ICOT Technical Report: TR-302

THR-302

Partial Evaluation of Queries in
Deductive Databases

by
C. Sakama and H. Itoh

Seplember, 987

C1987. 1COT

Mita Kokusmn Bldg. 21F (1) 456-3191-5

|G DT 1-28 Mita 1-Chome Telex ICOT 32964

Minato-ku Tekye 108 Japan

Instituté for New Generation Computer Technology

Partial Evaluation of Queries in Deductive Databases

CHIAKI SAKAMA®* aND Hipenori IToH

Institute for New Generation Computer Technology
Mita Kokusai Building 21F
1-4-828 Mita, Minato-ku, Tokye, Japan

Abstract

This paper presents two strategies for using the partial evaluation method to compile an
intensional database {(idh) in the form of a set of Horn clauses by a set of queries. The least
generalized query (LGQ) method is suitable when there are many compatible queries, while
the most generalized query (MG Q) method works better when the predicates in the queries
have a hierarchical ordering in the idb. In both cases, partial evaluation is used to preprocess

the idh in order to obtain a subquery to direct access to the extensional database (edb).

1 Introduction

A deductive database usually consists of a large extensional database {edb) and a com-
paratively small intensional database (idh). The edb is a set of base relations whose tuples
are explicitly stored, while the idb is a set of function free Horn clauses which define virtnal
relations between tuples. The tuples of a virtual relation are derived from the clauses in the
idb and the facts in the edb.

In such deductive database systems, a query is evaluated with an inference system by
compiling the b and with a relational database management system by retrieving the edb
"Mz T8]. There are known two methods to perform this evaluation: the inferpretive method

and the compiled method [Gall 34]. The interpretive method evaluates a query in an idb and

“uucp: {enea,inrakddlab, mit-eddie, ukel cot/sakama

csnel: sakamafecol. jp@relay. es.ned

interleaves search in an edb over and over again nntil the query is wholly evaluated, while the
compiled method compiles a query wholly in advance in an idb and produces a set of subqueries
evaluable only in the edb.

However, when there is a large extensional database, the compiled approach is considered
more effective to partially evaluate a query wholly in advance in an idb and reduce the access
cost to the edb rather than evaluate one after another in the interpretive approach [Chak 82].
For example, the deductive database systems such as [Yoko 84] and [Boc 86] have been designed
based on this approach.

Partial evaluation (computation) [Futa 83] or mixed computation [Ersh 82] of a program
is considered as a compilation technique for a program with incomplete data, and is useful for
iterative computation, program specification and meta-programming optimization [Take 85] in
practice,

The compiled method in a deductive database is considered as one of the applications of
such a partial evaluation technique to a query optimization, but when there is a set of queries
to be evaluated, it is inefficient to partially evaluate each query independently in an intensional
database. To minimize the cost of such multiple query processing, it is effective to perform
evaluation once that is common to some of the gueries and use the common intermediate
results of evaluation to obtain answers for thase queries. In [Chak 86, it is achieved by using
a connection graph, that is, grouping a set of queries, exploiting the common subexpressions
and generating a single plan to evaluate these queries.

[n this paper, it is achieved as a natural extension of the compiled method in a deductive
database by using the generalization techniques. Section 2 presents the notion of the partial
evaluation method for query processing in deductive databases. Section 3 represents an appli-
cation of the partial evaluation method for multiple query processing in deductive databases.

Parformance evaluation and some discussion are given in section 4.

2 Partial evaluation in deductive databhases

Partial evaluation of a query in a deductive database is defined as an evaluation of the
query in the idb. It is the transformation of a query which includes virtnal relations defined in
the fdb into subgueries which are the Horn clauses evaluable only in the edb,

This process is represented as {ollows:

|]

Qian = c(1db. () (1)

where (0 denotes a query to be evaluated, ¢(idb, () denotes a query compilation in the idb
with deduction, and .z presents the result of the compilation which is the subguery for the
edb.

After this compilation, Q4 i5 evaluated in the edi:

Qide.ear = r{edb, Jigy) {2)

where redb, Qi4) denotes the evaluation of {Jig in the edb with relational operations and
(ids edp Tepresents the result of the query evaluation in the idb and the edb, which is a set of
answer tuples for the query.

Ag is well known, the central problem of such an evaluation is a termination condition and
answer completeness for & recursive guery in a deductive database, and many studies have
been done so far [Ban 86]. In this paper, the Horn Clause Transformation (HCT) method
[Miva 86] is used for treating such recursive queries, that is, compiling a query in an idb and
generates some subqueries which define the query only with edb predicates appearing in the

edb and recursive predicates which are evaluated iteratively in the edb,

Erample 2,1 Suppose the following idb.

p(X.Y): —q(X, Z),r(Z,Y).
g(X, ¥} —s(X,Y).
g(X,Y): —s(X, Z),1{ £, Y).
HX,Y): —u(X,Z),q(Y, 2).
o[X, V) —w(Y, X).

Using the #CT method, a query ? — p(a,Y") is partially evaluated in the idb as:

Ciae
P Y): ~q(a,2),7(2.Y),
g X, Y): —s(X, V).
g X, Y) : —s(X, 20, u(Z, W), q(Y.W).

These are the subgueries to be evaluated in the edb, where ¢ is a recursive predicate and

r, & and u are edb predicates. Note that, in the above example, the recursive clauses are not

3

instantiated for later usage. O

3 Application to multiple query processing

Suppose there is a set of queries to process in a deductive database. In this case, it
is incficient to partially evaluate each query independently as is presented in the previous
section. This section gives two methods as applications of the partial evaluation for multiple

query processing in deductive databases.

3.1 Generalized query

First, some basic definitions and terminology used in the following discussion are given.

Definition 8.1 A term and an alom {atomic formula) are defined as follows:

1. A variable or & constant 15 a term, and nothing else is a term. (As stated carlier, we

consider only function free cases.)

2. If pis an n-ary predicate and 1, ..., %, are terms, then p{ty,...,1,) is an atom.
In particular, atoms of the same predicate and the same number of arguments are called

compatible, r

Definttion 3.8

1. Given atoms P and Q, ¢ is more general than P iff there exists a substitution # such that
P = g8, written P T .
2, Let § be a set of atoms, then L is a least generalization of § iff
(i) VT e 5, TC L
(i) YL, if VT €5 and TC L, then LC L.
3. Let 5§ be a set of atoms, then L is a most generalization of § iff
(i) ¥MTe 5, TE L
(it} WLy, if YTI'e 8 and TE L; then L; T L.

Here C denotes partial ordering over the atoms. O

Ezample 3.1 The least and most generalizations of the atoms {pla,a), pla,b)}
are p(a, X) and p(X, Y}, respectively. il

The generalization of atoms has been applied to inductive reasoning [Plot 70], er-parallel
search strategy [Fish 75) and so on. Here, these generalization techniques are applied to mul-

tiple query processing in deductive databases.

3.2 LGQ method

In all subsequent discussion, a query composed of a single atom is assumed. For example,
a query composed of several atoms such as 7 — p(X, V), q(Y, Z),r(Z) is considered as a query
T—s(X,Y,Z) and a clause s{ X, Y. Z): =p(X,¥V). q(Y, Z).r(Z).

First, the notion of least generalized gueries is defined,

Definition 3.5 (Given a set of queries, the least generalization of compatible gueries in the get is
called the least generalized query for compatible queries and a set of the least generalized queries
for all the maximal compatible sets of queries in the given set is called the least generalized
queries {LGQ). O

Ezample 5.2 The LGQ of a set of queries {p(a,a),p{b,b),qla, ¥, ¢{ X, b}, v(a)}
is {p(X, X).q(X. V), r(a)). 0

When a set of queries to be evaluated is given, an LG of the set can be obtained by the

fallowing steps.
1. Classifying a set of queries into subsets of compatible gueries,

2. Deriving the least generalized query of each subset.

The algorithm for deriving the least generalization is given in [Rey 70} and [Plot 70]. We
use this LG for the partial evaluation of queries.

Suppose a set of gueries Q is given, then the LG'Q of Q is presented as:

LGQ =uQ (3)

Partial evaluation of a LG@Q in the idb is presented as follows:

LGQw = c(idb, LGQ) (4)

where c(idb, LG Q) denotes a compilation of LGQ in the idb.

Such LGQg is evaluated in the edb with the selection condition of the given queries:

Qidr.ear = rledh, ol LGQas]) (5)

where ¢g denotes a selection operation under the condition of Q. and Q;g .4¢ presents a

set of answer tuples for the given set of queries.

Ezample 5.3 Suppose the same idb as in Ezample 2.1 and a set of queries Q.
Q = {p(6, 1), p(X,d),t(X.), 1{b,c), v(X, [)]
Then, the LGQ of these queries is:
LGQ = {p(X. V) {(X,) v(X, f)}

and is partially evaluated in the idb as follows:

LGQian
p(X,Y) 1 —g(X. Z),r(Z,Y).
g(X,Y) : —s(X, 1)
Q(X.Y): —s(X, Z),u(Z, W), (Y,).
HX.V): —u(X, Z), s(Y, Z).
HX, V) —u(X, Z), s(¥, W), t(W, Z).
v(X, f): —w(f, X}
These are the union of the evaluated results of each query in the LG'Q and are evaluated in
the edb with the following selection conditions, ox=pvy=a(P(X, Y)), O(x=p y=epur =(H X, Y]},
and ay=g(v(X,Y)). =i

3.3 MGQ method

This section presents arother optimization techmique for multiple query processing. First,

the notion of most generalized queries is defined.

Definition 3.4 Given a set of queries, the most generalization of compatible queries in the
sot ic ralled the most generalized guery for the compatible gueries, and the set of the most
generalized queries for all the maximal compatible sets of queries in the given set is called the

most generalized queries (MGQ).)

Erxample 3.4/ The MGQ of a set of queries {p{a,a),p(b,b),q(a, Y}, g{X,b),r(a)}

is {p(X.Y).q(X, Y). r(A)} o

An MGQ can be obtained from a given set of queries likely in the case of LGQ by simply
assizning different variables to the arguments of the compatible queries.

Next, the partial ordering over predicates is defined.

Definition §.5 Partial ordering over predicates appearing in a set of Horn clauses is defined

as follows:

1. Suppose a set of Horn clauses §, and 3Cx(€ 5). When the predicates in Chy p; and
pi(pi # pj) satisfy the condition p; € Head(Ci),p; € Body(Cy), then it is said that p
is higher than p; (p; is lower than p;) and written p; = pi. (Head{Cy) and Bady(Cy)
denote the sets of predicates appearing in the head part and the body part of the clause

Ci. Tespectively.)

2, If p; = pi and p; = pj, then p; ~ py. =

In the above definition, it was assumed that atoms with the same predicate are compatible.

Ezample 5.5 For the set of Horn clauses 5,
§={p(X.Y): —q(X, Z).plZ.Y), gAY —r(X, 2),8(Z,Y), s(X,Y):—g(Y,X)}

the ordering over predicate is defined as r = ¢ =< p and g ~ s. o

Assume an fdb is given as a set of Horn clanses, then the ordering over the predicates
appearing in the idb is defined according to the previous definition. When a set of queries to
he evalnated is given for this idb, some hierarchical ordering over the queries may be defined
because the predicates of those queries ate to be defined in the idb.

We usge this hierarchical ordering over querics with the M&Q for the partial evaluation of

queries,

Suppuse a set of queries Q and its A{GQ. When an ordering over the predicates of the
MGG} is defined, they can be sorted according to the ordering:

s(MGQ) = (mgq, mgqa, ..., mgqa) (6)

where s(M (7)) denotes the sorted MGQ and mygq; is @ most generalized guery lower than

gy, ifi< << ﬂ’.}'

A sorted M GQ should be partially evaluated in the 1db from lower queries to higher queries,
because the evaluated results of the lower queries can be used to evaluate the higher queries
since the hizher predicate is to be defined by the lower ones in the idh. Note that the most
generalization is needed for this evaluation because the higher query evaluation may need more
general results of the lower one during its evaluation.

By (6), partial evaluation of the sorted MG@Q in the idb is presented as:

MG) = c{idb, s{ MGQ)) (7)

where c(idb, sl MG@)) = |U; c(idb;, mgg;), idh; = e(idbi_y, mggi_q) Uidb]_{i > 2}, idh; =
idb, and 7db7_, denotes idb;_1 except for the clauses which have the same predicates with the
results of the evaluation of mgg;_; in the head. This means that mgg; is partially evaluated in
the idb using the evaluated results of the lower mggs and |); ¢(idd;, mgq;) presents the union
of the evaluated results of the sorted MGQ in the idb.

Finally, s{ M CQ)iz is evaluated in the edb with the selection conditions of the given queries:

Qiabear = r{edb, og(s{MGQ)iae)) (8)
where oy denotes a selection operation under the condition of Q, and Q,a .4 presents a
get of answer tuples for the given set of gueries.

Erample 3.6 Suppose the following 1db and a set of queries Q.

pX, V) —q(X,2),r(Z,Y).

g{ X, V) —s(X. 7).

g(X, Y) =8 X.2),t(Z,Y).

XYY —t{X.Y), w(}. Z).

HA,Y): —u(X,Z),q(Y, Z).
Q - { p{at.&’]:]ﬁ{&,b], Q(KTC':IT Q{h1-¥}1 r[x--f}]'
In this case, the MGQ of Q is:

MGQ = {p(X,Y}.q(X. V), r(X.Y]}

and, according to the ordering over predicate in the idh, the M (7() is sorted as

sMGQ)={ (g(X,Y) nX.)Y)), plX.Y))
that is, ¢ < p, 7 = p and there is no ordering between g and r.

At first, g(X, Y) and r(X,)7) are evaluated in the idb,

g, Y) —s(X, V).
g(X,Y): =s(X, Z), u(Z,W), g(Y,).
X, V) 1 =—u(X, W), (Y, W), w(Y, Z).

and the :db is transformed into the following idb, with these evaluated results:

p(X, Y): —g(X.2),7(Z,Y).

g(X,Y) 1 —s(X,Y),

g X, V) —s(X,Z),w(Z,W),g(1,W).
XY —u(X, W), g(Y, W), w(Y, Z).
HA,Y):—u(X,Z),qlY, Z).

Secondly, p(X,Y) is evaluated in this idb;.
Pl X, Y) =gl X, 2), (2, W), qY,W)w(Y,U).

Finally, the partially evaluated MG(Q in the idb can be obtained by the union of these

results.

s(MGQ)i
p(X,Y) —gl X, 20, u(Z,W),qY, W), wlY,U].
g(X,Y):—s(X,Y).
(A, Y) =s(X, Z),u(Z,W),q(Y,W).
r(X,Y) s (X, W), gV, W), w(Y, Z).

These subqueries are evaluated in the edb with the following selection conditions,

E{X,-.u,]":b]v.xzuip': X)), Fx=b'ﬂ"'='=|:q(x! Y}] , and oy =f (T[X., Y)). G

In the above example, ple,}) and pla,b) need not have been most generalized for the
evaluation of the gueries, because they are the highest queries in the set and their evaluated
results are not used by any other queries. { The least generalized query, that is pla,¥'), can

be used for compilation in this case.)

gl,gZ, g3 , search space

w4 forgl

spproximated
: ir" search space

gl = g2
gl = g3

{g8) LGQ method ic effective) MGE method is effective (e} LGE and MGC methods
are not efecgwe

Figure 1. Comparison of each method
4 Performance Evaluation

The previous section presented two strategies for the optimization of multiple query pro-
cessing in deductive datahases. Figure 1 shows the comparison of these methods.

The LGE method is effective when there are many compatible queries in a given set of
queries, because the same compilation for those gueries can be approximated by their LGQ
(Figure 1{a}}. While the M G method iz better when the predicates in the queries have a hier-
archical ordering in the idb, because the compilation of queries can be performed incrementally
from lower queries to higher gueries (Figure 1{b}}.

Hewever, as in Figure 1(c), although the queries have commeon subqueries, both methods
are useless because the queries are neither compatible nor hierarchical. In such a case, a
bottom-up evaluation seems to be suitable rather than the top-down way, hut this case s not

dizcussed furthermore in this paper.

Now some experimental results of the effect of these methods are presented below,

The LGQ and MG processors, and HCT interpreter are implemented in DEC-10 Prolog.
Table 1 gives the results of LGQ and MG(Q processing. In the LGQ processing, an LGQ is
generated from the given set of queries, and in the MGQ processing, an MGQ is generated
from the given set of queries, which are sorted according to the crdering over predicates. In
these experiments, the queries are assumed to be function free binary relations. Table 1(a)
shows the execution time of the LG and MG processes for the different number of queries

at the rate of LGQ/Q = MGQ/Q = 0.6, that is, the number of queries is reduced to 60% in

10

(w) LGQ/Q=MGQ/Q =06

£Q 5 10 15
LGQ 15 42 B2
MG 14 36 74
®) #Q =10
; ' 02 0.4 0.6 | 0.8
LGQ 21 87 &8 | &
MGQ 16 28 s | 45

(msez)
Table 1. Execution time for the LGQ and MGQ processing

depth 5 l 10 | 15

time (msec) ges | sme4 | 1287

Table 2. Execution time for HCT process

the LGQ or MGQ. Table 1(b} shows the time for the different rates of LGQ/Q and MGQ/Q

with 10 gueries.

Next, the periormance improvement obtained by these strategies in compiling idb is shown.
For measurement, it is used a sample idb which consists of function free Horn clauses, composed
of binary relations without constants, and including linear recursive claunses at the rate of 80%
for all clauses. The execution time of the HCT process for a single query is shown in Table

2. In this idb, the scarch space grows nearly exponentially, so does the costs increase with the
deptl.

For the evaluation of a set of queries in this idb, the following three ways are considered.
¢ Compiling each query iteratively in the idb.
s Using the LG methad.

s Using the M G0 method.

We measured the execution time using each method for five and ten queries at the rate of

LGQIQ = MGQ/Q = 0.6. Figure 2 shows the comparison of the compiled execution time
between these evaluations.

11

{ msec)

15,000 ~
N 20=5 iterative LGQ
10,000 =
5000 -
0 ! | ! 1 | 1 1 j
z 3 4 5 & 7 B & {depth)

Figure 2. Comparison of performance evaluation

The set of queries used in this evaluation included some hierarchical queries, making the
MG@Q method more effective at deeper depths than otler methods.

In these experiments, we assumed an idb which contains noe constants, so the trade-off
logses of efficiency due to the inereased generality of the queries did not affect the results of the
evaluation. Ifewever, when an idb coutains many constants and the generalization technigues

mentioned in this paper increase the search space for the queries, these methods may be less

effactive in practice.

5 Concluding remarks

This paper presented an application of a partial evaluation to multiple query processing in
deductive databases. It introduced two methods: the LGQ method and the M7 method.
Both methods are a natural extension of the compiled approach for multiple query processing
in deductive databases and can reduce the cost of compilation for a set of queries. Although
function free Horn clauses were assumed according to the convention in deductive databases,

these generalization Lechniques can he applied te the non function [ree cases in general. Further

discussion will be needed in the real applications.

12

Acknowledgments

We would like to thank Yukihiro Morita, Nobuyoeshi Mivazaki and our colleagues in the KBM
project at ICOT for useful discussions on an earlier draft of this paper. We are also grateful to

Toshiaki Takewaki for helpful comments and assistance in the performance evaluation in this

paper.

Relferences
[Ban 86] Bancilhon,F. and Ramakrishnan,R.: "An Amateur’s Introduction to Recursive Query
Processing Strategies”, Froe. ACM SIGMOD 86, pp.16-52, 195G,

[Boc 86] Bocea,J., Decker.H., et al.: "Some Steps Towards a DBMS Based KBMS", Proc.
Information Processing Congress, pp.1061-1067, 1986.

[Chak 82] Chakravathy,U.S., Minker,J. and Tran,D.: "Interfacing Predicate Logic Languages
and llelational Databases”, Proc. ist Int. Conf on Logic Programming, pp.01-98, 1982,

[Chak 86] Chakravathy,U.S, and Minker,J.: "Multiple Query Processing in Deductive Databases
using Query Graphs”, Proe. 12th Int. Conf. en VLDRE, pp.384-391, 1986.

[Ersh 82] Ershov,A.P.: "Mixed Computation: Potential Applications and Problems for Study”,
Theoretical Computer Science, vol.18, pp.41-67, 1082,

[Fish 75) Fishman,D.H. and Minker,J.:"II-Representation: A Clause Representation for Par-
allel Search™, Artificial Intelligence, vol.G, pp.103-127, 1975,

[Futa 3] Futamura,Y.: "Partial Computation of Programs”, Lecture Notes in Computer Sci-

ence, vol.147, pp.1-35, 1983,

[Gall 84] Gallaire,H., Minker.J. and Nicolas,J.M.: *Logic and Databases: A Deductive Ap-
proach”, ACM Computing Surveys, vol.16, no.2, pp.153-185, 1984,

[Miya 86) Miyazaki N., Yokota,H. and Itoh,H.: "Compiling Horn Clause Queries in Deductive
Databases: A Horn Clause Transformation Approach™, TR-183, ICOT, 1086,

ot 70] Platkin,G.D.: "A Note on Inductive Generalization™, Machine Intelligence, val.3,

pp.153-163, 1970,

[Rei 78] Reiter,R.: "Deductive Question-Answering on Relational Data Bases™, Logic and Data

Buaszes, Plenum FPress, 1978,

13

[Rey 0] Reynolds,J.C.: *Transformational Systeme and the Alpebraic Structure of Atomic

Formulas™, Machine Intelligence, vol.5. pp.135-131, 1970.

[Take 55] Takeuchi,A. and Furukawa.l.: "Partial Evaluation of Prolog Programs and its Ap-
plication to Meta Programming”, Proc. Logic Programming Conference'85, ICOT, 1985.

[Yoko 84] Yokota,H., Kunifuji.S., et al.: "An Enhanced Inference Mechanism for Generating
Relational Algebra Queries”, Proc. $rd ACM PODS, pp.229-238, 1084,

14

