ICOT Technical Report: TR-308

TR-308

A'UM — Parallel Object-Oriented Language
upon KLI

by
K. Yoshida and T. Chikayvama

October, 1987

g7, 1C0T

Mita Kaokusui Bldg, 21F (03] 45B=414] ~ 5
IC 7 4-28 Mita 1-Chome Telex ICOT]32964
Minato-ku Tolive 108 Japan

Institute for New-Generatiun Computer Technology

A UM
— Parallel Object-Oriented Language upon KL1 -

Septemnber, 1987

Kaoru Yoshida and Takashi Chikayama

institnte for New Generation Computer Technology (ICOT)

Address: Mita-Kokusal Blde. 21F., 1-4-28 Mita, Minato-ku, Tokye 108 JAPAN,
Tel: 03(456)3193
Telex: ICOT J32964
CSNET: {yoshida, chikayama}%icot.jplirelay.cs.net
ARPA: {yoshida, chikayama}%icot.uucp@eddic.mit.edu

Abstract

This paper describes a parallel object-oriented programming language, A’ A4 L

A'litM has been designed as a user’s language upon KL1 which is the kernel language of the
parallel inference machine being developed at ICOT, with the aim of writing large application and
gvetem programs including the operating system for the maehine.

The main feature of 4" {A is its high level abstractions based on pure parallel objects. Tn ad-
dition to this, A'WA is characterized with its stream merging, name association, macro expansion,
and modular programming support by class inheritance and method wrapping,

1 Introduction

In solving an application problem in parallel, the first to be explored is how to extract the maximum
of parallelism from it.

Parallel logic programming languages have been paid special attention for their simple and atomic
mechanism for communication and synchronization, which leaves no room for sequentiality. If a
parallel construct is embedded in the atomic level, it is possible to solve the entire problem nniformly
from its top to bottam.

In particular, GIIC [Ueda83] is extremely simple. GHC realizes synchronization only with an
=Adit'anul construct called guard. Unification in the guard is restricted to instantiate the invoking
goal and it requires no multiple environments for its execution.

Such a simple mechanism of the guard is desirable to the architecture, say at the execution level,
for it makes the practical implementation feasible, especially considering a distributed implementation
of it.

"A'UM s a Japanese word, derived from a Sanskrit "ahum®, which consists of A and 64 and implies the beginning
and the end, an open voice and a close volce, and expiration and inspiration,

Further giving some limitation on the guard to make its control more simple, a subset of GIIC,
cailed FGHC, has been adopted as the kernel language of the parallel inference machine [(Gotosf]
being developed at 1COT,

In general, it is harder to solve a larger problem, even though it depends on the complexity of the
problem itself. First of all, the most important is to design and test the problem systematically and
hierarchically, and for promoting this process, abstraction and modularization are indispensable.

Through the development of the operating system SIMPOS [YVokoisd] in the object-oriented lan-
guage ESP [Chikayama84) for the sequential inference machine P31 [Nakajima86], we have learned
that abstractions of object-oriented programming, especially its uniform control of message passing
and modularization support of multiple class inheritance and methed combination, comtribute greatly
to the development of such a large system. Moreover, what contributed is not only the object-oriented
programming language but also the programming and debugging environment to support it.

Compared 1o suguential systems, it is said to be much harder to develop parallel systems. Most
of the difficulty in debugeing a parallel program is to reconstruct the causal chain from actually
happening events, say phenomina. Fven if events are due to a single causal chain, when the whole
bunch of events from smalt to big are acturally happening, they seem to be independent and at random.
In other word, flatness of events makes it difficult, so the hierarchical and modular design and test of
progras is much more needed for parallel systems.

Object-uriented programming has been explored alsc in parallel logic programming languages,
especially in CP, in the framework of perpetual process. GHC belongs to the same language family
as OF and this framework can be also applied to GHC. Written in object-orientd programming style,
computation flow becomes so clear that readability, writability and understandability of program
increase.

Instead, however, another problem potential to these languages is made obvious. In one word, as
GHC is positioned as the kernel language, these langugages are too primitive and verbose to write
latoe programs. As a result, most of the deadlocks are brought by stream breaking attributing to tiny
bugs such as misnaming and mispositioning variables rather than by algorithmic ones.

Tt must be Lelpful if variety of programming and debugging tools are provided even in such a
primitive level. Much more than that, what is fundamentally and directly needed for developping
large systems is a high level language such that enables us to represent programs more simply and
concisely and bring the program semantics into relief. Programming and debugging environment
should be supported on this level or higher.

This paper describes a parallel object-oriented language, A'T4M , which has been designed upon
KL1, for ease of writing large application and system programs, mainly as a description language of
the operating system PIMOS for the parallel inference machine.

The arganization of the paper is as follows: Firstly, the object-oriented programming style in KL1,
which originated A'l{M . is shown. Secondly. after the main features of A'I{M are outlined, their
detail are described with some examples. In addition, the implementation features of A'lM onte
KL1 are deseribed. Finally, some discussions in comprison of A'2{M with other related works are
g]".'ﬂ."ﬂ.

2 Programming in KL1

In this section, we summerize the programming in GHC which is the original language of KL1.

2.1 GHC and KL1

A GHC procedure is a set of guarded Horn clauses of the following form:
H P - Gli Bidg Gﬂ* | .E']_:, wang Bﬂ- |:ﬂ‘t } ﬂ. T } D}

where K, G;'s and B;'s are atomic formulas, [T is called a clause head, (7;'s quard goals and H;'s body
goals respectively. The operator '|” is called a commitment operator, the left part before the operator
a guard and the right part a body respectively.

Roughly speaking, the execution of a GHC procedure is explained as follows: When a procedure
is invoked, all clauses defining the procedure can run in parallel, keeping the following suspension and
commitment rules:

Suspension

o Unification invoked directly or indirectly in the guard of a clause ' called by a goal G cannot
instantiate the goal &,

» Unification invoked directly or indirectly in the body of a clavse C cannot instantiate the guard
of & until that clause is selected for commitment.

Commitment
If some of the clauses suceeed in the execution of the guard part, one and the only one of them
is nondeterministically selected. The selected clause continues execution of the bedy.

The kernel language of the parallel inference machine, called KLI1, is a subset of GHC, called
Flat CHC (or FGHC in short). FGHC is given a limitation that only system-defined (or bailt-in)
predicates can be invoked in the guard but no user-defined predicates, This limitation makes FGHC
free of nested guard.

Since the guard is resticted to instantiate the goal while the body is allowed afler being commitied,
the guard is called a passive purt and the body an active part, and unification in the guard is called
passive unification and that in the body active unification respectively.

2.2 Object-Oriented Programming Style

Shapiro and Takeuchi [Shapiro83B] shows that CP [ShapiroB3A] supports object-oriented program-

ming style in the {ranework of perpelual process using stream communication,

Perpetual process is a causal chiin of tail-recursive goals, regarding cach goal as a process stale at
some stage. A clanse waits for some particular event to hold. After commitment, it takes behaviors
corresponding 1o the event, such as sending messages or modifving its'internal states, and invokes anp
identical goal for the next stage.

Most of the object-oriented programming languages such as [Goldberg83] define an object as an
passive entity which accepts a particular set of messages. Regarding each procedure as an abject and
cach message as an event, objects can be represented naturally in logic programming.

Communication is performed by sharing the same entity, say communication media. In this object-
oriented programming style, communication media is visible; The list construct Is used as a message
stream where the car part means a message and the cdr part a succeeding stream respectively.

This framework can be applied not only to CP, but also to GHC and KL1 since bolh of them are
based on the commitment rule and support the list construct and tail recursion as well,

For example, a stack is defined in the object-oriented programming style in KL1 as follows:
Example 1 Stack im KLT

stack(8) = true | stack(s, [1).
stack([popl{X)15], 1) := true |

stack(s, [1).
stack({pop{X)[5], Top} := Top %= [] |

Top = [get_data(X)!Xsl], stack(S, Tep).
stack([push{X) 8], Top)} :- true |

element(Element, ¥, Tep), stack(3, Element).
stack([], Tep) :- true | Tep = [J.

element ([get _data(X) 5], Data, Next) :- true |
I = Data, element(S, Data, Next).

element([set_catalX)} 5], Data, Next) := true |
elemant (S, X, Next).

element{[get_next(X}|S], Data, Next) :- true |
I = Hext, element(S, Data, Next).

element([set_next(X)|5], Data, Next) :- true |
elemant (S, Data, Next).

elament([], _, Wext) := true | Hext = [J.

This program can be read as follows: A’stack object whose top instantiated with [] is created
at first. At each stage, the stack may reccive cither of the messages push, pop\l and []. For the
message pop\l, it instantiates the top element and recurs. For the message push\i, it creates an
element object and recurs, When it receives the nil message [1, 1t terminates. An element is similar

execpt that it receives either of the messages, got_datah\l, set_datall, get_next\1, set_next\1
and 1.

A stack keeps the current top of the stack as an internal state and an element does a data and a
link to the next element. These internal states are represented using local variables; Top, Data and
Next, each of which appears in the fixed position, and their new variables are carried by the tail goal
for the next stage.

In comparison with other object-oriented languges and their implementations, one of the most
noticeable points this style shows is that the semantics of wpdafing internal stoles is logically pure,
say free of any side effect. A chain of logical variables placed in some fixed position is recognized as
an identical imternal state,

As easily seen from such a small example, however, programming in KL1 is too primitive and
verbase. It does not only loose readability, writability or understandability of programs, but also is
apt to bring a lot of careless bugs such as misnaming or mispassing variables to the next stage, that
should occur stream breaking and as a result fall into deadlock.

To represent the programmer’s intention more simply, concisely and directly, high level abstraction
is needed.

3 Parallel Object-Oriented Language A' 1M

We propose a parallel object-oriented programming langnage, called A'2M .

A'UM has been designed as a user's language which is compiled into KL1, forcusing its deseription
targets to procedural ones such as system programs including the operating system PIMOS of the
parallel inference machine.

A'UM iz independent of KL1. KL1 programs cannot be contained together in AWM programs.

A'UM is caracterized with the following features:

Pure Parallel Object A'I{M is a pure paralle] object-oriented language. All the existing entitics in
A'UM are objects each of which belongs to some class.

A object in A" I4M is a perpetual process; it repeats the cycle of receiving a message, aller thal,
sending messages to itself or other objects in responce and npdating internal associated with
names in the side-effect free way. Message passing to objects is the basic execution mechanism
Lo execute an A' YA program with.

Stream Merging The external interface to an object, in other word, what is regarded as the abject
itsell [rom Lhe outside, is a directional stream. Streams are connected [(rom one terminal to
another so that the direction should be consistent. In case that three or more terminals specifving
an identical strerm are specifiad, or every time a slot is refered, a merger is implicitly inserted.

I A" | non-determinicity can exist only in streamn merger, From twigs through stem finadly
to the target ohject, messages are sent via mergers. Since stream merging has no logical meaning
exepl for sending messages to the target object, merger is embedded inside the language, not
availhle on surface,

Name Association In A'L{M ., any object is associated with a name. Updating an object is not
giving any side effect o it, but is creating a new version of object and associating it with the
name, that is, changing the association.

Macro Expansion Lingnistically or syntactically, an A'2A program is composed of maero expres.
sions. A nacro expression s evaluated lo be a target objecl with a sequence of abstract in-
structions expanded in the way of functional programming. For instance, a message passing
cxpression represcnts a new stream after a message is sent, and an arithmetic cxpression docs
a new object created as the computation result. With this feature, A'UM programs can he
written simply and compactly.

Class Inheritance An A'2AM class can inberit multiple classes. Class inheritance expands method
space applicable for an ingtance, but not brings forth any other instances of the super classes.

IMethod Wrapping Methods, each of which defines the behavior in response to a received messare,
are visible or sharable from the outside of the elass in the form of copsule. Capsules are to
define rules of method combination and make it possible to modularize methods and capsules
incrementally along the inheritance tree.

The above example of stack can be written in A"L{A as follows:

Example 2 Stack m A" WM

class stack

slot top.
rinitiate =>
Ttop = nil.

:poplData) -*»
(ttop = nil) [
itrue =>
ltop :get_data(Data) rget_next(“Next),
top = Hext.
:false -> |
1.
spush{~Data) -»
felement :newl "Element),
ltop = Element :set_data(Datal rzet_next('top) .
i o=> ltop
end.

class wsalemeint
slot data, next.
rzet_datal"Data) ->» !data = Data.
rget_datalidata) -> .
:set_next(“Next) =» 'next = Next,
iget_next{!next] -> .
: => lpext :

and.

A stack is created by sending a message :new\1 and &5 sent messages in some class as {ollows:

#gtack :newl "Stackd),
Stack0 :push(1) :pep(~a) :pep(~B) :push(2) :pep(~CJ,

Some olher program examples in A'2M are shown in Appendix A.

4 Class and Object

4.1 Class
Syntax

< rlass definition = o=
clase < clase name »
< supercioss defimlion =
< slof definifion =
{ < method defintlion >)
end '’

< superclass defimbion > o=
super < superclass nome > { 7,7 < supercless name >] 70

< slot defintlion > 1=
slot < slof name > { 7,7 < slot name > } 7.7

Each A4'1{M object is an instance which belongs to some class.

Class is an index to the module which defines the altributes and functions of its instance objects.
In other word, each of the attributes and methods is indexed with its own class name and is applied
with the class name.

Fach class can inherit multiple classes. Ty inheriting a class, the set of attributes and functions
applicahle for an instance object is expanded, but no other instances of the super classes are created.

Class is treated as an immutable object which will be mentioned later, but belongs to no other
class; there is no notion of meta class,

4.2 Object
Each A" LM object is characterized with the following attributes:

Original Class which the object belongs to and is created from.

For an instance object, the original class is constant through life.

Current Class which defines 2 method which is applied for the received message.

For an instance object, the current class is variable depending on the received message. When
a method of some class is applied, the instance object is said to be under the class,

At the initiation and everv time the object recurs, the current class is sel Lo be Lthe original class.
External Interface Streams which the object offers to the outside to let them send messages to
itsell through. Oue or wmore interface streams can be offered, each of which is assigned a different

priority and priority-merged into the internal input stream self. From the outside, the given
interface slream is regarded as the targetl object itself,

Internal Input Stream (Self) throngh which the object receives messages. The internal input
stream is accessible with the name $self.

Slots which are associated slot values with their identifier.
Slot valne is & message stream to some object.

Each slot is uniquely identified with the eriginal class name and its slot name; any slod is visible
oily in ity own class which delfines the slot, Slots defined in some class have nothing to do with
those defined in the super or inferior classes, even if they have the same slot name,

When an object is created, a global stream named $zystem is given., This global stream is Tor
raising a message to the underlying operating system throngh. In the conceptual model, this
rlohal stream may be treated as one of the slots,

Supers which is the entire inheitance Lree composed of all the super classes that the originael class of
the ohject inherits directly and indirectly. The inheritance tree is constructed from the super
iefinition in the left-first depth-first order.

For an instance object, the supers are constant through its Life,

Delegates which is the rest of the inheritance tree appearing later than the current ¢lass. For each
class, the fizst of its delegates is accessible with the name Esuper.
As well as the current class, the delegates are variable depending on the received message.

At the initiation and every time the object recurs, delegates are initialized with the supers.

Example 3 hjoct Aliribules

(iiven the following class definitions:

class <21
super clil, <12,
zlat =.
ima => s ima.
end.
class cd
super <21, c2d.
slot 3.
smbh =3 s oimb.
end .

From zome other class, an instance of the class €3 15 created as:

#c3 tnew("C3),
C3 :ma :mb

1. For an instance of the class 3, the lollowing two attributes; original class and supers are constant
through its fife:

Original Class: e3
Supers: £21 — g1l — 12 == 222

2. The slot = in the clazs ¢21 1= independent of that in the class c21.

3. During execution, the following two attributes; current class and delegates are changeable: When
executing a method for the message :mb,

Curzent Class: c3
Delegates: 21 — g1l — 212 — 222

When cxecuting a method for the message (ma,

Current Class: c2l
Delegates cll — 12 — 22

4.3 Object Life
An A"LM obhject is a perpetual process whose life is drawn as fallows:

Creation When a message rnew\1 {or rnev_with_prierity 2} is sent to a class, an instance ebject
of the class is created, a message tinitiate is sent to the object, and an interface stream {or a
set of interface streams) to the new object after the message :initiate is sent is returned.

Initiation Whenever an instance is created, it s implicitly sent a message @ initiate. The method
for the message :dinitiate can be overwritten, which is predefined as:

rinitiate =

Generation Including the internal states such as self, slots and system, any object iz associated
with a name. Updating an objeet is not giving any side effect on it, but creating a new version
of abject and associating it with the name.

The term while the same version of object can be associated with the name is called o generation,
and chaging the name association is called generation descending.

I'nr one generation, either connecting streams, sending a message, delegating a message or cre-
aling & volatile object can be taken as a behavior.

Cyele After receiving an oxternal message, an object behaves decending one generation to another.
A sequence of generations derived from recelving one external message is called a cpele. A seript
of the cvele for ane external message is called a method,

Termination Terminating the abject life is decending no more generation.

When to terminate can be defined freely by the users; when receiving not only the nil message
{just "+) but also any use-defined message, The method for the nil message can be overwritten,
which is predefined as:

=» §slots @ ..
Example 4 Object Life

:push{"Data} ->

#alement :new(Element), % generation-1i %
ltop = Element:set_data(Datal:ses_next{itop). % generation-2 %
% recur Y
o= oltep L. % terminate ¥

4.4 Mutable and Immutable Objects

A' UM objects are categorized into two; mutable ebjects and immutable objects, depending on whether
they have changeable internal states or not.

Class objects are immutable. The instances of some primitive classes such as true, false, integer,
vector and string, are immutahle.

Both of the mutable and immutable objects are treated completely in the same way in terms of
message passing. For example, messages are sent to a string "abede" and an integer 1 as well as to
mutable objects such as Stack and Element.

Example 5 Muteble and fmmutable Objects
Stack:push(1)
Element :set_data(Data)

"abede”;element(3, "X}
1:a8d{2, "X}

5 Other Basic Notions

5.1 Name Association

A'lfM ohjects arc associated with names. Names are categorized into two; femporary names and
permanent names. The term while an identical object can be associated with the same name i= called

narme SO0,

Permanent Names Among permanent names are system-defined names such as §self, §system
and $super, and user-defined slot names.

The name scope of a permanent name 1s within one generation.

Temporary Names Variables are lemporary names. Among variables are parameter variables which
are carried in messages and temporary variables which are generated in the cycle.

The name seope of a temporary name is within one cvele,

5.2 Stream Merging

In the leading sections, we described the internal view of objects, Here in this section, we profile
ohiects from the outside,

The external interface to an object is directional streams, In other word, if a stream to the ohject
is ziven, the stream can he regarded as the object itself from the outside,

In A'LM |, non-determinicity is absorbed in stream merger, rom iwigs through stems to the
target object, messapes are sent via mergers. Since stream merging has no logical meaning except for
sending messages to the target ohject, mergers are embedded in the language, not availble on surface.

A stream merger 15 inserted in the following two cases:

» when the input terminal of a temporary name {or variable) ocenrs multiple times in one cycle.

o when any permenanent namea except $self oceurs multiple times in one generation.

5.2.1 Variable Mode

In order to specify the direction of stream, variable accurences have their terminal modes, either of
imprud o cufput,

o Variables have only one cceurrence with =7, called an ocutput terminal, and one or more occur-
rence witlout *~ ', called input terminals.

o An object is somewhere ahead of the ontput terminal {with *=],
& A slream is connected to the output terminal (with '~).
» Messapes can be sent 1o the input terminals (without 70},

o All the messages sent Lo Lhe inpul terminals are morged and sent to the target object ahead of
the output terminal.

Exmnplﬂ 6 Variable AMaode

rconsult(~A, "B, “C} :-
A octry(x),
B ortrylX),
€ :melect{"X).

is translated to:

object{Current, Self, Slots, Uriginal, Supers, Delegates) :-
recaive(Self, censult{i, B, C), NewSelf) |
send(&, try(Xil),
send(B, try(X2)}7),
send(C, select(X3)),
merge(X1, X2, X3},
object{Original, HewSelf, Slots, Original, Supers, Supers).

5.2.2 Slot Access

Referring
If a slot is referred, it opens a stream and a new generation of the slot, both of which are merged
into the current generation of the slot,

X = lsome_name
is translated to:
send{NowSalf, get_slot({Class, scme_name}, X}, Salf)

Updating
Slots are updated when they are specified as the destination of stream connection or message
sending. lpdating a slot is to npdate the association table so that it can associate the specified
new value with the slot name, when the old value iz closed.

Teoma_name = Value
is translated to:

send(Newlelf, set_slot({Class, zome_name}, Value), Self)

5.3 Macro Expansion

Another feature that characterizes A'Z{AM from the lingustic point of view is that 4'LM syntax is
based on macro expansion. With this feature, A" WM programs can be written compactly and clearly.

An A'UUM program is composed of macro erpressions each of which is evaluated 1o be a larget
abject with 2 sequence of abstract instructions expanded in the way of functional programming,

For example, sending a message to a variable is an expression which is evaluated to the new variable
after the message is sent, &0 it can be specified wherever expressions are availahble.

Example T Macre Expansion

crente(A0:initialize(" Initiallist), Initiallist) -
#a :naw(A0},

is equivalent Lo

tersaleld, InitialList) -»
#a :new("A0),
A= AD rimitialize(Initiallist),

11

6 Method

Syntax

< method definttion > o=
o message > =" < cycle > < ternunator >

< cyele > u=
< generation > { 7,7 < generalion >)

A script of the cycle for one external message is called a method. One cycle cousists of generations
and for each generation either of the following behaviors can be defined:

o Connecting streams
s Sending a message
Delegating a message

» Creating a volatile object

6.1 Stream Connection
Syvnlax

< connection o=
< vulpul lervinad = 'S < cxpression =

= pulpul fermemal > s
< pufput varighle > | < slot >

< pulpul variable = o=
Tt paranble neme >

< glot > =
" slot mame >
Connection is to connect an input terminal to an output terminal.

An expression on the right side is evalnated to a target value with a sequence of abstract instructions
expanded and the target value is connected to the output terminal,

For the oulput cariable, it means a new generation of variable. For the slef, it means the next
generation of slot, say updating the slot. The semantics of < slet > is different depending on where

it appears; referring slot in an expression on the right and updaling slot on the left.
6.2 Message Sending
Syninx

< MESSAE SENAING ETPTEFEION D 1=
< destinafion > { 17 < message > | < last message >

12

1

< gestinalion > o=
< inpul veriable > | < slot = | $system
{} 1< inp

< last message > =
{7 < message > | 72"}

< input variable > 1= < varighle name >

A message sending expression is evaluated to be a new object after the message has been sent. By
repeating this evaluation, a sequence of message can be sent to an object.

The message sending expression can be specified wherever expressions arc allowed, for example,
as a parameter of another message or as the source (the right part) of an assignment.

The meaning of message sending depends on what is specified as the destination as follows:

{} (default)

prepends the message sequence to the current self. Sending a message to self is evaluated to be
new self after the message is prepended.

im(P)
represents Selfl
where send(3elf1, m(F), Self0)

< fnput varighle >
appends the message sequence to the input variable. Sending a message to an input variable is
evaluated to be a new variable after the message 1s appended.

I o:mlP)
represents X1
where send (X, m(P), X1)

Closing a stream with the nil message ™",

X
represents nil
where elosalX)

< glot =
appends the message sequence to the slot and updates the slot. Sending a message to a slot is
evaluated to be the new slot valoe after the message is senf.

g m(X)
represents Sleotl
wlere send(Selfl, slot(s, 5lot0, Slotl), CurremntSelf),

send{5lot0, m{X), Sloti)

e
raises the message sequence to the svstem stream. Haising a message is evalualed Lo be the new
system streamn alter the message is raised.

$system m(X)
represents Slotl
where send(Selfil, slot('§system, Systeml, Systeml), CurrentSelf},
raise(Systend, m(X), Systeml)

13

6.3 Message Delegation
Syntax

< delegation > =
< delegate > '<=" { ;' < message > } < last message >

< delegute > 2=
Ssuper | '#'< superclass name >

If a class inherits super classes, a sequence of messages can be delegated to any of the super classes.

In A'LM | class is an index to categorize the method space applicable for an instance with. Class
inheritance is to expand the method space, but not to bring forth any other intances of super classes,
Therefore, delegating a message to some desired super class means specifying under which class the
message should be received. Instead of the target message, an indirect message delegate\2 which is
enclosed the target message and the desired super class in it is sent to the instance to itself under the
direct super class. For specifying which class to delegate, there are the following two ways:

Direct Super Class
With $super specified, messages are delegated to the object itsclf under the direct super.
m{"X) ->
fsuper <- :mm(X).

is translated to:

object(Current, Self, Slots, Original, Supers, Delegates) :-
receive(Self, m(X), NewSelf),
Delegates = [Super|Delegatell |
send{5elfl, delegate{Super, mm(X)), NewSalf),
object(Super, Selfl, Slots, Original, Supers, Delegatesl).

Specific Super Class

Hy specilying a the class name, messages can be delegated to the object itsell under any of its
super classes,

sm("K) -
#zome_super <- :mm(X).

is lranslaled to:

object{Current, Self, Slots, Original, Supers, Delegates} :-
receive(Self, m(X), WewSelf),
Delegates = [Super|Delegatesi] |
zend(Self1, delegate(some_super, mm(X}), NewSelf),
object(Super, Selfi, Slots, Original, Supers, Delegatasl).

When a super class receives the message delegate(Class, Message), the class either sends the

target message Message under itself or send to its further super class depending on whether the
specificd class Class is itsclf or not.

14

object(Current, Self, Slots, Original, Supers, Delegates) :-
receive(Self, delegate(Class, Message), NewSelf),
Current == Class |

send(Selfl, Message, NewSelf),

object(Current, Self1l, Slets, Original, Supers, Delegates).
object (Current, Self, Slets, Original, Supers, Delegates) :-

receive(Self, delegate(Class, Message)}, NewSelf),

Current %= Class,

Delegates = [Super|Delegatesi] |
send(Selfl, Message, NewSelf),

cbject (Super, Self, Slots, Original, Supers, Delegatesl).

6.3.1 Default Message

When a method to receive some message is not defined in some class, the received message is delegated
tn itself under the direct super class.

tfdefanlt =->
$super <- :$default.

is translated to:

cbject{Current, Self, Slets, Original, Supers, Delegaten) =
receive(Self, Message, NawSelf),
Delegates = [Super|Delegatesi],
% Message is not defined in Current % |
send(Selfl, delegate(Super, Message), NewSelf),
object(Super, Selfl, Slots, Original, Supers, Delegatesl).

G.4 Volatile Object Creation

Swvntmx

< immutable volefile object deinifion >
< mulable volafile object definilion =

<« wolatile ehyect ereation > =

< tmmutable velotile object definfion > 1=
< volelile obyect = [
[= method definition >)

M
4

sulable velpfile ohject definiiion » =
< volafile objeet = {7
< slof definrfion >
{ < method definition =}

1]
P

< velafile object = =
< input variable > | < output varalle > | < ezpression >

6.4.1 Volatile Object

In A'l4M , for handling conditions, one additional notion of velatile object is introduced.

Volatile objects are those which are created in a method and terminate in it. This notion is derived
from that the ordinary objects are already condition handlers in terms that receive a particular set”
of message and hehave differently according to the received message. Volatile objects are different
from the ordinary objects only in that they are not given any class name. Applying this notion, the
definition of object can he nested.

5.4.2 Dasic

The volatile object field means an external interface to the volatile vbject, toward which messages are
flown. This is the basic.

Output Terminal If an output terminal {with =} is specified in the valatile object field, there must
be one or more inpul terminals which are merged into the output terminal. Messages are flown
from the input terminals to the output terminal.

T [
:p(X, ¥} -> B,

:qfU, v, W) => Q.
]

is translated:

{
receive(T, p(X, ¥Y), 0 | P ;
receive(T, q(U, Vv, W3, _) I Q
|

Expression Representing Input Terminal If an expression which is evaluated to be aw input
terminal {without =), the input terminal is connected to an output terminal in the above.

6.4.3 Extension

If an input terminal {without =) is specified for the volatile abject field, it implies there already exists
some output terminal into which messages should be fiown. The semauntics is extended with the notion
of reflection.

Input Terminal If an input terminal {without =) is specified, a message :who_are_you(Who) is sent
to the input terminal. An volatile object is created so that it should take the output terminal
Who as its external input stream. For each message {rom Who, a method is defined.

T

is Lranslated to:

ifi

send {T, who_are_you(Whol),
{
receive(Who, p,) | P
receive(Who, g,) 1 @
}

¥

Fxpression Representing Output Terminal If an expression which is evaluated to be an output
{erminal {with *), the output terminal is connected to an input terminal in the above.

6.4.4 Applications

Pattern Matching Message :who_are_you(Who) transforms an immutable object to a message
stream which contains the frozen image of the object as a message. Using this mechanism,
pattern mateling can be represented.

Example 8 Pattern Matching

T
i1 -> P1.
12 - P2,
:3 —» P3.
]

If-then-else Construect If an conditional expression, which is evaluated to be either true or false
object, is specified in 1he volatile object field, it means the if-then-else construct.

==Y
:true => Then.
:false -» Else.

]
is translated to:

gend(X, equal(Y, Resuit)),
sand(Result, wheo_are_you{Whol),
{

receive(Whoe, true, _} | Then;
receive(Who, false, _) | Else

)

6.4.5 DMutable and Immutable Volatile Ohjects

Volatile objects are categorized into two; immutable volatile objects and mutable volatile objects.

We explain the difference between them with the following example of number generalor:
Example & Number Cenerafor generates o sequence of integers ¢ in the range n < < m.

class rumbers
slok max, n, numhers.
tinitialize(IL) -»
1L { % mutable volatile object U
rmet_max("M) => 'max = M.

17

iset_n("H) ->» i = K.
iset_numbers(“Hs) => Inumbers = Ne.

T
tde =>
(imax > 'n) [Y% immutable volatile object %
ctrue => Ip :add(1, "N1),
numbers :n(NL1),
in = N1,
o,
:false —> [terminate.
1.

iserminate = L.
end.

tnumbers :new(Numbers),
Humbers :initialize(IL) :do,
IL :set_max{M)} :set_n(Q) :=set_numbera(Ns} :

Immutable Volatile Object The immutable volatile object may neither have any internal state nor
recur after receiving one message, that is. it is supposed to terminate at once after receiving the
message.

The name scope in an immutable volatile objeet is the same as that in the outside object.
Temporary names such as parameter and temporary variables used in the outside abject are also
visihle in the immutable valatile ahject.

In the above example, when messge :do s sent,. an immutable object is created for the result of
the condition ('max > !n}, The volatile object accepts either message:true or :false. When
it receives inessage :true, the volatile object sends message 1add\2 toslot 'n and message :n\1
to slot 'numbers, updates slot !n, sends message :do to the outside object and then terminates.
For message :false, the volatile object sends message :terminate to the outside object and
then terminates,

Mutable Volatile Object The mutable volatile object may have internal states and recur in the
same way as the oridinary mutable ebjects do.

The nomne scope in 2 mulable volatile object is one level deeper than that in the outside object.
Temporary names used in the outside object are not visible in the mutable volatile object.

In the above example, when message :initialize\1 is sent, a mutable volatile object is created
{or output terminal “IL. The volatile object accepts either message :set_max\1, :set_n\1 or
iset_numbarshil and sets the corresponding slot and recurs until the nil message is sent, where
the method for the nil messaze is predefined,

7 Modularization

To support modularization of programs, KL1 provides the functions of class inheritance and method

wrapping,

7.1 Class Inheritance

A class can ivherit multiple classes. The inheritance tree composed of super classes is constructed
iraversing the super definitiom in the left-first depth-first order.

18

Class inheritance in A’ M expands the set of accessible slots and applicable methods for an
instance, but brings forth no other instances of the super classes.

In the leading sections, we mentioned several features related with class inheritance which are
summarized as follows:

1. Each slot is identified with the combination of its own class name and slot name.

Fach instance has a current class name as an internal state which is variable depeading on the
currently received message, in addition to the original class name which is constant through life.

[

3. A message is delegated to the instance itself by enclusing it with the delegate class in the
delegate message.

7.2 Method Wrapping
Syntax

< frieggage > I=
« message patlern > < copsule info >

< capsule mfo » =
‘¢’ < copsule name > | ‘&' < component method name >

In addition to the abave features, a notion of method wrapping is introduced [or controlling the
visibility of methods. Method wrapping is to encapsulate methods. The following two constucts are
used to support it:

Capsule Capsules are visible not only in the class bul also from its ontside. Calsules are used to
deline rules of method combination and make it possible to modularize methods and capsules
incrementally alang the inheritance tree. Those methods which are not specified any capsule
infomation are called cniry capsules.

Component Method Component methods are visible only in their class and nsed to constitute
capsiles.

7.2.1 Default Capsule Environmenl

The following capsule environment is provided to each method for deanlt:

tfmassaga -> i entry capsule §
:§message@before,
:fmessagedprimry,
:¥messagefafter.

idmessagefbelfore -» % before capsule U}
r$messagekbefore,
fsuper <= :$message@before.

r¥messagelprimary -» % primary capsule
r$messagedprimary.

:$massagefafter -2 i after capsule j

10

fsuper <- :3messagefafter,
:fmessagekafter.

:$messagekbefore -» . % before component method

t$messagefprimary ->» Y primary compenent method %
$super <- :¥messageldprimary.

t$messagekafter -> . % after component method

8 Abstract Machine

An A'UM program is translated to a sequence of abstract instractions. A system which can execute
the abstract instuction set is called an A" WA abstrac! machine.

£.1 Abstract Instruction Set

The entire set of abstract instructions are listed as follows:

receive(Self, Message, NewSelf)
receives a message from the internal input stream and opens the new input stream after the
message s received,
closzed{ Glject)
receives a nil message from the internal input stream.
send(Object, Message, New(hject)
sends o message to an object stream and opens the new object stream after the message is sent.
send [Oljeet, Message)
sends & message to an object and clozes a new object stream. It is eguivalant to

send(Object, Message, WNewObject),
close(Newlbiect)

close(Ubject)
closes an object siream.
raise{Systemn, Message, NewSyztem)
raises a message to the underlving machine and opens the new svstem stream after the message
15 ralsed,
merge(X, Y, &}
merges two streams X and YV, into a stream 2. In KL1, it is translated to:
priority_merge(X, Y, Z)
merges Lwo sireams X and V', into & stream Z, monitoring X prior to V',
new|ClagsNume, N, Externals)
creates an instance object of the specified «liso and opens @ stream to the vector consisting of N
external inpul streams which are priority-merged into the internal input stream to the object.
new{ClassName, Erternal)
creates an instance object of the specified class, and opens an external input stream which is
connected to the internal input stream of the object.

object{ CurrentClass, Self, Slots, OriginalClass, Supers, Delegates)
continues its execution to the next cyvele, that is, recurs,

20

8.2 Primitive Messages

A'2dM defines the following set of primitive messages which are implicitly sent to objects by the
compiler:

gel_sloti "Slotld, Value) _
refers a slot with the slot identifier; opens a stream and a new generation of the slot buth of
which are merged inlo he current generation of the slot as follows:

object (Current, Self, 5lots, System, Original, Supers, Delegates) =
receive(Sel?, get_slot(SlotId, Value), NewSelf) |
send(Slsts, associate(Slotld, 0ldSlot, NewSlot, NewSlots)),
morge(Value, NewSlot, 01dSlot),
object(Driginal, NewSelf, NewSlotz, System, Original, Supers, Supers).

set_slot/ "Slotld, ~ Value) ,
updates a slot with the slot identifier; associates the specified value with the slot identifier and
closes the old generation of slot value as follows:

object(Currens, Self, Slots, System, Original, Supers, Delegates) :-
receive(Self, set_slot(3lotId, Value), HewSelf) |
send{Slots, assccinte{Sletld, 01d5let, Value, NewSlots)l,
close(0idSlot),
object(Original, NewSelf, NewSlots, System, Original, Supers, Supers).

slot("Slotld, “OldValue, New Value)
refers a slot with the slot identifier and updates it with the new value.

shiecl{Currant, Self, Slots, System, Original, Supers, Delegates) :=
receivel(Self, slot(Sletld, OldValue, NewValue), NewSelz) |
send(Slots, associate(Slotlid, CldValue, NewValue, NewSlots)),
object(Original, KewSelf, NewSlots, System, Original, Supers, Supers).

who_are_youi Who)
when this message is sent lo an immutable ohject, it transforms the object into a message
stream Who. Tf this message is sent to to a mutable object, Who is closed.

delegatef " Cluss, Message)
delegates a message which should be sent to the object itsell under the class,

8.3 Primitive Classes
A UM provides the following primitive classes:

Immutalle class vector

Vectorl = Vector:vector_clement{Pusition, "Element)
Vectorl = Vector:=et_vector_slement(Pesition, "Element)

irnutable cluss associative_table
Tabla! = Table:associate(Key, 01d, "Kew, "NewTable)

Frnmutable closs string
Stringl = String:string_alament(Pusitiun. “Element)
Stringl = String:set_string_element(Position, “Element)

21

Irvmutoble class integer

Integerl = Integer:add{Integer2, "Integerd}
Integerl = Integer:subtract(Integer2, "“Integerd)
Integerl = Integer:multiply(Iinteger?, ~Integer3)
Integerl = Integer:divide(Integer2, ~Integerd)
Intagerl = Integer:mod(Integer2, "Integer3d)
Integerl = Integer:eq(Integer2, ~TrueOrFalse)
Integerl = Integer:not{Integer2, “TruelrFalse)
Integerl = Integer:gt(lnteger2, ~TrueOrFalse)
Integoerl = Integer:ge(Integer?, “TruelrFalse)
Integerl = Integer:lt(Integer2, ~TruelrFalse)
Integeri = Integer:le(Integer2, “TruelrFalse)

Tmmulable class true

Immutable class false

9 Implementing A" UM onto KL1

9.1 Message Sending

A" M has been firstly designed on top of KL1 and & message stream is implemented as a list.

For example, the expression of message sending
"HewX = X add(Y, Z)
which is represented as:
send (¥, add(Y, Z), NewX)
is translated in KL1 to:
% o= [add(Y, Z)|NewX]

As mentioned before, in AWM |, both of the mutable and immutable objects are treated wniformly
in the same way In message passing,

9.2 Unification Failure Handling

In the above example, let X be an integer 1 and Y he 2. Then the following unification mnst be mada
true.

1 = [add{2, 2)11]

22

I wrder to realize 1t, svme extensions have been introduced inta KL1,

In the original KL1 language, such a unification normally fuils. For a certain goal and all subgoals
of the goal, a predicate for handling such failure can be specified, which is called in stead of simple
failure. It is called the unification failure handler. The unification failure handler receives two original
arguments, of the unification. If the unification was between two structures and the unification failed
for certain elements of them, then these elements are passed as the argument of the unification failure
handler. The execution of the unification handler takes place of the execution of the unification itself.

If integers should understand add messages, the unification failure handler should have clause such
as the following:

handler{Int, [add({Addend, Sum)} |Rest]} :-
integer(Int}, integer(Addend) |
add{Int, Addend, Sum), Int = Hest.
A prograim piece:
“Newk = % add(i, Y) :add(2, Z)
is translated to:
% = [add(1, ¥}, add(2, Z}|NewX]

If X is 3 and the unification handler is defined as given above, the execution will be as follows:

1. The unification fails.

]

. The unification faillure handler is invoked with two arguments, 3 and
[add(1, Y), add(2, Z)|NewX].

3. The head unification and guard tests succeed making Int = 3, Addend = 1,
Sum = Y and Rest = [add(2, Z}|NewX].

4. The goal add(Int, Addend, Sum),ie., add(3, 1, ¥) is execuled instantizting ¥ to 4 (in par-
allel with the following steps).

5. The unification Int = Rest,ie., 3 = [add(2, Z)|NewX] is executed and fails.
6. The unification failure handler is invoked with two arguments, 3 and [add(2, Z)|NewX].

7. The head unification and guard tests succeed making Int = 3,
dddend = 2, Sum = I and Rest = NewX.

8. The goal add(Int, Addend, Sum),ie., add(3, 2, Z) is executed instantiating Z to 5 (in par-
allel with the following steps).

N The unification Int = Rest, ie., 3 = NewX is exccuted and NewX becomes 3.

The above explained mechanism is realized by defining the unification failure handler appropriate
for execution of A'LM . Users who prefer simple KL1 lanpuage can define his unification failure
handler which simply fails, keeping the original semantics of KL1.

The use of the same mechanism of unification failure handling is not restricted for A’ 4M implementation.

Implementation of other higher level languages may also require some extension of unification.

23

10 Related Works

In comparison of A' LM with other related works, Vulean [Kahn#6] is the closest in approach. Vulcan
s designed as a preprocessor on top of CP and is based on perpetual processes connected via streams.
Vulean supports a variety of funclions as .4'2{M docs, but both are different from each other as follows:
Firstly. unlike in A'#{M , name space is flat in Vulcan, Temporary and parameter variables are treated
in the same way as the variable representing the internal states of objects and it is hard for users to
grasp the transition of each internal state. On the way of class inheritance, these are different. Vulean
supports two ways of inheritance; mehod copy and delegation, while A"24A docs orly delegation. For
developing large systems, the amount of copied method cannot be ignored. Most of the difference is
that A'#A is an independent language rather than a preprocessor and supports message sending as
a primitive instriection, while Vulcan is a preprocessor.

Mandala [Furukawa84] was also designed on CP as Vulean. Mandala supports the association of
objects with their names, hut globally through the name server, which must bring a botileneck in
performance. In 4’740 | the name association is selved in cach object, say local, not bringing such a
nroblem. Another difference is that message receiving in A'l4M is based on one-at-a-time principle.
Until all the behaviors for an external message are taken, no other external messages arc received.
Mandala allows multiple messages to be received, so it makes its implementation difficult.

These lauguages are exploring to realize object-oriented programming with clean semantics. As
anather approach toward object-oriented programming with clean semantics bused on side-cffect free
foundation, FOOPS [Goguen®6] should be listed even though it is in function programming. FOOPS
distinguishes objects from abstract data types and the basic construct is much more restrictive and
complicated.

11 Current and Future Works

We are now on the stage of experimenting the implementation of A" 1M compiier into KL1. We will
write a variety of sample programs to investigate the expressive power of A’ 24M and start writing the
operating system PIMOS in this version.

In the future, we are planning to explore the better implementation such that primitive objects
should work more effectively, The development of programning and debugging enviroment will be
another work.

References

[Chikayama#4] Takashi Chikayama: ESF Reference Manual, Technical Report TR-044, ICOT 1984

[Yokoi84]

[Nakajimalt]

[Gotohf]

[Uedass)
[Shapiro83A]

[Shapiro83B]

[Furukawa®1]

[Goldberg#l]

[Kahn&i]

[Guguensa)

Toshio Yokoi: Sequential Inference Machine: SIM -Its Programming and Operating
System, Proc. of FGCS'84, Tokyo 1084

K. Nakajima, H. Nakashima, M. Yekota, K. Taki, 5. Uchida, H. Nishikawa, A.
Yamamolo and M. Mitsul: FEveluation of PSI Micro-Interpreter, Proc. of [EEE
COMPCON-spring 86, March 19386

Atsushi Goto, Shunichi Uchida: Toward a High Pergormance Parallel Inference Ma-
cline - The Intermideate Stage Plan of PIM, Technical Report TR-201, ICOT 1988

Kazunori Ueda: Guerded Horn Clouses, Technical Report TR-103. ICOT, 1985
Ehud Shapiro: 4 Subset of Concurrent Prolog and lis I'nterprefer, Technical Report
TR-003, ICOT, 1983

Elud Shapire and Akikazu Takeuchi: Object Oriented FProgramming in Concurrent
Prolog, New Generation Computing, 1 {1983), OHMSHA Ltd. and Spricger-Verlag

Koichi Furukawa, Akikaze Takeuchi, Susumu Kunifuji, Hideki Yasukawa, Masara Ohli
and Kazunori Ueda: Maendala: A Logic Dased Knowledge Programming System, Proc,
of the Internatiomal Conference aon FOCS 1084

Adele Goldberg and David Robson: Smalltalk-80: The Language and Its Implementa-
fion, Addizon- Wesly, Reading, 1953

Kenneth Kahn, Eric D. Tribble, Marks §. Miller and Daniel G, Bobrow: Vulean: Log-
ical Concurrent Objects, Technical Report, Xerox Palo Alto Research Center, 1086
(its preliminary version appears as Objects in Concurrent Logic Programming Lan-
guages” in the proceeding of the ACM OOPSLA'SG)

Joseph A, Goguen, Jose Meseguer: Fztensions and Foundations of Object-Oriented
Programming, Internal Memeo, SRI & CSLI, 1986

25

Appendix A. Examples in A" 1M

Example 100 Prime Number Generalor

#numbers :mewl(N},

¥ :do(i00, 2, Nal,
#prime :mew(F),

“Ns = P :start(2, Ps)

class nDumbers ¥ Another Solutiocn of Wumber Generater ¥
cde{™M, "N, “Ns} -
M >u) [
rtroe -2
N o:add(1, "H1),
sde{M, ¥1, Ns:n(Ni)).

tfalse -2
Ns :,
rterminate.
1.
tterminate —-» ..

end,

class prime
elot $lapg, wvalue, next, repart.
rinitiate =>»
flag = 0.
:start("V, “Ps) -»
Ivalue = V,
'report = Ps :n{ivalue).
:n{"H) ->
(¥ / 'value == 0) [
rkrue > . Y N iz 2 multiple of the value. i
:falze —>
('flag == 0} [
true -
'flag = 1,
fprime :new("P),
Inext = P :set_value(N, 'report).
:falae ->»
Tnext :niN).

end .

26

Example 11 Hat and Penguin

class bat
super Tlier, mammal .
tis_bird(Ans) ->»
“Ans = yes. % If you alwaye answer 'yes', you must be a bat! J
end.

class penguin
super bird.
:flies{ans) —>
“Ams = no.
end .

class baird
super flier, with_feather, vertebrata.
sis_bird(Ans) ->»
“hns = yes,
ris_mammal(fns) -»
“Ans = no.
end .,

class flier
super with_wing.
:flies{Ans) ->»
“Ans = yes.
end.

class with_wing
thaz_wings{ins) ->
“hns = yes.
and ,

class with_feather
thas_feathar(Ans) -
“Ans = yes.
end.

clzss mammal
super wvertbrata.
ris_mammal{ins) =>
“hns = yes,
;i _bird{Ans) -=
“Ans = no.
flies{Ane} ->
“Ans = ne.
ris_self_regulating temperaturaihnz) =>
"Ans = yes.

class vwvertebrata
iis_vertebrate(Ans) -»
“Ans = yes.
end.

Example 12 Slol Mackie

fzlot_machine :mew(™5),
S :insert{100) :insert{B0) :get{i20, "Ticket, “Change)

class slot machine
glot nilQ, ns0, ni100, n&00.
rinitiate -»

IniQ = @,
'ns0 = 0,
iniG0 = 0,
InE00 = 0.

rinsert(~Coin) -»
Coin [

:10 =» fpld = ai0 + 1.
60 -> 'nh0D = 'nb0 + 1.
;100 =~» !'n1Q0 = 100 + 1,
;500 -> IakQ0 = {n300 + 1.
3.
iget({"Price, Ticket, Change) ->
“ChangeQ = 10 * 'ni0 + 5O * !n&0 + 100 * !ni00 + 500 = In500 - Price,
(Changed >= 0) [

true —=>
“Change = Changel,
“Ticket = issued,
;initiate.

rfalse —>
“Change = 0,

“Ticket = unissted.
J.
:cancel({Change) ->
“Change = 10 = !ni0 + 50 » !n&3 + 100 * !ni0G + 500 + Inb00,
rintiate.
end.

28

Example 13 Fils Copy

#copler:new{ Copier),
EGPiEI:CCPY{"E", By,

class copler
slot ippath, outpath, infile, cutfile.

scopy {InPath, CutPath) ->
limpath = InPath,
toutpath = OutPath,

teystem :get_file manager("FileManager),
FileManager :create_stdin_file('inpath, ~StdinFile, “Statusi}

icreate_stdout_file(!outpath, “SsdeutFile, “Status2) ,
'infile = StdinFile,
'toutfile = StdoutFile,
I COpY.
Teopy ¥
tinfile :gete{"Char],
{Char == waof) [
itrue ->
tinfile :,
loutfile :,
rterminate.
tfalae =>
loutfile :putc{Char),
LEOPY .
1.
rterminate ->
end.

clazs file manager
coreate_stdin_file{"PathName, StdinFile, Status) ->

#standard_input_file :new(StdinFile],

StdinFile :initialize(PathName, “Status),
roreate_etdout_file("Path¥ame, StdoutFile, Status) -»

#standard_output_file :'new(StdoutFile),

StdoutFile :initialize(PathName, “Status),
tdirectory(“PathName, Directory, Status) -»

#directory inew(Directory),

Directory :initialize(~PathName, “Status).

end.

class standard_imput_file
super as_standard file, input_file.
:getc{Char) ->
iget_position{“Pesition),
iget_buffer_size(RufferSize),
(Position »= BufferSize) [
rtrue =3
iread_tlock{BufferSize, "Buffer)
:set_peositien(0).
1,
tget_positien(~Positioni),
(Positionl »= BufferSize) [
itrue —»
“Char = eof.
:falge =&

29

;Eat_huffar('ﬂuffar}
:set_buffer(Buffer -string_element(Pesitioni, “Char})
rincrement_positieon,

end .

elass sgtandard_ountput_file
super as_standard file, cutput_file.
rputc(“Chaxr) ->
iget_positien{ Fositien)
rget_buffer_size(BufferSize),
{Position »= BufferSize) [
rtrua =>
iwrite_bleck(BufferSize, "Buffer)
ceet_position{0).
ifalze -> .

1get_buifer{ Buffer)
iset_buffer{Buffer)
:set_string element{Pasition, Char)
rincrement _position.

end,

class as_standard_file
slot position, buffer size, buffer.
rintialize(Pathname, Status)ibefore =>
'pesition = O,
'buffer_size = 952 % 4,
fstring :new(Buffer, [size(992 = 431},
Ibuffer = Buffer .
rget_positicn{Fositien) -» "Fosition = !position.
rset_position{“Position) -> !position = Position.
tincremenet_positicon ->
lposition = !positien + 1.
cget_buffer(tbuffer) =» .
cset_bufferd{ “Buffer) -» lbuffer = Buffer.
tget_buffer_size{BufferSize)} ~» "BufferSize = 'buffer size.
raet_buffer_sise{ HufferSize) -> !'buffer_size = BufferSize.
end.

class input_file
super as_file.

:read_bleck{ Length, Buffer)} -»
tfile_device :read{Length, ~Huffer, “Status),
Status [

inormal =>
rprecaed_peinter(Lengthl
rerrori “ErrorReason) =>»
FrrorReason [
reof - % eof handling .
1.
1.

:geek(Fosition, Status) —»
1file_device :seek{Pazition, "Status),
Status [

:normal ->
rerror{ “Errorieason) ->»

30

ErrorReason [
teof => rclose.
3.
1.
rend_of_file{Yorl) -=
:get_pointer (“Peinter),
{FPointer == eof) [
ttrue = “Yorl = yes.
:fatse - “YorlN = no.
1.
tglone == L.
end.

class cutput_file
super as_file.
twrlte_blnckE‘L&ngth. “Buffer, Status) ->
1file_device :write{Length, Buffer, “Status),
Status [
rnormal -» :proceed_pointer(Length}.
:error(“Errorfeason) => :close.
1.
cclose => ..
end.

class as_file
super as_retrievable_object.
slot file_device, pointar.
rinitialize(“PathNameQ, StatusO)kafter ->
:get_pathname (“Path¥ame},
foysten :apen_binary_filu[Fath“nni, “FileDev, ~“Status),
tfile davice = FileDav.
iget_file_device(!file_davice) -».
cset_file_device("FileDev) -> 'file_device = FileDev.
:get_pointer(!pointer) -> .
sset_pointer{ “Pointer) -> lpointer = Fointer.
:proceed_peinter({ Delta) -» !pointer = !pointer + Delta.
=
lfile_device :
end .

class as_retrievable_object
slot pathname.
rinitializel "PathWame, Status)ibefore -»
'pathiname = PathName,
tget_status(-Status).
cget_pathname{ 'pathname) -> .
;set_pathname!{ PathName} -> 'pathname = PathName .
end.

clags file_device
tread("Length, "Buffer, Status) -> % reguest FEP teo read %
swrite(Length, “Buffer, Status) -> ¥ reguest FEP to write X
end.

31

