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Abstract

Under the circumstances in which it is always possible to introduce new axioms, any
reasoning which jumps to conclusions will be foreed to have a non-monotonic property to
maintain consistency. In the real world, induction and analogy as well as common sense
reasoning are no exceptions.

This paper attempts to formalize such conjectural reasoning processes uniformly as non-
monotonic reasoning. For this purpose, the circumscription [6,7] technique seems to be most
hopeful, especially formula circumseription [7]. Unfortunately, formula circumseription is too
general. This ie shown by presenting an instance which seems too general

This paper proposes a logical framework, called ascription, for the above purpose.
Ascription is realized using the circumscription technique, based on predicate substitution,
and its preservation of consistency is guaranteed. Its formalization is not one which makes
it possible to perform such conjectural reasoning mechanically, but one which is expected to

elarify luture research.

. Intraduction

Computer systems with capabilities of deductive inference will release man from the
troublesome task of procedural programming and be able to solve problems which are given
only declaratively, However, since deductive inference is the deduction c.rf properties of
individuals from given general knowledge, it cannot provide effective consequences about
facts that are unexpected and not included in general knowledge. This means that

deductive inference cannot make a significant contribution to solving our software crisis



We should remember that unexpected facts always exist and that deductive inference is
helpless with respect to them. One promising approach is reasoning by relativizing and
generalizing acquired knowledge so that it can be applied to unexpected circumstances.

Research related to this kind of reasoning has been done by McCarthy. Circumscription
16,71 is a form of conjectural reasoning done by humans and based on the closed-world
assumption. This work is important and interesting, but in the case of only minimizing the
extension of some predicate symbols, it seems that it can explain only a small part of
human flexible reasoning and that there still remain some very important aspects which
we should not ignore. These are analogy, induction and other reasoning processes which
strongly relativize and generalize knowledge. Such regsoning is closely related to human
learning capabilities. We have studied reasoning from this point of view and propose a
logical framework, called ascription, which is a form of such conjectural reasoning.
Intuitively, ascription represents the flexible notion that the interpretation of a certain
property K lies between two extremes; one, similar to predicate circumseription, that the
only demonstrated positive instances of K are all instances satisfyving K. and the other,
that all but the demonstrated negative instances satisfy K. More precisely, we will show
this as follows.

Ascription is based on the following notion: if any model of a set of formula, I', can be
transformed into an other model of I" in which oll the entities satisfying a property, K, also
satisfy @ property, W, by reducing the extension of K to the intersection of the extensions of K
and ¥, and any model of I can also be transformed into another model of I' in which all
the entities not satisfying K also do not satisfy ¥ by reducing the extension of K io the
union of the extensions of K and ¥, it may well be considered that K is equivalent lo W,
That is, when all the demonstrated positive instances of K are positive instances of ¥, and
similarly all the demonstrated negative instances of K are negalive instances of ¥, we can

assume the equivalence of K and W.

2, To Formalize Various Types of Conjectural Reasoning
The original concept of circumseription [6] was like the concept of Occam’s razor, in that
the only entities which are forced to have a certain property by given knowledge are all
those that have the property. This concept is very clear and suited to various knowledge
- 1ing fields which are based on the closed-world assumption and which have succeeded
in practice. However, when we consider a computer system as an intelligent tool, something
like a thinking or learning machine, this concept is weak, because such a machine needs

the ability to generalize some properties beyond what it is forced to be by some given
knowledge.



However, in formalizing conjectural reasoning which is needed to generalize propertics,
the circumscription technique has many merits. First, circumscription is a form of non
monotonic reasoning. Under the circumstances in which it is always possible to introduce
new axioms, any reasoning which jumps to eonclusions will be forced Lo have a non-
monotonic property as far as it is based on logic. Second, circumseription is given a model-
theoretic accounl, in addition to its proofitheoretic formulation. It can give clear
comprehension and insight. Third, the circumseription technique involves predicate
variables in its formulation. It becomes, of course, a fault of the technigue in that it
becomes difficult to implement the reasoning by circumseription, but it can set a logical
part of the learning mechanism apart from the extra-logical parls which control the
reasoning processes for their efficiency or human preference, for example, some heuristics in
learning programs. As a result, problems to be solved will be exposed gradually as extra-
logical parts change to logical parts. Therefore, the eircumseription technique seems to be
the most hopeful to formalize various conjectural reasoning uniformly. Here, it still remains
to clarify the circumseription technique. We use this term as a formalizing technigue using
predicate substitution so thal adding certain instances of its formulation to given axioms
never violates consistency,

Predicate circumscription, as Etherington et al. [1] shows, is not sufficient for realizing
default reasoning, and the previpus version of circumsecription must be extended to more
general version, named formula circumseription [T]. Using formula cireumseription, we
cireumscribe a wil, while using predicate circumsecription, we eireumscribe a predicate.
Formula circumscription may be sufficient for the purpose, but unfortunately it is too

general. First of all, we show this.

Theorem 1.7 A iz a formula, P is a tuple of predicate symbols, @ is a tuple of predicates
and F is a wif [P] means a substitution of @ for P (our notation will he stated more
precisely in seetion 6),

Formula eireumseription,

A[F] A YD AMR] A IV (Ex)[P] 2 Eix)] O [Vx.(E(x)[®] = E(x)]] e (1)

(modifying MeCarthy's terminology), subsumes the following axiom.

T This theorem was inspired by a private communication with Etheringlon.



ALP] A Al®] O ¥x ((Plx) = $(x)l[P] = (Pix) = $(x}) ) e (2]

What Theorem 1 means is clearer when @ does not contain any predicates in P. In this
case, (P(x) = M(=xhP] is (P(x) = D(x)), that is, it is true. (1) is therefore simplified to

A[P] A Al D Yx(Plx) = $(x)) ), e (3)

(3) is too general, because {(3) says that any predicates which can be the substitutes for P
are equivalent to P,

Example 1. (reviewing McCarthy's blocks world in {8])
In (3), let P be Block and A be

{ Block(a) v Block(h) }. — 4]

Let us substitute ®{x) = (x=a), in which Block doet not occur. This gives

Wxl Blockix) = (x=a) ) - (8)

Again, this means that a concept of ‘Block’ can be defined without being concerned
whelher a is a block or not.

This paper proposes a more specific formulation using the circumseription technique. This
formulation avoids reasoning by the somewhat foreible means seen in Example 1, and is
ulso guaranteed to preserve consistency, which circumseription does not in general. The

more specific formulation formalizes various types of conjectural reasoning uniformly.

3. Ascription Schema

In this paper we write t instead of a tuple of finite terms for brevity. For example, a
formula, A(x), stands for Aixy,-x) and the quantifier ¥x stands for Vx;.--.¥xy. By a finite
get of formulas {Fy, Fo, - , Ful. we mean a formula FeAFeA--AF 5, where Fy® (i=1,---,m)
is a closed formula obtained from Fy by prefixing ¥ with respect to all of the free variables
in F,

By n-ary predicate, we meun an cxpression, Ax.(A(x)), where x is a tuple of n variables
and Alx) is a formula in which x vccurs free and no other variables oeceur free. That is, a
predicate is obtained from a fermula by A-abstracting all of the free variables in it

let K be a tuple of distinct predicate symbols, K1,--Kn, and W a tuple of predieates,
W .- Wn, where Ki and Wi have the same arity. [W/K] means a substitution, representing



(P1/K1,- Wn/Kn] and usually abbreviated |[W)], We write A(x)|W/K] for the result of
replacing simultaneously each oecurrence Ki in A(x) by Wi Similarly, [Ax.(¥ix))] stands for
P (g d), dmg (Wolmg )M, and Ve Kix) = W(x) ) stands for V=i Ki(x;) = Wy(=;)
Whe A [ Kplxg) = Wolxg) ) (where Ve Kilx) = Wilx)) ) means Y { Ki(x) 2 Wiix) ) A
V. Kjl=g) o Wilmg) )

Definition | Ascription schema ],
Let K be a tuple of distinet predicate symbols, and let T be a set of formulas of first
order logic containing all predicates in K. The ascription of K to W in T[K| is the schema

IAx(Kl{z) A Pix))] A Ve {Wix) = Wix)[Ae (K2} W (x)}])
A Tlae (K= V W) A Ve (Wix) = W) Ax (Kix)V P(x))] )
2 Vi Kix) = Wix} ). e ()

Here & and V' represent respectively A and v, or vy and A in each corresponding
predicate. ¥ is a tuple of predicates which have the same arity as the eorresponding
pradicates in K. We call the formula on the left side of thiz sehema the ascribable
condifion, written As(T ,K~W), and especially V= (¥(x) = Wix)|Ax.(K{x)A =) A Y (W(x)
= Wixz)[A=x.(K(x)"V Wix))]|} is called the fixed substitule condition.

Il Axi(Kil=i)AWi(xi)),-] expresses the condition that all the tuples of entities thai can
be shown to have a certain property, Ki, by reasoning from certain facts, I', can also he
shown to have a certain property, Wi, Tl Axi(Ki(xih/Wilxil), -] i, as far as Ki is
concerned, equivalent to the result of replacing —Ki by Axi(—Ki(=i)N—Wilxi)). Mamely,
Il Ami (Kil =iy Wi(xi)), -] expresses the condition that all the tuples of entities that ean be
shown not to have a property, Ki, can also be shown not to have a certain property, Wi
Ve(Wix} = Wiz)iz.(Ki{x)&AW(xN]) and Ve (Wix) = Pix)[i=(Kix)V Pix))]) express thal each
extension of Wi cannot be changed by such changes in K. When we can show thal
As(lLK~%), namely, the conjunction of these formulas, is true, (8) lets us conclude the
formula on the right side, namely that Ki is equivalent to ¥i.

It is not permitted to add YW te T. We must use ascription in the following way.

When the formula, p, follows from a set of formulas, T, by a complele deduction system
of first order logic, we write I' = p. Let Iy {Kr~Wh} be Ty, U { As(Ty. Kb~%h) 2 vx
Kh(x) = Whix) )} (h = 1,2,-) and Iy be T Tet Iy be [pg{Kb~Wh}  written
MKW Kh~Wh} If a finite number n exists sueh that I, p, we write I
—

|~{k'~91;;Ko~ sy p and usually abbreviate this as I

Example 1 (continued)



In (6}, let K he Block and T be

{ Block{a} v Block(b) }. s (T

Let us substitute Wix) = {(x=g). Then from

[[Ax.{Blockix)™{x=a))] = Block(a) e {B)

[z (Blockixhyix=a)l] = (x=al v T e (D)

¥x.((x=a) = (x =a)[Ax.(Block(x)A{x=a)}]) = true e (100
Yx.((x=a) = (x=a)[Ax.(Blockixh/(x=a)}]) = true e {11)
(6 mives

Block{a) 3 ¥x.[ Block(x) = (x=a) ). e (12)

Moreover, in [{Block~Ax.(x=a)} we ascribe ‘Block’ to Ax(x=b). In a similar way, we
obtain

MBlock~kx.(x =a); Block~kx.(x=h)}
= (Block(a} v Block(h))
A Block(a) O Yx.( Block(x) = {(x=ga) )
A Block(a) O ¥x.( Blockix) = (x=h) ). = (13)

Therelore, this gives al most
I' |~ %x( Block(x) = {x=a) ) v ¥x.( Block(x) = (x=b) ). = {14)
Going back to (B), let us discuss the fixed substitute condition,
Ya{ Wix) = (Falz Kx)AWEN] ) A Yol Yx = (Yx){Ax(Kix)V ¥(x))] ). This
condition guarantees that ascription preserves consistency, while cireumseription which has
no precondition corresponding to this does not generally preserve it. Details on consistency

are considered more generally in a later gection.

We define a class of predicates, named well-candidates, which satisfy this condition,

Definition { well-candidate 1
W iz called a well-candidate of K in ' i the fixed substitute condition is satisfied.

That is, if ¥ is restricted to a well-candidate of K then ascription becomes equivalent to

NMix(Ki=)A W) A DAz (Kix WY Wix))] o ¥x{ Kix) = Wi{x) ). e (16}



Definition | well-candidate form I 1.

Let K be a n-tuple of predicates, K1, Kn, where Ki is a predicate symbol. W, n-tuples of
predicates Wi (corresponding to Ki), is the well-candidate form I of K if each Wi can be
transformed into expressiong of the form A= (Ki(=)A\Giiz)Hi(=x)), where Gi and Hi are

predicates in which no predicate symbeols in K ocecur.

Note that each of the forms, H, Ax(K{x)H(x)} and A= (K{x)"G(x)), iz a well-candidate of

K. In example 1, Ax{x=al" is a well-candidate of ‘Block’.

Prop. 1.

Let W be well-candidate form 1 of K, then W is a well-candidate of K in any axiom,
namely,

F Vel Wix) = (YA (Kix)AWix))] ) A Ve { Wix) = (Wix)iie (KWl 1. - (16)

4. Application of Ascription to Various Types of Conjectural Reasoning

In this section, aseription is applied to various types of reasoning. As stated at the
beginning of this paper, ascription represents the flexible notion that the interpretation of a
certain property, K, will lie between the extremes of the two First we give these extremes.
They will be useful in understanding the flexibility of the properties of ascription. Then we
look over other two types of reasoning, analogy and induction. Ascription is also considered
as & form of some kinds of analogy and induction. Finally, ascription is applied to default

reasoning.

4.1 HReasoning in the Extremes, Circumseription and Inscription

Ascription subsumes predicate circumseription in  the case where an instanee of
circumscription which is obtained by substituting a predicate satisfying the fixed substitute
condition for a predicate variable in it is added to given axioms,

We can derive two significant products [rom ascription. One product corresponds to
predicate circumseription, which formalizes conjectural reasoning based on the closed-world
assumption. The other corresponds to the one called inseription in this paper (both
circumseription and inseription are instances of formula ecircumseription, but here, in
wntrast to predicate circumseription, we call inscription an axiom on the opposite side of
predicate circumscription), which formalizes conjectural reasoning such that entities have

any properties which they are nol denied to have.



Prop. 2. Both formulas, (17), (18} are derived from T U { As(FK-%) D Vx.( Kix) = ¥ix) }},

namely,

U~ -~y
Ve {Wixl 2 Kixll A W] A Ve (Pix) = (P(x)Y]) 2 Ve (Kix) = ¥{x)) wee (17)
A Ve (Hix) D Wix)) A TTW] A Ve (W) = (W) W) DVe (W) = Kix)), - (18)

(17} is an instance of ecircumseription with the fixed substitute condition and (18} iz an
instance of inscription with the fixed substitute condition. If we restrict ¥ to well-

candidates of K, {17} is alse en irstance of predieate eircumseription.
Example 2. Various interesting examples of circumscription are given in [6]. So an
example of inscription is shown here. Let T" be “If he is human, he is animate. And if he is

human, he can think.” This may be described as

{ ¥x.( Human(X) O Animate(X) }, ¥X.[ Human(x) 2 CanThink(x} ) }. e (19)

We ascribe ‘Human' to ‘Ax{Animate(x) A CanThink(x))' which is a well-candidate of

‘Human', Then,

¥x.({ Human(X) O Animate(%) A CanThink(X) }
=T, e (20)

MlAx (Animate(x) A CanThink{x))]
- vi.( Animate(x) A CanThink{x} 2 Animate(x) )
M WX Animate(X) A CanThink(x) 2 CanThink(x} ), < (210
so this inscription gives
vx.{ Human(X) = Animate(X) /A CanThink(X) ). wen (22)
This result gays * Only human is animaic and able to think
4.2. Analogical Inference

Ascription is & form of a certain class of analogy. According to the notion of ascription,

analogy is considered as foilows. When a resembles b, where a and b are tuples of enlities,



we consider a and b to have some common property W. Now let a have some property K
relevant to W in that K and ¥ satisfy the ascribable condition. Then we can infer that b
also has the property K. Here, satisfying the ascribable condition implies at least that we
do not know the fact that b does not have the property K.

In most cases of formalization of analogy, the treatment of resemblance is unsatisfactory.
Resemblance is regarded as an atomie relation which cannot be explained. We may say “a
is like b” and "b is like ", but likeness may be used in different senses, If we infer *a is
like ¢ using a rule like modus ponens, the inference is against our intuition in general
Therefore, to formalize analogy we should not ignore the common properties on the basis of
which we consider that “a is like b”. Moreover, in the case of analogizing KE(b) from the
fact { W(a), W(b}, K{a}}, the relation between K and W should not be ignored, and K and
W must satisfy some condition. Let us take an example. A man is like a firework in that
hoth have short lives. Yet we ean never infer that a firework can love someone like a man.
If the condition that whatever we know to be capable of loving someone has a short life is
satisfied, then the inference that a firework can love someone like a man may be justified.
If a further condition, that whatever we know to be incapable of loving someone has a long
life or is immortal, is satisfied, then it may be even more secure. The ascribable condition

requires that these two conditions must be satisfiad.

Example 3. Let I' be “Hector is animate and would be sad il he were burnt, and if

Brutus were burnt, he would be sad, too.” Namely,

I'={Burnt(hector) DSad(hector), Animate(hector),
Burnt{brutus) 2Sad(brutus) 1 e (23)

Clearly, I' FAg(T Animate~Ax.(Burnt(x)2Sad(x))) , therefore

Yx.((Burnt(x) DSad(x)) = Animate(x)). {Eaﬂ
This says that whoever is sad when burnt is animate. Therefore,

I' |~ Animate(brutus). e (25)

Namely, the reasoning, “If Hector and Brutus are burnt then both are sad, and to this
cxtent Hector and Brutus are like each other. Now, Hector is animate so Brutus may also

be s0”, is then a kind of analogy.

4.3. Inductive Inference



Readers may have already noticed that in a theory with the ascription schema it is

possible to reason inductively.

Example 4. Let I consist of some inslances.

I' = { Ruddy-faced{matsumoto-san,oneday),
Ruddy-faced{matsumoto-zan today),
Cold(oneday), Cold(teday) } e (26)

Then I +As(T,Cold~hx Ruddy-faced{matsumoto-san,x)), therefore

I' |~ ¥x.{ Coldix) = Ruddy-faced(matsumoto-san,x) ). =e (2T

This means that if the system knows it is cold, then it guesses Matsumoto-san will be
ruddy-faced, and if he is ruddyfaced, then it expects a cold day. Moreover, if we add the
new predicate ‘ell' which expresses the property of the whole domain, as proposed by
McCarthy [8], and let the new extended theory be I" = T U {Vx.all(x)}, then I"
+ Asil",all~Ax.Ruddy faced(matsumoto-san,x}). So

I" |~ ¥x.( allix} = Ruddy-facedimatsumoto-san,x} ), s (28)

and therefore,

I" |~ ¥x( Ruddy-faced(matsumoto-san,x} ). s (28)

This means that if the system does not know of a day when Matsumoto-san was not ruddy-

faced, then it may guess that he iz always ruddy-faced.

4.4 Default Reasoning
Let us apply ascription to default reasoning.

Example 5. McCarthy proposed a predicate 'ab’ (7], meaning abnormality, to bhandle
common sense reasoning. Here, ‘Abn’ is used in a similar sense. Let ' be as follows. We
‘o - now whether a bird Tweety can fly or not.

I'={ ¥x.(Bird{x) A = Abp(x) 2 Fly(x)),
¥x.(Penguinix} D Abyi(x)},
Wx (Penguin{x) A —Abalx) 2 =Flylx),
Bird(Tweety) } = (30)

-10-



Now we assume that Tweety is as normal ag possible, that is we try to minimize its
abnormality. Minimizing abnormality corresponds to supplementing lack of knowledge with
common sense knowledge. We choose the following candidates corresponding to Ab;, Abs,
Fly and Penguin.

IT hx.(Aby(x) M (false)),
hx.{Abalx) A (false)),
Ax.(Penguin(x} A (false)),
A AFlyix) v Bird(x)}]

Ay

IT Ax.(Abyix) v (false),
hx.(Abaix) v (false)),
Ax.{Penguin{x} v (false)),
Joc (Flyi(x) A Birdi(x)}]

-
Wx.— Abyix) A Vx - Abelx) A Vx. 2 Penguini(x)
MV (Fly{x)=Bird(x)) - {31)
Therefore
I' |~ ¥x.(Flyix)=Birdix)), e (32)
and
[ |~ Fly(p-suke). == (33)

5. Model Theory of Ascription

For the model theory of ascription, we introduce the most 'F'-tending model.

Here, we write IM| for the domain of a model M and M[IPI] for the extension of a
predicate I' in M.

Definition [ more W.tending model in K.
We say M is a more W-tending model of ' than N in K, writing M 2g_g N, if both M
and N are ¥-tending models in K, and
1} IMI=1NI,
2) MIIP]=N[IPI] for every predicate symbol P not in K and
3 MOAx (KA 2 NI (Kix) APl and
MUA= (Ki{xh/Pi(x) € NDAx(Ki(xhyWilx))l] for every Ki and Wi in K and W.

Definition [ most W-tending model in K],
A model M of I is called most W-tending in K iff M Zg.p M only if M' = M,

Theorem 2. Any instance of ascription is true in all the most W-tending models in K.

S11-



6. Consistency of Ascription

This section shows thai any instance of escription preserves consistency That is, this
guarantees that a consistent I' cannot contradict the result derived by ascription. Before
going any further, we must consider substitution for the predicate. We start by introducing

the concept of free substitulion.

By a free substitution we mean & substilution which is free in the sense of [2]. A free
substitution must satisfy the following two conditiens. (A1) In replacing predicate symbols
K in a formula, F, by some predicate, W, any variable in each terms, u, attached to K in F
must be free in W) and (AZ) sny free variable (not bound by quantifiers and not A-
abstracted) in ¥ must remain free in FIW/K]. However, note that in this paper we regard
any predicate as a closed A-expression, so (A2) is always satisfied. Moreover, by renaming
adequate variables in W, we can always ensure that (Al) is satisfied. Therefore, in this

paper, a substitution represented by a pair of brackets [--] is always eonsidered to be free.

If 8 is a =zet of substitutions, 5* denotes the set of all the substitutions which are
represented by finite sequence of elements of 5.

Theorem 3. Let & be o set of [ree substitution, & = {0y, - 0. 0€ 8* and p be a
formula. Then

Fufire; A A8, Apd 2plis consistent.

I'beorem 4.

1) Any instance of ascription of K to W preserves consistency and

2) any instanee of ascription is true in all the most W-tending models in K.

By Theorem 4, if the antecedent of ascription schema is satisficd, then we are assured of
the existence of most ¥-tending models of K. Note that the result of Theorem 3 can be
applied to circumscription, and in circumseription, we ean similarly think of the well-
candidate form which satisfies its fixed substitute econdition, that is ¥Y=i( W=x) =
(Wix))[Ax. Pix)] ). Lifschitz showed that circumscription preserves consistency when I' is a
set of almost wniversal formulas [4), which is a generalized class of separable formulas he
proposed himself |3) and wniversal formulas propesed by Etherington [1]. Note that this
condition governs I', while the fixed substitute condition governs the predieates which
aseription relativizes. However, the couples of predicates intended in [3] to be relativized by
circumseription under the separsbility condition satisfy its fixed substitute condition,
beeause the separability condition requires that no predicate in W may contain predicate in

K. From this standpoint, the fixed substitute condition is a weaker condition than the

_12.
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separability condition. When the fixed substitute condition is satisfied, if the antecedent of
circumscription schema is satisfied, even with no minimal model, a most W-tending model

exists and circumseriplion preserves consistency,

6.Conelusion and remarks

As described ebove, ascription uniformiy formalizes diverse and flexible conjectural
reasoning. But, of course, there still remain more difficult problems on its use. How do we,
humans, use these wvarious types of reasoning properly? Our conclusions will often
contradiet each other depending on how we interpret our knowledge about a certain
property K; in a narrow sense, as in circumseription, or in a broad sense, as in analogy.
This problem is deeply relevant to human preference and lies beyond the scope of our logic.
We have not considered this much, but it seems that when we have less instances of K,
we prefer & narrow interpretation, and that when we have sufficient instances of K, we
prefer a broad interpretation. Considered from the viewpoint of aseription, this seems to
correspond more or less to the situation that there are, roughly speaking, so many various
dubious candidates for W to K in the former case. Indeed, it will be difficult to choose an
adequate W, but Kmin is one of the well-founded candidates. In the latter case, because we
get more information on K, there are fewer candidates so it seems to be easier to choose.
Anyway, an adequate W will usually be given in 8 moderate sense, ie., neither in the
nurrowest nor in the broadest sense. We believe that aseription is a general form which
can cover any proper interpretation of K between one extreme and ancther.

-13 -
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APPENDIX

Some of the proofs in thiz paper use Kleene's thearems [2]. The following theorems, K1

and K2, are obtained directly from Kleene's theorems.

Theorem K1. Aix), B{x) and C{x) are formulas.

Ve (Alx) = Bix)) F ¥Yx.(Ci(x)[A/P] = Ci=)B/P.

Theorem K2. Let ' be a set of clozed formulas, EE be a closed formula and 8 be a free

(predicate) substitution.

If '+ E then I't - E8.

Theorem 1. A is & formula, P is a tuple of predicate symbols, @ is a tuple of predicates
and E is a closed formula.

Formula circumseription,
A[P] A VAl Al A (Ve (E(=)[P] O E(x)) O (Ve(E(=)[P] = E(x))), - (1)
subsumes the following axiom.
A[P) ACAlP] D Ve ((P(x) = B(x)[P] = (P(x) = P(x)) ) e (2)
Proof. First, consider a part of (1), the formula (V=.(E{(x})[d] = Eix)). Let E{x) be
~(P(x) = ®(x)) for some @ Then Yx(-(Pix) = D(x))[P] > =(Plx) = Pix)). Namely

Ve i(Pix) = ®(x)) 2 (Dix) = Dix)[P)). And v=((Plx) = Dix)) O (D{x)[P] = Px)P])). This
is valid by theorem K1. So from (1) we can obtain

API A CA[®) 2 Ve ((Plx) = ®(=)l[P] = (Plx) = dix))).

Prop. 1.
Let ¥ be well-candidate form 1 of K, then ¥ is a well-candidate of K in any axioms,

namely
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- Yl Wix) = (P)Rx(K@ATE)] ) A Ve Wix) = (FNA K@)V W] ). - (16)

Proof By predicate calculus.

Prop. 2. Both formulas, (17), (18) are derived from I' U { As(T\K~W¥) D ¥x.{ Kix) = W=} )},

namely,

|
Ve (Wix} O Kixh) A [P A Yx(Wix) = (WixD[P]) D Ve (Kix) = ¥(x)) e (1)
A Y (Kix) O =) A TW] A Ye(Wix) = (PP DVx(P(x) = Kix). e {18)

Proof. By predicate calenlus.

Theorem 2. Any instance of ascription is true in all the most W-tending models in K.
Proof. Let M be a most W-tending models of I' in K. Now let the left side of (1) be
satisfied. If the right side of (1) were not satisfied, the extension of Ki would not be the
same to ones of Ax.(Ki(x)AWi(x)) or Ax.(Kilxh/PFi(x)). Then let the extension of Ki not be
the same to ones of Ax.(Ki(x)AWi(x)). In that case, we could get a more ¥-tending model N
{ # M1 such that NIIKil] = M{IAx(Ki{x}AWi(x)N] and N[IWil] = M{I¥il]. Because
MRz (iAW) = MOkx (Kilx) Witz 0 MO
= NIKill N NIWil
= Nilhx.(Ki(x}APi{x)}]
Mz (Ki(xh 001 2 MWL)
= M[h=z.(Kilx}AWFilx))] U MIWil]
= NOED] U NIWil
NAx (Kitxh Wiz,
therefore N >g.w M. This contradicts the assumption that M is a most W-tending models
of I"in K.

Prop. Al. Let ' be a sel of formulas of first order logic and p be a elosed formula of
first order logic. If T is consistent and some free substitution © exists such that T = g A
p¥, then I' U {p} is consistent.

I'roof, Let © be a free substitution such that I' = I'6 A pfl. Now we assume that T U
“o} = T {representing ‘false’). Namely T F —p. Using theorem K2, T8 + —p@ follows.
Here I' = TA, =0 T + —pl. This result contradicts the assumption that I' = pB.

Theorem 3. Let © be a set of free substitution, {8;, — ,8.}, € 8* and p be a closed
formula.

Then T LU {T8 A AT0, Apl 2pl is consistent.
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Proof. Assume that I' B I'y A - A T8, A pB A —p Using theorem K2 repeatedly,
we can obtain I = TH Therefore lrom prop, Al, I' U {p} is conzistent. This iz eontradicts
the agsumption that ' = —p

Prop. A2,
If T Vel Wim) = (W) x (K(x) AW(xD] ) A Vel Wix) = (Px)[Ax(K(x)7 W(x))] ) then

I W (Kix) = W)= (K(x)¥(x)) ) [Ax(Kix)V ¥(x})).
Proof. Let [Ax.(K(x)&W(x)}] be [~ Az (Ki(x)AWi{x)},].
= ¥x (Kix) = Wix))[Ax (K= A PiED] = A Ye((Kitz) A Pilx)) = (Fix0) e (Kix) AP
From I' = V. Wix) = (W(x){Ax(K(x)A¥(x))] ),
I' = ¥ (Kix}) = PixDlix(Kiz)d ¥ixl)] = Ay Va((Kilx) A Pilx) = Pi(x)).
Now using theorem K1 and I' - Vx{ Wix) = (W{x)){Ax (Kix}"VW{x))] },
= VeiKix} = W=l [Ax(Bie)S Wix)) ] [Ae (Kix)V $ix))]
My Ve ((Kilx) A Hilx)) = Yilx))[Ax.(Kix)" Wix))]
Ny Ve ((Kilx)w Wilx)) A Wile) A= (K(x)V Wix))]) = Wilx) hx.(K(x)7 Wz}
My Ve ((Kilx)yw Wile)) A Wilx)) = Pi(x))
= A; Ve (Wi(x) = Wi(x))

i

true,

Theorem 4.
1) Any instance of ascription of K to ¥ preserves consistency and

2) any instance of ascription is true in all the most ¥W-tending models in K,

Proof. In Thearem 3 let 8 = {8, By}, B; =[x (Ki=)A ¥ (x))], Bo=[Ax(Kix)V ¥ix))] and
p = ¥=i(Kix) = Wix)., From Prop. A2, I'  ¥x{ ¥ix) = (¥(x))8; )} A Vel Wix) =
(W(x)By ) D pBBy. So I' U { T8 A Dy A Vol Wix) = (W(x))B) ) A Vo W(x) = (P(x}}0y )
= p } is consistent from Theorem 3, which proves 1). Now by completeness of this
deduction system we can guarantee the existence of some model M of T such that M =
Va( Kix) = W(x) ). It is clear that M is a most W-tending model in K from its definition.
So 2) is proved.

-17.-



