ICOT Technical Report: TR-324

TR-324

Parallel Inference Machine Research
in FGCS Project

by
A. Goto

MNovember, 1987

©1987, ICOT

Mita Kaokusai Bldg. 21F (03) 456-3191~5
[(:D | 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technolog;

Parallel Inference Machine Research in FGCS Project

Atsubiro GOTO
Fourth Research Laboratory,
Institute for New Generation Computer Technology (ICOT) *

Abstract

The parallel inference machine {PIM) is the most important research target of the
FGCS project. The initial stage(1982-1984) mainly aimed to conduct the research and
development(f&D) of individual ecomponent technologies by studying parallel inference
mechanizms from various standpoints. PIM R&D in the initial stage revealed the structures
and characteristics important and effective for PIM. It also clarified many of the problems
associated with the development of more practical experimental systems, e.g. how to how
to start and stop user programe and how to perform input/output.

In the intermediate stage(1985-1988), both parallel hardware mechanisms and parallel
software systems have been studied based on the framework of logic programming. KL1,
the kernel language system of PIM, is designed based on a parallel logic language GHC, The
operating system for PIM is written in KL1. Realistic software research environments are
provided by connecling the processors developed as the personal sequential inference ma-
chines (PSls) to encourage kernel language implementation and parallel operating system
development,

The meost important policy of the PIM architecture is to make the best use of com-
munication locality in given applications. Therefore PIM is designed accepting parallel
sofltware requirements. In addition PIM hardware architecture is designed by accurnulat-
ing implementation technigues.

1 Introduction

The parallel inference machine PIM aims to be at the {rontier of parallel processing in artificial
intelligence { Al) application fields|7]. The principal aim of parallel processing is to increase the
execution performance so that users will be able to solve big application programs. Al machines
should have many additional features compared with conventional general-purpose machines.
Foi example, pattern matching operations are important in many Al applications. However,
it is insufficient to increase the efficiency of only the limited functions in Al application.
In other words, development of Al machines should strive not to make singular machines,
e.2. a comventional machine with pattern match accelerator, but to pursue more general and
powerful machines than conventional ones. AI machines should also cover the functions of

*Mita-Kokusai Building 21F., 428, Mita 1, Minatoku, Tokyo 108 JAPAN, CSNET:
gotoPicot. jplirelay.cs.net, ARPA: goto¥icot.nucpBeddie.mit.edu, UUCE: ihnpd'kddlablicat!zoto

_1—

conventional computers, because Al maclines are not simply game tree searching machines.
The personal sequential machine |PSI[33,14,27}) developed by ICOT 1s an example of Al
machines with general functions. The operating system of I'Sl, SIMPOS[24], is written in
the logic programmming language ESPf4] in which many application programs are also written.
SIMPOS includes general function such as a window system and local area network system.
Many built-in predicates are provided for not enly Al applications but also these SIMFPOS
functions. As the result, the total performance PSI including programming environments
increased.

Parallel machine architecture research to date has explored many new technologies[8], such
as interconnection networks[3], dataflow computing mechanisms, structure memory mecha-
nisms, and their hardware implementations[31]. Considering the integration ul technology
into a total and actnal system, however, there remain many unsolved problems. For example
most data structures used in Al programs are dynamic data structures which need efficient
memory management and garbage collection functions. It js important to manage processing
loads which may vary dynamically. In addition, process resource management is essential to
use the parallel machines as practical tools for Al research. It is difficult to solve such problems
in parallel processing only by discussing the machine architectures. These problems must be
solved by integrating parallel software and hardware architectures.

In the intermediate stage of the ICOT FGCS project, the research and development for
the parallel inference machine system is based on the framework of logic programining. The
kernel language system is designed, which includes a user-level language, a core language and a
machine level language. Parallel inference machine optimized to the kernel language is studied
and being developed. The parallel operating system is designed as self-confained operaling
system in the kernel language. To enhance the kernel language and the operating system
implementation, parallel machine workbenches are developed. This report gives an overview
of PIM research.

2 PIM Research Directions

2.1 Research issues
(1] Parallelism and Granularity

In designing parallel processing systems, architects must consider the trade-offs between the
effect of parallel processing and the overhead in performing parallel processing. Parallelism
must be discussed from the viewpoint of efficiency. In general-purpose parallel machines, e.g.
distributed MIMD machines, the overhead in parallel processing mainly consists of communi-
cation cost and synchronization cost between parallel processes, and some of communication
cost is caused by synchronization.

Considering the sequential processing of concurrent processes, performance will become
lower if many process switches occur. This is because the context switching cost is high
with relation to sequential execution cost. However, the execution within a same context is
efficient. Most of the synchronization and communication cost in parallel processing is the

same magnitude as such context switching cost. Therefore an ideal parallel machine has low
communication cost retaining the efficiency of each parallel process.

There are two primary directions to approach the above ideal architecture. One direc-
tion is to make parallel processing granularity small, down to elementary operations. Then
synchronization within small operations is treated by special hardware. An example is an
instruction-level dataflow machine[31]. However, each elementary operation suffers from syn-
chronization overhead even though such overhead is small. The other direction is to make each
granule large. Even though the synchronization cost may become larger than in the above case,
there is a possibility to make the best use of the concept of locality. We chose this direction
in the design of PIM architecture, The basic unit of parallel processing in PIM is one goal
reduction (see Figure 1). Moreover the PIM execution model tries to avoid synchronization
overhead by continnously executing several goal reductions.

[2] Loecality in architecture v.s. Locality in given program

The locality of architecture exists in any kind of hardware configuration. Considering data
transfer, the communication cost for register-to-register data transfer within a processor is low.
On the other hand, the cost of data transfer from memory to memory is high. As far as such
differences exist in hardware configurations, the parallel processing model should make best
use of locality at the hardware level. In other words, we have designed the PIM architecture
so that hardware locality can be easily used by parallel processing model as in Figure 3.

The execution of a given program can be assumed to be a set of processes. In the parallel
processing of PIM, each process consists of a set of goal reductions (See section 3.3 and 3.4).
Then some processes communicate with each other very often and some do not. Considering
recursively invoked goal reductions, most of goal context or environment is used by the next
goal reductions. Thus these recursively invoked goal reductions relate to each other strongly.
The locality in programs can be defined as a group of processes with a strong relationship.
Therefore, the execution of given programs should be divided into sets of processes or sub-
processes by their locality. Then these parts of a program should be mapped the locality of
architecture. In order to this, the followings should be considered:

* enhancing the parallelism and locality in given problems by the design of parallel algo-
rithms,

o expressing parallelism and locality in programming,
¢ providing the dynamic control mechanism for managing processor loads.

The locality in problems can be first specified in the algorithm design and programming.
In parallel programming, a given problem can be expressed as parallel processes which com-
municate with each other[22]. As for programmers, it is important to be able to express in
their programs what they want to solve. In addition to this, programmers can be expected
to take care of the locality in the program, even though in an abstract level. The parallel
algorithms and/or techniques for numeric processing have been studied in the literature[S].

However, parallel algorithms for Al applications have not been studied so much!. The PIM
development also aims to build a work bench for parallel algorithm research.

[3] Memory Management in PIM

Recently, so-called Al workstations have been developed[13). They have clarified the impor-
tance of memory management functions, such as garbage collectivn, This is because the actual
performance of such Al-oriented systems critically depends on garbage collection performance.

In parallel inference systems, the requirement of efficient memory management functions
is also important. First, we found that garbage collection should be done on each processor,
because global garbage collection requires enormous data communications in parallel computer
systems, Next, on-the-fly garbage collection is necessary because otherwise, if one processor
stops execution and starts garhage rollection, other processors can seldom communicate with
the garbage collecting processor. As the resuvlt, such a garbage collecting processor disturbs
all other processors. To realize efficient memory management furctions, it is necessary to cope
with this problem from various points of view.

In the parallel processing of PIM, the multiple reference bit MRB[5] method is used to man-
age reference pointers in data structures instead of a traditional reference counting method[31].
By using MRB, on-the-fiy garbage collection, as well as efficient data structure manipulation,

are implemented on PIM.

[4] Operating system for PIM

Operating systems play an important role in all computer systems, however operating systems
for parallel computers have not heen major research issues®. The principal functions of parallel
operating systems arc almost the same as those of conventional operating systems:

o hardware resource management

+ object program and data allocation and their management
* UseT PrOCOSs Mmanagoment
» input/output.

Each of these includes many difficult problems due to the nature of parallel processing envi-
ronments. For example, lo allocate processes and to balance loads of processor elements are
difficult problems. In addition, the loads should be balanced considering the locality in given
programs,

The PIM operating system, as well as a high-level system programming langnage A’ LM [34],
are being developed (See section 3.4). The system programming language is based on a paral-
lel logic programming language object-otiented programming features, as in Vulcan[10]. The
operating system is designed as a self-contained operating system, e.g. each function in the

15ee however [21]
?See however Logix, a parallel operating system implemented in FOP[23]

operating system is written in the system language. So, the operating system itself is executed
as a set of parallel processes which communicate with user processes through logical variables
in logie.

2.2 By Logic Programming Framework from Hardware to Users

One of our most important policies in the above research is to build up a total PIM sys-
tem hased on logic programming[6]. Al software can be implemented in logic programming,
which may include the basic Al functions such as meta-reasoning, learning and knowledge
acquisition[2). This Al software will act as a high-level human interface in the Fifth Genera-
tion Computer. So the logie programming framework is specified as the kernel language.

Interesting techniques such as partial evaluation, program transformation, and algorithmic
dehugging[19] are now being studied in the framework of logic programming. These techniques
will he effective in the design of an efficient compiler and the programming support system
for PIM. Operating systems and system software will alse play an important role to offer a
practical PIM system to users. The major roles of such operating systems are to manage
parallel processes and resources. The non-side-effect characteristics of logic programming is
necessary in describing this software for PIM. The clarity of logic programming also offers
PIM architects many benefits in the design of PIM architecture, such as on-the-fly garbage
collection design([5].

Finally, by designing both software and hardware architectures based on a logic program-
ming language, namely the kernel language, the system designers of PIM can easily look
through all levels of the PIM system in logic programming framework. This is an important

method to solve the so-called semnantic gop argument, i.e. application and implementation are
closer, therefore execution is faster.

3 The Kernel Language and its Role

3.1 What is necessary in the Kernel Language Design

This section describes the features that are required in the kernel language (this covers all
levels of PIM programming, i.e. from the machine language of PIM to the user langnage}.

First, the kernel langnage must be a general-purpose language by which programmers can
express important concepts in parallel programming, such as inter-process communication and
synchronization. The kernel language at the user level must also be a parallel language by na-
ture. It must not be similar to a conventional sequential language augmented with constructs
for parallelism. This is becaunse the inter-process communication and synchronization should
be treated by basic functions. The kernel language shonld have clear and simple semantics. Fi-
nally it must he an efficient language. It means that even small pmgraﬁs such as simple UNIX
utilities can be written in the kernel language and executed as efficiently as in a conventional
language like C,

In the initial stage(1982-1084), we first studied pure Prolog as a candidate for the PIM
kernel langnage(7]. However, it was difficult to extend pure Prolog to the kernel language sat-

isfying the above functions, Primarily we could not find how to describe the operating systems
which manages the overall processing of Al programs. Concurrent Prolog(CP}[20] was studied
next because with it the control of concurrent processes could be easily described[25). However,
CP has a complex language specification[28]. Moreover it seemed difficult to implement effi-
ciently. Through the experience of pure Prolog and CP, GHC(Guarded Horn Clauses)[29,30]
was born in ICOT. GHC satisfies both simplicity in language semantics and facilitates ex-
pression of parallelism. Languages like GIIC and CP have been called AND-parallel Logic
Programming Languages. In these kinds of languages, parallel processes are described as goals,
and synchronization and/or stream communication are defined by shared logical variables in
goals. By the above programming features, we can describe not only Al application programs
hut also the operating systems which control parallel processes.

3.2 Brief Introduction to GHC

GHC is a logic programming language enabling parallel programming. Clauses in GHC pro-
grams are selected in a pattern-driven manner as in Prolog, however unification of logieal
variables are performed in a single assignment manner. Parallel processing is described in
GHC programs as follows: programmers can describe various processes of flexible size in
GIC, communications among such processes are realized using logical variables, and GHC
has simple language principles for parallel process synchronization.

A GHC program is a finite set of guarded Horn clauses of the following form:

H:=Gy,....Gu|Bry-o oy Bo(m 2 0,n 2 0)

where H, G;'s, and B;'s are called the clause head, guard goals, and body goals, respectively.
The operator ‘|’ is called a commitment operator. The part of a cdause before *|” is called a
passive-parl {or guard), and the part after *|" is called an active-part (or body). A guarded
clanse with no head is a goal clause, as in Prolog. Execution of a GHC program proceeds by
reducing a given goal clause to the empty clause under the following rules®:

Fule 1: Any piece of unification in the guard of a clanse cannot instantiate a variable in the
caller.

Hule 2: Any piece of unification in the body of a clause cannot instantiate a variable in the
guard, until that clavse is selected for commitment,

Rule 3: When there are several clauses of the same head predicate (candidate clauses), the
clause whose guard is first succeeded is selected for commitment.

Rule 1 is used for synchronization. Rule 2 grarantees selection of one body for one inve-
cation, and Rule 3 can be regarded as a sequencing rule for Rule 2. Under the above rules,
each goal in a given goal clause can be reduced to new goals (or null) in parallel.

*These rules are informal. The formal rules can be found in [29,30].

Candidate Clauses Pool
Guard Body
pX) -G | X=falY], p(Y).
q(X) - X=[a[Y] | a(Y).
Guard Test Body Execution
Suspend Resume

Scheduler Goal Management

?- p(X), q(X).

Parallel Goal Pool

New Goals

Figure 1: Execution Feature of GHC

3.3 Execution Feature of GHC

It is natural to regard the processing mechanism of GHC as reduction[16]. Figure 1 shows
the execution feature of GHC. Assuming that there is a goal clause with two goals® p(X) and
q(X) in the goal-pool, the scheduler picks up one of the parallel goals in the goal-pool first.
Then its passive part is checked. Both goals may be picked up. If the execution of the guard
of p(X) ends successfully, its body is selected. Then the variable X is instantiated to [a]Y],
and a new goal p(¥') is generated. This new goal is returned to the goal-pool and registered
within a kind of goal managing structure.

If g(X) is executed before p(X), execution of g(X) is suspended. This is because the
unification of ¢(X') with a candidate clanse needs to instantiate the variable X. Such a goal,
waiting for variables to be instantiated, is called a suspended goalS. In the case of Figure 1,
the suspended-goal g(X) will be resumed by the execution of p(.X).

3.4 The Kernel Language of PIM: Current Status

The kernel langnage system called KLJ is now being devcloped by extending GHC. KL!is a
hierarchical language system consisting of KLI-U/ , KL1-C , and KL1-B s as shown in Figure 2.

*These goals are called parallel goals.
*It is natural to assume that these suspended goals are returned o the goal-pocl, waiting for the variable
instantiations.

EL1-U

. Pragmatic |

KL1-C -
Control

KL1-B

Figure 2: The KLl Language Systems

KL1-C

KL1-C works as a core in the KL language system. KLI-(was initially specified as flat-GHC.
Flat-GHC is a subset of GHC, whose guard goals are all built-in predicates. This restriction
makes the language implementation more efficient while keeping most of GHC's descriptive
power. Starting from flat-GHC, KL1-C has been extended, accepting the requirements from
the user language KL I-17, the machine language KLi-F , and the PIM operating system
PIMOS . These extensions are as follows.

First, KI.1-C has meta-logical functions defined in several built-in predicates. Meta-logical
functions, in general, enable KL programmers to handle the logical values of goals. In the
KIL! system, meta-logical functions are essential for the process resource management in Fl-
MOS .

Next, the user langunage KL1-1/is designed based on parallel objects[10,22]. Each abject
communicates with other objects by sending and receiving messages. Thus, the message merge
operation is used most frequently. KL/-{ has built-in predicates to increase the performance
of message merge operations. Although these predicates are implemented by the machine
language KL1-B , their semantics can be described in flat-GHC. In addition, KLI-C has the
built-in predicates for array operations implemented by KLJ1-B in the same way as the merge
operalions,

The KLI system processes extra-logical parameters which describe the control of parallel
goals in PIMOS | and which specily goal scheduling in aﬁplicatinn programs. For example,
goal scheduling priority can be specified in each KLI goal. By using this priority, the operating
system FPIMOS can be executed in higher priority then user programs. These exira-logical pa-
rameter values may depend the lower-level hardware construction such as the network topology
of PIM. Although these functions are not necessary for KL[logical program semantics, they
are lmportant for the actual PIM system with PIMOS . In the KL1 system, such extra-logical
features are called as pragma.

KLi1-U

High-level user langnages implemented in KLI are called KL1-U. Currently a system pro-
gramming langnage A'2{M [34] is being designed for PIMOS programmers as well as for large
application programs. The main features of A’ UM areits high-level abstractions based on pure
parallel objects. In addition, A'lM is characterized by its stream merging, name abstraction,
macro expansion, and modular programming support by class inheritance and method wrap.
ping. A prototype compiler from A' WM to KLI-C will be available soon.

KL1-B

KL1-B[11] is a virtual machine language interfacing the PIM hardware and KLI just as
WAM|32] interfaces Prolog. KLI-B can be regarded as a compiler target language of KL1-
[7and KL1-C'. KLI-B also includes some special functions to directly control and maintain
the PIM hardware.

To implement on-the-fly garbage collection, the multiple reference bit MRB[5] is main-
tained in each KLI-Binstruction. In addition, several garbage collection instructions are
implemented in KL1-B . The compiler analyzes and detects the chance when garbage cells can
be collected. The compiler then generates object programs which include garbage collection
instructions. The MRDB is also used to implement the efficient merge and array operations
mentioned previously,

Currently the first version of KL1-B[11] has been specified, and a prototype compiler
from the subset of KLI-C programs and emulators on conventional machines are available.
In an actual programming environment, most system programmers are expected to develop
using KL1-U, so the compiler from KLI-U (A'UM) to KL1-Bis very important. We are
now extending and tuning up the KLI-H specification. Then, the compiler from A'LIM to
KL1-B will be designed based on the prototype compilers.

4 PIMOS and Multi-PSI Systems

4.1 Parallel Operating System: PIMOS

PIM operating system called PIMOS is being designed, aiming for implementation on Multi-
P51 v.2[26) and on PIM-I (see 5.1). The basic policies in the design and development of
PIMOS are as follows. PIMOSis written completely in KL1, without side-effects. Even
the hardware interruption signals will be handled as messages in KL streams. PIMOS is
designed as a single operating system to be executed in parallel. It is not an aggregate of
individual operating systems such as network operating systems. From a users point of view,
the parallel inference systems will be seen as a single system even if it consists of many
hardware processors. In addition, PIMOS should be suitable for practical use in parallel
algorithm research. PIMOS is developed not only for an experimental system but also for a
research tool to the final stage of FGCS project.

Currently the PIMOS development support system, PDSS, is implemented on UNIX ma-
chines. The PDSS system is a sequential KLJ-B emulator with a simple user interface, on

9.

which PIMOS functions are tested. Then the PIMOS development on an actual paralle]l sys-
tem, Multi-PST v.2 , will start in the beginning of next year.

4.2 Multi-PSI Systems

Workbenches for studying paraliel software systems for PIM are developed. Multi-P5I v.21s
designed based on the experience of Multi-FSI v.1 (7], six loosely coupled PSI-Imachines.
Muiti-P5T v.2 includes up to 64 processing elements based on PSI-IT [15]. These processors
are connected by a two-dimensional mesh-like packet switching network. KLI-B is interpreted
in microcode on each processing eloment.

The following issues have heen studied for the parallel implementation of KL :

e how to locally collect garbage cells on each processor (global garbage collection on a
loosely coupled multiprocessor is very costly)

s how to distribute processing load(i.e. KLI goals), and how to detect the end of execution[8],
how to decrease the repeated copying of large data structures,

s how to perform inter-processor unification and for stream communication

+ how to interface with PIMOS written in KLI framework.

The first Multi-PST v.2 hardware will be available at the end of 1987, and the second
one will be in the middle of 1988. The KLI system will be implemented on Multi-PSI v.2
followed by PIMOS implementation. To enable many researcher to join PIMOS development,
a simulator of Multi-PST v.£ called Pseudo Multi-PSIis also being developed on PSI-IT . About
100 PSI-IIsare used in whole [ICOT project. Pseudo multi-PSI will be widely used not only
for PIMOS development but also for parallel applications.

5 PIM-1: Target Pilot Machine in Intermediate Stage

5.1 Owverview of PIM-|

PIM-1, the fist PIM to be developed, is expected to have 100 processing elements. The target
processor performance is 200 to 500 KRPS® for KL , so that 10 to 20 MRPS is expected as
the total performance for applications within actual environments, FIM-I has a hierarchical
structure with a closter concept (Figure 3). Each cluster consists of eight or more processors
(PE) which communicate through shared memory (SM) over a common bus. The processor
element {PE) is now being designed with a tag architecture and the hardware instruction set
optimized to KLI-B . PEs within each cluster share one address space. Therefore each PE
can speedily communicate by reading/writing shared memory.

Focusing on KL1 parallel execution in each cluster, quick and exclusive accesses to shared
data are the key issue. Thus, cache memories are important elements in providing quick

SRPS: KL1 EDI]. reduction per second

Inter-cluster Network

N R Ly e | .

PE, PE, cc || :

cache cache cache -1. ‘:
Hus : E
SM i
1

_ Cluster; Clusterg Clusti.;..:l.:; E-:h_ls_t;l:;

PE : Processor Element
SM : Shared Memory
CC : Cluster Controller

Figire 3: PIM-1 Overview

data access. Several cache protocols have been proposed so far, each of which aims to solve
the so-called cache coherence problem([1). Each PE in PIM-I has a coherent cache memory
designed specifically for ALI execution[12]. These cache memories increase the efficiency of
local execution. In addition, they offer a high speed communication path within the cluster.
On the other hand, it is necessary to provide an efficient mechanism to exclusively access
shared memory. In a PIM-! cluster, exclusive memory accesses can be obtained at small cost
by using the cache block status of coherent cache memory[12].

The clusters are connected by a switching network. Because each cluster has its own
address space, inter-cluster parallel processing is performed by communicating message pack-
ets with address transformation. A cluster controller on each cluster manages the message
communications between clusters.

With the above hardware configuration, the PIM-1 architecture will offer several kinds of
hardware locality, namely local execution on each PE, parallel execution within each cluster,
and inter-cluster paralle] execution.

5.2 Parallel processing feature

Two kinds of KLI parallel execution models have been studied for PIM-1: the message-
oriented model(9,26] for inter-cluster parallel execution and the shared heap model{17] for
the tightly-coupled multiple processars in each PIM-J cluster. Both execution models are
introduced in the PIM-f global architecturs.

Shared heap model

The following data/control structures are used in KL1 goal reduction. Parallel KL poals
are represented by goal-records and their environments. Goal-records includes atomic goal
arguments or pointers to their environments cousisting of logical variable cells or structures.
The reducible goal-records are stored as a ready-quene. Clauses in KL programs are compiled
into KLI1-B . Each processor degquenes a goal-record from a ready queue, then performs a goal
reduction by executing KL J-F instructions, accessing to the goal environment. Some goals are
waiting for the instantiated values of variable cells in order to synchronize with other parallel
goals, Such goal-records are bind-hooked with the variable cells by suspension-records. The
shoen-records form a tree-like structure, whose leaves are the goal records, to manage their
logical results (success/failure) and process resources as mentioned later.

In the PIM-1 cluster, a K11 program is executed using the following shared heap model[17].
Even though PEs can accese physical shared memory within a cluster, the parallel execution
mechanism should use local data/control structures as much as possible. Therefore, KL1 goals
and control structures are examined first to determine they can be treated as local data
structures. We decided to use a local ready queue on each processor to store goal-records. On
the other hand, goal environments, suspension-records and shoen-records are stored in shared
heap. Then, an exclusive memory access is used when a processor instantiates an unbound
logical variable. However, it is not necessary to access exclusively when each processor allocates
& new dala structure even though they are shared between processors. This is hecause each
processor has its own free memory area

The parallel processed granules are KL goal reductions in PIM-f. However, several
repeated goal reductions have strong dependency. Therefare such goal reductions should be
performed within one PE as a sequence, e.g. by depth-first scheduling. The local ready queue
on each processor also enables the depth-first scheduling. On the other hand, processing
loads are balanced by distributing goal-records. The poal distribution is initiated by an idle
processor. The idle processor sets a global flag to request a goal distribution. to other busy
processors. Then a busy processor, which first finds the flag, sends a goal-record to the idle
PTOCEESOT,

A software simulator on the sequential machine was developed to evaluate the shared
heap model{17]. A parallel emulator is also implemented on an actual multiprocessor, Hal-
ance 21000{18). The shared heap model is being evaluated in detail on both emulators.

Message oriented model

Inter-cluster parallel processing is performed by the message oriented model, which is designed
on Multi- P51 v.2 . Each cluster has its own address space. Therefore, one processor in Multi-
PEI .2 corresponds to one cluster in PIM-7 . .

VWhen one processor tries to access a variable shared by another goal in a different cluster,
& message to ask its value is sent between clusters through the inter-cluster network. Because
each cluster has its own address space, it is necessary to provide address transformation tables
to manage outgoing and incoming pointers on each cluster. By using such tables, it becomes

3=

possible to implement dynamic memory management functions.

Parallel geal management

Both in intra-cluster and inter-cluster parallel processing, it is important to manage parallel
goals which are distributed and then terminated dynamically. In addition, PIMOS tries to
avoid resource exhaustion by never-ending goal reductions or illegal goal reductions. Therefore
the parallel execution mechanism in PIM-1 has the following functions.

A tree-like data structure is introduced to manage parallel goals[9]. The nodes of this tree
structure are shoen” or sato-oye® nodes. Every group of goals, corresponding to user jobs or
sub-jobs, belongs to each shoen node. Thus, a shoen node may have Jower leval shoen nodes.
On the other hand, currently used processing resources are measured by both the number of
goal reductions and the amount of memory usage. Then the used computing resonrces of user
jobs or sub-jobs are managed by the shoen nodes. The sato-oya nodes are used to handle
distributed goals over clusters which belong to one shoen node. In addition, shoen and sato-
oya nodes have special control streams to inform exceptional signals, such as a goal reduction
failure, to upper-level shoen nodes. The goals are scheduled by priority so that PIMOS goals
can be invoked as soon as special events occur. This priority scheduling can also be used
within user programs.

6 Conclusion

Farallel processing researchers have a great interest in the essence of computing which is
revealed in the research process of parallel processing. This report gives a research and devel-
opment overview and the current research status of parallel inference machines in ICOT. To
extend the AT application field, more general and more powerful computers, such as the PIM
are needed. The logic programming framework plays an important role in the PIM research.
The research issues in both parallel hardware mechanisms and parallel software systems are
studied based on the logic programming framework. Efforts to integrate them into a total
system are essential in the PIM research.

Acknowledgement

The research and development described in this article are being conducted mainly by the
members of the PIM, multi-PSI and KL1 groups both in the [ICOT Research Center and the
participating companies. I wish to thank to Dr. Evan Tick for his fruitful comments. I also
wish to thank to ICOT Director Dr. Kazuhiro Fuchi and the chief of the fourth research
section Dr. Shunich Uchida for valuable suggestions and guidance.

"Shoen is 2 Japanese word which means a minor. In [9], a shoen node is called a metacall node
®Sato-oyu is a Japanese word which means a foster parent

13

References

11] P. Bitar and A. M. Despain. Multiprocessor cache synchronization. In Proc. of the 135th
Annual International Symposium on Computer Architecture, June 1986,

2] K.A. Bowen. Meta-level programming and knowledge representation. New Generation
Computing, OFMSHA Ltd. and Springer- Verlag, 3{4):350-384, 1985.

[3] G. Broomell and J.R. Heath. Classification categories and historical development of
circuit switching topologies. ACM Computing Surveys, 15(2):95-133, 1983,

f4] T. Chikayama. Unique features of ESP. In Proc. of the International Conference on Fifth
(reneration COmpuler Systems, Tokyo, 19584,

[5] T. Chikayama and Y. Kimura. Multiple reference management in flat ghe. In Proceed-
ings of the Fourth International Conference on Logic Programming, 1987, Also in 1COT
Technical Report, TR-248.

[6] K. uchi and K. Furukawa. The role of logic programming in the fifth generation computer
project. New (eneration Computing, OHMSHA Ltd. and Springer- Verlag, 1(5):3-28,
18987.

{71 A. Goto and §. Uchida. Toward a High Performance Parallel Inference Machine -The In-
termediate Stage Plan of PIM- TR 201, ICOT, 1986. Also in Future Parallel Computers,
LNCS 272, Springer-Verlag,

(8] K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing. McGraw-Hill,
1984.

[9] N. Ichiyoshi, T. Miyazaki, and K. Taki. A Flat GHC Implementation on the Multi-PSI.
Technical Report, ICOT, 1986. To appear as I[COT Technical Report.

(10] K. Kahn and et al. Vulecan: Logical Concurrent Objects. Technical Report, Xerox Palo
Alto Research Center, 1986,

[11] Y. Kimura and T. Chikayama. An abstract KL1 machine and its instruction set. In

Proceedings of the 1987 Symposium on Logic Programming, 1987, Also in ICOT Technical
Report TH-246.

[12] A. Matsumoto and et.al. Locally parallel cache optimized for KL1 erecution. TR, ICOT,
14987, Also submitted for ISCA 1688,

[13] D.A. Moon. Architecture of the Symbolics 3600, In Proceedings of the 12th Symposium
of Computer Architecture, 1985,

[14] K. Nakajima, M. Yokota, K. Taki, 5. Uchida, H. Nishikawa, A. Yamamoto, and M. Mitui.
Evaluation of P5SI Micro-Interpreter. In COMPCON Spring 86, pages 173-177, IEEE
Computer Society, San Francisco, March 1986,

f15] K. Nakashima and H. Nakajima. Hardware architecture of the sequential inference ma-
chine: PSI-IL In Proceedings of 1987 Symposium on Logic Programming, pages 104-113,
San Francisco, 1987.

[16] J.A. Robinson. A machine-oriented logic based on resolution principle. Journal of ACM,
12(1):23-41, 1965.

[17] M. Sato, A, Goto, and et al. K11 Execution Model for PIM Cluster with Shared Memory,
In Proceedings of the Fourth International Conference on Logic Programming, 1987. Also
in ICOT Technical Report.

[18] Ine. Sequent Computer Systems. Belance 3000/21000 Technical Summary.
(19] E.Y. Shapiro. Algorithmic Prograrn Debugging, MIT Press, 1083,
[20] E.Y. Shapiro. A subset of Concurrent Prolog and Its Interpreter. TR (03, ICOT, 1983.

(21] E.Y. Shapiro. Systoric programming: a paradigm of parallel processing. In Proceedings
of the Internaltional Conference on Fifthe Generation Computer Sytems, pages 458-470,
1934,

[22] E.Y. Shapiro and A, Takeuchi. Object oriented programming in Concurrent Prolog. New
Generation Computing, OHMSHA Ltd. and Springer- Verlag, 1{1):25-48, 1983,

(23] W. Silverman and et al. The Logiz Sytem User Manual Technical Report CS-21, Weiz-
mann Institute of Science, 1986.

[24] S. Takagi, T. Yokoi, S. Uchida, T. Kurokawa, T. Hattori, T. Chikayama, K. Sakai, and J.
Tsuji. Overall design of SIMPOS. In Proc. of the Second International Logie Prograrmming
Conference, Uppsala, 19584,

[25] A. Takeuchi and K. Furnkawa. Bounded buffer communication in Concurrent Prolog,
New Generation Computing, OHMSHA Ltd. and Springer- Verlag, 3(4):359-384, 1985.

[26] K. Taki. The parallel software research and development tool : Multi-PSI system. In
France-Japan Artificial Intelligence and Computer Science Symposium 86, October 1856.

[27] K. Taki and et al. Hardware Design and Implementation of the Personal Sequential
Inference Machine (PSI). In Proc. of the International Conference on Fifth Generation
Computer Systems, Tokyo, 1984,

(28] K. Ueda. Concurrent I'rolog Re-Ezamined. TR 102, ICOT, 1985.
[29] K. Ueda. (Guarded Horn Clauses. TR 103, ICOT, 1985.

[30] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Language with the con-
cept of a Guard. TR 208, ICOT, 1986. (Also to appear in Programming of Future
Generation Compnters, North-Holland, Amsterdam, 1987.).

_15.

[31] A.H. Veen. Dataflow machine architecture. ACM Computing Surveys, 18(4):365-396,
December 1986,

(32} D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, Artificial Intel-
ligence Center, SRI, 1983,

[33] M. Yokota and et al. A Microprogrammed Interpreter for the Personal Sequential Infer-
ence Machine. In Proe. of the International Conference on Fifth (Feneration Computer
Systems, Tokyo, 1984,

[34] K. Yoshida and T. Chikavama. A'lM - Paerallel Object- Oriented Language upon KLI -
TR 308, ICOT, 1987.

—lﬁ—

