 € n. Then a primitive element 3; of K is computed
by an algorithm for a primitive element of Q(#,_,,a,). By repeating the process for

i = 2,..,7n, a primitive element of & is obtained as 3,.

In the next section, we present algorithms for computing primitive eleinents of exten-

sion flelds generated by two algebraic numbers.



3. Primitive Elements

In this section we consider algebraic extension fields over @ generated hy two algebraic
numbers, and we discuss some methods to find primitive elements of these fields. For any
algebraic munber a over @, there is an integer n such that ne is an algebraic integer.
From this, we can assume that algebraic numbers to be added are algebraic integers. It
is worth mentioning that an algebraic integer satisfies an irreducible polynomial over ¢

with integral coefficients.

3.1. Preliminary Definitions and Notations

Let a and J be algebraic integers. Then there is a unique monic irreducible polynomial
with integral coefficients, say Fu{z), such that Fa(a) = 0. This polynomial is called the
minimal polynomial of a over @. Similarly let Fg(z) be the minimal polynomial of &
over Q and let G3(z;a) be the minimal polynomial over Q{a), where Q(a) is the ficld
generated by a. As mentioned before, F, and Gy are needed in order to define the
algehraic extension field Q(a, §) generated by a and 8. 1f we use Fz to define §, then
there is a possibility that Fj is not irreducible over Q(a) and so there is no guarantee of
the uniqueness in the construction of the extension field. In this case, we need to choose
one irreducible factor of F; in Q{a). Therefore, first we assume that, for the definition of
Q(a,d), Fy and Gy are given. ( Later we discuss the case in which § is defined by Fj. )
Then Q(a, 8} is defined as follows;

Q(a,5) & Qlz,y)f < Fulz),Caly;x) >,

where Gs(y: z) is Galy) with z's substituted in for a’s.

Let n be the degree of F,(z) and let m be the degree of Galy; =) with respect to
y. Then the degree |Q(a) : Q[ of Qfa) over  is equal to n. Similarly it follows that
|Q(a, 8) : Ha)| = m and |Q(e, B) : Q] = nm. Let N be nwm. Moreover let M be the
degree of Fy(y).

3.2. Norms

To find out primitive elements of Q(a, &), the concept of Norms is useful, and 1s
introduced here. Let & be an arbitrary field with characteristic zero and let d be algebraic

over k. Then there is the minimal polynomial Pz} of d over k. The roots d = d,,



dz,...,d, of F, where s=degree P(r), are called the conjugates of d over k. Consider the
algebraic extension field k(d) generated by d, i.e. k(d) obtained by adjeining d to k. For
any element e in k(d), e can be represented uniquely as a polynomial e(d) in d of degree
less than s = |k(d) : k|. Then the conjugates of ¢ relative to k(d) over k are defined as
e(dy ), e(dz), ..., e(d,). A mapping Norm from k(d) to k is defined as follows;

For an element e in k(d), Normg4)/k(e) is the product of all the conjugates of e relative

to k(d) over k, i.e.

Nnrm;,[ d'];'k{ﬁ} = ]:[ ﬂ(d;‘j.

=1

It is well-known that Normgg ki) lies in &, and if € is an element in k, then
Normg gy /ke) = €°.

We can extend the definition of Norm in natural manner to polynomials with co-
efficients in K(d). For any polynomial & in z,y,.. with coeflicients in k{d), h can be
expressed as h(d, z,y,...) which is a polynomial with coefficients in k. Then h(d;, z,y,...)
is the conjugate of h relative to k(d) over k. So Normys) ks is defined as follows;

¥
Normgaye(h(z, y,..)) = ]:[ h(di,z,y....).
i=1

In general, a mapping Nerm from a finite extension E of k to k is defined by using
embeddings of E into an algebraie closure k of k. Let sy, ..., 3, be all distinct embeddings
of E into k. Then for an element e in E and h(z,y,..) in E[z,v,...], their conjugate are
defined as e* and h(z,y,...)", where h(z,y,...})" is obtained from h(z,y,...) by replacing
coefficients by their conjugates by the action of 5;. From this, Norms are defined as follows;

NOTﬂlE;k{ﬂl = H e,

Normgyi(h(z,y,..)) = [ | hlz,v,..)%.

=1

IfE 2D 2kisatower of finite extension fields, then Normp/x=Normg/p-Normp;y. So
for the case E = k(d,d") and D = k(d), Normy(g 4y /& i also defined as Normy g 4y 04)-

Normyqy /4. Later we discuss methods for ealculations of Norms.

3.3. Finding Primitive Elements From {a + 3|t € Z} (I)

Now we show how to find ont primitive elements of Q{a, #) by using the above

Norm. By the well-known result, there exist infinitely many primitive elements of Q(w, 7}



in {a + #6]t € Q). Therefore we have only to check the question whether a + 7 is a
primitive element or not. First we consider Normg(a,2)/Q(a+t4)- Let @ be an algebraic
closure of . Then there are N distinet embeddings s, ..., sn of Q{a, F) into @. For an
embedding s, o® and §7 are conjugates of @ and § over @ respectively. If an embedding
s fixes a and J, then s fixes all element of Qa, ) and so s is an identical embedding,
From this, the conjugates pairs (@, %) are all distinct and so there are N distinct pairs,
We have the following lemma directly from the results of Trager (1976), Loos (1982) and
Landau (19383).

Lemma 1. (1) Normg(a, g 0(x —e@—13) is ¢ power of an irreducible polyncmiel in Q[z].
(2) a+18 is a primitive element if and only if Normg(a,g) /g (T —a—tJ) is irreducible

in Qlz].

By Lemma 1, whether o+ is a primitive element or not can be tested by examining
whether Normng(q,gy/¢lz —a—10) is square-.free or not. So to obtain a primitive element,
we have only to find an integer ¢ such that Normaa gy0{® — @ — t3] is irreducible. We
show how many distinet integers are needed to find out such {. By Landau {1885), it is
shown that the number of integers  such that Normga g),0(z —a—153) is not square-iree,
is not greater than N{N — 1)/2 and so we need at most N{V —1)/2 + 1 integers to get
a primitive element. But by using the property of rationals, we show that this number
N(N —=1)/2 can be reduced to N. From now on, we write H(z)=Normg(q,g)/q(r—a—1J)

for simplicity.

Theorem 1. There are af most N — 1 integers t such that a + tF is nod e primifive

element of Qa, 9).

Proof. Assume that a+15 is not a primitive element of Q(a, 8). Then H, has repeated
roots. So there exist distinct embedding v and v in {s;,..,8x5} such that " + 43" =
a” + t4Y. This implies that 1 = (a* — a¥)/{3" — #"). So the number of integers ¢
such that a + t3 is not a primitive element, is equal to the number of distinct integers
t such that t = (a® — a%)/(3% — §%) for distinct embeddings s; and s;. Now we
consider the Galois closure I of Qa, ) in Q and its Galois group G over @. Then
it follows that the distinet images of (&, ) by the action of all elements of ¢ eoincide

with IV distinet conjugates pairs of (o, §). From this, we can assume that u and v arc



W

g

elements of G. Since t is an integer, t is fixed by all element of G. Therefore for any
g in G, t* = t implies that &% + 3% = a"f + "9, Let 5, be a set consisting of
distinct ordered pairs ({af, 891), (a2, 592)) of distinct conjugate pairs of (@, ) such that
aft 4437 = a7 + 4397 where g; and g, are elements of G. Then ((a®, 3*),(a®, 8¥)) lies
in 5 and so ({(a®9, 3%9), (e, 3"9)) lics in S for any ¢ in G. Since G is & group, there is
some ¢’ in G such that {{a,ﬁ},{cﬁ',ﬂﬂ']} lies in Sy. So by seeing the action of G on the
conjugates pairs of (@, 3), at least N ordered pairs lie in S;. There are N(N — 1) distinct
ordered pairs of distinct conjugates pairs of {(a, 7). Hence the number of distinet integers
t such that t = (a™ —a™ ) /(% — %) for some distinct embeddings s; and s;, is at most

N(N =1)/N. From this we have the conclusion. Q.E.D.

From Theorem 1, we can find out an integer ¢ in a set consisting of N distinet integers,
Obviounsly t = 0 does not give a primitive element. So there is some integer which gives a

primitive element in the set {1,2,...,N — 1}.

Next we discuss further properties of H,. From now on, we treat ¢t as a variable.
Then H, becomes bi-variate polynomial H(t, ). Then H(t,z) is irreducible over @, since
H(s,z) is irreducible for some integer s. Let L(¢) be the discriminant of H{t,z) as a

uni-variate polynomial in x. Then L{t} has the following properties.

Theorem 2. (1) L(t) hes 0 as an N{m — 1}-ple root.

(2) degree L(t) = N(N — N/M).

(%) The multiplicity 5 of an integral root 5 of L(t) 15 @ multiple of N . Morcover
[Q(a+sb): Q= N*/(N + 5).

Proaf. (1) From the definition of L(t),
Lty= J] (a%+t8%—a%—t8%)= [ (48" - 8%)+a% —a%).
1Si# <N L<i#j<N

Then the number of distinet ordered pairs {i.j) such that a* = a% is equal to the
multiplicity of 0 as a root of L(t). By the fact that [Q{a, 3) : Q(a)] = m, there are m
distinct embeddings which fix a. This implies that there are m{m — 1) distinct ordered
pairs (i, 7) such that & = a® = a®. We know that there are n distinet conjugates of a.
So it follows directly that there are nm(m — 1) distinct pairs (7, ) such that o* = ¥,

Henece L{t) has 0 as an N{m = 1)-ple root.



(2) Similarly, the number of distinct ordered pairs (i,j) such that 8% = 8% is
M{N/M)N/M —1). So we have the following.

degreeL(t) = N(N — 1) — M(N/MYN/M - 1) = N(N — N/M).

(3) Let s be an integral root of L(t) and let T = |Q(a + s§) : @|. By Lemma 1 (1),

}NJ’T" where Fio4.5 15 the minimal polynomial of

it follows easily that H(s,z) = (Fatsg
a + s over Q. This implies that for any s;, a* + s3% is an N/T-ple root of H(s,z),
i.e. N/T embeddings transform a + s# to the same value, and the number of distinct
values of a* + s3%'s is T. Thercfore the number of distinct ordered pairs (1, 7} such that
s = (a% —a%)/(f% — g*) is (N/T)N/T = 1)T = N(N/T —1). Since this number is
equal to the multiplicity S of s as a root of L({}, we have § = N(N/T — 1). From this,
we have (3). Q.E.D.

By Theorem 2, we have the following corollary as an improvement of Theorem 1.

Corollary. There are at most N — N/M — m + 2 inlegers s such that a + 53 is not @

primitive element.

Proof. We use the similar argument as in the proof of Theorem 1. By Theorem 2, S,
consists of N(m — 1) distinet pairs. Moreover there are N(N/M — 1) distinct pairs such
that 3% = AY. So there are at most (N(N = 1) = N(N/M — 1) = N(m —1))/N non-zero
integers s such that a + s/ is not a primitive element. By including t = 0, we obtain the

desired result. Q.E.D.

Remark. By using Theoremn 2, the leading coefficient le(L) of L{t) can be expressed as

follows:

le(L) = D;-’fN_NM.I}fMiM-l}D;:f[m—n,m{n—nJ

where D, and Dy denote the discriminants of F, and Fy respectively.

We can use L({) for diseriminating integers. Whether an integer ¢ gives a primitive
element or not can he tested by examining whether L(t) = 0 or L{t) # 0.

Theorem 1 and Theorem 2 say that we can get a primitive element by at most N
trials. So it is not necessary to compute H (%, z) as a bi-variate polynomial, and to compute

L(t), if we want any primitive elcment, But if further extensions of fields are needed, the



form of minimal polynomials of primitive elements becomes important. This is because
that minimal pelynomials with large coefficients are not dealt easily. So there is a case in
which minimal polynomials should have simpler form, i.e. they should have rather small
coefficients. For this case, H(t,z) and L(t) are useful. For example, let I{t) = 3. |L(t)],
where L;(t) is the coefficient of z* in L(#). Then as the best integer, we can choose ¢ such

that I(¢) is minimal under the constraint that L{} # 0.

3.4, Finding Primitive Elements From {a + t3[t € Z} (II)

We show that we can obtain deterministically an integer ¢ such that a 17 is a
primitive element. We define the bounds of roots. @ is embedded in the complex number
field C. For elements in Q, absolute values are defined. Let V, be a rational number
which is greater than the absolute values of any conjugates of a, and let Wy be a rational
number whose inverse is not greater than the absolute value of the differences of any two
distinct conjugates of #in C, ie. V, > |Ja*| fori =1,...,n, and 1/W;3 < |8% — 3% for

3% &£ 3%, Then we have the following theorem.

Theorem 3. Let r be an integer such that r > 2V, Wy, Then a 4+ rf iz a primitive

element of Q{a, 7).

Proof. Let v = a +rf. Toshow that 4 is a primitive element we have only to prove
that the images of 4 by embeddings s; are all distinct. 5o we show that for distinct ¢ and
7, 9" # 4%, Assume the contrary. Then 4% = 4% . Since r is fixed by every embeddinas,
a® +rf" =a* +rf% and so r(f% — %) = a% —a%, I G% = 3%, then a* = a%,
This implies that s; = s;. So we can assume that 3% £ 5%, Then by the definition of r,

we have the following inequality:
2V, €2V Wy[8% - B¥] € r|8% — %] = |a™ — o < 2V,

This is & contradiction. Hence 4" % ~* for any distinct embeddings s; and s;. From

this, we get Q{a +rf)} = (o, 5). Q.E.D.

Remark. We ean also prove Theorem 3 by using the fact that the above r is greater than

the maximal absolute value of roots of L{t).

As far the bounds V,, and 1W;, we know the following. [ <f. Mignotte [L052).}



For a polynomial F(z) = Z}La P+ flz+..+ flzd let |Fl| = E':Lu{fg R Fi e

and |F| = maz{lfal, ..., |fal}. Then we have the following.

Va 2 min{|Fal + 1, [ Fall},

Wy > mm{(gvﬂj.mM—ILr’!—IHDﬁIJNTM-{Mﬂ}lepﬂlm 1332 D g2y,
where Dy is the discriminant of F, and Vj 15 the bound for the conjugates of 3 defined
similarly as V.

Remark. When  is given only by Gz(zr;a), we need Fj to calculate the above
bound. By using Normg(a) g, we can obtain F3. As another method, we can calculate
the upper bounds of |Djs] and Vi from Gs by using the fact that the cocflicients of G5’
are polynomials of a.

By Theorem 3, we do not have to seek an integer s which gives a primitive element.
But it is possible that the above bounds become too big and so coefficients of the minimal
polynomial of primitive element are very large. So tight bounds are needed for actual

computations.

3.5. Construction of Norms and Minimal Polynomials

We present two methods to compute Norms or minimal polynomials of elements
in Q(o, 7). One uses resultants of polynomials, and the other uses linear equations.
Essentially, there is no difference between the two methods in mathematical sense. They
eliminate & and 8 from z — a — #8 by using F,; and Gj.

The method using resultants is presented in Trager (1976), Loos (1982) and Lan-
dau {1985). So we describe this method briefly. [t 15 well-known that, for an arbitrary
field & with characteristic zero and an algebraic number d over k& whose minimal monic
polynomial is F, Normyg &(G{x)) for a pelynomial G(z) in k{d)[z] is equal to the re-
sultant of F{y) and G{z;y) in y, where G{z:y) 158 G{z) with y's substituted for d's, e
Normy(gy/x(G(z)) = Resy(F{y),G{z:y)). So we have the following.

Normg(o,g1/Qa)(z = o =t} = Res. (G a), 1 — a — t2],
Normg(a,g)/q(* = & = t3) = Normga)/@(Normg(a g /q(a)(+ = a)
= Res,(Fo(y), Res.(Gslz;v), 0 —y — t2))
But we know that G is the minimal irreducible polynomial of 3 over Q(a) and so o + {3

i3 a ot of Ga{{r —al/t;a). By seeing the degree of (73, it follows that

Nﬂrmq[n“j”qi{,jfi‘. —a =13 = fmGj{{I - ﬂ'}ff: € .

—10 -



arcd

H(t,z) = Normga, g)/9(z — @ = 1) = Resy (Fa(y), t" G((z — v)/t;v)).

Moreover for the computation of the discriminant L{t), we use the following resultant;

L(f) = (~1)NWN=D/Res (H(t, z), %H[t,:]}.

Now we present a method using linear equations. We determine the minimal linear
relation over @ between 1,7, +%,..4" for v = a + t4, where ¢ iz an integer. Let the
minimal polynomial of yover @ be F, = z* 4+ Dy_12* '+ ...+ Dz + Dy. Then thereisa
linear relation +* + Dg—17%~% +... + D1y + Dy=0 between 1, ¥, 4%, ..., v*. Conversely from
the minimal relation over Q between 1,7, ...,4" we can form the minimal polynomial of
7 aver {}. 5o there is a one to one correspondence between the minimal polynomials and
the minimal linear relations. To find the minimal relation, we treat Q(a, ) as a vector
space over ) with bases {a'§70 i <n-1and0 < j <m—1}. Any element in Q(o, 3)
can be represented as a vector by using constraints Fu{a) and G4{2;a). So we have the
following,.

Tn =71 — =.|'.D = (]*[},...,U:I,

Tl = ¥ fIE — ‘-:rl ={ﬂ-_. 1, --g{}:t1ui‘-'su]l

7 =a* 4 ke g+ 58 = 3 = (D, 0,0, Dimeg nm )

Let M(k,t) be a (k+ 1) - N matrix with the vector 7 as the i-th row. If the rank of
Mk, t} 1s not equal to k + 1, then there is a linear relation hetween 1,7, ..., 3%, So if we
want to obtain the minimal polynomial of 4, then we need to find the first & such that
the rank of M(k,¢) is not equal to k¥ + 1, and solve the equation EM(k,t) = 0. For a
non-trivial solution E = (Ey,..., Ey), it follows that Ey # 0 and 35 (E,/Eg)x’ is the
minimal polynomial of v. Similarly, whether v is a primitive element or not, can be tested
by examining whether the matrix M(NV - 1,#) is regular or not. For simplicity, we write
Mit) instead of M{N — 1,f}). Then we have only to find an integer t such that M(t) is
regular. If M({{) 1s regular for some t, we get the minimal pelynomial Fi5 by selving the

- - e v _ v . T . . T "
linear equation DM(t) = —&N | where ¥ is a vector corresponding to ~™. Fur the unique

_11.



solution D = (Dy, ..., Dx — 1), E;lu D;zx* is the minimal polynomial of 4 over @, where
Dy = 1. Similarly, as in Section 3.3, by treating f as a variable, we obtain the following

polynomial M (¢#) which is similar to L(1).
M(£) = detM(t).

Since degree Dy, ;1 = k, we have degree M(t) S0+ 1+..+ N =1= N(N -1)/2. The
set of all distinct roots of M(#) coincides with the set of all distinet roots of L(#).
Moreover we can compute H(¢,z) in Section 3.3 by using linear equations. We con-
sider a vector space V with bases {o'37t¥ [0 €1 €n-1,0<€j<m-1land0<k < N-1}.
Let 4(h. k) = "% for h + k < N, and let 3(h, k) be the vector in V corresponding to
v(h, k). Let M be an (N + 1)(V + 2)/2 x N* matrix with 3{(h, %) as the (k, k)-th row,

where the order is lexicographic. Then we have the following.

Lemma 2. There is a unique solution E such that EM=0 and the (N,0)-th component
E(N,0) of E 1s 1.

Proof. Let E' = (E(i,j)) be a vector such that H(t,z) = 3., .. E'(i,j)t/z" and
E'(N,0) = 1. Then it follows that E'M=0. Assume that there is another solution
D = (D(i,5)) with D(N,0) = 1. Let H'(,z) = Tpy ;e D(i, j)tz". Consider H'(t, ),
Since I is a solution of DM=0, H'(t,v) = 0 mad t¥*!, But degree, H'(t,v) < N. This
implies that H'(f,¥) = 0 andso D = E. Q.E.D.

By Lemma 2, H(t, z) can be obtained also by the unique solution of EM=0 as follows;

For the solution £ = (E(i, ), let H(t,2) = ¥, .oy E(i, j)t'z".

Since the method using linear equations does not require to compute the determinanis
of matrices, it is more efficient than methods using resultants. Moreover if we use this
method, then we can compute the representations of elements in Q({a, 3) as will be shown

in the next section.

3.6. Representation of @ and § by a Primitive Element

Tn this section we present methods to obtain the polynomials a{z) and J(z) such that
aly) = a and #{7) = . We call these polynomials af{z) and J(x) the representations of
a and 8 by 4. Similarly to Section 3.3, there are two methods. One is the method using

GCD shown by Loos (1982), and the other is the method using linear equations.



First we mention the method using GCD. This method needs the minimal polynomial
Fg(z) of 3 over @, and the integer ¢ must not be a root of L*, where L* is obtained similarly
as L({t) by using Fj instead of G5. ( See Section 3.7.) Consider GCD( F,(v~tz), Fa(z)) in
Q(~)[z], where v = a-+tf. Then it follows easily that GCD(F, (v —tz),Fa(z)) = £ — 5(7)
from the fact that both of Fa(r) and F{+¥ —tx) have f as a root. As for a, we have the
representation a(z) by a(z) = v — t9(z).

Next we mention the other method which uses linear equations. In the method using
linear equations to obtain a primitive element v = a + {7 and its minimal polynomial
F.(z), we have already gotten the regular matrix M(t). By using this M(#), we consider

the following linear equation:
AM(t) = (0,1,0,...,0).

By the regularity of M(¢), there exists a unique solution A = (Ay,...,Ax_;). From this
solution, we have the representation a{z) = E?:ﬂi Aiz* of a. As for 8, we have the
representation 9(z) = (v — az))/t.

An advantage of the latter method is that for any element § expressed by a polynomial
in & and § over @, we can obtain the representation of § by + by solving the linear equation

associated with § without using the representations a(z), 5(z) and their product.

3.7. The Case Where § Is Given by Fjy

When we face actual problems which need arithmeties over algebraic extension fields
such as Q(a, ), all of algebraic numbers added to ¢ are possibly given rather by their
minimal polynomials over  such as Fj, than by the minimal polynomials over the ex-
tension added by the former numbers such as Gg. In this case, as mentioned before, if
Fg = Gg, then Q(a, f) can be determined uniquely, but if not, there is a possibility that
there are at least two extension fields which are not isomerphic to each other, i.e there are
some candidates for e, §). So we present some methods which compute each primitive
elements for each candidates. Actually, we need only to replace G by Fy and similar
methods are available.

Let H*(t,z)=Normg(a)o(t" Fs((z — a)/t)) and let L*(t) be the discriminant of

H*(t,z) as a polynomial in z. Then the following holds.



Lemma 3. There is a one to one correspondence between the factors Hi(t,z) of H*(t. 1)
in Q[t, x| and the fuctors Gi(z) of Fa(z) in Q[z] by Hi(t,z)=Normg(ay q(Gi((z = a)/t}).

The proof follows from the fact that Norm is multiplicative, i.e. Norm{AB)=Norm{A4)-

Norm{ B). As a corollary, we have the following.

Corollary. Let 8 be a conjugate of 8 over Q. Then |Q(ar, ') : Ql=degree. H {t,z) for

some 7.

By Lemma 3 and its Corollary, for each conjugate 3’ of J over @, we can obtain
each primitive element of Q(a, §') by finding each integer t such that each of H (¢, z)'s
is irreducible over Q. If we choose an integer t such that L*(f) 5 0, then every H;({,z)'s
are irreducible over Q. So we have the following result concerning with the number of

integers nceded.
Theorem 4. There are at most nM(M — 1) integers t such that L*(t) = 0.

Proef. Similarly as in the proof of Theorem 1, a root s of L* can be expressed as
s = (o; = a,)/{#k — On), where a; and oy are the conjugates of xoverQiorl<ij<=<n
and F; and { are the conjugates of  over @ for 1 £ k,h < M. It follows that degree
L*(t) = nM{nM — n) by similar arguments as in Theorem 1. Now we consider the case
in which the above s is an integer. There are the following two cases;

(1) Some H (s, z) is reducible, or

(2) Every H;(s,z)’s are irreducible, but there are two distinct factors H;(t, z) and
Hi(t,z) of H*(t,z) as bi-variate polynomials over @ such that H,{s, z) = H;(s,z).

For the case (1), the multiplicity S of s as a root of L* is at least n-degree. H;(t, z)
by Theorem 1. So it follows that § = n.

For the case (2), it can be easily shown that the muitiplicity § of s 1s at least the
degree, H;(f,z} by locking at H;(t,z) = Hi(t,z). Since degree,H;(t,z) = n, we have
§ > n for the case 2, Hence for each cases, the multiplicity of s is at least n. From this,

the number of integral roots of L* is at most nM(nM — n)/n =nM(M —1). Q.E.D.

We can also use Theorem 3 for this case. The integer r computed by Section 3.4 gives
primitive elements a + r3' of Q(a, #') for every conjugates 3" of 3.
As for actual computations of Norms, we can use hoth two metheds presented in

Section 3.6. Moareover we can also obtain a polynomial M*(t) instead of M{1).
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3.8. Algorithms

In this section we present some algorithms which embody methods obtained in the
previous Sections 3.3, 3.4, 3.5, 3.6, 3.7. As we have seen, there are essenutially two ways to
get a primitive element in the form a + tJ. One is a trial method, and the other is a de-
terministic method. Furthermore there are two choices to compute minimal polynomials,

namely by using resultants or by using linear equations.

First we present an existing algorithm which is given by Trager({1976), Loos({1982)

and Landau(1985).

Algorithm 1. { Trial+Resultant )

Input: F,(z) an irreducible monic polynomial over @, and G{z;y) an irreducible monic
polynomial over Qly]/ < Faly) > [z].

Output: F, an irreducible polynomial of a primitive element ¥ = a + £3.

ti=1

m :=degree, Gs(z;y);

glz;y) :=t"Ga((z — =)/t y) mod Fo(y);

G(x) :=Resy(Fa(y), g(z;v))

while GCD(G(z), £G(z)) £ 1 do
t:=t+1;
glz;y) :=1"Gg((z — y}/tiy) mod Fa(y);
G(z) :=Res,(Fa(y), g(z:y))

Fy = Giz);

Beturn F.

Algorithm 1 computes the minimal pelynomial of a primitive element correctly before ¢
exceeds N — 1 by Theorem 1, or before  exceeds N — N/AM —m + 1 by Theorem 2. If we

use the method of linear equations, then Algorithm 1 is changed to the following,

Algorithm 2. ( Tral+Linear Equation )

Input: F,(z) an irreducible monic polynomial over @, and G;(z;y) an irreducible monic

polynomial over Qly]/ < Fuly) = |«].



Qutput: F, an irreducible polynomial of a primitive element v = a + t5.

n :=degree, Fo(z);
m :=degree, Ga(z;y);
N = nm;
t:=1;
compute the minimal polynomial G(z) of ¥ = a + {3 by Algorithm 3;
while degree,G(z) # N do
ti=1+41;
compute the minimal polynomial G(z) of v = a + {8 by Algorithm 3;
Fy = G(z);
Return F,

Algorithm 3. ( The Minimal Polynomial of a + t3 by Linear Equations )

Input: F.(z) an irreducible monic polynomial over @, Gg{z;y) an irreducible monic
polynomial over Q[y]/ < Fa(y) >, and ¢ an integer.

Output: F, the minimal polynomial of o + 3 over @.

n :=degree, F,(z];
m =degree, G s(z; y);
N :=nm;
Dype =1
Dy ;j:=0for (¢,7) #(0,0), where 0 <i € nand 0 < 7 < my
k=1,
while k < m do
compute Dy ; ;s such that ¥ = Z:’;;l E;__é Dy ja'd? mod Ga(fa), Fala)
ko= m;
solve the equation EM(k, ) = 0;
while £ =0 do
ki=k+1;
compute Dy ; ;'s such that 4% = ::u‘ ;:J Dy o' 8 mod Fula), Ga(f;a);
solve the equation EM(k,t) =0
F, = E:;n Dz, where E = (Ey, ... Ei) and D; = E;/Fy;
Return F.{z)

For Algorithm 1 and Algorithm 2, we can use L{#) or M(t) for finding an integer ¢ which
gives a primitive element.

Next we present an algorithm which follows from Theorem 3.

Algorithm 4. ( Deterministic )
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Input: Fu(z} an irreducible monic polynomial over @, and Ga{z;y) an irreducible monic
polynomial over Q[y)/ < Faly) > [z,
Cutput: F., an irreducible polynomial of a primitive element v = a + ¢3.

V, :=an upper bound of the absolute values of roots of F,;

Wy :=an upper bound of the inverses of difference of any pairs of distinct roots of Fj;;
t :=an integer greater than 2V, Wy,

F,(z) :=Normg(a,s/q(x — a — t3);

Return F,(x)

Normg(a,g/qlz — @ — 1) can be computed by Res,(F.(y),t™ G (z;y)) or the linear

equation EM(r) = =3,

When we have a primitive element 4 = o + {7, we have the representation of a and
3 by the following,

Algorithm 5. { Representation by Linear Equation )

Input: F,(z) an irreducible monic polynomial over (), Gs(z;y) an irreducible menic
polynomial over Q[y]/ < Fo(y) > [z], and an integer t s.t. a + #3 is a primitive elemen?
of Qla, 7).

Output: the representation a(z) and 3(z) of @ and 5 by +.

n =degree, Fo(z);
m :=degree; Gg(r; y);
N = nm;
k=1
while k < N =1 do
compute Dy ; ;'s such that % = Yo" 'ﬁ::ﬂl Dy ;03" mod Ga(B:a), Fo(a)
solve the equation EM(t) = (0,1,0,...,0);
afz) = E:Z_ul E.zr', where E = (Ey, ..., Enay );
Blz):=(z — alzx))/t;
Return a(z) and #(z)

We notice that if we use Algorithm 2 to find an integer ¢, then Dy ; ;'s are already computed
in this process, and so for Algorithm 5 we need not compute Dy ; ; again. Finally we
present an algorithm for the case where § 15 given only by F3. The following algorithm
uses L*(#) for finding an integer s,

Algorithm 6. { 3 Is Given by Fy )
Input: F, an irreducible monic polynomial over @, and F; an irreducible monic polyno-

mial over (.
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Catput: monic irreducible polynomials Fj s.t. F} is the minimal polynomial of v; over @,
where Q=) = @Qa’, ') for conjugates a’ and § of o and .

1 i=degree, [ (1);

A :=degree Fi3(z);

g(t, z5y) =t Fa((x — y)/1);

H(t, z) :=Normg(a)o(g(t, z;0));

L{t) :==Discriminant {H(t, z)}

find an integer s s.t. L(s) = 0;

factorize H(s, r) to irreducible factors Fi(z) over @
Return F;(z)

4. Splitting Fields of Polynomials

For a polynomial F(z) over @, the splitting field ' is obtained by adjeining all roots
of F to . We show some methods to find a primitive element of the splitting field of
a polynomial F over ). Methods shown here follow essentially from Theorem 3, and so
they need not trial for finding an integer which gives a primitive element. Of course, there
are some methods with trial. ( ef. Trager (1976}, Landau (19853). ) Moreover it is noted
that methods shown here are not repetitve applications of the algorithms in the previous
section. For simplicity, let F(z) be a monic irreducible polynomial over @. This can be
assumed, since the splitting fleld of a polynomial is the composite field obtained from all

the splitting fields of its factors.

4.1. Extension of Theorem 3

Let the roots of F be ay,...,an, where n=degree, F(z), and let i be the splitting
field, i.e. K = Qay,...,a,). Since ay + -+ + a, € Q, K is generated by n — 1 distinct
roots of F.

We define bounds V' and W as in Section 3.4, ie. V > |a;| fori = 1,...,n and
W > 1/la; = a;] for i # j. Moreover let r be an integer such that r > 4VW and r > 2.

Then we have the following theorem as an extension of Theorem 3.

Theorem 5. Let Gy...., 3, be i distinct roots of F and v = §, +rf2 + ... + 7' ' 3i. Then

~ is a primitive element of the extension ficld Q(3y, 8a,..., Bi)-

Proof We prove Theorem 5 by induction. From Theorem 3, we can assume that

i = 2. Assume that Theorem 3 is true for i = &, and consider the case i = b+ 1. Similarly

— |B -



to the proof of Theorem 3, to prove Q%) = Q(F1, ..., Fx+1), we have only to show that
~*i & ~* for any two distinct embeddings s; and sy of Q(5y,..., Bp41) into Q. S0 assume
the contrary, i.e. 4% = 4™ for some j ¥ h. Then by the definition of +, it follows that
rR(By, — Biy) = (87" = By )+ (83" = BY) + o+ rFTHEE - 8)- T B, = B,
then (B 4 . + r¥7180)% = (b1 + ... + ¥ 71 @)*. By the assumption of the induction,
81 + ...+ rF"1 3, is a primitive element of @1, ..., Sc). So s; and s), can be considered as
embeddings of @(51,...., ) into Q. Then by the assumption of the induction, it follows
that 83 = A% for m = 1,..,k. From this, we get s; = s and this is a contradiction.
Therefore we can assume that 8, # 8, . Consider the absolute values of bath sides of
the above equation. Then the left-hand side is bounded as follows;
rHBy — Al = VW8 - Sl
> 417 %1,
The right-hand side is bounded as follows;
(B = By )+ o+ R 2B = Bies;)| < IB] = B [+ +7F 7B = Bus;
<2V{lsrt...+7 )

So we have the following inequality.
V(L 47+ .4 rF1) > aVrT,

This implies that

144 ks pkel

Butbyr =2,
ltr4+.+rf 2= (r¥ 1 _)/(r-1)
o k-t

Henee this is a contradiction. Q.E.D.

From Theorem 3, we have the following,

Corollary. Let S = {ay,..,an) and T = {f +rf + o238, 1|8, € S}. Then there
is a primitive element of K in T. If 3;'s are all distinct, then 3, + .. 4+ " %3, is a

primitive element of k.

4.2. Finding Primitive Elements of Splitting Fields

By using results obtained in Section 4.1, we have the following method to find a

primitive element of the splitting field K.



Now we define polynomials gi;; by the following.

gy = . g1y = F(z), and for i 2 2 gy's are defined by

(i) =Normg(ayrgld-1{z — r*"la)), where & is an arbitrary root of F and r is an
integer defined in Theorem 5.

We notice that for the actual computation of Norng(eysq we can use either a method

using resultants or a method using linear equations. Then g(z) has the following property.

Theorem 6. Each irreducible factor of gi;y over @ is the minimal polynomial of some
By 4+ ...+ 71 8; over @, where By, ..., 8; are the roots of F. Moreover a factor of g(;) with
the maximal degree is the minimal polvnomial of a primitive element of an extension field

with the maximal degree in the extension flelds obtained by adjoining i roots of F.

Proof. By the definition, it follows that gy =[5, ses(® —Fi—rfa— .. —r'713).
So g is the composition of all minimal polynomials of 5 + ... + ri=18.'s over Q. And
degree of Q3 + ... + r'718,) over @ is equal to degree of the minimal polynomial of
8 4+ ...+ ri713,, By Theorem 5. 8; + ... + r'=13; is a primitive element of Q{5:..... ).
Hence for an cxtension flelds whose degree over (@ is maximal in extension fields obtained
by adjoining i roots of F, the minimal polynomial of a primitive element is a factor of gy

with the maximal degree. Q.E.D.
As the corollary, we have the following.

Corollary. A factor of g(,—1y with the maximal degree is the minimal polynomial of a

primitive element of K.

From this corollary, we can obtain the minimal polynomial of a primitive element
of I by factoring g,_yy. But the degree of g,—;) is »"71 and this implies that actual
computations of gi,—;) arc almost impossible for computers. So we use factors of g4y

Let g; be an irreducible factor of g,y over @ with the maximal degree and n; be its

degree. n; is determined independently of the choice of g;. Then we have the following,

Theorem 7. For 1 < i < n, n; < naq. Iy < nmae < .. < ng—y and Ry = Mg
for some k < n, thea ge-; is the minimal polynomial of & primitive clement of I'. If

1y < e < Tipey, then ga_y is the minimal polynomiul of a primitive element af Iy,

Proof. By the definition. it can be easily seen that ¢; is the minimal polynomial



of 8y + rfy + ...+ r*"13,, where 5,...,3; are the roots of F. By Theorem 5, we have
ni = |Q(81,.... 5} : @ As for giit1), g(i+1) is the product of all minimal polynomials of
elements v; + ... + 7' ~i41, where ;" are roots of F. So g;;1,) has the minimal polynomial
of By + ... + 1""18; + r*Bi41 as a factor, where fi., is a root of F. By the definition, it
follows that nye; = 1Q(81, .., Six1) : Q. Sinee |Q(51, ..., fip1) : Q(F1, .., Bi)| = 1, we have
[ PSR

Next consider the case ny < ... < ng—; and ng_; = ng for k < n. Let g1,.., 8y
be roots of F such that gi_, is the minimal polynomial of 8, + ... + r*°2g8,_,. If
Q(B1, ..., Be—1) is not the splitting fleld K, then there iz some root #; which does not
belong to Q(8,..., Bx—1). This implies that |Q(B1s s Bimry Bt @By, -y Biy)] > 1 and
so the degree of the minimal polynomial of 3; + ... +r5158, over () is greater than ni_;.
From the definition of g¢4), gy has the minimal palynomial of & + ... +r* 72 g _; + 15714,
as its factor. This implies that n;_; < n; and a contradiction. Hence for this case, gp_;
is the minimal polvnomial of a primitive element of K. If n; < ... < np-;, then g,—; is
the minimal polynomial of 3y +...4+r"?3,_;. By the previous argument, it can be easily
shown that §;'s are all distinct. Hence by Corollary of Theorem 5, & + ... +r""24,_ is
a primitive element of K and so g,—; is the minimal polynomial of a primitive element of

K. QED.

By the above theorem, an algorithm using ¢;'s terminates when ny = ngy, or k =n.

But there are many unnecessary factors in gz)’s. So we have the following improvement.

Instead of g;, we construct polynomials h(;y and h; inductively by the following;

hiiy = hy = gpy = F, and if h;_; is already constructed, then
hiy=Normg(a);o(hi-i(z ="~ 'a) and k; is an irreducible factor of h(;) with the maximal
degree over (), where a is an arbitrary root of F.

Let N; =degree h;. By replacing g¢;y and ¢; by hy;y and h; in the argument of the

praof of Theorem 7, we have the following Theorem.

Theorem 8. For 1l <i < n, N; < Nyy,. If Ny =« Ny = ..« Ny_, and Ny, = N
for some k < n, then hj—y iz the minimal polvnomial of a primitive element of K. If
Ny < ... < Ny, then h,_, is the minimal polynomial of a primitive element of I\ and

this implies that to obtain N it needs all the roots of F.



Now, we discuss the algorithuns. There may be several ways in actual computations.
Among them we show two algorithms,one as a busic version, and the other improved one.
The basic version is a naive algorithm based on the Corollary of Theorem 6, and is shown as
Algorithm 7. It can be easily understood and helps understanding the rather complicated
improved version. Notice that this algorithm itself is almost impractical because it always
requires factoring g,—;) & vast polynomial with degrec n" ', even when the degree of
extension is much less than n"~%,

On the other hand, the improved version shown as Algorithm § is based on Theorem
8, and is more practical. Since it repeatedly constiructs intermediate extension fields by
adjoining roots of the given polynomial, swell of the degree of intermediate polynomial A;
can be limited, if we design the algorithm earefully, te n- N;_y at i—th repetition, where
h; and N;_; are given in Theorem 8. Although, in the worst case, N; increases to n! os
i reaches n, it is obviously practical to construct extension fields successively, when the
degree of the splitting ficld is relatively small.

New method presented in Algorithm 8 has an advantage over other methods as was
presented by Trager (1976) and Landau (1983). It requires neither trial seeking for integers
nor making choice on which root should be adjoined.

Since in the new methad, a primitive clement is determined flrst, the algorithm need
not toil for [actoring F over extension fields, but for factoring h;y, over ¢, which arc
obtained by calculations over Q[z]/ < F(z) >. So except for the growth of coefficients of

minimal polynomials, new method is more efficient than methods already proposed.



By using hi, we can also compute the minimal polynomial of a primitive element of
K.

Remark. There is the following correspondence between irreducible factors of gy,,) over
(? and sets consisting of ordered m-tuple of roots of F.

Let § be the set consisting of all roots of F, e, §= {tt1y ey tn ), and Ty be the sct
consisting of all ordered m-tuple of roots of F, i.e. Tj = 5-5---5 = 5™, The action
of G on T is defined naturally by (81, ..., m )9 = (8],...,5%,) for (F1,.... Bm) € To, and
g € G. For a subset B in Ty, B is said to be G-invariant if B = B for any g in G.
Then there is a one to one correspondence between irreducible factors of g,y over @) and
minimal G-invariant subsets of T,,. The correspondence is described by the following.

Let B be a minimal G-invariant subset of T,,. We define a polynomial hp by hp =
[Tiep(z— A —rd2—.o—r™ ' 3p), where § = (81, ..., ). Then it can be shown that hp
is a polvnomial over Q by the G-invariance of B. Moreover the minimality of B implies
that hp can not be factored over @, i.e. hp is irreducible over (). Conversely for an
irreducible factor k, let By be the subset consisting of all b such that b= (8,,..., fm) and
B, + ...+ r™13  is a root of h. Then the fact that & is a polynomial over @ implies
that B, is G-invariant, and the irreducibility of A implies the minimality of By. Hence an
irredueible factor h over () corresponds to a minhinal G-invariant subset .

For any minimal G-iuvariant subset I, the cardinality | B| is equal to the index of the
stabilizer G of G in G for an element of b of B, Le. |B| = |G : G;|, where the stabilizer
Gy = {g € G|b? = F}. Since degree hp = |B| by the previous correspondence, it follows
that degree hg = |G : G|, From this, hg is the minimal polynomial of a primitive element
of K if and only if G = 1 for b in B. Especially if m = n — 1 and components of b are all

distinct, then G = 1 and hp is the minimal polynomial of & prunitive element of I

4.3. Algorithms and Remarks

1t seems very difficult to compute minimal polyn,-::nﬂals_of primitive elements of split-
ting fields by existing computers, This is because, in the worst case, the degree of the
splitting field is n!, where n is the degree of a given polynomial to be split. But if n is
small or the degree of the splitting Held is much less than n!, there is a possibility that

the minimal polynomial of a primitive element can be computed.



Algorithm 7. ( The basic algorithm )
Input: F an irreducible polynomial over Q.

Qutput: ¢ the minimal polynomial of a primitive element of the splitting field.

n :=degree F;
V :=an upper bound of the absolute values of roots of F;
W :=an upper bound of the absolute values of inverses
of differences of any two distinet roots of F}
r:=an integer greater than 4V,
i:=1;
gy == F(z);
while 1 < n do
gy s=Normg(ayzalgii-1{(z = ri=lq)), where a is an arbitrary root of F;
factorize gi,) to irreducible factors in Q;
G :=an irreducible factors of g;; with the maximal degree;
Return G

Algorithm 8. ( The improved algorithm )
Input: F an irreducible polynomial over (2.

Qutput: G the minimal polynomial of a primitive element of the splitting field.

n :=degree F;

V :=an upper bound of the absolute values of roots of F;

W :=an upper bound of the absolute values of inverses of
differences of anyv two distinct roots of F

p r=an integer greater than 4VW,

Ny =1;

=1

hy = Fiz)

Ny i=n;

while N; # N,_; do
ti=14+1;
hiiy :=Normg(ayolhi-1(z — r*~ta)), where o is an arbitrary root of F;
factorize Ay;y to irreducible factors in @;
h; :=an irreducible factors of A with the maximal degree;
N; :=degree h;

G = hi_y;

Return &
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