ICOT Technical Beport: TR-298

TR-295
T: A Simple Reduction Language Based on
Combinatory Term Rewriting

by
T. Ida (Riken), Y. Tovama (NTT)
and A. Aiba

Sepember. 987

iC1987, 1COT

AMia hokuss Bldg. 21F 03 436-3191-5

|CDT 4-78 Mita 1-Chome Telex ICOT 32061

hinato=ku Tokyao 108 lapan

Institute for New Generation Compuiér Technology

T: A simple reduction language based on
combinatory term rewritingf

TETSUQ [DA

Information Science Laboratory,
Institute of Physical and Chemical Research
9.1 Hirosowa, Wako-shi, Seitame §51-01, Japan

AKIRA AIBA

Institute for New Generution Computer Technology,
1-4-28, Mita, Minato-ku, Tokye 108, Jepan

YOSHIHITO TOYAMA

NTT Electrical Communication Laboratorics
§-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan

ABSTRACT

A programming language, called T, based on a combinatory term
rewriting system is presented. Conditions are discussed to make the
term rewriting system a viable programming language. Deseriptive
power of the language is derived by making the system combina-
tory and by allowing pattern matching in sccking applicable rewrite
rules. Normalizing reduction strategies are discussed in conjnnetion
with the implementation. We also discuss the methods for eficicut
implementation of the language.

1. Introduction

Recent progress in the studies of new prograuuning paradigms makes it clear that
logical systems developed in mathematics can serve as a practical eomputation model
of a programming language. M-calculus and first order predicate logic, which are
respectively the computation models of functional languages and Prolog are good
examples.

1 This work is partly based on the activities of TRS WG of ICOT.

In this paper, we present a language (to be called T, T for term) based on & combi-
natory term rewriting system and discuss its effectiveness as a practical programming
language. We start from the following general observations about a combinatory term
rewriting system:

1) Rewrite rules with some constraints have enough power to describe computation
both from theoretical and pragmatic point of view.

2) Combinatory reduction has very simple semantics and can be designed to possess
properties, such as the Church-Rosser property and the referential transparency
that are desirable in manipulating and reasoning about programs.

3) Efficient implementation is possible.

We discuss more about the design objectives of T in section 2 and the syntax and
semantics in section 3. Considerations for efficient inplementation are given in section

3.

A programming language whose computation model is explicitly based on a term
rewriting system, as far as we know, is O'Donnel’s equational language [11]. T is
different from it in that in T programming, programmers reason about programs in
terms of combinatory term reduction, whereas in O'Donnel’s language, reasoning is
purely equational. T turns out to be similr to HOPE [2] and KRC [13] in its semantics
than equational languages.

2. T and term rewriting systems

It is widely known that term rewriting captures the notion of reduction. A term
rewriting system (abbreviated as TRS hereafter) is a set of rewrite rules

{Li- —* R#r i = EI., 11 “‘}

and Var(L,) D Var(R;), where L; and R; are terms, and Var(M) is a set of variahles
that appear in term M. A (general) TRS provides a computation mechanism for
theorem proving, equational (specification) languages, abstract data type checking
and validation, and programming languages. We are interested in a TRS which serves
as a computation model of a practical programming language. For a TRS to be a
computation model of a programming language, we need to impose some constraints
on the formation of rewrite rules.

A single criterion, apart from efficiency criteria, is that the TRS should satisfy the
uniqueness of the answer (consequence of the Church-Rosser property), if it exists.

(Overall design objectives of T are as follows,

(1) T is a functional language based on reduction, whose programs satisfy the
Church-Rosser property.

(2) Tt ean be an “assembly language” for an abstract reduction machine.

(3) From (2), we require T to be a type-free language. We assumc objects of T carry
types in the form of a tag.

(4) Despite the low-level-ness of T as inferred from (2) and (3) we provide proper
syntax (in macro) so that a large class of algorithms are written in T naturally.

(5) We tried purposely not to incorporate high level language features which will in-
cur run-time overhead, or which may be incorporated into a higher level langunage
that is built on T. These include typing facilities and equational specification.

We describe in the following how these objectives are realized by a restricted TRS.

3. Syntax and semantics of T

3.1 Term

The syntax and semantics of language T is briefly described with the help of BNF.
First we consider terms;

< term >u=< basic—term > | < term >< term >
< basic—term >u=< combinator > | < variable >

Association of terms are to the left, and parentheses are used freely to change the
association. It is understood that each syntactic category introduced in BNF may be
parenthesized, if necessary. The syniax of combinators and variables is usual, hence
we omit the explanation. {See the examples below.}

primitive—constant : 0, nil
constant { de fined—constant : pai,e
de fined—econstructor : complex
primitive—constructor : cons, suc
§—combinator : add,sub
de fined—combinaior : fac
variable : a,b,c

constructor

hasic—term { ©° binator

Figure 1: Classification of basic-terms with examples

Structured data are constructed by constructors. For example, “suce” is used to
construct natural numbers and “cons” to construct list structures e.g. 2=succ(succ 0)

(eonceptually, natural numbers are constructed this way), list of 1 and 2=cons 1 (cons
2 nil). Note that this construction should not be confused with actual implementation

of data structures, Implementation will make use of all available hardware to attain

efficient processing of heavily used data structures.

Example 3.1

add n m = (add n) m. Then “add n m" is seen as the addition of n and m, if “add”
is predefined as a §-combinator with the rewrite rules of addition. "add n" is seen as
plus-n function.

Variables are syntactically indistinguishable from combinators, hence they have to be
intraduced by declaring

Var {x;, x2, ...}
3.2 Rewrite rules

Rewrite rules are of the form

fP1g P12 ... Py, — Ei;
mel ngg Pﬂ,ng —* E-gl

fljm‘l Pm12 Pl"ﬂ.ﬂm i Em;

where fis a defined-combinator. That is, the combinator “f” is defined by these rewrite

rules.

More precisely, the syntax of rewrite rules 1s the following.

< de finition >u=< defeonst >=< term > |
< defeombinalor > < arg—list >— < term >,
< arg--list >u=< arg > | < arg >< arg—list >
< arg o= variahle > | < constructor > | < constructor >< arg >

We impose syatactical constraint on the lefthand side of rewrite rules. This constraint

is essential in securing the Church-Rosser property and efficient implementation of T.

An important point to note here is that defined-combinators do not appeir in the
argument list of rewrita miles. This 18 necessary to secure the non-overlapping property
discussed in section 3.3.

3.3 Reduction of terms

A program is a set § of rewrite rules formed according to the above rule. § defines
a TRS. Reduction by pattern matching (denoted by ==) and the normal form are
defined as in the (general) terin rewriting systems.

As criteria for a computations model of T, we seek the following:
(1) § has a unique normal form, if it exists.

(2) There should be an efective reduction strategy which always delivers the normal
form, if it exists.

Several sufficient conditions are known to guarantee (1), We have chosen the conditions

of Huet [4] and Rosen [12] because of the level of language T. That is, if a term rewriting
system 1s

(i) linear (same variables does not appear more than once in the lefthand side of a
rewrite rule), and

(ii) non-overlapping (no two redexes overlap each other [6])
then it has a unique normal form if exist.

T imposes the linearity. The linearity can be checked easily. Regarding non-overlap-
ping, the constraint of the lefthand side of rewrite rules discussed above guarantees
the easy automatic check of non-overlapping.

This constraint may be lifted if we are to run the Knuth-Bendix algorithm. We foresee
this feature in a language on T. The usefulness of the Knuth-Bendix algorithm in the
context of a programming language such as T is yet to be seen.

Example 3.2 Factorial in T

fac 00— 1:
fac n' — n' = (fac n);

(equivalently, fac (suece n) — mult (suee n) (fac n), as explained in scction 3.6)

This system is non-overlapping. Moreover, strongly normalizing. Compare this with
a Lisp program.

{DEFUN Fac (N)
(IF (ZEROP %) 1
(+ W (FAC (1- N)))))

“fac (—1)" is a normal form in T, whereas (FAC —1) in Lisp is non-terminating
(possibly resulting in an error of “stack overflow”).

3.4 Reduction strategies

Regarding the reduction strategies, some freedom in the choice is afforded. Several
normalizing strategies are known for various reduction systems e.g. leftmost reduc-
tion strategy and the Gross-Knuth reduction strategy in the M-calculus. Since our
first attempt is to implement T on conventional machines, we first investigate whether
the leftmost reduction strategy is normalizing in the combinatory reduction system.
It is known [3] that under the following conditions the leftmost reduction strategy
is indeed normalizing: In the lefthand side of a rewrite rule all the constructor oc-
currences are to the left of combinator occurrences (left-sequentiality). However. the
left-sequentiality is severe constraint in programming. Constraint can be -nitigaied
by suitable preprocessing. Namely, the system systematically permutes variables and
combinators to satisfy the left-sequentiality without imposing it on users, if possible.

Example 3.3

member a nil — false;
member a b:c — if (eq & b) true (member a c);

Note “member o z:c — true” can not be added since this rule impairs the linearity.
Suppose N ==* Q1 (non-terminating), and M ==* 1 in “member N M" (=" is =

transitive closure of ==). “member N M" is non-terminating by the leftmost reduction
strategy. We can construct a corresponding left sequential system

xmember nil a — false;
xmember bic a — if {eq 2 b} true {xmember ¢ a});

By the leftmost reduction strategy, the reduction of “xmember M N” can be stopped
when M is reduced to 1 since “xmember 1 N” (as a whole) does not maich with
any rewrite rules, and the leftmost combinator “xmember” never dimimishes by the
reduction.

Nevertheless, one can easily creates an example where the leftmost reduction strategy
is not normalizing.

Example 3.4

f (cons x 1) — 10

We cannot arrange the order of the first and second arguments of cons i general.

f (cons N M) = 10, where
M=*1,
N =* 1.

If the leftmost reduction strategy is used, the normal form 10 is not obtained.

In general, for a normalizing strategy we would need a thorough strictness analysis
and/or parallel reduction strategies. In our present implementation, we adopted the
leftmost reduction strategy.

3.5 Conditional term rewriting

Rewrite rules by argument pattern matching alone cannot always discriminate the
cases programs are to handle. It would be desirable to have a conditional part (or
guard) for a rewrite rule.

For example, it would be desirable to have in T

if a>b, ged a b — ged (a=b) b;
if a<bh, gcdab — ged b (a—b};
if a=h, gcdab — a;

computing the greatest common divider of a and b.

However, one will soon encounter difficulties in securing the Church-Rosser property
when any term (reduced to true or false) is allowed in the condition. Theoretical
analysis in general setting, see [8]. We decided not to introduce conditional part.
Instead we introduce 'if’ combinator with built-in rewrite rules

if true p q — p;
if false p q — qi.

This will lead to rather conventional style of programming when case discrimination
cannot be handled by pattern matching alone.

In T, ged is written as

ged a b — if a>b (ged (a—b) b} {if a<b {ged b (a=b}) a);.

For a more readable syntax of if, see the section 3.6.

3.6 Syntax sugar (Summary)

To enhance programmability, the following syntax sugar is provided. These sugared
forms are macro-expanded to standard forms upon reading by the system.

(1) Infix notations for commonly used operations. e.g. +, —, =, /, : {or add, sub,
mult, div, cons, respectively.

Example 3.5 Summation of z list of numbers
sum nil -+ 0
sum a:l —a+({sum l};

{2} list notation

{ai, az, ... ,aa} =cons(a; cons(az ... (cons a, nil) ...)).
{} =nil.
Example 3.6 Reverse of a list

reverse {a, b, ¢} =% {c, b, a}, where

[EVerse X —revx{};
rev{}y —w
rev aix y — TeV X aly;

(3) postfix notation ' for the righthand side.

Example 3.7

2=succ(succ 0}=0"
n'+(fac n)=mult (succ n) (fac n)

(4) postfix notation “if” and “otherwise” instead of “if” combinataor.

E; if Eq,
E; otherwise
=if E; E: E;

Example 3.8 A prime number generator using the sieve of Eratosthenes

intl i — i:{intl (i+1)):

sieve 1:q r — sieve q T if (divides 1),

i:(sieve q r) otherwise;

divides i jir — false if i<jx],
true if (mod i j)=0,
divides i r otherwise;

primes —2:(sieve (intl 3) primes);

3.7 Miscellaneous

1. Primitive combinators: add, sub, mult, div are equipped with infinite rewrite
rules, theoretically. e.g.
add 00 — O
add 01 -+ 1;
add 0 2 — 2;

9. Inthe similar vein, union of constructors is provided to abbreviate writing rewrite
rules. e.g.
Constructor {cons, succ, float};
Union atom= {succ, float};

Kp (atom n) — atom n;
Kp (cons n m) — add (Kp n) (Kp m);

The first rule is an abbreviation of the following rules:

Kp (succ n) — succ n;

Kp (float n) —» float n;

Note the union of constructors should not be regarded as a data type.

4. Programming examples

4.1 Interpreter for T

A simple interpreter using closure reduction is given in the following. To illustrate the
main point, we only give the matcher of arguments and the reducer for input terms.
This reducer reduces term t under environment e. It is assumed that input rewrite
cules are already checked for non-overlapping and linearity. The following matcher and
reducer operates on a closure which is a pair of a term and its enclosing environment.
The matcher is similar to a unifier used in resolution-based systems.

Let t be a term matched against s, and to be reduced under environment e. In the
following program we assume the rewrite rules given below are predefined.

(1)

(2)

(3)

(4)

(3)

(6)

(7)
(8)

(9)

“isconstant”, “isconstructor”, “isvar”, “iscons”, "issucc”, “isdefinedcombinuator”,

and “isdeltacombinator™ are predicates for constant, constructor, variable, list,
integer, defined-combinator, and §-combinator, respectively.

“valof v e" extracts the value of the variable “v" from the environment “e”. If

[

the environment does not include the entry for a variable “v”, the variable “v
itself is returned as a value.

“hd" and “t]" are §-combinators of projections of lists, That is,
hd {} —{}; hd a:b — a; and
t1{}—={};tlhab—=bh;

as usual.

“deflhs ¢” and “defrhs ¢" extract the lefthand side and the righthand side of the
definition for the defined-combinator “c", respectively.

“lmt” and “rmt” return the leftmost term and the rightmost term of their argu-
ments, respectively.

“butlmt” and “butrmt” return the term except the leftmost one and the term
except the rightmost one of their arguments, respectively.

“mkterm s t" makes a term represented by “(= t)".

Rewrite rules for the same defined-combinator is kept as a list. Each definition ecan
be extracted by “defcombinatorlist”, whose argument is a name of a combinator.

“funcf” and “argof” are selectors for terms. “funof” selects the function part
and “argof” selects the argument part of the application.

(10) *apply” is for reductions of §-combinators.

match tie s — equal (red t:e) s if (isconstant s),
eqts if (iscombinator t),
constructmatch t:e s if (isconstructor s),
s:{valof ¢ e):e if (isvar s)
(match (funof t):e (funof s)):(match (argof t):e (argof s)):e
otherwise;

constructmatch te 5 —

listmatch tie s if (iscons s),

nummatch t:e s if (issuce s),
etc.

listmatch tie 59 : 50 —

d (match (hd t):e 5,) & (mateh (tl the s;)
if (iscons t),
false otherwise;
red tie — valof t e if (isvar t),
t if (isconstant t},

matchtest t:e (defcombinatorlist (Imt t))

if (isdefinedcombinator (Imt t}),
apply tie if (isdeltacombinator (lmt t}),
redconstructor t:e if {isconstructor (lmt t));

matchtest t:e m — matchtest0 (butrmt t)e (rmt t)
if m=nil,
red (defrhs (hd m)):(match t (deflhs (hd m)))
if not (member false
(match t (deflhs (hd m}))),
matchtest t:e (1l m) otherwise;

matchtest) si:e 53 —
(inkterm s, 32} if equal (red s;:e) (s;1:e),
red (mkterm sy 83):e otherwise;

The main part of the interpreter is a rule “red t:{ |7 which reduces a termn t under
nil environment. “nummatch” and “listmatch” treat numbers and lists respectively.
They are not elaborated in this paper.

The following example is the trace of the reduction of “fac 17 by the above reducer.

Example 4.1

red(fac 1):nil
= matchtest (fac 1):mnil { fac 0 — 1;, fac n' — n'+{fac n);}
= match (fac 1):mil (fac 0)
==> (match fac:nil fac):(match 1:mil 0)
= truc:{comnstructmatch l:nil ()
=% true:(nummatch L:nil 0)
=% match (fac 1)mil (fac n')
== (match fac:nil fac):(match 1:mil n')

—= true:(constructmatch 1:nil n')
== true:(nummatch l:nil n')
= true:(n:0)

= red (n'+(fac n)):(true:(n:0))

= apply (n'+(fac n))(true:(n:0})

= apply 1x(red (fac n):(true:(n:0)))

= apply 1=(matchtest (fac n):(true:(1:0)) { fac 0 = 1;, fac n' — n'={fac ul b
== match (fac n):(true:n:0)) fac 0
== (match fac:(true:(n:0))):{match n:{true:{n:0)) 0)
== true:true:true:(n:0)

== apply 1#(red 1 (true:true:true:(m:0}))

= apply 1+1

= 1

4.2 Control structures

Oft-used control constructs are easily realized with rewrite rules, even without losing

syntactic correspondence with conventional constructs.

Example 4.2 “while do” and “repeat until” construct in T.

while p do fon x —
while pdo fon (fx} if (p x),
X otherwise;

repeatuntil p do { on x —
while not p do { on {f x);

We note that no higher order coneept is necessary to implement “while” and that with

no extra cost we add sugaring constants “do” and “on”.
4.3 Construction of structures
Complex data structures can be represented by juxtaposing a comstructor d and

constituent items, say d;, d2, ... dn, where d; may be a complex structures, 1. e.
ddy dp ... da.

The following example, taken from O'Donnel [11] and modified into T, is an example

of constructing and manipulating polynomial.

Example 4.3 Polynomial addition

Polynomial cg + 1z 4+ ... + cpz™ is represented as ¢o + z{c; + ... epx™ 1) Hence
we represent a polynomial as “plus i (times x ¢)”, where “plus” and “times” are
constructors. In the following program, we assume that the coeflicieuts are integers,
and that negative integer is represented by prefixing comstructor “neg” to natural
numbers, e. g. —1 =neg (suce 0).

Then rewrite rules padd for polynomial addition are as follows:

padd (plusi a) (plus j b) — plus (add i j) (padd a b);

padd 0 {plus j b) — plus j b;

padd i’ (plus j b) — plus (add 1" j) b;

padd (neg i) (plus j b) — plus (sub j i) b;

padd (plus j b) 0 =+ plus jb;

padd (plus j b} i' — plus (add i’ j) b;

padd (plus j b) (neg i} —+ plus (sub j i) b;

padd (times x a) (times x b) —
0 if (eql (plus a b) 0),
mult x (plus a b) otherwise;

eql (plus i (times x a})) (plus j (times x b)) — (eql i j)d(eql a b);
eql 0 (plus j (times x b)) — false;
eql i’ (plus j (times x b)) — false;
eql (plus i (times x a)) 0 — false;
eql (plus i (times x a})) i’ — false;

Arrays which are discussed in section 4.4 are another good examples of the usage of
constructors.

4.4 Array

As an experimental feature, arrays are incorporated in T. In our view, array features
are important to prove the feasibility of a reduction language since many programs
use arrays, especially in numeric processing.

Given architectures of von-Neumann computers, efficient processing of arrays in purely
functional way is difficult (as compared with assignment-based array processing).

In T system, logically, new arrays have to be created, whenever arrays are updated.
Creating a new array physically whenever updating occurs is a prohibitely expensive

“~ration. We circumvented this difficulty by the multi-version scheme proposed by
Cohen [3]. The scheme consists in associating the version number in each updated ar-
ray element in such a way that maintaining the version number is entirely transparent

—]3.

to programmers. With this scheme in mind, we introduce two kinds of arrays, cbarray
{object array) and funarray (function array).

Obarrays are arrays introduced by giving constructor “obarray”, its domain, and the
elements of the array, i.e.

obarray<domaln> &, iy, ... in Bii+1,03, 0 n o0 Bjids, e e

where <domain> is a list of indices { #; : j1, 72 1 j2, ... ta : Jn} specifying the domain
of the array,

For instance, the matrix

A
13 ==
L3 ba
L =
M

may be represented by
obarray{1:21:3} 122345

In the case each element of an array can be easily computed by a function (or a
combinator in our terminology) of domain indices rather than actual look-ups in the
store, we can specify the array in the form of computation rule. This array is called a
funarray. In other words, given a combinator A with a rewrite rule

Ak k... km = 8k ks, oy ke (Bkika, oo, ke 35 a0 element of an array)
we simply define such an array by

funarray <domain> combinator.

Associated projection “aget” is a combinator having a rewrite rule
aget (funarrayv<domain> A} {ky,kz,....km} — A Kiks ... kn;
(== 2k, k. oo, ke)
Injection “aput” is a combinator having a rewrite rule
aput (funarray<domain> A) {k;,k2,... km} V — (funarray<domain> A’);
where A’ is a new projection combinator satisfying

A*}C]Xz...xm - V ifxlzk]&xg'—'kz&...&‘xm=km,

Ay ¥ L. X otherwise;

14 —

When a funarray is updated extensively, the associated function gets complicated,
and the conversion from a funarray to an obarray becomes necessary for more efficient
processing.

We have two conversion combinators ! and 7, where

7 obarray — funarray, and
! funarray — obarray.

To be more specific

! (funarray{i; : j1.i2 132, -+« lm 1im} A)

=‘-"Gb3.rr&}?{i1:j1,iz:jz, imijm} Ay 1‘-2 P P J‘IL_'“ jz jm
and

7 (Dba.rray{il :j:,,.iz :j:, im :jm} ﬁ.i] fz s fm 5Ea zﬂijl jn jm}
== funarray{ii :j1,92:J2, -+ lm 1 Jm} A

We note the following relations hold between ! and 7.
(1) ! (? OA)=OA

(2) aget (? (! FA)) {i1,iz, ... ,im} = aget FA {i1,iz, ... ,im} where {i3,iz, ... ,im}
is within the range of the domain of FA, for obarray OA and funarray FA.

We have not yet implemented this array feature and no performance data is available,
However for efficient array processing, we see the importance of introducing rewrite
rules which proeess aggregates of elements at one time rather than processing elements
individually and sequentially.

5. Some considerations for practical implementation

5.1 Efficiency problems concerning T

We discuss two aspects of the efficiency problem concerning T.

(a) In what kinds of processing T programs are potentially more efficient than other
conventional ones.

(b) How can we realize efficient implementation of the T system itself?

To achieve efficiency improvements in both cases, the above problem has to be ad-
dressed in the following points;

(1) the elimination of redundant sequentiality (relating to (a) and (b)),

Laitmticn of perullelism inherent in the semantics of the programming
tangrece frTntioe 1o int and (B

.

(S0 4he Lot f mwris e inhierent in problem domains {relating to (a)).

BrpaTuiu o .une can cnminate the major source of redundant sequentiality
i fe oo o soonemsial cuse discrimination using if-then—else constructs in con-

vemiticonul toeor ooz lengunges. 1t is realized by giving a rewrite rule for each case

to Bee o

Regording |7 1 chares the advantages of exploiting parallelism with other functional
languages. Namely, multiple redexes (if any) in a given term can naturally give rise

to parallelizm. Paralle] recuction strategies used in the reduction of A-caleulus are

gpplicaie 1o he redustion of T programs with minor modification.

Regarding (2. 7 does uor poevide special constructs for it. We claim that T programs
which evnisit nerslelism in problem domain can be written as naturally as in other

functicna! programming langusges.

5.2 Graph copyving implementation

At present we wre plunning a new implementation based on graph copying.
The granh copving reduction scheme consists in the following points:

(1) & rewriio rule = represented by a graph,

(97 Thoogmeob i cesiised fn Lnear store called block).

(2 Foe e 0 wisin ane subsreph representing the matched righthand side is

eombe Lt s tnee s peny and the reduction is performed on the copied block.

1

e teono o ocootozeesylested by 2 compactifving garbage collector. This stor-

o
k

7w v mmgement faeilivates the storage allocation and secures the locality of the

Vie oz e iidmiing functions ke “CONST in Lisp. The storage used for

o i

COLET .+ oatients siloesied in the graph copying process. Figures 2 and 3

show the reduction process.

intl n — cons n (intl (suce n}))

(Y [

heap lﬂcrms T l intl l succ TE
) |

“||" denotes the end-of-term marker.

Figure 2: Definition of the rewrite rules of “intl”

y | copied
[-
heap intl | 1]|1[{cons T l intl . sulcc

(the heap representing the following reduction.
intl 1 = cons 1 {intl (succ 1)))
L z

Figure 3: The reduction of “int] 17

The implementation is characterized by the following features:

(1) Blockwise copy of the definition of the rewrite rule is generally fast, often per-
formed in a single instruction. (This is certainly true in IBM 360 architecture, ¢f.

MVC).

(2) A sequence of basic-term t; t3 ... tn is represented by consecutive storage as is

shown in Figure 2.

(3) The cells are not equally sized. For example, the size of the cell which contains
a constructor is only a byte. The constructors are, from the view point of the
implementation, simply tags denoting the type of the structure realized in the

heap.

17 —

5.3 Pattern matching by virtual-key hashing

During the reduction, most of the execution time is spent by the selection of rewrite
rules by pattern matching, according to our experience with running small, but typical
programs by our interpreter. Hence the speeding up of pattern matching will greatly
increase the speed of T programs. We are planning to implement a virtual-key hash
method to speed up pattern matching. Parallelism can be introduced to hashing, to
improve the performance of hashing if necessary [8].

5.4 Compilation of T programs

At present, we implemented in Lisp the interpreter of T which reduces input terms
by the leftmost reduction strategy. Internal form of terms, that is S-expression in
Lisp, is presently used. This implementation is experimental in that it is intended to
check correctness of the T programs, and to find out the bottleneck of the executions.
However, some techniques to obtain the efficiency such as “computation by hash table
look-ups"” can be implemented in the next version of the interpreter.

One obstacle of obtaining the high efficiency of the interpreter is that the lack of in-
formation on the arity of the defined-combinators. The arity-free combinator allows
the simple treatment of the higher order functions. However, this property also in-
creases the number of trials of matching terms against the definition of the lefthand
side of rewrite rules. Therefore, if the declaration of the arity of combinators when it
is fixed is introduced, the interpreter will becomes more efficient. For the more gain
in speed, we should construct the compiler for T. Compiling techniques for functional
programs [1, 7| can be applicable to T as well.

6. Concluding remarks

There is a certain trade-off hetween the generality of the language specification and
the efficiency. Important point to note is that the generality should not hamper the
efficiency of the basic operations of the language interpretation.

In our design of T, we tried to make T as simple, vet powerful as possible, and at the
same time, we lift high-level language features to the language which can be built on
T. Since the efficiency is most important in the language as low as T, we also discussed
the implementation techniques and the implications to architectures. As a rough, but
intuitive view, T is the language similar to Lisp in its type-free aspect.

Among other functional languages, HOPE and KRC are closest to T. These languages
can be built on T quite easily. One contribution of this paper is to make clear the
critical points in the design and implementation of these languages.

Extension of T to general term rewriting system is also an interesting theme to pursue.

— 1E

=

£

10.

11.

12.

13.

REFERENCES

L. Augustsson “A compiler for lazy ML," Conf. Record of the 1984 ACM Sym-
posium on Lisp and Functional Programming, pp.218-227, 1984, Austin

R. Burstall et. al. “HOPE: An experimental applicative language.” Conf. Record
of the LISP Conference, pp.136-143, 1980, Stanford

S. Cohen “Multi-version structure in PROLOG,” Proc. International Conference
on Fifth Generation Computer Systems, 1984, Tokyo

G. Huet “Confluent Reductions: Ahstract Properties and Applications to Term
Rewriting System,”J. of ACM, 27(4), pp.797-821, 1980

G. Huet, and J.-J. Lévy *Call by need computations in non-ambiguous linear
term rewriting system,” Rapport Laboria 359, IRIA, 1979

G. Huet, and D. C. Oppen “Equations and Rewrite Rules: a survey,” Formal
Language: Perspectives and Open problems, Ed. R. Book, Academic Press,
pp.340-405, 1980

R. J. M. Hughes “Super-combinators: A new implementation method for ap-

plicative languages,” Conf. Record of the 1982 ACM Symposium on Lisp and
functional programming, pp.1-10, 1982, Pittshurgh

T. Ida, and E. Goto “Parallel hash algorithms for virtual key index tables," JIP,
1(3), pp.130-137, 1978

S. Kaplan “Conditional Rewrite Rules,” Theoretical Computer Seience 33 pp.175—
193, 1984

P. J. Landin “The next 700 programming languages,” Comm. ACM 9(3), pp.157-
166, 1966

M. J. O'Donnel “Equational logic as a programming language,” The MIT Press,
1985

B. K. Rosen “Tree-manipulation systems and Church-Rosser theorem,” J. of
ACM 20, pp.160- 187, 1973

D. A. Turner “Recursive equations as a programming language in Functional pro-
gramming and its applications,” Ed. J. Darlington et. al. Cambridge University
Press, 1952

